/* * Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. * * ######################################################################## * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * ######################################################################## * * SAA9730 ethernet driver. * * Changes: * Angelo Dell'Aera <buffer@antifork.org> : Conversion to the new PCI API (pci_driver). * Conversion to spinlocks. * Error handling fixes. * */ #include <linux/init.h> #include <linux/netdevice.h> #include <linux/delay.h> #include <linux/etherdevice.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/pci.h> #include <linux/spinlock.h> #include <asm/addrspace.h> #include <asm/mips-boards/prom.h> #include "saa9730.h" #ifdef LAN_SAA9730_DEBUG int lan_saa9730_debug = LAN_SAA9730_DEBUG; #else int lan_saa9730_debug; #endif #define DRV_MODULE_NAME "saa9730" static struct pci_device_id saa9730_pci_tbl[] = { { PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA9370, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { 0, } }; MODULE_DEVICE_TABLE(pci, saa9730_pci_tbl); /* Non-zero only if the current card is a PCI with BIOS-set IRQ. */ static unsigned int pci_irq_line; #define INL(a) inl((unsigned long)a) #define OUTL(x,a) outl(x,(unsigned long)a) static void evm_saa9730_enable_lan_int(struct lan_saa9730_private *lp) { OUTL(INL(&lp->evm_saa9730_regs->InterruptBlock1) | EVM_LAN_INT, &lp->evm_saa9730_regs->InterruptBlock1); OUTL(INL(&lp->evm_saa9730_regs->InterruptStatus1) | EVM_LAN_INT, &lp->evm_saa9730_regs->InterruptStatus1); OUTL(INL(&lp->evm_saa9730_regs->InterruptEnable1) | EVM_LAN_INT | EVM_MASTER_EN, &lp->evm_saa9730_regs->InterruptEnable1); } static void evm_saa9730_disable_lan_int(struct lan_saa9730_private *lp) { OUTL(INL(&lp->evm_saa9730_regs->InterruptBlock1) & ~EVM_LAN_INT, &lp->evm_saa9730_regs->InterruptBlock1); OUTL(INL(&lp->evm_saa9730_regs->InterruptEnable1) & ~EVM_LAN_INT, &lp->evm_saa9730_regs->InterruptEnable1); } static void evm_saa9730_clear_lan_int(struct lan_saa9730_private *lp) { OUTL(EVM_LAN_INT, &lp->evm_saa9730_regs->InterruptStatus1); } static void evm_saa9730_block_lan_int(struct lan_saa9730_private *lp) { OUTL(INL(&lp->evm_saa9730_regs->InterruptBlock1) & ~EVM_LAN_INT, &lp->evm_saa9730_regs->InterruptBlock1); } static void evm_saa9730_unblock_lan_int(struct lan_saa9730_private *lp) { OUTL(INL(&lp->evm_saa9730_regs->InterruptBlock1) | EVM_LAN_INT, &lp->evm_saa9730_regs->InterruptBlock1); } static void show_saa9730_regs(struct lan_saa9730_private *lp) { int i, j; printk("TxmBufferA = %x\n", lp->TxmBuffer[0][0]); printk("TxmBufferB = %x\n", lp->TxmBuffer[1][0]); printk("RcvBufferA = %x\n", lp->RcvBuffer[0][0]); printk("RcvBufferB = %x\n", lp->RcvBuffer[1][0]); for (i = 0; i < LAN_SAA9730_BUFFERS; i++) { for (j = 0; j < LAN_SAA9730_TXM_Q_SIZE; j++) { printk("TxmBuffer[%d][%d] = %x\n", i, j, le32_to_cpu(*(unsigned int *) lp->TxmBuffer[i][j])); } } for (i = 0; i < LAN_SAA9730_BUFFERS; i++) { for (j = 0; j < LAN_SAA9730_RCV_Q_SIZE; j++) { printk("RcvBuffer[%d][%d] = %x\n", i, j, le32_to_cpu(*(unsigned int *) lp->RcvBuffer[i][j])); } } printk("lp->evm_saa9730_regs->InterruptBlock1 = %x\n", INL(&lp->evm_saa9730_regs->InterruptBlock1)); printk("lp->evm_saa9730_regs->InterruptStatus1 = %x\n", INL(&lp->evm_saa9730_regs->InterruptStatus1)); printk("lp->evm_saa9730_regs->InterruptEnable1 = %x\n", INL(&lp->evm_saa9730_regs->InterruptEnable1)); printk("lp->lan_saa9730_regs->Ok2Use = %x\n", INL(&lp->lan_saa9730_regs->Ok2Use)); printk("lp->NextTxmBufferIndex = %x\n", lp->NextTxmBufferIndex); printk("lp->NextTxmPacketIndex = %x\n", lp->NextTxmPacketIndex); printk("lp->PendingTxmBufferIndex = %x\n", lp->PendingTxmBufferIndex); printk("lp->PendingTxmPacketIndex = %x\n", lp->PendingTxmPacketIndex); printk("lp->lan_saa9730_regs->LanDmaCtl = %x\n", INL(&lp->lan_saa9730_regs->LanDmaCtl)); printk("lp->lan_saa9730_regs->DmaStatus = %x\n", INL(&lp->lan_saa9730_regs->DmaStatus)); printk("lp->lan_saa9730_regs->CamCtl = %x\n", INL(&lp->lan_saa9730_regs->CamCtl)); printk("lp->lan_saa9730_regs->TxCtl = %x\n", INL(&lp->lan_saa9730_regs->TxCtl)); printk("lp->lan_saa9730_regs->TxStatus = %x\n", INL(&lp->lan_saa9730_regs->TxStatus)); printk("lp->lan_saa9730_regs->RxCtl = %x\n", INL(&lp->lan_saa9730_regs->RxCtl)); printk("lp->lan_saa9730_regs->RxStatus = %x\n", INL(&lp->lan_saa9730_regs->RxStatus)); for (i = 0; i < LAN_SAA9730_CAM_DWORDS; i++) { OUTL(i, &lp->lan_saa9730_regs->CamAddress); printk("lp->lan_saa9730_regs->CamData = %x\n", INL(&lp->lan_saa9730_regs->CamData)); } printk("lp->stats.tx_packets = %lx\n", lp->stats.tx_packets); printk("lp->stats.tx_errors = %lx\n", lp->stats.tx_errors); printk("lp->stats.tx_aborted_errors = %lx\n", lp->stats.tx_aborted_errors); printk("lp->stats.tx_window_errors = %lx\n", lp->stats.tx_window_errors); printk("lp->stats.tx_carrier_errors = %lx\n", lp->stats.tx_carrier_errors); printk("lp->stats.tx_fifo_errors = %lx\n", lp->stats.tx_fifo_errors); printk("lp->stats.tx_heartbeat_errors = %lx\n", lp->stats.tx_heartbeat_errors); printk("lp->stats.collisions = %lx\n", lp->stats.collisions); printk("lp->stats.rx_packets = %lx\n", lp->stats.rx_packets); printk("lp->stats.rx_errors = %lx\n", lp->stats.rx_errors); printk("lp->stats.rx_dropped = %lx\n", lp->stats.rx_dropped); printk("lp->stats.rx_crc_errors = %lx\n", lp->stats.rx_crc_errors); printk("lp->stats.rx_frame_errors = %lx\n", lp->stats.rx_frame_errors); printk("lp->stats.rx_fifo_errors = %lx\n", lp->stats.rx_fifo_errors); printk("lp->stats.rx_length_errors = %lx\n", lp->stats.rx_length_errors); printk("lp->lan_saa9730_regs->DebugPCIMasterAddr = %x\n", INL(&lp->lan_saa9730_regs->DebugPCIMasterAddr)); printk("lp->lan_saa9730_regs->DebugLanTxStateMachine = %x\n", INL(&lp->lan_saa9730_regs->DebugLanTxStateMachine)); printk("lp->lan_saa9730_regs->DebugLanRxStateMachine = %x\n", INL(&lp->lan_saa9730_regs->DebugLanRxStateMachine)); printk("lp->lan_saa9730_regs->DebugLanTxFifoPointers = %x\n", INL(&lp->lan_saa9730_regs->DebugLanTxFifoPointers)); printk("lp->lan_saa9730_regs->DebugLanRxFifoPointers = %x\n", INL(&lp->lan_saa9730_regs->DebugLanRxFifoPointers)); printk("lp->lan_saa9730_regs->DebugLanCtlStateMachine = %x\n", INL(&lp->lan_saa9730_regs->DebugLanCtlStateMachine)); } static void lan_saa9730_buffer_init(struct lan_saa9730_private *lp) { int i, j; /* Init RX buffers */ for (i = 0; i < LAN_SAA9730_BUFFERS; i++) { for (j = 0; j < LAN_SAA9730_RCV_Q_SIZE; j++) { *(unsigned int *) lp->RcvBuffer[i][j] = cpu_to_le32(RXSF_READY << RX_STAT_CTL_OWNER_SHF); } } /* Init TX buffers */ for (i = 0; i < LAN_SAA9730_BUFFERS; i++) { for (j = 0; j < LAN_SAA9730_TXM_Q_SIZE; j++) { *(unsigned int *) lp->TxmBuffer[i][j] = cpu_to_le32(TXSF_EMPTY << TX_STAT_CTL_OWNER_SHF); } } } static int lan_saa9730_allocate_buffers(struct lan_saa9730_private *lp) { unsigned int mem_size; void *Pa; unsigned int i, j, RcvBufferSize, TxmBufferSize; unsigned int buffer_start; /* * Allocate all RX and TX packets in one chunk. * The Rx and Tx packets must be PACKET_SIZE aligned. */ mem_size = ((LAN_SAA9730_RCV_Q_SIZE + LAN_SAA9730_TXM_Q_SIZE) * LAN_SAA9730_PACKET_SIZE * LAN_SAA9730_BUFFERS) + LAN_SAA9730_PACKET_SIZE; buffer_start = (unsigned int) kmalloc(mem_size, GFP_DMA | GFP_KERNEL); if (!buffer_start) return -ENOMEM; /* * Set DMA buffer to kseg1 (uncached). * Make sure to flush before using it uncached. */ Pa = (void *) KSEG1ADDR((buffer_start + LAN_SAA9730_PACKET_SIZE) & ~(LAN_SAA9730_PACKET_SIZE - 1)); dma_cache_wback_inv((unsigned long) Pa, mem_size); /* Initialize buffer space */ RcvBufferSize = LAN_SAA9730_PACKET_SIZE; TxmBufferSize = LAN_SAA9730_PACKET_SIZE; lp->DmaRcvPackets = LAN_SAA9730_RCV_Q_SIZE; lp->DmaTxmPackets = LAN_SAA9730_TXM_Q_SIZE; /* Init RX buffers */ for (i = 0; i < LAN_SAA9730_BUFFERS; i++) { for (j = 0; j < LAN_SAA9730_RCV_Q_SIZE; j++) { *(unsigned int *) Pa = cpu_to_le32(RXSF_READY << RX_STAT_CTL_OWNER_SHF); lp->RcvBuffer[i][j] = (unsigned int) Pa; Pa += RcvBufferSize; } } /* Init TX buffers */ for (i = 0; i < LAN_SAA9730_BUFFERS; i++) { for (j = 0; j < LAN_SAA9730_TXM_Q_SIZE; j++) { *(unsigned int *) Pa = cpu_to_le32(TXSF_EMPTY << TX_STAT_CTL_OWNER_SHF); lp->TxmBuffer[i][j] = (unsigned int) Pa; Pa += TxmBufferSize; } } /* * Set rx buffer A and rx buffer B to point to the first two buffer * spaces. */ OUTL(PHYSADDR(lp->RcvBuffer[0][0]), &lp->lan_saa9730_regs->RxBuffA); OUTL(PHYSADDR(lp->RcvBuffer[1][0]), &lp->lan_saa9730_regs->RxBuffB); /* Initialize Buffer Index */ lp->NextRcvPacketIndex = 0; lp->NextRcvToUseIsA = 1; /* Set current buffer index & next availble packet index */ lp->NextTxmPacketIndex = 0; lp->NextTxmBufferIndex = 0; lp->PendingTxmPacketIndex = 0; lp->PendingTxmBufferIndex = 0; /* * Set txm_buf_a and txm_buf_b to point to the first two buffer * space */ OUTL(PHYSADDR(lp->TxmBuffer[0][0]), &lp->lan_saa9730_regs->TxBuffA); OUTL(PHYSADDR(lp->TxmBuffer[1][0]), &lp->lan_saa9730_regs->TxBuffB); /* Set packet number */ OUTL((lp->DmaRcvPackets << PK_COUNT_RX_A_SHF) | (lp->DmaRcvPackets << PK_COUNT_RX_B_SHF) | (lp->DmaTxmPackets << PK_COUNT_TX_A_SHF) | (lp->DmaTxmPackets << PK_COUNT_TX_B_SHF), &lp->lan_saa9730_regs->PacketCount); return 0; } static int lan_saa9730_cam_load(struct lan_saa9730_private *lp) { unsigned int i; unsigned char *NetworkAddress; NetworkAddress = (unsigned char *) &lp->PhysicalAddress[0][0]; for (i = 0; i < LAN_SAA9730_CAM_DWORDS; i++) { /* First set address to where data is written */ OUTL(i, &lp->lan_saa9730_regs->CamAddress); OUTL((NetworkAddress[0] << 24) | (NetworkAddress[1] << 16) | (NetworkAddress[2] << 8) | NetworkAddress[3], &lp->lan_saa9730_regs->CamData); NetworkAddress += 4; } return 0; } static int lan_saa9730_cam_init(struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; unsigned int i; /* Copy MAC-address into all entries. */ for (i = 0; i < LAN_SAA9730_CAM_ENTRIES; i++) { memcpy((unsigned char *) lp->PhysicalAddress[i], (unsigned char *) dev->dev_addr, 6); } return 0; } static int lan_saa9730_mii_init(struct lan_saa9730_private *lp) { int i, l; /* Check link status, spin here till station is not busy. */ i = 0; while (INL(&lp->lan_saa9730_regs->StationMgmtCtl) & MD_CA_BUSY) { i++; if (i > 100) { printk("Error: lan_saa9730_mii_init: timeout\n"); return -1; } mdelay(1); /* wait 1 ms. */ } /* Now set the control and address register. */ OUTL(MD_CA_BUSY | PHY_STATUS | PHY_ADDRESS << MD_CA_PHY_SHF, &lp->lan_saa9730_regs->StationMgmtCtl); /* check link status, spin here till station is not busy */ i = 0; while (INL(&lp->lan_saa9730_regs->StationMgmtCtl) & MD_CA_BUSY) { i++; if (i > 100) { printk("Error: lan_saa9730_mii_init: timeout\n"); return -1; } mdelay(1); /* wait 1 ms. */ } /* Wait for 1 ms. */ mdelay(1); /* Check the link status. */ if (INL(&lp->lan_saa9730_regs->StationMgmtData) & PHY_STATUS_LINK_UP) { /* Link is up. */ return 0; } else { /* Link is down, reset the PHY first. */ /* set PHY address = 'CONTROL' */ OUTL(PHY_ADDRESS << MD_CA_PHY_SHF | MD_CA_WR | PHY_CONTROL, &lp->lan_saa9730_regs->StationMgmtCtl); /* Wait for 1 ms. */ mdelay(1); /* set 'CONTROL' = force reset and