/***************************************************************************** * * * File: cxgb2.c * * $Revision: 1.25 $ * * $Date: 2005/06/22 00:43:25 $ * * Description: * * Chelsio 10Gb Ethernet Driver. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License, version 2, as * * published by the Free Software Foundation. * * * * You should have received a copy of the GNU General Public License along * * with this program; if not, write to the Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED * * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF * * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * * * * http://www.chelsio.com * * * * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * * All rights reserved. * * * * Maintainers: maintainers@chelsio.com * * * * Authors: Dimitrios Michailidis <dm@chelsio.com> * * Tina Yang <tainay@chelsio.com> * * Felix Marti <felix@chelsio.com> * * Scott Bardone <sbardone@chelsio.com> * * Kurt Ottaway <kottaway@chelsio.com> * * Frank DiMambro <frank@chelsio.com> * * * * History: * * * ****************************************************************************/ #include "common.h" #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include <linux/mii.h> #include <linux/sockios.h> #include <linux/dma-mapping.h> #include <asm/uaccess.h> #include "cpl5_cmd.h" #include "regs.h" #include "gmac.h" #include "cphy.h" #include "sge.h" #include "tp.h" #include "espi.h" #include "elmer0.h" #include <linux/workqueue.h> static inline void schedule_mac_stats_update(struct adapter *ap, int secs) { schedule_delayed_work(&ap->stats_update_task, secs * HZ); } static inline void cancel_mac_stats_update(struct adapter *ap) { cancel_delayed_work(&ap->stats_update_task); } #define MAX_CMDQ_ENTRIES 16384 #define MAX_CMDQ1_ENTRIES 1024 #define MAX_RX_BUFFERS 16384 #define MAX_RX_JUMBO_BUFFERS 16384 #define MAX_TX_BUFFERS_HIGH 16384U #define MAX_TX_BUFFERS_LOW 1536U #define MAX_TX_BUFFERS 1460U #define MIN_FL_ENTRIES 32 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) /* * The EEPROM is actually bigger but only the first few bytes are used so we * only report those. */ #define EEPROM_SIZE 32 MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR("Chelsio Communications"); MODULE_LICENSE("GPL"); static int dflt_msg_enable = DFLT_MSG_ENABLE; module_param(dflt_msg_enable, int, 0); MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T1 default message enable bitmap"); #define HCLOCK 0x0 #define LCLOCK 0x1 /* T1 cards powersave mode */ static int t1_clock(struct adapter *adapter, int mode); static int t1powersave = 1; /* HW default is powersave mode. */ module_param(t1powersave, int, 0); MODULE_PARM_DESC(t1powersave, "Enable/Disable T1 powersaving mode"); static int disable_msi = 0; module_param(disable_msi, int, 0); MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)"); static const char pci_speed[][4] = { "33", "66", "100", "133" }; /* * Setup MAC to receive the types of packets we want. */ static void t1_set_rxmode(struct net_device *dev) { struct adapter *adapter = dev->priv; struct cmac *mac = adapter->port[dev->if_port].mac; struct t1_rx_mode rm; rm.dev = dev; rm.idx = 0; rm.list = dev->mc_list; mac->ops->set_rx_mode(mac, &rm); } static void link_report(struct port_info *p) { if (!netif_carrier_ok(p->dev)) printk(KERN_INFO "%s: link down\n", p->dev->name); else { const char *s = "10Mbps"; switch (p->link_config.speed) { case SPEED_10000: s = "10Gbps"; break; case SPEED_1000: s = "1000Mbps"; break; case SPEED_100: s = "100Mbps"; break; } printk(KERN_INFO "%s: link up, %s, %s-duplex\n", p->dev->name, s, p->link_config.duplex == DUPLEX_FULL ? "full" : "half"); } } void t1_link_negotiated(struct adapter *adapter, int port_id, int link_stat, int speed, int duplex, int pause) { struct port_info *p = &adapter->port[port_id]; if (link_stat != netif_carrier_ok(p->dev)) { if (link_stat) netif_carrier_on(p->dev); else netif_carrier_off(p->dev); link_report(p); /* multi-ports: inform toe */ if ((speed > 0) && (adapter->params.nports > 1)) { unsigned int sched_speed = 10; switch (speed) { case SPEED_1000: sched_speed = 1000; break; case SPEED_100: sched_speed = 100; break; case SPEED_10: sched_speed = 10; break; } t1_sched_update_parms(adapter->sge, port_id, 0, sched_speed); } } } static void link_start(struct port_info *p) { struct cmac *mac = p->mac; mac->ops->reset(mac); if (mac->ops->macaddress_set) mac->ops->macaddress_set(mac, p->dev->dev_addr); t1_set_rxmode(p->dev); t1_link_start(p->phy, mac, &p->link_config); mac->ops->enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); } static void enable_hw_csum(struct adapter *adapter) { if (adapter->flags & TSO_CAPABLE) t1_tp_set_ip_checksum_offload(adapter->tp, 1); /* for TSO only */ if (adapter->flags & UDP_CSUM_CAPABLE) t1_tp_set_udp_checksum_offload(adapter->tp, 1); t1_tp_set_tcp_checksum_offload(adapter->tp, 1); } /* * Things to do upon first use of a card. * This must run with the rtnl lock held. */ static int cxgb_up(struct adapter *adapter) { int err = 0; if (!(adapter->flags & FULL_INIT_DONE)) { err = t1_init_hw_modules(adapter); if (err) goto out_err; enable_hw_csum(adapter); adapter->flags |= FULL_INIT_DONE; } t1_interrupts_clear(adapter); adapter->params.has_msi = !disable_msi && !pci_enable_msi(adapter->pdev); err = request_irq(adapter->pdev->irq, t1_interrupt, adapter->params.has_msi ? 0 : IRQF_SHARED, adapter->name, adapter); if (err) { if (adapter->params.has_msi) pci_disable_msi(adapter->pdev); goto out_err; } t1_sge_start(adapter->sge); t1_interrupts_enable(adapter); out_err: return err; } /* * Release resources when all the ports have been stopped. */ static void cxgb_down(struct adapter *adapter) { t1_sge_stop(adapter->sge); t1_interrupts_disable(adapter); free_irq(adapter->pdev->irq, adapter); if (adapter->params.has_msi) pci_disable_msi(adapter->pdev); } static int cxgb_open(struct net_device *dev) { int err; struct adapter *adapter = dev->priv; int other_ports = adapter->open_device_map & PORT_MASK; napi_enable(&adapter->napi); if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) { napi_disable(&adapter->napi); return err; } __set_bit(dev->if_port, &adapter->open_device_map); link_start(&adapter->port[dev->if_port]); netif_start_queue(dev); if (!other_ports && adapter->params.stats_update_period) schedule_mac_stats_update(adapter, adapter->params.stats_update_period); return 0; } static int cxgb_close(struct net_device *dev) { struct adapter *adapter = dev->priv; struct port_info *p = &adapter->port[dev->if_port]; struct cmac *mac = p->mac; netif_stop_queue(dev); napi_disable(&adapter->napi); mac->ops->disable(mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); netif_carrier_off(dev); clear_bit(dev->if_port, &adapter->open_device_map); if (adapter->params.stats_update_period && !(adapter->open_device_map & PORT_MASK)) { /* Stop statistics accumulation. */ smp_mb__after_clear_bit(); spin_lock(&adapter->work_lock); /* sync with update task */ spin_unlock(&adapter->work_lock); cancel_mac_stats_update(adapter); } if (!adapter->open_device_map) cxgb_down(adapter); return 0; } static struct net_device_stats *t1_get_stats(struct net_device *dev) { struct adapter *adapter = dev->priv; struct port_info *p = &adapter->port[dev->if_port]; struct net_device_stats *ns = &p->netstats; const struct cmac_statistics *pstats; /* Do a full update of the MAC stats */ pstats = p->mac->ops->statistics_update(p->mac, MAC_STATS_UPDATE_FULL); ns->tx_packets = pstats->TxUnicastFramesOK + pstats->TxMulticastFramesOK + pstats->TxBroadcastFramesOK; ns->rx_packets = pstats->RxUnicastFramesOK + pstats->RxMulticastFramesOK + pstats->RxBroadcastFramesOK; ns->tx_bytes = pstats->TxOctetsOK; ns->rx_bytes = pstats->RxOctetsOK; ns->tx_errors = pstats->TxLateCollisions + pstats->TxLengthErrors + pstats->TxUnderrun + pstats->TxFramesAbortedDueToXSCollisions; ns->rx_errors = pstats->RxDataErrors + pstats->RxJabberErrors + pstats->RxFCSErrors + pstats->RxAlignErrors + pstats->RxSequenceErrors + pstats->RxFrameTooLongErrors + pstats->RxSymbolErrors + pstats->RxRuntErrors; ns->multicast = pstats->RxMulticastFramesOK; ns->collisions = pstats->TxTotalCollisions; /* detailed rx_errors */ ns->rx_length_errors = pstats->RxFrameTooLongErrors + pstats->RxJabberErrors; ns->rx_over_errors = 0; ns->rx_crc_errors = pstats->RxFCSErrors; ns->rx_frame_errors = pstats->RxAlignErrors; ns->rx_fifo_errors = 0; ns->rx_missed_errors = 0; /* detailed tx_errors */ ns->tx_aborted_errors = pstats->TxFramesAbortedDueToXSCollisions; ns->tx_carrier_errors = 0; ns->tx_fifo_errors = pstats->TxUnderrun; ns->tx_heartbeat_errors = 0; ns->tx_window_errors = pstats->TxLateCollisions; return ns; } static u32 get_msglevel(struct net_device *dev) { struct adapter *adapter = dev->priv; return adapter->msg_enable; } static void set_msglevel(struct net_device *dev, u32 val) { struct adapter *adapter = dev->priv; adapter->msg_enable = val; } static char stats_strings[][ETH_GSTRING_LEN] = { "TxOctetsOK", "TxOctetsBad", "TxUnicastFramesOK", "TxMulticastFramesOK", "TxBroadcastFramesOK", "TxPauseFrames", "TxFramesWithDeferredXmissions", "TxLateCollisions", "TxTotalCollisions", "TxFramesAbortedDueToXSCollisions", "TxUnderrun", "TxLengthErrors", "TxInternalMACXmitError", "TxFramesWithExcessiveDeferral", "TxFCSErrors", "RxOctetsOK", "RxOctetsBad", "RxUnicastFramesOK", "RxMulticastFramesOK", "RxBroadcastFramesOK", "RxPauseFrames", "RxFCSErrors", "RxAlignErrors", "RxSymbolErrors", "RxDataErrors", "RxSequenceErrors", "RxRuntErrors", "RxJabberErrors", "RxInternalMACRcvError", "RxInRangeLengthErrors", "RxOutOfRangeLengthField", "RxFrameTooLongErrors", /* Port stats */ "RxPackets", "RxCsumGood", "TxPackets", "TxCsumOffload", "TxTso", "RxVlan", "TxVlan", /* Interrupt stats */ "rx drops", "pure_rsps", "unhandled irqs", "respQ_empty", "respQ_overflow", "freelistQ_empty", "pkt_too_big", "pkt_mismatch", "cmdQ_full0", "cmdQ_full1", "espi_DIP2ParityErr", "espi_DIP4Err", "espi_RxDrops", "espi_TxDrops", "espi_RxOvfl", "espi_ParityErr" }; #define T2_REGMAP_SIZE (3 * 1024) static int get_regs_len(struct net_device *dev) { return T2_REGMAP_SIZE; } static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct adapter *adapter = dev->priv; strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); strcpy(info->fw_version, "N/A"); strcpy(info->bus_info, pci_name(adapter->pdev)); } static int get_stats_count(struct net_device *dev) { return ARRAY_SIZE(stats_strings); } static void get_strings(struct net_device *dev, u32 stringset, u8 *data) { if (stringset == ETH_SS_STATS) memcpy(data, stats_strings, sizeof(stats_strings)); } static void get_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct adapter *adapter = dev->priv; struct cmac *mac = adapter->port[dev->if_port].mac; const struct cmac_statistics *s; const struct sge_intr_counts *t; struct sge_port_stats ss; unsigned int len; s = mac->ops->statistics_update(mac, MAC_STATS_UPDATE_FULL); len = sizeof(u64)*(&s->TxFCSErrors + 1 - &s->TxOctetsOK); memcpy(data, &s->TxOctetsOK, len); data += len; len = sizeof(u64)*(&s->RxFrameTooLongErrors + 1 - &s->RxOctetsOK); memcpy(data, &s->RxOctetsOK, len); data += len; t1_sge_get_port_stats(adapter->sge, dev->if_port, &ss); memcpy(data, &ss, sizeof(ss)); data += sizeof(ss); t = t1_sge_get_intr_counts(adapter->sge); *data++ = t->rx_drops; *data++ = t->pure_rsps; *data++ = t->unhandled_irqs; *data++ = t->respQ_empty; *data++ = t->respQ_overflow; *data++ = t->freelistQ_empty; *data++ = t->pkt_too_big; *data++ = t->pkt_mismatch; *data++ = t->cmdQ_full[0]; *data++ = t->cmdQ_full[1]; if (adapter->espi) { const struct espi_intr_counts *e; e = t1_espi_get_intr_counts(adapter->espi); *data++ = e->DIP2_parity_err; *data++ = e->DIP4_err; *data++ = e->rx_drops; *data++ = e->tx_drops; *data++ = e->rx_ovflw; *data++ = e->parity_err; } } static inline void reg_block_dump(struct adapter *ap, void *buf, unsigned int start, unsigned int end) { u32 *p = buf + start; for ( ; start <= end; start += sizeof(u32)) *p++ = readl(ap->regs + start); } static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) { struct adapter *ap = dev->priv; /* * Version scheme: bits 0..9: chip version, bits 10..15: chip revision */ regs->version = 2; memset(buf, 0, T2_REGMAP_SIZE); reg_block_dump(ap, buf, 