/* * Network device driver for the MACE ethernet controller on * Apple Powermacs. Assumes it's under a DBDMA controller. * * Copyright (C) 1996 Paul Mackerras. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/init.h> #include <linux/crc32.h> #include <linux/spinlock.h> #include <asm/prom.h> #include <asm/dbdma.h> #include <asm/io.h> #include <asm/pgtable.h> #include <asm/macio.h> #include "mace.h" static int port_aaui = -1; #define N_RX_RING 8 #define N_TX_RING 6 #define MAX_TX_ACTIVE 1 #define NCMDS_TX 1 /* dma commands per element in tx ring */ #define RX_BUFLEN (ETH_FRAME_LEN + 8) #define TX_TIMEOUT HZ /* 1 second */ /* Chip rev needs workaround on HW & multicast addr change */ #define BROKEN_ADDRCHG_REV 0x0941 /* Bits in transmit DMA status */ #define TX_DMA_ERR 0x80 struct mace_data { volatile struct mace __iomem *mace; volatile struct dbdma_regs __iomem *tx_dma; int tx_dma_intr; volatile struct dbdma_regs __iomem *rx_dma; int rx_dma_intr; volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */ volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */ struct sk_buff *rx_bufs[N_RX_RING]; int rx_fill; int rx_empty; struct sk_buff *tx_bufs[N_TX_RING]; int tx_fill; int tx_empty; unsigned char maccc; unsigned char tx_fullup; unsigned char tx_active; unsigned char tx_bad_runt; struct net_device_stats stats; struct timer_list tx_timeout; int timeout_active; int port_aaui; int chipid; struct macio_dev *mdev; spinlock_t lock; }; /* * Number of bytes of private data per MACE: allow enough for * the rx and tx dma commands plus a branch dma command each, * and another 16 bytes to allow us to align the dma command * buffers on a 16 byte boundary. */ #define PRIV_BYTES (sizeof(struct mace_data) \ + (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd)) static int bitrev(int); static int mace_open(struct net_device *dev); static int mace_close(struct net_device *dev); static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev); static struct net_device_stats *mace_stats(struct net_device *dev); static void mace_set_multicast(struct net_device *dev); static void mace_reset(struct net_device *dev); static int mace_set_address(struct net_device *dev, void *addr); static irqreturn_t mace_interrupt(int irq, void *dev_id); static irqreturn_t mace_txdma_intr(int irq, void *dev_id); static irqreturn_t mace_rxdma_intr(int irq, void *dev_id); static void mace_set_timeout(struct net_device *dev); static void mace_tx_timeout(unsigned long data); static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma); static inline void mace_clean_rings(struct mace_data *mp); static void __mace_set_address(struct net_device *dev, void *addr); /* * If we can't get a skbuff when we need it, we use this area for DMA. */ static unsigned char *dummy_buf; /* Bit-reverse one byte of an ethernet hardware address. */ static inline int bitrev(int b) { int d = 0, i; for (i = 0; i < 8; ++i, b >>= 1) d = (d << 1) | (b & 1); return d; } static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match) { struct device_node *mace = macio_get_of_node(mdev); struct net_device *dev; struct mace_data *mp; const unsigned char *addr; int j, rev, rc = -EBUSY; if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) { printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n", mace->full_name); return -ENODEV; } addr = get_property(mace, "mac-address", NULL); if (addr == NULL) { addr = get_property(mace, "local-mac-address", NULL); if (addr == NULL) { printk(KERN_ERR "Can't get mac-address for MACE %s\n", mace->full_name); return -ENODEV; } } /* * lazy allocate the driver-wide dummy buffer. (Note that we * never have more than one MACE in the system anyway) */ if (dummy_buf == NULL) { dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL); if (dummy_buf == NULL) { printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n"); return -ENOMEM; } } if (macio_request_resources(mdev, "mace")) { printk(KERN_ERR "MACE: can't request IO resources !