/* * drivers/net/gianfar.c * * Gianfar Ethernet Driver * This driver is designed for the non-CPM ethernet controllers * on the 85xx and 83xx family of integrated processors * Based on 8260_io/fcc_enet.c * * Author: Andy Fleming * Maintainer: Kumar Gala * * Copyright (c) 2002-2006 Freescale Semiconductor, Inc. * Copyright (c) 2007 MontaVista Software, Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * Gianfar: AKA Lambda Draconis, "Dragon" * RA 11 31 24.2 * Dec +69 19 52 * V 3.84 * B-V +1.62 * * Theory of operation * * The driver is initialized through platform_device. Structures which * define the configuration needed by the board are defined in a * board structure in arch/ppc/platforms (though I do not * discount the possibility that other architectures could one * day be supported. * * The Gianfar Ethernet Controller uses a ring of buffer * descriptors. The beginning is indicated by a register * pointing to the physical address of the start of the ring. * The end is determined by a "wrap" bit being set in the * last descriptor of the ring. * * When a packet is received, the RXF bit in the * IEVENT register is set, triggering an interrupt when the * corresponding bit in the IMASK register is also set (if * interrupt coalescing is active, then the interrupt may not * happen immediately, but will wait until either a set number * of frames or amount of time have passed). In NAPI, the * interrupt handler will signal there is work to be done, and * exit. Without NAPI, the packet(s) will be handled * immediately. Both methods will start at the last known empty * descriptor, and process every subsequent descriptor until there * are none left with data (NAPI will stop after a set number of * packets to give time to other tasks, but will eventually * process all the packets). The data arrives inside a * pre-allocated skb, and so after the skb is passed up to the * stack, a new skb must be allocated, and the address field in * the buffer descriptor must be updated to indicate this new * skb. * * When the kernel requests that a packet be transmitted, the * driver starts where it left off last time, and points the * descriptor at the buffer which was passed in. The driver * then informs the DMA engine that there are packets ready to * be transmitted. Once the controller is finished transmitting * the packet, an interrupt may be triggered (under the same * conditions as for reception, but depending on the TXF bit). * The driver then cleans up the buffer. */ #include <linux/kernel.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/unistd.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/platform_device.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/in.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/uaccess.h> #include <linux/module.h> #include <linux/dma-mapping.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/phy.h> #include "gianfar.h" #include "gianfar_mii.h" #define TX_TIMEOUT (1*HZ) #define SKB_ALLOC_TIMEOUT 1000000 #undef BRIEF_GFAR_ERRORS #undef VERBOSE_GFAR_ERRORS #ifdef CONFIG_GFAR_NAPI #define RECEIVE(x) netif_receive_skb(x) #else #define RECEIVE(x) netif_rx(x) #endif const char gfar_driver_name[] = "Gianfar Ethernet"; const char gfar_driver_version[] = "1.3"; static int gfar_enet_open(struct net_device *dev); static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev); static void gfar_timeout(struct net_device *dev); static int gfar_close(struct net_device *dev); struct sk_buff *gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp); static int gfar_set_mac_address(struct net_device *dev); static int gfar_change_mtu(struct net_device *dev, int new_mtu); static irqreturn_t gfar_error(int irq, void *dev_id); static irqreturn_t gfar_transmit(int irq, void *dev_id); static irqreturn_t gfar_interrupt(int irq, void *dev_id); static void adjust_link(struct net_device *dev); static void init_registers(struct net_device *dev); static int init_phy(struct net_device *dev); static int gfar_probe(struct platform_device *pdev); static int gfar_remove(struct platform_device *pdev); static void free_skb_resources(struct gfar_private *priv); static void gfar_set_multi(struct net_device *dev); static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr); static void gfar_configure_serdes(struct net_device *dev); extern int gfar_local_mdio_write(struct gfar_mii __iomem *regs, int mii_id, int regnum, u16 value); extern int gfar_local_mdio_read(struct gfar_mii __iomem *regs, int mii_id, int regnum); #ifdef CONFIG_GFAR_NAPI static int gfar_poll(struct napi_struct *napi, int budget); #endif #ifdef CONFIG_NET_POLL_CONTROLLER static void gfar_netpoll(struct net_device *dev); #endif int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit); static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length); static void gfar_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp); void gfar_halt(struct net_device *dev); void gfar_start(struct net_device *dev); static void gfar_clear_exact_match(struct net_device *dev); static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr); extern const struct ethtool_ops gfar_ethtool_ops; MODULE_AUTHOR("Freescale Semiconductor, Inc"); MODULE_DESCRIPTION("Gianfar Ethernet Driver"); MODULE_LICENSE("GPL"); /* Returns 1 if incoming frames use an FCB */ static inline int gfar_uses_fcb(struct gfar_private *priv) { return (priv->vlan_enable || priv->rx_csum_enable); } /* Set up the ethernet device structure, private data, * and anything else we need before we start */ static int gfar_probe(struct platform_device *pdev) { u32 tempval; struct net_device *dev = NULL; struct gfar_private *priv = NULL; struct gianfar_platform_data *einfo; struct resource *r; int err = 0; DECLARE_MAC_BUF(mac); einfo = (struct gianfar_platform_data *) pdev->dev.platform_data; if (NULL == einfo) { printk(KERN_ERR "gfar %d: Missing additional data!