0, A_SG_RESPACCUTIMER); reg_block_dump(ap, buf, A_MC3_CFG, A_MC4_INT_CAUSE); reg_block_dump(ap, buf, A_TPI_ADDR, A_TPI_PAR); reg_block_dump(ap, buf, A_TP_IN_CONFIG, A_TP_TX_DROP_COUNT); reg_block_dump(ap, buf, A_RAT_ROUTE_CONTROL, A_RAT_INTR_CAUSE); reg_block_dump(ap, buf, A_CSPI_RX_AE_WM, A_CSPI_INTR_ENABLE); reg_block_dump(ap, buf, A_ESPI_SCH_TOKEN0, A_ESPI_GOSTAT); reg_block_dump(ap, buf, A_ULP_ULIMIT, A_ULP_PIO_CTRL); reg_block_dump(ap, buf, A_PL_ENABLE, A_PL_CAUSE); reg_block_dump(ap, buf, A_MC5_CONFIG, A_MC5_MASK_WRITE_CMD); } static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct adapter *adapter = dev->priv; struct port_info *p = &adapter->port[dev->if_port]; cmd->supported = p->link_config.supported; cmd->advertising = p->link_config.advertising; if (netif_carrier_ok(dev)) { cmd->speed = p->link_config.speed; cmd->duplex = p->link_config.duplex; } else { cmd->speed = -1; cmd->duplex = -1; } cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; cmd->phy_address = p->phy->addr; cmd->transceiver = XCVR_EXTERNAL; cmd->autoneg = p->link_config.autoneg; cmd->maxtxpkt = 0; cmd->maxrxpkt = 0; return 0; } static int speed_duplex_to_caps(int speed, int duplex) { int cap = 0; switch (speed) { case SPEED_10: if (duplex == DUPLEX_FULL) cap = SUPPORTED_10baseT_Full; else cap = SUPPORTED_10baseT_Half; break; case SPEED_100: if (duplex == DUPLEX_FULL) cap = SUPPORTED_100baseT_Full; else cap = SUPPORTED_100baseT_Half; break; case SPEED_1000: if (duplex == DUPLEX_FULL) cap = SUPPORTED_1000baseT_Full; else cap = SUPPORTED_1000baseT_Half; break; case SPEED_10000: if (duplex == DUPLEX_FULL) cap = SUPPORTED_10000baseT_Full; } return cap; } #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ ADVERTISED_10000baseT_Full) static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct adapter *adapter = dev->priv; struct port_info *p = &adapter->port[dev->if_port]; struct link_config *lc = &p->link_config; if (!(lc->supported & SUPPORTED_Autoneg)) return -EOPNOTSUPP; /* can't change speed/duplex */ if (cmd->autoneg == AUTONEG_DISABLE) { int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex); if (!(lc->supported & cap) || cmd->speed == SPEED_1000) return -EINVAL; lc->requested_speed = cmd->speed; lc->requested_duplex = cmd->duplex; lc->advertising = 0; } else { cmd->advertising &= ADVERTISED_MASK; if (cmd->advertising & (cmd->advertising - 1)) cmd->advertising = lc->supported; cmd->advertising &= lc->supported; if (!cmd->advertising) return -EINVAL; lc->requested_speed = SPEED_INVALID; lc->requested_duplex = DUPLEX_INVALID; lc->advertising = cmd->advertising | ADVERTISED_Autoneg; } lc->autoneg = cmd->autoneg; if (netif_running(dev)) t1_link_start(p->phy, p->mac, lc); return 0; } static void get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct adapter *adapter = dev->priv; struct port_info *p = &adapter->port[dev->if_port]; epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; } static int set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct adapter *adapter = dev->priv; struct port_info *p = &adapter->port[dev->if_port]; struct link_config *lc = &p->link_config; if (epause->autoneg == AUTONEG_DISABLE) lc->requested_fc = 0; else if (lc->supported & SUPPORTED_Autoneg) lc->requested_fc = PAUSE_AUTONEG; else return -EINVAL; if (epause->rx_pause) lc->requested_fc |= PAUSE_RX; if (epause->tx_pause) lc->requested_fc |= PAUSE_TX; if (lc->autoneg == AUTONEG_ENABLE) { if (netif_running(dev)) t1_link_start(p->phy, p->mac, lc); } else { lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); if (netif_running(dev)) p->mac->ops->set_speed_duplex_fc(p->mac, -1, -1, lc->fc); } return 0; } static u32 get_rx_csum(struct net_device *dev) { struct adapter *adapter = dev->priv; return (adapter->flags & RX_CSUM_ENABLED) != 0; } static int set_rx_csum(struct net_device *dev, u32 data) { struct adapter *adapter = dev->priv; if (data) adapter->flags |= RX_CSUM_ENABLED; else adapter->flags &= ~RX_CSUM_ENABLED; return 0; } static int set_tso(struct net_device *dev, u32 value) { struct adapter *adapter = dev->priv; if (!