\n"); return -EBUSY; } dev = alloc_etherdev(PRIV_BYTES); if (!dev) { printk(KERN_ERR "MACE: can't allocate ethernet device !\n"); rc = -ENOMEM; goto err_release; } SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &mdev->ofdev.dev); mp = dev->priv; mp->mdev = mdev; macio_set_drvdata(mdev, dev); dev->base_addr = macio_resource_start(mdev, 0); mp->mace = ioremap(dev->base_addr, 0x1000); if (mp->mace == NULL) { printk(KERN_ERR "MACE: can't map IO resources !\n"); rc = -ENOMEM; goto err_free; } dev->irq = macio_irq(mdev, 0); rev = addr[0] == 0 && addr[1] == 0xA0; for (j = 0; j < 6; ++j) { dev->dev_addr[j] = rev? bitrev(addr[j]): addr[j]; } mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) | in_8(&mp->mace->chipid_lo); mp = (struct mace_data *) dev->priv; mp->maccc = ENXMT | ENRCV; mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000); if (mp->tx_dma == NULL) { printk(KERN_ERR "MACE: can't map TX DMA resources !\n"); rc = -ENOMEM; goto err_unmap_io; } mp->tx_dma_intr = macio_irq(mdev, 1); mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000); if (mp->rx_dma == NULL) { printk(KERN_ERR "MACE: can't map RX DMA resources !\n"); rc = -ENOMEM; goto err_unmap_tx_dma; } mp->rx_dma_intr = macio_irq(mdev, 2); mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1); mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1; memset(&mp->stats, 0, sizeof(mp->stats)); memset((char *) mp->tx_cmds, 0, (NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd)); init_timer(&mp->tx_timeout); spin_lock_init(&mp->lock); mp->timeout_active = 0; if (port_aaui >= 0) mp->port_aaui = port_aaui; else { /* Apple Network Server uses the AAUI port */ if (machine_is_compatible("AAPL,ShinerESB")) mp->port_aaui = 1; else { #ifdef CONFIG_MACE_AAUI_PORT mp->port_aaui = 1; #else mp->port_aaui = 0; #endif } } dev->open = mace_open; dev->stop = mace_close; dev->hard_start_xmit = mace_xmit_start; dev->get_stats = mace_stats; dev->set_multicast_list = mace_set_multicast; dev->set_mac_address = mace_set_address; /* * Most of what is below could be moved to mace_open() */ mace_reset(dev); rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev); if (rc) { printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq); goto err_unmap_rx_dma; } rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev); if (rc) { printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr); goto err_free_irq; } rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev); if (rc) { printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr); goto err_free_tx_irq; } rc = register_netdev(dev); if (rc) { printk(KERN_ERR "MACE: Cannot register net device, aborting.\n"); goto err_free_rx_irq; } printk(KERN_INFO "%s: MACE at", dev->name); for (j = 0; j < 6; ++j) { printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]); } printk(", chip revision %d.