\n", pdev->id); return -ENODEV; } /* Create an ethernet device instance */ dev = alloc_etherdev(sizeof (*priv)); if (NULL == dev) return -ENOMEM; priv = netdev_priv(dev); priv->dev = dev; /* Set the info in the priv to the current info */ priv->einfo = einfo; /* fill out IRQ fields */ if (einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { priv->interruptTransmit = platform_get_irq_byname(pdev, "tx"); priv->interruptReceive = platform_get_irq_byname(pdev, "rx"); priv->interruptError = platform_get_irq_byname(pdev, "error"); if (priv->interruptTransmit < 0 || priv->interruptReceive < 0 || priv->interruptError < 0) goto regs_fail; } else { priv->interruptTransmit = platform_get_irq(pdev, 0); if (priv->interruptTransmit < 0) goto regs_fail; } /* get a pointer to the register memory */ r = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->regs = ioremap(r->start, sizeof (struct gfar)); if (NULL == priv->regs) { err = -ENOMEM; goto regs_fail; } spin_lock_init(&priv->txlock); spin_lock_init(&priv->rxlock); platform_set_drvdata(pdev, dev); /* Stop the DMA engine now, in case it was running before */ /* (The firmware could have used it, and left it running). */ /* To do this, we write Graceful Receive Stop and Graceful */ /* Transmit Stop, and then wait until the corresponding bits */ /* in IEVENT indicate the stops have completed. */ tempval = gfar_read(&priv->regs->dmactrl); tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); gfar_write(&priv->regs->dmactrl, tempval); tempval = gfar_read(&priv->regs->dmactrl); tempval |= (DMACTRL_GRS | DMACTRL_GTS); gfar_write(&priv->regs->dmactrl, tempval); while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC))) cpu_relax(); /* Reset MAC layer */ gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW); gfar_write(&priv->regs->maccfg1, tempval); /* Initialize MACCFG2. */ gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS); /* Initialize ECNTRL */ gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS); /* Copy the station address into the dev structure, */ memcpy(dev->dev_addr, einfo->mac_addr, MAC_ADDR_LEN); /* Set the dev->base_addr to the gfar reg region */ dev->base_addr = (unsigned long) (priv->regs); SET_NETDEV_DEV(dev, &pdev->dev); /* Fill in the dev structure */ dev->open = gfar_enet_open; dev->hard_start_xmit = gfar_start_xmit; dev->tx_timeout = gfar_timeout; dev->watchdog_timeo = TX_TIMEOUT; #ifdef CONFIG_GFAR_NAPI netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT); #endif #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = gfar_netpoll; #endif dev->stop = gfar_close; dev->change_mtu = gfar_change_mtu; dev->mtu = 1500; dev->set_multicast_list = gfar_set_multi; dev->ethtool_ops = &gfar_ethtool_ops; if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) { priv->rx_csum_enable = 1; dev->features |= NETIF_F_IP_CSUM; } else priv->rx_csum_enable = 0; priv->vlgrp = NULL; if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) { dev->vlan_rx_register = gfar_vlan_rx_register; dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; priv->vlan_enable = 1; } if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) { priv->extended_hash = 1; priv->hash_width = 9; priv->hash_regs[0] = &priv->regs->igaddr0; priv->hash_regs[1] = &priv->regs->igaddr1; priv->hash_regs[2] = &priv->regs->igaddr2; priv->hash_regs[3] = &priv->regs->igaddr3; priv->hash_regs[4] = &priv->regs->igaddr4; priv->hash_regs[5] = &priv->regs->igaddr5; priv->hash_regs[6] = &priv->regs->igaddr6; priv->hash_regs[7] = &priv->regs->igaddr7; priv->hash_regs[8] = &priv->regs->gaddr0; priv->hash_regs[9] = &priv->regs->gaddr1; priv->hash_regs[10] = &priv->regs->gaddr2; priv->hash_regs[11] = &priv->regs->gaddr3; priv->hash_regs[12] = &priv->regs->gaddr4; priv->hash_regs[13] = &priv->regs->gaddr5; priv->hash_regs[14] = &priv->regs->gaddr6; priv->hash_regs[15] = &priv->regs->gaddr7; } else { priv->extended_hash = 0; priv->hash_width = 8; priv->hash_regs[0] = &priv->regs->gaddr0; priv->hash_regs[1] = &priv->regs->gaddr1; priv->hash_regs[2] = &priv->regs->gaddr2; priv->hash_regs[3] = &priv->regs->gaddr3; priv->hash_regs[4] = &priv->regs->gaddr4; priv->hash_regs[5] = &priv->regs->gaddr5; priv->hash_regs[6] = &priv->regs->gaddr6; priv->hash_regs[7] = &priv->regs->gaddr7; } if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_PADDING) priv->padding = DEFAULT_PADDING; else priv->padding = 0; if (dev->features & NETIF_F_IP_CSUM) dev->hard_header_len += GMAC_FCB_LEN; priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE; priv->tx_ring_size = DEFAULT_TX_RING_SIZE; priv->rx_ring_size = DEFAULT_RX_RING_SIZE; priv->txcoalescing = DEFAULT_TX_COALESCE; priv->txcount = DEFAULT_TXCOUNT; priv->txtime = DEFAULT_TXTIME; priv->rxcoalescing = DEFAULT_RX_COALESCE; priv->rxcount = DEFAULT_RXCOUNT; priv->rxtime = DEFAULT_RXTIME; /* Enable most messages by default */ priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1; err = register_netdev(dev); if (err) { printk(KERN_ERR "%s: Cannot register net device, aborting.\n", dev->name); goto register_fail; } /* Create all the sysfs files */ gfar_init_sysfs(dev); /* Print out the device info */ printk(KERN_INFO DEVICE_NAME "%s\n", dev->name, print_mac(mac, dev->dev_addr)); /* Even more device info helps when determining which kernel */ /* provided which set of benchmarks. */ #ifdef CONFIG_GFAR_NAPI printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name); #else printk(KERN_INFO "%s: Running with NAPI disabled\n", dev->name); #endif printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n", dev->name, priv->rx_ring_size, priv->tx_ring_size); return 0; register_fail: iounmap(priv->regs); regs_fail: free_netdev(dev); return err; } static int gfar_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct gfar_private *priv = netdev_priv(dev); platform_set_drvdata(pdev, NULL); iounmap(priv->regs); free_netdev(dev); return 0; } /* Reads the controller's registers to determine what interface * connects it to the PHY. */ static phy_interface_t gfar_get_interface(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); u32 ecntrl = gfar_read(&priv->regs->ecntrl); if (ecntrl & ECNTRL_SGMII_MODE) return PHY_INTERFACE_MODE_SGMII; if (ecntrl & ECNTRL_TBI_MODE) { if (ecntrl & ECNTRL_REDUCED_MODE) return PHY_INTERFACE_MODE_RTBI; else return PHY_INTERFACE_MODE_TBI; } if (ecntrl & ECNTRL_REDUCED_MODE) { if (ecntrl & ECNTRL_REDUCED_MII_MODE) return PHY_INTERFACE_MODE_RMII; else { phy_interface_t interface = priv->einfo->interface; /* * This isn't autodetected right now, so it must * be set by the device tree or platform code. */ if (interface == PHY_INTERFACE_MODE_RGMII_ID) return PHY_INTERFACE_MODE_RGMII_ID; return PHY_INTERFACE_MODE_RGMII; } } if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT) return PHY_INTERFACE_MODE_GMII; return