(adapter->flags & TSO_CAPABLE)) return value ? -EOPNOTSUPP : 0; return ethtool_op_set_tso(dev, value); } static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) { struct adapter *adapter = dev->priv; int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; e->rx_max_pending = MAX_RX_BUFFERS; e->rx_mini_max_pending = 0; e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; e->tx_max_pending = MAX_CMDQ_ENTRIES; e->rx_pending = adapter->params.sge.freelQ_size[!jumbo_fl]; e->rx_mini_pending = 0; e->rx_jumbo_pending = adapter->params.sge.freelQ_size[jumbo_fl]; e->tx_pending = adapter->params.sge.cmdQ_size[0]; } static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) { struct adapter *adapter = dev->priv; int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; if (e->rx_pending > MAX_RX_BUFFERS || e->rx_mini_pending || e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || e->tx_pending > MAX_CMDQ_ENTRIES || e->rx_pending < MIN_FL_ENTRIES || e->rx_jumbo_pending < MIN_FL_ENTRIES || e->tx_pending < (adapter->params.nports + 1) * (MAX_SKB_FRAGS + 1)) return -EINVAL; if (adapter->flags & FULL_INIT_DONE) return -EBUSY; adapter->params.sge.freelQ_size[!jumbo_fl] = e->rx_pending; adapter->params.sge.freelQ_size[jumbo_fl] = e->rx_jumbo_pending; adapter->params.sge.cmdQ_size[0] = e->tx_pending; adapter->params.sge.cmdQ_size[1] = e->tx_pending > MAX_CMDQ1_ENTRIES ? MAX_CMDQ1_ENTRIES : e->tx_pending; return 0; } static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) { struct adapter *adapter = dev->priv; adapter->params.sge.rx_coalesce_usecs = c->rx_coalesce_usecs; adapter->params.sge.coalesce_enable = c->use_adaptive_rx_coalesce; adapter->params.sge.sample_interval_usecs = c->rate_sample_interval; t1_sge_set_coalesce_params(adapter->sge, &adapter->params.sge); return 0; } static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) { struct adapter *adapter = dev->priv; c->rx_coalesce_usecs = adapter->params.sge.rx_coalesce_usecs; c->rate_sample_interval = adapter->params.sge.sample_interval_usecs; c->use_adaptive_rx_coalesce = adapter->params.sge.coalesce_enable; return 0; } static int get_eeprom_len(struct net_device *dev) { struct adapter *adapter = dev->priv; return t1_is_asic(adapter) ? EEPROM_SIZE : 0; } #define EEPROM_MAGIC(ap) \ (PCI_VENDOR_ID_CHELSIO | ((ap)->params.chip_version << 16)) static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, u8 *data) { int i; u8 buf[EEPROM_SIZE] __attribute__((aligned(4))); struct adapter *adapter = dev->priv; e->magic = EEPROM_MAGIC(adapter); for (i = e->offset & ~3; i < e->offset + e->len; i += sizeof(u32)) t1_seeprom_read(adapter, i, (u32 *)&buf[i]); memcpy(data, buf + e->offset, e->len); return 0; } static const struct ethtool_ops t1_ethtool_ops = { .get_settings = get_settings, .set_settings = set_settings, .get_drvinfo = get_drvinfo, .get_msglevel = get_msglevel, .set_msglevel = set_msglevel, .get_ringparam = get_sge_param, .set_ringparam = set_sge_param, .get_coalesce = get_coalesce, .set_coalesce = set_coalesce, .get_eeprom_len = get_eeprom_len, .get_eeprom = get_eeprom, .get_pauseparam = get_pauseparam, .set_pauseparam = set_pauseparam, .get_rx_csum = get_rx_csum, .set_rx_csum = set_rx_csum, .get_tx_csum = ethtool_op_get_tx_csum, .set_tx_csum = ethtool_op_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, .get_link = ethtool_op_get_link, .get_strings = get_strings, .get_stats_count = get_stats_count, .get_ethtool_stats = get_stats, .get_regs_len = get_regs_len, .get_regs = get_regs, .get_tso = ethtool_op_get_tso, .set_tso = set_tso, }; static int t1_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct adapter *adapter = dev->priv; struct mii_ioctl_data *data = if_mii(req); switch (cmd) { case SIOCGMIIPHY: data->phy_id = adapter->port[dev->if_port].phy->addr; /* FALLTHRU */ case SIOCGMIIREG: { struct cphy *phy = adapter->port[dev->if_port].phy; u32 val; if (!phy->mdio_read) return -EOPNOTSUPP; phy->mdio_read(adapter, data->phy_id, 0, data->reg_num & 0x1f, &val); data->val_out = val; break; } case SIOCSMIIREG: { struct cphy *phy = adapter->port[dev->if_port].phy; if (!capable(CAP_NET_ADMIN)) return -EPERM; if (!phy->mdio_write) return -EOPNOTSUPP; phy->mdio_write(adapter, data->phy_id, 0, data->reg_num & 0x1f, data->val_in); break; } default: return -EOPNOTSUPP; } return 0; } static int t1_change_mtu(struct net_device *dev, int