%d\n", mp->chipid >> 8, mp->chipid & 0xff); return 0; err_free_rx_irq: free_irq(macio_irq(mdev, 2), dev); err_free_tx_irq: free_irq(macio_irq(mdev, 1), dev); err_free_irq: free_irq(macio_irq(mdev, 0), dev); err_unmap_rx_dma: iounmap(mp->rx_dma); err_unmap_tx_dma: iounmap(mp->tx_dma); err_unmap_io: iounmap(mp->mace); err_free: free_netdev(dev); err_release: macio_release_resources(mdev); return rc; } static int __devexit mace_remove(struct macio_dev *mdev) { struct net_device *dev = macio_get_drvdata(mdev); struct mace_data *mp; BUG_ON(dev == NULL); macio_set_drvdata(mdev, NULL); mp = dev->priv; unregister_netdev(dev); free_irq(dev->irq, dev); free_irq(mp->tx_dma_intr, dev); free_irq(mp->rx_dma_intr, dev); iounmap(mp->rx_dma); iounmap(mp->tx_dma); iounmap(mp->mace); free_netdev(dev); macio_release_resources(mdev); return 0; } static void dbdma_reset(volatile struct dbdma_regs __iomem *dma) { int i; out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16); /* * Yes this looks peculiar, but apparently it needs to be this * way on some machines. */ for (i = 200; i > 0; --i) if (ld_le32(&dma->control) & RUN) udelay(1); } static void mace_reset(struct net_device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace __iomem *mb = mp->mace; int i; /* soft-reset the chip */ i = 200; while (--i) { out_8(&mb->biucc, SWRST); if (in_8(&mb->biucc) & SWRST) { udelay(10); continue; } break; } if (!i) { printk(KERN_ERR "mace: cannot reset chip!\n"); return; } out_8(&mb->imr, 0xff); /* disable all intrs for now */ i = in_8(&mb->ir); out_8(&mb->maccc, 0); /* turn off tx, rx */ out_8(&mb->biucc, XMTSP_64); out_8(&mb->utr, RTRD); out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST); out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */ out_8(&mb->rcvfc, 0); /* load up the hardware address */ __mace_set_address(dev, dev->dev_addr); /* clear the multicast filter */ if (mp->chipid == BROKEN_ADDRCHG_REV) out_8(&mb->iac, LOGADDR); else { out_8(&mb->iac, ADDRCHG | LOGADDR); while ((in_8(&mb->iac) & ADDRCHG) != 0) ; } for (i = 0; i < 8; ++i) out_8(&mb->ladrf, 0); /* done changing address */ if (mp->chipid != BROKEN_ADDRCHG_REV) out_8(&mb->iac, 0); if (mp->port_aaui) out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO); else out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO); } static void __mace_set_address(struct net_device *dev, void *addr) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace __iomem *mb = mp->mace; unsigned char *p = addr; int i; /* load up the hardware address */ if (mp->chipid == BROKEN_ADDRCHG_REV) out_8(&mb->iac, PHYADDR); else { out_8(&mb->iac, ADDRCHG | PHYADDR); while ((in_8(&mb->iac) & ADDRCHG) != 0) ; } for (i = 0; i < 6; ++i) out_8(&mb->padr, dev->dev_addr[i] = p[i]); if (mp->chipid != BROKEN_ADDRCHG_REV) out_8(&mb->iac, 0); } static int mace_set_address(struct net_device *dev, void *addr) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace __iomem *mb = mp->mace; unsigned long flags; spin_lock_irqsave(&mp->lock, flags); __mace_set_address(dev, addr); /* note: setting ADDRCHG clears ENRCV */ out_8(&mb->maccc, mp->maccc); spin_unlock_irqrestore(&mp->lock, flags); return 0; } static inline void mace_clean_rings(struct mace_data *mp) { int i; /* free some skb's */ for (i = 0; i < N_RX_RING; ++i) { if (mp->rx_bufs[i] != 0) { dev_kfree_skb(mp->rx_bufs[i]); mp->rx_bufs[i] = NULL; } } for (i = mp->tx_empty; i != mp->tx_fill; ) { dev_kfree_skb(mp->tx_bufs[i]); if (++i >= N_TX_RING) i = 0; } } static int mace_open(struct net_device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace __iomem *mb = mp->mace; volatile struct dbdma_regs __iomem *rd = mp->rx_dma; volatile struct dbdma_regs __iomem *td = mp->tx_dma; volatile struct dbdma_cmd *cp; int i; struct sk_buff *skb; unsigned char *data; /* reset the chip */ mace_reset(dev); /* initialize list of sk_buffs for receiving and set up recv dma */ mace_clean_rings(mp); memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd)); cp = mp->rx_cmds; for (i = 0; i < N_RX_RING - 1; ++i) { skb = dev_alloc_skb(RX_BUFLEN + 2); if (skb == 0) { data = dummy_buf; } else { skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */ data = skb->data; } mp->rx_bufs[i] = skb; st_le16(&cp->req_count, RX_BUFLEN); st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS); st_le32(&cp->phy_addr, virt_to_bus(data)); cp->xfer_status = 0; ++cp; } mp->rx_bufs[i] = NULL; st_le16(&cp->command, DBDMA_STOP); mp->rx_fill = i; mp->rx_empty = 0; /* Put a branch back to the beginning of the receive command list */ ++cp; st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS); st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds)); /* start rx dma */ out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds)); out_le32(&rd->control, (RUN << 16) | RUN); /* put a branch at the end of the tx command list */ cp = mp->tx_cmds + NCMDS_TX * N_TX_RING; st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS); st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds)); /* reset tx dma */ out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds)); mp->tx_fill = 0; mp->tx_empty = 0; mp->tx_fullup = 0; mp->tx_active = 0; mp->tx_bad_runt = 0; /* turn it on! */ out_8(&mb->maccc, mp->maccc); /* enable all interrupts except receive interrupts */ out_8(&mb->imr, RCVINT); return 0; } static int mace_close(struct net_device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace __iomem *mb = mp->mace; volatile struct dbdma_regs __iomem *rd = mp->rx_dma; volatile struct dbdma_regs __iomem *td = mp->tx_dma; /* disable rx and tx */ out_8(&mb->maccc, 0); out_8(&mb->imr, 0xff); /* disable all intrs */ /* disable rx and tx dma */ st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */ mace_clean_rings(mp); return 0; } static inline void mace_set_timeout(struct net_device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; if (mp->timeout_active) del_timer(&mp->tx_timeout); mp->tx_timeout.expires = jiffies + TX_TIMEOUT; mp->tx_timeout.function = mace_tx_timeout; mp->tx_timeout.data = (unsigned long) dev; add_timer(&mp->tx_timeout); mp->timeout_active = 1; } static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct dbdma_regs __iomem *td = mp->tx_dma; volatile struct dbdma_cmd *cp, *np; unsigned long flags; int fill, next, len; /* see if there's a free slot in the tx ring */ spin_lock_irqsave(&mp->lock, flags); fill = mp->tx_fill; next = fill + 1; if (next >= N_TX_RING) next = 0; if (next == mp->tx_empty) { netif_stop_queue(dev); mp->tx_fullup = 1; spin_unlock_irqrestore(&mp->lock, flags); return 1; /* can't take it at the moment */ } spin_unlock_irqrestore(&mp->lock, flags); /* partially fill in the dma command block */ len = skb->len; if (len > ETH_FRAME_LEN) { printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len); len = ETH_FRAME_LEN; } mp->tx_bufs[fill] = skb; cp = mp->tx_cmds + NCMDS_TX * fill; st_le16(&cp->req_count, len); st_le32(&cp->phy_addr, virt_to_bus(skb->data)); np = mp->tx_cmds + NCMDS_TX * next; out_le16(&np->command, DBDMA_STOP); /* poke the tx dma channel */ spin_lock_irqsave(&mp->lock, flags); mp->tx_fill = next; if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) { out_le16(&cp->xfer_status, 0); out_le16(&cp->command, OUTPUT_LAST); out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); ++mp->tx_active; mace_set_timeout(dev); } if (++next >= N_TX_RING) next = 0; if (next == mp->tx_empty) netif_stop_queue(dev); spin_unlock_irqrestore(&mp->lock, flags); return 0; } static struct net_device_stats *mace_stats(struct net_device *dev) { struct mace_data *p = (struct mace_data *) dev->priv; return &p->stats; } static void mace_set_multicast(struct