PHY_INTERFACE_MODE_MII; } /* Initializes driver's PHY state, and attaches to the PHY. * Returns 0 on success. */ static int init_phy(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); uint gigabit_support = priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ? SUPPORTED_1000baseT_Full : 0; struct phy_device *phydev; char phy_id[BUS_ID_SIZE]; phy_interface_t interface; priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, priv->einfo->bus_id, priv->einfo->phy_id); interface = gfar_get_interface(dev); phydev = phy_connect(dev, phy_id, &adjust_link, 0, interface); if (interface == PHY_INTERFACE_MODE_SGMII) gfar_configure_serdes(dev); if (IS_ERR(phydev)) { printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); return PTR_ERR(phydev); } /* Remove any features not supported by the controller */ phydev->supported &= (GFAR_SUPPORTED | gigabit_support); phydev->advertising = phydev->supported; priv->phydev = phydev; return 0; } static void gfar_configure_serdes(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar_mii __iomem *regs = (void __iomem *)&priv->regs->gfar_mii_regs; /* Initialise TBI i/f to communicate with serdes (lynx phy) */ /* Single clk mode, mii mode off(for aerdes communication) */ gfar_local_mdio_write(regs, TBIPA_VALUE, MII_TBICON, TBICON_CLK_SELECT); /* Supported pause and full-duplex, no half-duplex */ gfar_local_mdio_write(regs, TBIPA_VALUE, MII_ADVERTISE, ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM); /* ANEG enable, restart ANEG, full duplex mode, speed[1] set */ gfar_local_mdio_write(regs, TBIPA_VALUE, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000); } static void init_registers(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); /* Clear IEVENT */ gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR); /* Initialize IMASK */ gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR); /* Init hash registers to zero */ gfar_write(&priv->regs->igaddr0, 0); gfar_write(&priv->regs->igaddr1, 0); gfar_write(&priv->regs->igaddr2, 0); gfar_write(&priv->regs->igaddr3, 0); gfar_write(&priv->regs->igaddr4, 0); gfar_write(&priv->regs->igaddr5, 0); gfar_write(&priv->regs->igaddr6, 0); gfar_write(&priv->regs->igaddr7, 0); gfar_write(&priv->regs->gaddr0, 0); gfar_write(&priv->regs->gaddr1, 0); gfar_write(&priv->regs->gaddr2, 0); gfar_write(&priv->regs->gaddr3, 0); gfar_write(&priv->regs->gaddr4, 0); gfar_write(&priv->regs->gaddr5, 0); gfar_write(&priv->regs->gaddr6, 0); gfar_write(&priv->regs->gaddr7, 0); /* Zero out the rmon mib registers if it has them */ if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_RMON) { memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib)); /* Mask off the CAM interrupts */ gfar_write(&priv->regs->rmon.cam1, 0xffffffff); gfar_write(&priv->regs->rmon.cam2, 0xffffffff); } /* Initialize the max receive buffer length */ gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); /* Initialize the Minimum Frame Length Register */ gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS); /* Assign the TBI an address which won't conflict with the PHYs */ gfar_write(&priv->regs->tbipa, TBIPA_VALUE); } /* Halt the receive and transmit queues */ void gfar_halt(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->regs; u32 tempval; /* Mask all interrupts */ gfar_write(®s->imask, IMASK_INIT_CLEAR); /* Clear all interrupts */ gfar_write(®s->ievent, IEVENT_INIT_CLEAR); /* Stop the DMA, and wait for it to stop */ tempval = gfar_read(&priv->regs->dmactrl); if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) != (DMACTRL_GRS | DMACTRL_GTS)) { tempval |= (DMACTRL_GRS | DMACTRL_GTS); gfar_write(&priv->regs->dmactrl, tempval); while (!(gfar_read(&priv->regs->ievent) & (IEVENT_GRSC | IEVENT_GTSC))) cpu_relax(); } /* Disable Rx and Tx */ tempval = gfar_read(®s->maccfg1); tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN); gfar_write(®s->maccfg1, tempval); } void stop_gfar(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->regs; unsigned long flags; phy_stop(priv->phydev); /* Lock it down */ spin_lock_irqsave(&priv->txlock, flags); spin_lock(&priv->rxlock); gfar_halt(dev); spin_unlock(&priv->rxlock); spin_unlock_irqrestore(&priv->txlock, flags); /* Free the IRQs */ if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { free_irq(priv->interruptError, dev); free_irq(priv->interruptTransmit, dev); free_irq(priv->interruptReceive, dev); } else { free_irq(priv->interruptTransmit, dev); } free_skb_resources(priv); dma_free_coherent(&dev->dev, sizeof(struct txbd8)*priv->tx_ring_size + sizeof(struct rxbd8)*priv->rx_ring_size, priv->tx_bd_base, gfar_read(®s->tbase0)); } /* If there are any tx skbs or rx skbs still around, free them. * Then free tx_skbuff and rx_skbuff */ static void free_skb_resources(struct gfar_private *priv) { struct rxbd8 *rxbdp; struct txbd8 *txbdp; int i; /* Go through all the buffer descriptors and free their data buffers */ txbdp = priv->tx_bd_base; for (i = 0; i < priv->tx_ring_size; i++) { if (priv->tx_skbuff[i]) { dma_unmap_single(&priv->dev->dev, txbdp->bufPtr, txbdp->length, DMA_TO_DEVICE); dev_kfree_skb_any(priv->tx_skbuff[i]); priv->tx_skbuff[i] = NULL; } } kfree(priv->tx_skbuff); rxbdp = priv->rx_bd_base; /* rx_skbuff is not guaranteed to be allocated, so only * free it and its contents if it is allocated */ if(priv->rx_skbuff != NULL) { for (i = 0; i < priv->rx_ring_size; i++) { if (priv->rx_skbuff[i]) { dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr, priv->rx_buffer_size, DMA_FROM_DEVICE); dev_kfree_skb_any(priv->rx_skbuff[i]); priv->rx_skbuff[i] = NULL; } rxbdp->status = 0; rxbdp->length = 0; rxbdp->bufPtr = 0; rxbdp++; } kfree(priv->rx_skbuff); } } void gfar_start(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->regs; u32 tempval; /* Enable Rx and Tx in MACCFG1 */ tempval = gfar_read(®s->maccfg1); tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN); gfar_write(®s->maccfg1, tempval); /* Initialize DMACTRL to have WWR and WOP */ tempval = gfar_read(&priv->regs->dmactrl); tempval |= DMACTRL_INIT_SETTINGS; gfar_write(&priv->regs->dmactrl, tempval); /* Make sure we aren't stopped */ tempval = gfar_read(&priv->regs->dmactrl); tempval &= ~(DMACTRL_GRS | DMACTRL_GTS); gfar_write(&priv->regs->dmactrl, tempval); /* Clear THLT/RHLT, so that the DMA starts polling now */ gfar_write(®s->tstat, TSTAT_CLEAR_THALT); gfar_write(®s->rstat, RSTAT_CLEAR_RHALT); /* Unmask