new_mtu) { int ret; struct adapter *adapter = dev->priv; struct cmac *mac = adapter->port[dev->if_port].mac; if (!mac->ops->set_mtu) return -EOPNOTSUPP; if (new_mtu < 68) return -EINVAL; if ((ret = mac->ops->set_mtu(mac, new_mtu))) return ret; dev->mtu = new_mtu; return 0; } static int t1_set_mac_addr(struct net_device *dev, void *p) { struct adapter *adapter = dev->priv; struct cmac *mac = adapter->port[dev->if_port].mac; struct sockaddr *addr = p; if (!mac->ops->macaddress_set) return -EOPNOTSUPP; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); mac->ops->macaddress_set(mac, dev->dev_addr); return 0; } #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct adapter *adapter = dev->priv; spin_lock_irq(&adapter->async_lock); adapter->vlan_grp = grp; t1_set_vlan_accel(adapter, grp != NULL); spin_unlock_irq(&adapter->async_lock); } #endif #ifdef CONFIG_NET_POLL_CONTROLLER static void t1_netpoll(struct net_device *dev) { unsigned long flags; struct adapter *adapter = dev->priv; local_irq_save(flags); t1_interrupt(adapter->pdev->irq, adapter); local_irq_restore(flags); } #endif /* * Periodic accumulation of MAC statistics. This is used only if the MAC * does not have any other way to prevent stats counter overflow. */ static void mac_stats_task(struct work_struct *work) { int i; struct adapter *adapter = container_of(work, struct adapter, stats_update_task.work); for_each_port(adapter, i) { struct port_info *p = &adapter->port[i]; if (netif_running(p->dev)) p->mac->ops->statistics_update(p->mac, MAC_STATS_UPDATE_FAST); } /* Schedule the next statistics update if any port is active. */ spin_lock(&adapter->work_lock); if (adapter->open_device_map & PORT_MASK) schedule_mac_stats_update(adapter, adapter->params.stats_update_period); spin_unlock(&adapter->work_lock); } /* * Processes elmer0 external interrupts in process context. */ static void ext_intr_task(struct work_struct *work) { struct adapter *adapter = container_of(work, struct adapter, ext_intr_handler_task); t1_elmer0_ext_intr_handler(adapter); /* Now reenable external interrupts */ spin_lock_irq(&adapter->async_lock); adapter->slow_intr_mask |= F_PL_INTR_EXT; writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE); writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, adapter->regs + A_PL_ENABLE); spin_unlock_irq(&adapter->async_lock); } /* * Interrupt-context handler for elmer0 external interrupts. */ void t1_elmer0_ext_intr(struct adapter *adapter) { /* * Schedule a task to handle external interrupts as we require * a process context. We disable EXT interrupts in the interim * and let the task reenable them when it's done. */ adapter->slow_intr_mask &= ~F_PL_INTR_EXT; writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, adapter->regs + A_PL_ENABLE); schedule_work(&adapter->ext_intr_handler_task); } void t1_fatal_err(struct adapter *adapter) { if (adapter->flags & FULL_INIT_DONE) { t1_sge_stop(adapter->sge); t1_interrupts_disable(adapter); } CH_ALERT("%s: encountered fatal error, operation suspended\n", adapter->name); } static int __devinit init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { static int version_printed; int i, err, pci_using_dac = 0; unsigned long mmio_start, mmio_len; const struct board_info *bi; struct adapter *adapter = NULL; struct port_info *pi; if (!version_printed) { printk(KERN_INFO "%s - version %s\n", DRV_DESCRIPTION, DRV_VERSION); ++version_printed; } err = pci_enable_device(pdev); if (err) return err; if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { CH_ERR("%s: cannot find PCI device memory base address\n", pci_name(pdev)); err = -ENODEV; goto out_disable_pdev; } if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) { pci_using_dac = 1; if (pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) { CH_ERR("%s: unable to obtain 64-bit DMA for" "consistent allocations\n", pci_name(pdev)); err = -ENODEV; goto out_disable_pdev; } } else if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) { CH_ERR("%s: no usable DMA configuration\n", pci_name(pdev)); goto out_disable_pdev; } err = pci_request_regions(pdev, DRV_NAME); if (err) { CH_ERR("%s: cannot obtain PCI resources\n", pci_name(pdev)); goto out_disable_pdev; } pci_set_master(pdev); mmio_start = pci_resource_start(pdev, 0); mmio_len = pci_resource_len(pdev, 0); bi = t1_get_board_info(ent->driver_data); for (i = 0; i < bi->port_number; ++i) { struct net_device *netdev; netdev = alloc_etherdev(adapter ? 