net_device *dev) { struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace __iomem *mb = mp->mace; int i, j; u32 crc; unsigned long flags; spin_lock_irqsave(&mp->lock, flags); mp->maccc &= ~PROM; if (dev->flags & IFF_PROMISC) { mp->maccc |= PROM; } else { unsigned char multicast_filter[8]; struct dev_mc_list *dmi = dev->mc_list; if (dev->flags & IFF_ALLMULTI) { for (i = 0; i < 8; i++) multicast_filter[i] = 0xff; } else { for (i = 0; i < 8; i++) multicast_filter[i] = 0; for (i = 0; i < dev->mc_count; i++) { crc = ether_crc_le(6, dmi->dmi_addr); j = crc >> 26; /* bit number in multicast_filter */ multicast_filter[j >> 3] |= 1 << (j & 7); dmi = dmi->next; } } #if 0 printk("Multicast filter :"); for (i = 0; i < 8; i++) printk("%02x ", multicast_filter[i]); printk("\n"); #endif if (mp->chipid == BROKEN_ADDRCHG_REV) out_8(&mb->iac, LOGADDR); else { out_8(&mb->iac, ADDRCHG | LOGADDR); while ((in_8(&mb->iac) & ADDRCHG) != 0) ; } for (i = 0; i < 8; ++i) out_8(&mb->ladrf, multicast_filter[i]); if (mp->chipid != BROKEN_ADDRCHG_REV) out_8(&mb->iac, 0); } /* reset maccc */ out_8(&mb->maccc, mp->maccc); spin_unlock_irqrestore(&mp->lock, flags); } static void mace_handle_misc_intrs(struct mace_data *mp, int intr) { volatile struct mace __iomem *mb = mp->mace; static int mace_babbles, mace_jabbers; if (intr & MPCO) mp->stats.rx_missed_errors += 256; mp->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */ if (intr & RNTPCO) mp->stats.rx_length_errors += 256; mp->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */ if (intr & CERR) ++mp->stats.tx_heartbeat_errors; if (intr & BABBLE) if (mace_babbles++ < 4) printk(KERN_DEBUG "mace: babbling transmitter\n"); if (intr & JABBER) if (mace_jabbers++ < 4) printk(KERN_DEBUG "mace: jabbering transceiver\n"); } static irqreturn_t mace_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace __iomem *mb = mp->mace; volatile struct dbdma_regs __iomem *td = mp->tx_dma; volatile struct dbdma_cmd *cp; int intr, fs, i, stat, x; int xcount, dstat; unsigned long flags; /* static int mace_last_fs, mace_last_xcount; */ spin_lock_irqsave(&mp->lock, flags); intr = in_8(&mb->ir); /* read interrupt register */ in_8(&mb->xmtrc); /* get retries */ mace_handle_misc_intrs(mp, intr); i = mp->tx_empty; while (in_8(&mb->pr) & XMTSV) { del_timer(&mp->tx_timeout); mp->timeout_active = 0; /* * Clear any interrupt indication associated with this status * word. This appears to unlatch any error indication from * the DMA controller. */ intr = in_8(&mb->ir); if (intr != 0) mace_handle_misc_intrs(mp, intr); if (mp->tx_bad_runt) { fs = in_8(&mb->xmtfs); mp->tx_bad_runt = 0; out_8(&mb->xmtfc, AUTO_PAD_XMIT); continue; } dstat = ld_le32(&td->status); /* stop DMA controller */ out_le32(&td->control, RUN << 16); /* * xcount is the number of complete frames which have been * written to the fifo but for which status has not been read. */ xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK; if (xcount == 0 || (dstat & DEAD)) { /* * If a packet was aborted before the DMA controller has * finished transferring it, it seems that there are 2 bytes * which are stuck in some buffer somewhere. These will get * transmitted as soon as we read the frame status (which * reenables the transmit data transfer request). Turning * off the DMA controller and/or resetting the MACE doesn't * help. So we disable auto-padding and FCS transmission * so the two bytes will only be a runt packet which should * be ignored by other stations. */ out_8(&mb->xmtfc, DXMTFCS); } fs = in_8(&mb->xmtfs); if ((fs & XMTSV) == 0) { printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n", fs, xcount, dstat); mace_reset(dev); /* * XXX