the interrupts we look for */ gfar_write(®s->imask, IMASK_DEFAULT); } /* Bring the controller up and running */ int startup_gfar(struct net_device *dev) { struct txbd8 *txbdp; struct rxbd8 *rxbdp; dma_addr_t addr = 0; unsigned long vaddr; int i; struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->regs; int err = 0; u32 rctrl = 0; u32 attrs = 0; gfar_write(®s->imask, IMASK_INIT_CLEAR); /* Allocate memory for the buffer descriptors */ vaddr = (unsigned long) dma_alloc_coherent(&dev->dev, sizeof (struct txbd8) * priv->tx_ring_size + sizeof (struct rxbd8) * priv->rx_ring_size, &addr, GFP_KERNEL); if (vaddr == 0) { if (netif_msg_ifup(priv)) printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n", dev->name); return -ENOMEM; } priv->tx_bd_base = (struct txbd8 *) vaddr; /* enet DMA only understands physical addresses */ gfar_write(®s->tbase0, addr); /* Start the rx descriptor ring where the tx ring leaves off */ addr = addr + sizeof (struct txbd8) * priv->tx_ring_size; vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size; priv->rx_bd_base = (struct rxbd8 *) vaddr; gfar_write(®s->rbase0, addr); /* Setup the skbuff rings */ priv->tx_skbuff = (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * priv->tx_ring_size, GFP_KERNEL); if (NULL == priv->tx_skbuff) { if (netif_msg_ifup(priv)) printk(KERN_ERR "%s: Could not allocate tx_skbuff\n", dev->name); err = -ENOMEM; goto tx_skb_fail; } for (i = 0; i < priv->tx_ring_size; i++) priv->tx_skbuff[i] = NULL; priv->rx_skbuff = (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) * priv->rx_ring_size, GFP_KERNEL); if (NULL == priv->rx_skbuff) { if (netif_msg_ifup(priv)) printk(KERN_ERR "%s: Could not allocate rx_skbuff\n", dev->name); err = -ENOMEM; goto rx_skb_fail; } for (i = 0; i < priv->rx_ring_size; i++) priv->rx_skbuff[i] = NULL; /* Initialize some variables in our dev structure */ priv->dirty_tx = priv->cur_tx = priv->tx_bd_base; priv->cur_rx = priv->rx_bd_base; priv->skb_curtx = priv->skb_dirtytx = 0; priv->skb_currx = 0; /* Initialize Transmit Descriptor Ring */ txbdp = priv->tx_bd_base; for (i = 0; i < priv->tx_ring_size; i++) { txbdp->status = 0; txbdp->length = 0; txbdp->bufPtr = 0; txbdp++; } /* Set the last descriptor in the ring to indicate wrap */ txbdp--; txbdp->status |= TXBD_WRAP; rxbdp = priv->rx_bd_base; for (i = 0; i < priv->rx_ring_size; i++) { struct sk_buff *skb = NULL; rxbdp->status = 0; skb = gfar_new_skb(dev, rxbdp); priv->rx_skbuff[i] = skb; rxbdp++; } /* Set the last descriptor in the ring to wrap */ rxbdp--; rxbdp->status |= RXBD_WRAP; /* If the device has multiple interrupts, register for * them. Otherwise, only register for the one */ if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { /* Install our interrupt handlers for Error, * Transmit, and Receive */ if (request_irq(priv->interruptError, gfar_error, 0, "enet_error", dev) < 0) { if (netif_msg_intr(priv)) printk(KERN_ERR "%s: Can't get IRQ %d\n", dev->name, priv->interruptError); err = -1; goto err_irq_fail; } if (request_irq(priv->interruptTransmit, gfar_transmit, 0, "enet_tx", dev) < 0) { if (netif_msg_intr(priv)) printk(KERN_ERR "%s: Can't get IRQ %d\n", dev->name, priv->interruptTransmit); err = -1; goto tx_irq_fail; } if (request_irq(priv->interruptReceive, gfar_receive, 0, "enet_rx", dev) < 0) { if (netif_msg_intr(priv)) printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n", dev->name, priv->interruptReceive); err = -1; goto rx_irq_fail; } } else { if (request_irq(priv->interruptTransmit, gfar_interrupt, 0, "gfar_interrupt", dev) < 0) { if (netif_msg_intr(priv)) printk(KERN_ERR "%s: Can't get IRQ %d\n", dev->name, priv->interruptError); err = -1; goto err_irq_fail; } } phy_start(priv->phydev); /* Configure the coalescing support */ if (priv->txcoalescing) gfar_write(®s->txic, mk_ic_value(priv->txcount, priv->txtime)); else gfar_write(®s->txic, 0); if (priv->rxcoalescing) gfar_write(®s->rxic, mk_ic_value(priv->rxcount, priv->rxtime)); else gfar_write(®s->rxic, 0); if (priv->rx_csum_enable) rctrl |= RCTRL_CHECKSUMMING; if (priv->extended_hash) { rctrl |= RCTRL_EXTHASH; gfar_clear_exact_match(dev); rctrl |= RCTRL_EMEN; } if (priv->vlan_enable) rctrl |= RCTRL_VLAN; if (priv->padding) { rctrl &= ~RCTRL_PAL_MASK; rctrl |= RCTRL_PADDING(priv->padding); } /* Init rctrl based on our settings */ gfar_write(&priv->regs->rctrl, rctrl); if (dev->features & NETIF_F_IP_CSUM) gfar_write(&priv->regs->tctrl, TCTRL_INIT_CSUM); /* Set the extraction length and index */ attrs = ATTRELI_EL(priv->rx_stash_size) | ATTRELI_EI(priv->rx_stash_index); gfar_write(&priv->regs->attreli, attrs); /* Start with defaults, and add stashing or locking * depending on the approprate variables */ attrs = ATTR_INIT_SETTINGS; if (priv->bd_stash_en) attrs |= ATTR_BDSTASH; if (priv->rx_stash_size != 0) attrs |= ATTR_BUFSTASH; gfar_write(&priv->regs->attr, attrs); gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold); gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve); gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off); /* Start the controller */ gfar_start(dev); return 0; rx_irq_fail: free_irq(priv->interruptTransmit, dev); tx_irq_fail: free_irq(priv->interruptError, dev); err_irq_fail: rx_skb_fail: free_skb_resources(priv); tx_skb_fail: dma_free_coherent(&dev->dev, sizeof(struct txbd8)*priv->tx_ring_size + sizeof(struct rxbd8)*priv->rx_ring_size, priv->tx_bd_base, gfar_read(®s->tbase0)); return err; } /* Called when something needs to use the ethernet device */ /* Returns 0 for success. */ static int gfar_enet_open(struct net_device *dev) { #ifdef CONFIG_GFAR_NAPI struct gfar_private *priv = netdev_priv(dev); #endif int err; #ifdef CONFIG_GFAR_NAPI napi_enable(&priv->napi); #endif /* Initialize a bunch of registers */ init_registers(dev); gfar_set_mac_address(dev); err = init_phy(dev); if(err) { #ifdef CONFIG_GFAR_NAPI napi_disable(&priv->napi); #endif return err; } err = startup_gfar(dev); if (err) { #ifdef CONFIG_GFAR_NAPI napi_disable(&priv->napi); #endif return err; } netif_start_queue(dev); return err; } static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb, struct txbd8 *bdp) { struct txfcb *fcb = (struct txfcb *)skb_push (skb, GMAC_FCB_LEN); memset(fcb, 0, GMAC_FCB_LEN); return fcb; } static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb) { u8 