0 : sizeof(*adapter)); if (!netdev) { err = -ENOMEM; goto out_free_dev; } SET_MODULE_OWNER(netdev); SET_NETDEV_DEV(netdev, &pdev->dev); if (!adapter) { adapter = netdev->priv; adapter->pdev = pdev; adapter->port[0].dev = netdev; /* so we don't leak it */ adapter->regs = ioremap(mmio_start, mmio_len); if (!adapter->regs) { CH_ERR("%s: cannot map device registers\n", pci_name(pdev)); err = -ENOMEM; goto out_free_dev; } if (t1_get_board_rev(adapter, bi, &adapter->params)) { err = -ENODEV; /* Can't handle this chip rev */ goto out_free_dev; } adapter->name = pci_name(pdev); adapter->msg_enable = dflt_msg_enable; adapter->mmio_len = mmio_len; spin_lock_init(&adapter->tpi_lock); spin_lock_init(&adapter->work_lock); spin_lock_init(&adapter->async_lock); spin_lock_init(&adapter->mac_lock); INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); INIT_DELAYED_WORK(&adapter->stats_update_task, mac_stats_task); pci_set_drvdata(pdev, netdev); } pi = &adapter->port[i]; pi->dev = netdev; netif_carrier_off(netdev); netdev->irq = pdev->irq; netdev->if_port = i; netdev->mem_start = mmio_start; netdev->mem_end = mmio_start + mmio_len - 1; netdev->priv = adapter; netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; netdev->features |= NETIF_F_LLTX; adapter->flags |= RX_CSUM_ENABLED | TCP_CSUM_CAPABLE; if (pci_using_dac) netdev->features |= NETIF_F_HIGHDMA; if (vlan_tso_capable(adapter)) { #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) adapter->flags |= VLAN_ACCEL_CAPABLE; netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; netdev->vlan_rx_register = vlan_rx_register; #endif /* T204: disable TSO */ if (!(is_T2(adapter)) || bi->port_number != 4) { adapter->flags |= TSO_CAPABLE; netdev->features |= NETIF_F_TSO; } } netdev->open = cxgb_open; netdev->stop = cxgb_close; netdev->hard_start_xmit = t1_start_xmit; netdev->hard_header_len += (adapter->flags & TSO_CAPABLE) ? sizeof(struct cpl_tx_pkt_lso) : sizeof(struct cpl_tx_pkt); netdev->get_stats = t1_get_stats; netdev->set_multicast_list = t1_set_rxmode; netdev->do_ioctl = t1_ioctl; netdev->change_mtu = t1_change_mtu; netdev->set_mac_address = t1_set_mac_addr; #ifdef CONFIG_NET_POLL_CONTROLLER netdev->poll_controller = t1_netpoll; #endif #ifdef CONFIG_CHELSIO_T1_NAPI netif_napi_add(netdev, &adapter->napi, t1_poll, 64); #endif SET_ETHTOOL_OPS(netdev, &t1_ethtool_ops); } if (t1_init_sw_modules(adapter, bi) < 0) { err = -ENODEV; goto out_free_dev; } /* * The card is now ready to go. If any errors occur during device * registration we do not fail the whole card but rather proceed only * with the ports we manage to register successfully. However we must * register at least one net device. */ for (i = 0; i < bi->port_number; ++i) { err = register_netdev(adapter->port[i].dev); if (err) CH_WARN("%s: cannot register net device %s, skipping\n", pci_name(pdev), adapter->port[i].dev->name); else { /* * Change the name we use for messages to the name of * the first successfully registered interface. */ if (!adapter->registered_device_map) adapter->name = adapter->port[i].dev->name; __set_bit(i, &adapter->registered_device_map); } } if (!adapter->registered_device_map) { CH_ERR("%s: could not register any net devices\n", pci_name(pdev)); goto out_release_adapter_res; } printk(KERN_INFO "%s: %s (rev %d), %s %dMHz/%d-bit\n", adapter->name, bi->desc, adapter->params.chip_revision, adapter->params.pci.is_pcix ? "PCIX" : "PCI", adapter->params.pci.speed, adapter->params.pci.width); /* * Set the T1B ASIC and memory clocks. */ if (t1powersave) adapter->t1powersave = LCLOCK; /* HW default is powersave mode. */ else adapter->t1powersave = HCLOCK; if (t1_is_T1B(adapter)) t1_clock(adapter, t1powersave); return 0; out_release_adapter_res: t1_free_sw_modules(adapter); out_free_dev: if (adapter) { if (adapter->regs) iounmap(adapter->regs); for (i = bi->port_number - 