mace likes to hang the machine after a xmtfs error. * This is hard to reproduce, reseting *may* help */ } cp = mp->tx_cmds + NCMDS_TX * i; stat = ld_le16(&cp->xfer_status); if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) { /* * Check whether there were in fact 2 bytes written to * the transmit FIFO. */ udelay(1); x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK; if (x != 0) { /* there were two bytes with an end-of-packet indication */ mp->tx_bad_runt = 1; mace_set_timeout(dev); } else { /* * Either there weren't the two bytes buffered up, or they * didn't have an end-of-packet indication. * We flush the transmit FIFO just in case (by setting the * XMTFWU bit with the transmitter disabled). */ out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT); out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU); udelay(1); out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT); out_8(&mb->xmtfc, AUTO_PAD_XMIT); } } /* dma should have finished */ if (i == mp->tx_fill) { printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n", fs, xcount, dstat); continue; } /* Update stats */ if (fs & (UFLO|LCOL|LCAR|RTRY)) { ++mp->stats.tx_errors; if (fs & LCAR) ++mp->stats.tx_carrier_errors; if (fs & (UFLO|LCOL|RTRY)) ++mp->stats.tx_aborted_errors; } else { mp->stats.tx_bytes += mp->tx_bufs[i]->len; ++mp->stats.tx_packets; } dev_kfree_skb_irq(mp->tx_bufs[i]); --mp->tx_active; if (++i >= N_TX_RING) i = 0; #if 0 mace_last_fs = fs; mace_last_xcount = xcount; #endif } if (i != mp->tx_empty) { mp->tx_fullup = 0; netif_wake_queue(dev); } mp->tx_empty = i; i += mp->tx_active; if (i >= N_TX_RING) i -= N_TX_RING; if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) { do { /* set up the next one */ cp = mp->tx_cmds + NCMDS_TX * i; out_le16(&cp->xfer_status, 0); out_le16(&cp->command, OUTPUT_LAST); ++mp->tx_active; if (++i >= N_TX_RING) i = 0; } while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE); out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE)); mace_set_timeout(dev); } spin_unlock_irqrestore(&mp->lock, flags); return IRQ_HANDLED; } static void mace_tx_timeout(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct mace __iomem *mb = mp->mace; volatile struct dbdma_regs __iomem *td = mp->tx_dma; volatile struct dbdma_regs __iomem *rd = mp->rx_dma; volatile struct dbdma_cmd *cp; unsigned long flags; int i; spin_lock_irqsave(&mp->lock, flags); mp->timeout_active = 0; if (mp->tx_active == 0 && !mp->tx_bad_runt) goto out; /* update various counters */ mace_handle_misc_intrs(mp, in_8(&mb->ir)); cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty; /* turn off both tx and rx and reset the chip */ out_8(&mb->maccc, 0); printk(KERN_ERR "mace: transmit timeout - resetting\n"); dbdma_reset(td); mace_reset(dev); /* restart rx dma */ cp = bus_to_virt(ld_le32(&rd->cmdptr)); dbdma_reset(rd); out_le16(&cp->xfer_status, 0); out_le32(&rd->cmdptr, virt_to_bus(cp)); out_le32(&rd->control, (RUN << 16) | RUN); /* fix up the transmit side */ i = mp->tx_empty; mp->tx_active = 0; ++mp->stats.tx_errors; if (mp->tx_bad_runt) { mp->tx_bad_runt = 0; } else if (i != mp->tx_fill) { dev_kfree_skb(mp->tx_bufs[i]); if (++i >= N_TX_RING) i = 0; mp->tx_empty = i; } mp->tx_fullup = 0; netif_wake_queue(dev); if (i != mp->tx_fill) { cp = mp->tx_cmds + NCMDS_TX * i; out_le16(&cp->xfer_status, 0); out_le16(&cp->command, OUTPUT_LAST); out_le32(&td->cmdptr, virt_to_bus(cp)); out_le32(&td->control, (RUN << 16) | RUN); ++mp->tx_active; mace_set_timeout(dev); } /* turn it back on */ out_8(&mb->imr, RCVINT); out_8(&mb->maccc, mp->maccc); out: spin_unlock_irqrestore(&mp->lock, flags); } static irqreturn_t mace_txdma_intr(int irq, void *dev_id) { return IRQ_HANDLED; } static irqreturn_t mace_rxdma_intr(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct mace_data *mp = (struct mace_data *) dev->priv; volatile struct dbdma_regs __iomem *rd = mp->rx_dma; volatile struct dbdma_cmd *cp, *np; int i, nb, stat, next; struct sk_buff *skb; unsigned frame_status; static int mace_lost_status; unsigned char *data; unsigned long flags; spin_lock_irqsave(&mp->lock, flags); for (i = mp->rx_empty; i != mp->rx_fill; ) { cp = mp->rx_cmds + i; stat = ld_le16(&cp->xfer_status); if ((stat & ACTIVE) == 0) { next = i + 1; if (next >= N_RX_RING) next = 0; np = mp->rx_cmds + next; if (next != mp->rx_fill && (ld_le16(&np->xfer_status) & ACTIVE) != 0) { printk(KERN_DEBUG "mace: lost a status word\n"); ++mace_lost_status; } else break; } nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count); out_le16(&cp->command, DBDMA_STOP); /* got a packet, have a look at it */ skb = mp->rx_bufs[i]; if (skb == 0) { ++mp->stats.rx_dropped; } else if (nb > 8) { data = skb->data; frame_status = (data[nb-3] << 8) + data[nb-4]; if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) { ++mp->stats.rx_errors; if (frame_status & RS_OFLO) ++mp->stats.rx_over_errors; if (frame_status & RS_FRAMERR) ++mp->stats.rx_frame_errors; if (frame_status & RS_FCSERR) ++mp->stats.rx_crc_errors; } else { /* Mace feature AUTO_STRIP_RCV is on by default, dropping the * FCS on frames with 802.3 headers. This means that Ethernet * frames have 8 extra octets at the end, while 802.3 frames * have only 4. We need to correctly account for this. */ if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */ nb -= 4; else /* Ethernet header; mace includes FCS */ nb -= 8; skb_put(skb, nb); skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); mp->stats.rx_bytes += skb->len; netif_rx(skb); dev->last_rx = jiffies; mp->rx_bufs[i] = NULL; ++mp->stats.rx_packets; } } else { ++mp->stats.rx_errors; ++mp->stats.rx_length_errors; } /* advance to next */ if (++i >= N_RX_RING) i = 0; } mp->rx_empty = i; i = mp->rx_fill; for (;;) { next = i + 1; if (next >= N_RX_RING) next = 0; if (next == mp->rx_empty) break; cp = mp->rx_cmds + i; skb = mp->rx_bufs[i]; if (skb == 0) { skb = dev_alloc_skb(RX_BUFLEN + 2); if (skb != 0) { skb_reserve(skb, 2); mp->rx_bufs[i] = skb; } } st_le16(&cp->req_count, RX_BUFLEN); data = skb? skb->data: dummy_buf; st_le32(&cp->phy_addr, virt_to_bus(data)); out_le16(&cp->xfer_status, 0); out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS); #if 0 if ((ld_le32(&rd->status) & ACTIVE) != 0) { out_le32(&rd->control, (PAUSE << 16) | PAUSE); while ((in_le32(&rd->status) & ACTIVE) != 0) ; } #endif i = next; } if (i != mp->rx_fill) { out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE)); mp->rx_fill = i; } spin_unlock_irqrestore(&mp->lock, flags); return IRQ_HANDLED; } static struct of_device_id mace_match[] = { { .name = "mace", }, {}, }; MODULE_DEVICE_TABLE (of, mace_match); static struct macio_driver mace_driver = { .name = "mace", .match_table = mace_match, .probe = mace_probe, .remove = mace_remove, }; static int __init mace_init(void) { return macio_register_driver(&mace_driver); } static void __exit mace_cleanup(void) { macio_unregister_driver(&mace_driver); kfree(dummy_buf); dummy_buf = NULL; } MODULE_AUTHOR("Paul Mackerras"); MODULE_DESCRIPTION("PowerMac MACE driver."); module_param(port_aaui, int, 0); MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)"); MODULE_LICENSE("GPL"); module_init(mace_init); module_exit(mace_cleanup);