flags = 0; /* If we're here, it's a IP packet with a TCP or UDP * payload. We set it to checksum, using a pseudo-header * we provide */ flags = TXFCB_DEFAULT; /* Tell the controller what the protocol is */ /* And provide the already calculated phcs */ if (ip_hdr(skb)->protocol == IPPROTO_UDP) { flags |= TXFCB_UDP; fcb->phcs = udp_hdr(skb)->check; } else fcb->phcs = tcp_hdr(skb)->check; /* l3os is the distance between the start of the * frame (skb->data) and the start of the IP hdr. * l4os is the distance between the start of the * l3 hdr and the l4 hdr */ fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN); fcb->l4os = skb_network_header_len(skb); fcb->flags = flags; } void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb) { fcb->flags |= TXFCB_VLN; fcb->vlctl = vlan_tx_tag_get(skb); } /* This is called by the kernel when a frame is ready for transmission. */ /* It is pointed to by the dev->hard_start_xmit function pointer */ static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct txfcb *fcb = NULL; struct txbd8 *txbdp; u16 status; unsigned long flags; /* Update transmit stats */ dev->stats.tx_bytes += skb->len; /* Lock priv now */ spin_lock_irqsave(&priv->txlock, flags); /* Point at the first free tx descriptor */ txbdp = priv->cur_tx; /* Clear all but the WRAP status flags */ status = txbdp->status & TXBD_WRAP; /* Set up checksumming */ if (likely((dev->features & NETIF_F_IP_CSUM) && (CHECKSUM_PARTIAL == skb->ip_summed))) { fcb = gfar_add_fcb(skb, txbdp); status |= TXBD_TOE; gfar_tx_checksum(skb, fcb); } if (priv->vlan_enable && unlikely(priv->vlgrp && vlan_tx_tag_present(skb))) { if (unlikely(NULL == fcb)) { fcb = gfar_add_fcb(skb, txbdp); status |= TXBD_TOE; } gfar_tx_vlan(skb, fcb); } /* Set buffer length and pointer */ txbdp->length = skb->len; txbdp->bufPtr = dma_map_single(&dev->dev, skb->data, skb->len, DMA_TO_DEVICE); /* Save the skb pointer so we can free it later */ priv->tx_skbuff[priv->skb_curtx] = skb; /* Update the current skb pointer (wrapping if this was the last) */ priv->skb_curtx = (priv->skb_curtx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size); /* Flag the BD as interrupt-causing */ status |= TXBD_INTERRUPT; /* Flag the BD as ready to go, last in frame, and */ /* in need of CRC */ status |= (TXBD_READY | TXBD_LAST | TXBD_CRC); dev->trans_start = jiffies; /* The powerpc-specific eieio() is used, as wmb() has too strong * semantics (it requires synchronization between cacheable and * uncacheable mappings, which eieio doesn't provide and which we * don't need), thus requiring a more expensive sync instruction. At * some point, the set of architecture-independent barrier functions * should be expanded to include weaker barriers. */ eieio(); txbdp->status = status; /* If this was the last BD in the ring, the next one */ /* is at the beginning of the ring */ if (txbdp->status & TXBD_WRAP) txbdp = priv->tx_bd_base; else txbdp++; /* If the next BD still needs to be cleaned up, then the bds are full. We need to tell the kernel to stop sending us stuff. */ if (txbdp == priv->dirty_tx) { netif_stop_queue(dev); dev->stats.tx_fifo_errors++; } /* Update the current txbd to the next one */ priv->cur_tx = txbdp; /* Tell the DMA to go go go */ gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); /* Unlock priv */ spin_unlock_irqrestore(&priv->txlock, flags); return 0; } /* Stops the kernel queue, and halts the controller */ static int gfar_close(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); #ifdef CONFIG_GFAR_NAPI napi_disable(&priv->napi); #endif stop_gfar(dev); /* Disconnect from the PHY */ phy_disconnect(priv->phydev); priv->phydev = NULL; netif_stop_queue(dev); return 0; } /* Changes the mac address if the controller is not running. */ int gfar_set_mac_address(struct net_device *dev) { gfar_set_mac_for_addr(dev, 0, dev->dev_addr); return 0; } /* Enables and disables VLAN insertion/extraction */ static void gfar_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct gfar_private *priv = netdev_priv(dev); unsigned long flags; u32 tempval; spin_lock_irqsave(&priv->rxlock, flags); priv->vlgrp = grp; if (grp) { /* Enable VLAN tag insertion */ tempval = gfar_read(&priv->regs->tctrl); tempval |= TCTRL_VLINS; gfar_write(&priv->regs->tctrl, tempval); /* Enable VLAN tag extraction */ tempval = gfar_read(&priv->regs->rctrl); tempval |= RCTRL_VLEX; gfar_write(&priv->regs->rctrl, tempval); } else { /* Disable VLAN tag insertion */ tempval = gfar_read(&priv->regs->tctrl); tempval &= ~TCTRL_VLINS; gfar_write(&priv->regs->tctrl, tempval); /* Disable VLAN tag extraction */ tempval = gfar_read(&priv->regs->rctrl); tempval &= ~RCTRL_VLEX; gfar_write(&priv->regs->rctrl, tempval); } spin_unlock_irqrestore(&priv->rxlock, flags); } static int gfar_change_mtu(struct net_device *dev, int new_mtu) { int tempsize, tempval; struct gfar_private *priv = netdev_priv(dev); int oldsize = priv->rx_buffer_size; int frame_size = new_mtu + ETH_HLEN; if (priv->vlan_enable) frame_size += VLAN_HLEN; if (gfar_uses_fcb(priv)) frame_size += GMAC_FCB_LEN; frame_size += priv->padding; if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: Invalid MTU setting\n", dev->name); return -EINVAL; } tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) + INCREMENTAL_BUFFER_SIZE; /* Only stop and start the controller if it isn't already * stopped, and we changed something */ if ((oldsize != tempsize) && (dev->flags & IFF_UP)) stop_gfar(dev); priv->rx_buffer_size = tempsize; dev->mtu = new_mtu; gfar_write(&priv->regs->mrblr, priv->rx_buffer_size); gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size); /* If the mtu is larger than the max size for standard * ethernet frames (ie, a jumbo frame), then set maccfg2 * to allow huge frames, and to check the length */ tempval = gfar_read(&priv->regs->maccfg2); if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE) tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); else tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK); gfar_write(&priv->regs->maccfg2, tempval); if ((oldsize != tempsize) && (dev->flags & IFF_UP)) startup_gfar(dev); return 0; } /* gfar_timeout gets called when a packet has not been * transmitted after a set amount of time. * For now, assume that clearing out all the structures, and * starting over will fix the problem. */ static void