1; i >= 0; --i) if (adapter->port[i].dev) free_netdev(adapter->port[i].dev); } pci_release_regions(pdev); out_disable_pdev: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return err; } static void bit_bang(struct adapter *adapter, int bitdata, int nbits) { int data; int i; u32 val; enum { S_CLOCK = 1 << 3, S_DATA = 1 << 4 }; for (i = (nbits - 1); i > -1; i--) { udelay(50); data = ((bitdata >> i) & 0x1); __t1_tpi_read(adapter, A_ELMER0_GPO, &val); if (data) val |= S_DATA; else val &= ~S_DATA; udelay(50); /* Set SCLOCK low */ val &= ~S_CLOCK; __t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(50); /* Write SCLOCK high */ val |= S_CLOCK; __t1_tpi_write(adapter, A_ELMER0_GPO, val); } } static int t1_clock(struct adapter *adapter, int mode) { u32 val; int M_CORE_VAL; int M_MEM_VAL; enum { M_CORE_BITS = 9, T_CORE_VAL = 0, T_CORE_BITS = 2, N_CORE_VAL = 0, N_CORE_BITS = 2, M_MEM_BITS = 9, T_MEM_VAL = 0, T_MEM_BITS = 2, N_MEM_VAL = 0, N_MEM_BITS = 2, NP_LOAD = 1 << 17, S_LOAD_MEM = 1 << 5, S_LOAD_CORE = 1 << 6, S_CLOCK = 1 << 3 }; if (!t1_is_T1B(adapter)) return -ENODEV; /* Can't re-clock this chip. */ if (mode & 2) return 0; /* show current mode. */ if ((adapter->t1powersave & 1) == (mode & 1)) return -EALREADY; /* ASIC already running in mode. */ if ((mode & 1) == HCLOCK) { M_CORE_VAL = 0x14; M_MEM_VAL = 0x18; adapter->t1powersave = HCLOCK; /* overclock */ } else { M_CORE_VAL = 0xe; M_MEM_VAL = 0x10; adapter->t1powersave = LCLOCK; /* underclock */ } /* Don't interrupt this serial stream! */ spin_lock(&adapter->tpi_lock); /* Initialize for ASIC core */ __t1_tpi_read(adapter, A_ELMER0_GPO, &val); val |= NP_LOAD; udelay(50); __t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(50); __t1_tpi_read(adapter, A_ELMER0_GPO, &val); val &= ~S_LOAD_CORE; val &= ~S_CLOCK; __t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(50); /* Serial program the ASIC clock synthesizer */ bit_bang(adapter, T_CORE_VAL, T_CORE_BITS); bit_bang(adapter, N_CORE_VAL, N_CORE_BITS); bit_bang(adapter, M_CORE_VAL, M_CORE_BITS); udelay(50); /* Finish ASIC core */ __t1_tpi_read(adapter, A_ELMER0_GPO, &val); val |= S_LOAD_CORE; udelay(50); __t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(50); __t1_tpi_read(adapter, A_ELMER0_GPO, &val); val &= ~S_LOAD_CORE; udelay(50); __t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(50); /* Initialize for memory */ __t1_tpi_read(adapter, A_ELMER0_GPO, &val); val |= NP_LOAD; udelay(50); __t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(50); __t1_tpi_read(adapter, A_ELMER0_GPO, &val); val &= ~S_LOAD_MEM; val &= ~S_CLOCK; udelay(50); __t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(50); /* Serial program the memory clock synthesizer */ bit_bang(adapter, T_MEM_VAL, T_MEM_BITS); bit_bang(adapter, N_MEM_VAL, N_MEM_BITS); bit_bang(adapter, M_MEM_VAL, M_MEM_BITS); udelay(50); /* Finish memory */ __t1_tpi_read(adapter, A_ELMER0_GPO, &val); val |= S_LOAD_MEM; udelay(50); __t1_tpi_write(adapter, A_ELMER0_GPO, val); udelay(50); __t1_tpi_read(adapter, A_ELMER0_GPO, &val); val &= ~S_LOAD_MEM; udelay(50); __t1_tpi_write(adapter, A_ELMER0_GPO, val); spin_unlock(&adapter->tpi_lock); return 0; } static inline void t1_sw_reset(struct pci_dev *pdev) { pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 3); pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 0); } static void __devexit remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct adapter *adapter = dev->priv; int i; for_each_port(adapter, i) { if (test_bit(i, &adapter->registered_device_map)) unregister_netdev(adapter->port[i].dev); } t1_free_sw_modules(adapter); iounmap(adapter->regs); while (--i >= 0) { if (adapter->port[i].dev) free_netdev(adapter->port[i].dev); } pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); t1_sw_reset(pdev); } static struct pci_driver driver = { .name = DRV_NAME, .id_table = t1_pci_tbl, .probe = init_one, .remove = __devexit_p(remove_one), }; static int __init t1_init_module(void) { return pci_register_driver(&driver); } static void __exit t1_cleanup_module(void) { pci_unregister_driver(&driver); } module_init(t1_init_module); module_exit(t1_cleanup_module);