gfar_timeout(struct net_device *dev) { dev->stats.tx_errors++; if (dev->flags & IFF_UP) { stop_gfar(dev); startup_gfar(dev); } netif_schedule(dev); } /* Interrupt Handler for Transmit complete */ int gfar_clean_tx_ring(struct net_device *dev) { struct txbd8 *bdp; struct gfar_private *priv = netdev_priv(dev); int howmany = 0; bdp = priv->dirty_tx; while ((bdp->status & TXBD_READY) == 0) { /* If dirty_tx and cur_tx are the same, then either the */ /* ring is empty or full now (it could only be full in the beginning, */ /* obviously). If it is empty, we are done. */ if ((bdp == priv->cur_tx) && (netif_queue_stopped(dev) == 0)) break; howmany++; /* Deferred means some collisions occurred during transmit, */ /* but we eventually sent the packet. */ if (bdp->status & TXBD_DEF) dev->stats.collisions++; /* Free the sk buffer associated with this TxBD */ dev_kfree_skb_irq(priv->tx_skbuff[priv->skb_dirtytx]); priv->tx_skbuff[priv->skb_dirtytx] = NULL; priv->skb_dirtytx = (priv->skb_dirtytx + 1) & TX_RING_MOD_MASK(priv->tx_ring_size); /* Clean BD length for empty detection */ bdp->length = 0; /* update bdp to point at next bd in the ring (wrapping if necessary) */ if (bdp->status & TXBD_WRAP) bdp = priv->tx_bd_base; else bdp++; /* Move dirty_tx to be the next bd */ priv->dirty_tx = bdp; /* We freed a buffer, so now we can restart transmission */ if (netif_queue_stopped(dev)) netif_wake_queue(dev); } /* while ((bdp->status & TXBD_READY) == 0) */ dev->stats.tx_packets += howmany; return howmany; } /* Interrupt Handler for Transmit complete */ static irqreturn_t gfar_transmit(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct gfar_private *priv = netdev_priv(dev); /* Clear IEVENT */ gfar_write(&priv->regs->ievent, IEVENT_TX_MASK); /* Lock priv */ spin_lock(&priv->txlock); gfar_clean_tx_ring(dev); /* If we are coalescing the interrupts, reset the timer */ /* Otherwise, clear it */ if (likely(priv->txcoalescing)) { gfar_write(&priv->regs->txic, 0); gfar_write(&priv->regs->txic, mk_ic_value(priv->txcount, priv->txtime)); } spin_unlock(&priv->txlock); return IRQ_HANDLED; } struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp) { unsigned int alignamount; struct gfar_private *priv = netdev_priv(dev); struct sk_buff *skb = NULL; unsigned int timeout = SKB_ALLOC_TIMEOUT; /* We have to allocate the skb, so keep trying till we succeed */ while ((!skb) && timeout--) skb = dev_alloc_skb(priv->rx_buffer_size + RXBUF_ALIGNMENT); if (NULL == skb) return NULL; alignamount = RXBUF_ALIGNMENT - (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)); /* We need the data buffer to be aligned properly. We will reserve * as many bytes as needed to align the data properly */ skb_reserve(skb, alignamount); bdp->bufPtr = dma_map_single(&dev->dev, skb->data, priv->rx_buffer_size, DMA_FROM_DEVICE); bdp->length = 0; /* Mark the buffer empty */ eieio(); bdp->status |= (RXBD_EMPTY | RXBD_INTERRUPT); return skb; } static inline void count_errors(unsigned short status, struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct net_device_stats *stats = &dev->stats; struct gfar_extra_stats *estats = &priv->extra_stats; /* If the packet was truncated, none of the other errors * matter */ if (status & RXBD_TRUNCATED) { stats->rx_length_errors++; estats->rx_trunc++; return; } /* Count the errors, if there were any */ if (status & (RXBD_LARGE | RXBD_SHORT)) { stats->rx_length_errors++; if (status & RXBD_LARGE) estats->rx_large++; else estats->rx_short++; } if (status & RXBD_NONOCTET) { stats->rx_frame_errors++; estats->rx_nonoctet++; } if (status & RXBD_CRCERR) { estats->rx_crcerr++; stats->rx_crc_errors++; } if (status & RXBD_OVERRUN) { estats->rx_overrun++; stats->rx_crc_errors++; } } irqreturn_t gfar_receive(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct gfar_private *priv = netdev_priv(dev); #ifdef CONFIG_GFAR_NAPI u32 tempval; #else unsigned long flags; #endif /* support NAPI */ #ifdef CONFIG_GFAR_NAPI /* Clear IEVENT, so interrupts aren't called again * because of the packets that have already arrived */ gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK); if (netif_rx_schedule_prep(dev, &priv->napi)) { tempval = gfar_read(&priv->regs->imask); tempval &= IMASK_RTX_DISABLED; gfar_write(&priv->regs->imask, tempval); __netif_rx_schedule(dev, &priv->napi); } else { if (netif_msg_rx_err(priv)) printk(KERN_DEBUG "%s: receive called twice (%x)[%x]\n", dev->name, gfar_read(&priv->regs->ievent), gfar_read(&priv->regs->imask)); } #else /* Clear IEVENT, so rx interrupt isn't called again * because of this interrupt */ gfar_write(&priv->regs->ievent, IEVENT_RX_MASK); spin_lock_irqsave(&priv->rxlock, flags); gfar_clean_rx_ring(dev, priv->rx_ring_size); /* If we are coalescing interrupts, update the timer */ /* Otherwise, clear it */ if (likely(priv->rxcoalescing)) { gfar_write(&priv->regs->rxic, 0); gfar_write(&priv->regs->rxic, mk_ic_value(priv->rxcount, priv->rxtime)); } spin_unlock_irqrestore(&priv->rxlock, flags); #endif return IRQ_HANDLED; } static inline int gfar_rx_vlan(struct sk_buff *skb, struct vlan_group *vlgrp, unsigned short vlctl) { #ifdef CONFIG_GFAR_NAPI return vlan_hwaccel_receive_skb(skb, vlgrp, vlctl); #else return vlan_hwaccel_rx(skb, vlgrp, vlctl); #endif } static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb) { /* If valid headers were found, and valid sums * were verified, then we tell the kernel that no * checksumming is necessary. Otherwise, it is */ if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } static inline struct rxfcb *gfar_get_fcb(struct sk_buff *skb) { struct rxfcb *fcb = (struct rxfcb *)skb->data; /* Remove the FCB from the skb */ skb_pull(skb, GMAC_FCB_LEN); return fcb; } /* gfar_process_frame() -- handle one incoming packet if skb * isn't NULL. */ static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb, int length) { struct gfar_private *priv = netdev_priv(dev); struct rxfcb *fcb = NULL; if (NULL == skb) { if (netif_msg_rx_err(priv)) printk(KERN_WARNING "%s: Missing skb!!.\n", dev->name); dev->stats.rx_dropped++; priv->extra_stats.rx_skbmissing++; } else { int ret; /* Prep the skb for the packet */ skb_put(skb, length); /* Grab the FCB if there is one */ if (gfar_uses_fcb(priv)) fcb = gfar_get_fcb(skb); /* Remove the padded bytes, if there are any */ if (priv->padding) skb_pull(skb, priv->padding); if (priv->rx_csum_enable) gfar_rx_checksum(skb, fcb); /* Tell the skb what kind of packet this is */ skb->protocol = eth_type_trans(skb, dev); /* Send the packet up the stack */ if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN))) ret = gfar_rx_vlan(skb, priv->vlgrp, fcb->vlctl); else ret = RECEIVE(skb); if (NET_RX_DROP == ret) priv->extra_stats.kernel_dropped++; } return 0; } /* gfar_clean_rx_ring() -- Processes each frame in the rx ring * until the budget/quota has been reached. Returns the number * of frames handled */ int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit) { struct rxbd8 *bdp; struct sk_buff *skb; u16 pkt_len; int howmany = 0; struct gfar_private *priv = netdev_priv(dev); /* Get the first full descriptor */ bdp = priv->cur_rx; while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) { rmb(); skb = priv->rx_skbuff[priv->skb_currx]; if ((bdp->status & RXBD_LAST) && !(bdp->status & RXBD_ERR)) { /* Increment the number of packets */ dev->stats.rx_packets++; howmany++; /* Remove the FCS from the packet length */ pkt_len = bdp->length - 4; gfar_process_frame(dev, skb, pkt_len); dev->stats.rx_bytes += pkt_len; } else { count_errors(bdp->status, dev); if (skb) dev_kfree_skb_any(skb); priv->rx_skbuff[priv->skb_currx] = NULL; } dev->last_rx = jiffies; /* Clear the status flags for this buffer */ bdp->status &= ~RXBD_STATS; /* Add another skb for the future */ skb = gfar_new_skb(dev, bdp); priv->rx_skbuff[priv->skb_currx] = skb; /* Update to the next pointer */ if (bdp->status & RXBD_WRAP) bdp = priv->rx_bd_base; else bdp++; /* update to point at the next skb */ priv->skb_currx = (priv->skb_currx + 1) & RX_RING_MOD_MASK(priv->rx_ring_size); } /* Update the current rxbd pointer to be the next one */ priv->cur_rx = bdp; return howmany; } #ifdef CONFIG_GFAR_NAPI static int gfar_poll(struct napi_struct *napi, int budget) { struct gfar_private *priv = container_of(napi, struct gfar_private, napi); struct net_device *dev = priv->dev; int howmany; unsigned long flags; /* If we fail to get the lock, don't bother with the TX BDs */ if (spin_trylock_irqsave(&priv->txlock, flags)) { gfar_clean_tx_ring(dev); spin_unlock_irqrestore(&priv->txlock, flags); } howmany = gfar_clean_rx_ring(dev, budget); if (howmany < budget) { netif_rx_complete(dev, napi); /* Clear the halt bit in RSTAT */ gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); gfar_write(&priv->regs->imask, IMASK_DEFAULT); /* If we are coalescing interrupts, update the timer */ /* Otherwise, clear it */ if (likely(priv->rxcoalescing)) { gfar_write(&priv->regs->rxic, 0); gfar_write(&priv->regs->rxic, mk_ic_value(priv->rxcount, priv->rxtime)); } } return howmany; } #endif #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void gfar_netpoll(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); /* If the device has multiple interrupts, run tx/rx */ if (priv->einfo->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) { disable_irq(priv->interruptTransmit); disable_irq(priv->interruptReceive); disable_irq(priv->interruptError); gfar_interrupt(priv->interruptTransmit, dev); enable_irq(priv->interruptError); enable_irq(priv->interruptReceive); enable_irq(priv->interruptTransmit); } else { disable_irq(priv->interruptTransmit); gfar_interrupt(priv->interruptTransmit, dev); enable_irq(priv->interruptTransmit); } } #endif /* The interrupt handler for devices with one interrupt */ static irqreturn_t gfar_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct gfar_private *priv = netdev_priv(dev); /* Save ievent for future reference */ u32 events = gfar_read(&priv->regs->ievent); /* Check for reception */ if (events & IEVENT_RX_MASK) gfar_receive(irq, dev_id); /* Check for transmit completion */ if (events & IEVENT_TX_MASK) gfar_transmit(irq, dev_id); /* Check for errors */ if (events & IEVENT_ERR_MASK) gfar_error(irq, dev_id); return IRQ_HANDLED; } /* Called every time the controller might need to be made * aware of new link state. The PHY code conveys this * information through variables in the phydev structure, and this * function converts those variables into the appropriate * register values, and can bring down the device if needed. */ static void adjust_link(struct net_device *dev) { struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->regs; unsigned long flags; struct phy_device *phydev = priv->phydev; int new_state = 0; spin_lock_irqsave(&priv->txlock, flags); if (phydev->link) { u32 tempval = gfar_read(®s->maccfg2); u32 ecntrl = gfar_read(®s->ecntrl); /* Now we make sure that we can be in full duplex mode. * If not, we operate in half-duplex mode. */ if (phydev->duplex != priv->oldduplex) { new_state = 1; if (!(phydev->duplex)) tempval &= ~(MACCFG2_FULL_DUPLEX); else tempval |= MACCFG2_FULL_DUPLEX; priv->oldduplex = phydev->duplex; } if (phydev->speed != priv->oldspeed) { new_state = 1; switch (phydev->speed) { case 1000: tempval = ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII); break; case 100: case 10: tempval = ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII); /* Reduced mode distinguishes * between 10 and 100 */ if (phydev->speed == SPEED_100) ecntrl |= ECNTRL_R100; else ecntrl &= ~(ECNTRL_R100); break; default: if (netif_msg_link(priv)) printk(KERN_WARNING "%s: Ack! Speed (%d) is not 10/100/1000!\n", dev->name, phydev->speed); break; } priv->oldspeed = phydev->speed; } gfar_write(®s->maccfg2, tempval); gfar_write(®s->ecntrl, ecntrl); if (!priv->oldlink) { new_state = 1; priv->oldlink = 1; netif_schedule(dev); } } else if (priv->oldlink) { new_state = 1; priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; } if (new_state && netif_msg_link(priv)) phy_print_status(phydev); spin_unlock_irqrestore(&priv->txlock, flags); } /* Update the hash table based on the current list of multicast * addresses we subscribe to. Also, change the promiscuity of * the device based on the flags (this function is called * whenever dev->flags is changed */ static void gfar_set_multi(struct net_device *dev) { struct dev_mc_list *mc_ptr; struct gfar_private *priv = netdev_priv(dev); struct gfar __iomem *regs = priv->regs; u32 tempval; if(dev->flags & IFF_PROMISC) { /* Set RCTRL to PROM */ tempval = gfar_read(®s->rctrl); tempval |= RCTRL_PROM; gfar_write(®s->rctrl, tempval); } else { /* Set RCTRL to not PROM */ tempval = gfar_read(®s->rctrl); tempval &= ~(RCTRL_PROM); gfar_write(®s->rctrl, tempval); } if(dev->flags & IFF_ALLMULTI) { /* Set the hash to rx all multicast frames */ gfar_write(®s->igaddr0, 0xffffffff); gfar_write(®s->igaddr1, 0xffffffff); gfar_write(®s->igaddr2, 0xffffffff); gfar_write(®s->igaddr3, 0xffffffff); gfar_write(®s->igaddr4, 0xffffffff); gfar_write(®s->igaddr5, 0xffffffff); gfar_write(®s->igaddr6, 0xffffffff); gfar_write(®s->igaddr7, 0xffffffff); gfar_write(®s->gaddr0, 0xffffffff); gfar_write(®s->gaddr1, 0xffffffff); gfar_write(®s->gaddr2, 0xffffffff); gfar_write(®s->gaddr3, 0xffffffff); gfar_write(®s->gaddr4, 0xffffffff); gfar_write(®s->gaddr5, 0xffffffff); gfar_write(®s->gaddr6, 0xffffffff); gfar_write(®s->gaddr7, 0xffffffff); } else { int em_num; int idx; /* zero out the hash */ gfar_write(®s->igaddr0, 0x0); gfar_write(®s->igaddr1, 0x0); gfar_write(®s->igaddr2, 0x0); gfar_write(®s->igaddr3, 0x0); gfar_write(®s->igaddr4, 0x0); gfar_write(®s->igaddr5, 0x0); gfar_write(®s->igaddr6, 0x0); gfar_write(®s->igaddr7, 0x0); gfar_write(®s->gaddr0, 0x0); gfar_write(®s->gaddr1, 0x0); gfar_write(®s->gaddr2, 0x0); gfar_write(®s->gaddr3, 0x0); gfar_write(®s->gaddr4, 0x0); gfar_write(®s->gaddr5, 0x0); gfar_write(®s->gaddr6, 0x0); gfar_write(®s->gaddr7, 0x0); /* If we have extended hash tables, we need to * clear the exact match registers to prepare for * setting them */ if (priv->extended_hash) { em_num = GFAR_EM_NUM + 1; gfar_clear_exact_match(dev); idx = 1; } else { idx = 0; em_num = 0; } if(dev->mc_count == 0) return; /* Parse the list, and set the appropriate bits */ for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { if (idx < em_num) { gfar_set_mac_for_addr(dev, idx, mc_ptr->dmi_addr); idx++; } else gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr); } } return; } /* Clears each of the exact match registers to zero, so they * don't interfere with normal reception */ static void gfar_clear_exact_match(struct net_device *dev) { int idx; u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0}; for(idx = 1;idx < GFAR_EM_NUM + 1;idx++) gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr); } /* Set the appropriate hash bit for the given addr */ /* The algorithm works like so: * 1) Take the Destination Address (ie the multicast address), and * do a CRC on it (little endian), and reverse the bits of the * result. * 2) Use the 8 most significant bits as a hash into a 256-entry * table. The table is controlled through 8 32-bit registers: * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is * gaddr7. This means that the 3 most significant bits in the * hash index which gaddr register to use, and the 5 other bits * indicate which bit (assuming an IBM numbering scheme, which * for PowerPC (tm) is usually the case) in the register holds * the entry. */ static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr) { u32 tempval; struct gfar_private *priv = netdev_priv(dev); u32 result = ether_crc(MAC_ADDR_LEN, addr); int width = priv->hash_width; u8 whichbit = (result >> (32 - width)) & 0x1f; u8 whichreg = result >> (32 - width + 5); u32 value = (1 << (31-whichbit)); tempval = gfar_read(priv->hash_regs[whichreg]); tempval |= value; gfar_write(priv->hash_regs[whichreg], tempval); return; } /* There are multiple MAC Address register pairs on some controllers * This function sets the numth pair to a given address */ static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr) { struct gfar_private *priv = netdev_priv(dev); int idx; char tmpbuf[MAC_ADDR_LEN]; u32 tempval; u32 __iomem *macptr = &priv->regs->macstnaddr1; macptr += num*2; /* Now copy it into the mac registers backwards, cuz */ /* little endian is silly */ for (idx = 0; idx < MAC_ADDR_LEN; idx++) tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx]; gfar_write(macptr, *((u32 *) (tmpbuf))); tempval = *((u32 *) (tmpbuf + 4)); gfar_write(macptr+1, tempval); } /* GFAR error interrupt handler */ static irqreturn_t gfar_error(int irq, void *dev_id) { struct net_device *dev = dev_id; struct gfar_private *priv = netdev_priv(dev); /* Save ievent for future reference */ u32 events = gfar_read(&priv->regs->ievent); /* Clear IEVENT */ gfar_write(&priv->regs->ievent, IEVENT_ERR_MASK); /* Hmm... */ if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv)) printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n", dev->name, events, gfar_read(&priv->regs->imask)); /* Update the error counters */ if (events & IEVENT_TXE) { dev->stats.tx_errors++; if (events & IEVENT_LC) dev->stats.tx_window_errors++; if (events & IEVENT_CRL) dev->stats.tx_aborted_errors++; if (events & IEVENT_XFUN) { if (netif_msg_tx_err(priv)) printk(KERN_DEBUG "%s: TX FIFO underrun, " "packet dropped.\n", dev->name); dev->stats.tx_dropped++; priv->extra_stats.tx_underrun++; /* Reactivate the Tx Queues */ gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT); } if (netif_msg_tx_err(priv)) printk(KERN_DEBUG "%s: Transmit Error\n", dev->name); } if (events & IEVENT_BSY) { dev->stats.rx_errors++; priv->extra_stats.rx_bsy++; gfar_receive(irq, dev_id); #ifndef CONFIG_GFAR_NAPI /* Clear the halt bit in RSTAT */ gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT); #endif if (netif_msg_rx_err(priv)) printk(KERN_DEBUG "%s: busy error (rstat: %x)\n", dev->name, gfar_read(&priv->regs->rstat)); } if (events & IEVENT_BABR) { dev->stats.rx_errors++; priv->extra_stats.rx_babr++; if (netif_msg_rx_err(priv)) printk(KERN_DEBUG "%s: babbling RX error\n", dev->name); } if (events & IEVENT_EBERR) { priv->extra_stats.eberr++; if (netif_msg_rx_err(priv)) printk(KERN_DEBUG "%s: bus error\n", dev->name); } if ((events & IEVENT_RXC) && netif_msg_rx_status(priv)) printk(KERN_DEBUG "%s: control frame\n", dev->name); if (events & IEVENT_BABT) { priv->extra_stats.tx_babt++; if (netif_msg_tx_err(priv)) printk(KERN_DEBUG "%s: babbling TX error\n", dev->name); } return IRQ_HANDLED; } /* Structure for a device driver */ static struct platform_driver gfar_driver = { .probe = gfar_probe, .remove = gfar_remove, .driver = { .name = "fsl-gianfar", }, }; static int __init gfar_init(void) { int err = gfar_mdio_init(); if (err) return err; err = platform_driver_register(&gfar_driver); if (err) gfar_mdio_exit(); return err; } static void __exit gfar_exit(void) { platform_driver_unregister(&gfar_driver); gfar_mdio_exit(); } module_init(gfar_init); module_exit(gfar_exit);