renegotiate */ OUTL(PHY_CONTROL_RESET | PHY_CONTROL_AUTO_NEG | PHY_CONTROL_RESTART_AUTO_NEG, &lp->lan_saa9730_regs->StationMgmtData); /* Wait for 50 ms. */ mdelay(50); /* set 'BUSY' to start operation */ OUTL(MD_CA_BUSY | PHY_ADDRESS << MD_CA_PHY_SHF | MD_CA_WR | PHY_CONTROL, &lp->lan_saa9730_regs->StationMgmtCtl); /* await completion */ i = 0; while (INL(&lp->lan_saa9730_regs->StationMgmtCtl) & MD_CA_BUSY) { i++; if (i > 100) { printk ("Error: lan_saa9730_mii_init: timeout\n"); return -1; } mdelay(1); /* wait 1 ms. */ } /* Wait for 1 ms. */ mdelay(1); for (l = 0; l < 2; l++) { /* set PHY address = 'STATUS' */ OUTL(MD_CA_BUSY | PHY_ADDRESS << MD_CA_PHY_SHF | PHY_STATUS, &lp->lan_saa9730_regs->StationMgmtCtl); /* await completion */ i = 0; while (INL(&lp->lan_saa9730_regs->StationMgmtCtl) & MD_CA_BUSY) { i++; if (i > 100) { printk ("Error: lan_saa9730_mii_init: timeout\n"); return -1; } mdelay(1); /* wait 1 ms. */ } /* wait for 3 sec. */ mdelay(3000); /* check the link status */ if (INL(&lp->lan_saa9730_regs->StationMgmtData) & PHY_STATUS_LINK_UP) { /* link is up */ break; } } } return 0; } static int lan_saa9730_control_init(struct lan_saa9730_private *lp) { /* Initialize DMA control register. */ OUTL((LANMB_ANY << DMA_CTL_MAX_XFER_SHF) | (LANEND_LITTLE << DMA_CTL_ENDIAN_SHF) | (LAN_SAA9730_RCV_Q_INT_THRESHOLD << DMA_CTL_RX_INT_COUNT_SHF) | DMA_CTL_RX_INT_TO_EN | DMA_CTL_RX_INT_EN | DMA_CTL_MAC_RX_INT_EN | DMA_CTL_MAC_TX_INT_EN, &lp->lan_saa9730_regs->LanDmaCtl); /* Initial MAC control register. */ OUTL((MACCM_MII << MAC_CONTROL_CONN_SHF) | MAC_CONTROL_FULL_DUP, &lp->lan_saa9730_regs->MacCtl); /* Initialize CAM control register. */ OUTL(CAM_CONTROL_COMP_EN | CAM_CONTROL_BROAD_ACC, &lp->lan_saa9730_regs->CamCtl); /* * Initialize CAM enable register, only turn on first entry, should * contain own addr. */ OUTL(0x0001, &lp->lan_saa9730_regs->CamEnable); /* Initialize Tx control register */ OUTL(TX_CTL_EN_COMP, &lp->lan_saa9730_regs->TxCtl); /* Initialize Rcv control register */ OUTL(RX_CTL_STRIP_CRC, &lp->lan_saa9730_regs->RxCtl); /* Reset DMA engine */ OUTL(DMA_TEST_SW_RESET, &lp->lan_saa9730_regs->DmaTest); return 0; } static int lan_saa9730_stop(struct lan_saa9730_private *lp) { int i; /* Stop DMA first */ OUTL(INL(&lp->lan_saa9730_regs->LanDmaCtl) & ~(DMA_CTL_EN_TX_DMA | DMA_CTL_EN_RX_DMA), &lp->lan_saa9730_regs->LanDmaCtl); /* Set the SW Reset bits in DMA and MAC control registers */ OUTL(DMA_TEST_SW_RESET, &lp->lan_saa9730_regs->DmaTest); OUTL(INL(&lp->lan_saa9730_regs->MacCtl) | MAC_CONTROL_RESET, &lp->lan_saa9730_regs->MacCtl); /* * Wait for MAC reset to have finished. The reset bit is auto cleared * when the reset is done. */ i = 0; while (INL(&lp->lan_saa9730_regs->MacCtl) & MAC_CONTROL_RESET) { i++; if (i > 100) { printk ("Error: lan_sa9730_stop: MAC reset timeout\n"); return -1; } mdelay(1); /* wait 1 ms. */ } return 0; } static int lan_saa9730_dma_init(struct lan_saa9730_private *lp) { /* Stop lan controller. */ lan_saa9730_stop(lp); OUTL(LAN_SAA9730_DEFAULT_TIME_OUT_CNT, &lp->lan_saa9730_regs->Timeout); return 0; } static int lan_saa9730_start(struct lan_saa9730_private *lp) { lan_saa9730_buffer_init(lp); /* Initialize Rx Buffer Index */ lp->NextRcvPacketIndex = 0; lp->NextRcvToUseIsA = 1; /* Set current buffer index & next availble packet index */ lp->NextTxmPacketIndex = 0; lp->NextTxmBufferIndex = 0; lp->PendingTxmPacketIndex = 0; lp->PendingTxmBufferIndex = 0; OUTL(INL(&lp->lan_saa9730_regs->LanDmaCtl) | DMA_CTL_EN_TX_DMA | DMA_CTL_EN_RX_DMA, &lp->lan_saa9730_regs->LanDmaCtl); /* For Tx, turn on MAC then DMA */ OUTL(INL(&lp->lan_saa9730_regs->TxCtl) | TX_CTL_TX_EN, &lp->lan_saa9730_regs->TxCtl); /* For Rx, turn on DMA then MAC */ OUTL(INL(&lp->lan_saa9730_regs->RxCtl) | RX_CTL_RX_EN, &lp->lan_saa9730_regs->RxCtl); /* Set Ok2Use to let hardware owns the buffers */ OUTL(OK2USE_RX_A | OK2USE_RX_B | OK2USE_TX_A | OK2USE_TX_B, &lp->lan_saa9730_regs->Ok2Use); return 0; } static int lan_saa9730_restart(struct lan_saa9730_private *lp) { lan_saa9730_stop(lp); lan_saa9730_start(lp); return 0; } static int lan_saa9730_tx(struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; unsigned int *pPacket; unsigned int tx_status; if (lan_saa9730_debug > 5) printk("lan_saa9730_tx interrupt\n"); /* Clear interrupt. */ OUTL(DMA_STATUS_MAC_TX_INT, &lp->lan_saa9730_regs->DmaStatus); while (1) { pPacket = (unsigned int *) lp->TxmBuffer[lp-> PendingTxmBufferIndex] [lp->PendingTxmPacketIndex]; /* Get status of first packet transmitted. */ tx_status = le32_to_cpu(*pPacket); /* Check ownership. */ if ((tx_status & TX_STAT_CTL_OWNER_MSK) != (TXSF_HWDONE << TX_STAT_CTL_OWNER_SHF)) break; /* Check for error. */ if (tx_status & TX_STAT_CTL_ERROR_MSK) { if (lan_saa9730_debug > 1) printk("lan_saa9730_tx: tx error = %x\n", tx_status); lp->stats.tx_errors++; if (tx_status & (TX_STATUS_EX_COLL << TX_STAT_CTL_STATUS_SHF)) lp->stats.tx_aborted_errors++; if (tx_status & (TX_STATUS_LATE_COLL << TX_STAT_CTL_STATUS_SHF)) lp->stats. tx_window_errors++; if (tx_status & (TX_STATUS_L_CARR << TX_STAT_CTL_STATUS_SHF)) lp->stats.tx_carrier_errors++; if (tx_status & (TX_STATUS_UNDER << TX_STAT_CTL_STATUS_SHF)) lp->stats.tx_fifo_errors++; if (tx_status & (TX_STATUS_SQ_ERR << TX_STAT_CTL_STATUS_SHF)) lp->stats.tx_heartbeat_errors++; lp->stats.collisions += tx_status & TX_STATUS_TX_COLL_MSK; } /* Free buffer. */ *pPacket = cpu_to_le32(TXSF_EMPTY << TX_STAT_CTL_OWNER_SHF); /* Update pending index pointer. */ lp->PendingTxmPacketIndex++; if (lp->PendingTxmPacketIndex >= LAN_SAA9730_TXM_Q_SIZE) { lp->PendingTxmPacketIndex = 0; lp->PendingTxmBufferIndex ^= 1; } } /* Make sure A and B are available to hardware. */ OUTL(OK2USE_TX_A | OK2USE_TX_B, &lp->lan_saa9730_regs->Ok2Use); if (netif_queue_stopped(dev)) { /* The tx buffer is no longer full. */ netif_wake_queue(dev); } return 0; } static int lan_saa9730_rx(struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; int len = 0; struct sk_buff *skb = 0; unsigned int rx_status; int BufferIndex; int PacketIndex; unsigned int *pPacket; unsigned char *pData; if (lan_saa9730_debug > 5) printk("lan_saa9730_rx interrupt\n"); /* Clear receive interrupts. */ OUTL(DMA_STATUS_MAC_RX_INT | DMA_STATUS_RX_INT | DMA_STATUS_RX_TO_INT, &lp->lan_saa9730_regs->DmaStatus); /* Address next packet */ if (lp->NextRcvToUseIsA) BufferIndex = 0; else BufferIndex = 1; PacketIndex = lp->NextRcvPacketIndex; pPacket = (unsigned int *) lp->RcvBuffer[BufferIndex][PacketIndex]; rx_status = le32_to_cpu(*pPacket); /* Process each packet. */ while ((rx_status & RX_STAT_CTL_OWNER_MSK) == (RXSF_HWDONE << RX_STAT_CTL_OWNER_SHF)) { /* Check the rx status. */ if (rx_status & (RX_STATUS_GOOD << RX_STAT_CTL_STATUS_SHF)) { /* Received packet is good. */ len = (rx_status & RX_STAT_CTL_LENGTH_MSK) >> RX_STAT_CTL_LENGTH_SHF; pData = (unsigned char *) pPacket; pData += 4; skb = dev_alloc_skb(len + 2); if (skb == 0) { printk ("%s: Memory squeeze, deferring packet.\n", dev->name); lp->stats.rx_dropped++; } else { lp->stats.rx_bytes += len; lp->stats.rx_packets++; skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align */ skb_put(skb, len); /* make room */ eth_copy_and_sum(skb, (unsigned char *) pData, len, 0); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; } } else { /* We got an error packet. */ if (lan_saa9730_debug > 2) printk ("lan_saa9730_rx: We got an error packet = %x\n", rx_status); lp->stats.rx_errors++; if (rx_status & (RX_STATUS_CRC_ERR << RX_STAT_CTL_STATUS_SHF)) lp->stats.rx_crc_errors++; if (rx_status & (RX_STATUS_ALIGN_ERR << RX_STAT_CTL_STATUS_SHF)) lp->stats. rx_frame_errors++; if (rx_status & (RX_STATUS_OVERFLOW << RX_STAT_CTL_STATUS_SHF)) lp->stats.rx_fifo_errors++; if (rx_status & (RX_STATUS_LONG_ERR << RX_STAT_CTL_STATUS_SHF)) lp->stats.rx_length_errors++; } /* Indicate we have processed the buffer. */ *pPacket = cpu_to_le32(RXSF_READY << RX_STAT_CTL_OWNER_SHF); /* Go to next packet in sequence. */ lp->NextRcvPacketIndex++; if (lp->NextRcvPacketIndex >= LAN_SAA9730_RCV_Q_SIZE) { lp->NextRcvPacketIndex = 0; if (BufferIndex) { lp->NextRcvToUseIsA = 1; } else { lp->NextRcvToUseIsA = 0; } } OUTL(OK2USE_RX_A | OK2USE_RX_B, &lp->lan_saa9730_regs->Ok2Use); /* Address next packet */ if (lp->NextRcvToUseIsA) BufferIndex = 0; else BufferIndex = 1; PacketIndex = lp->NextRcvPacketIndex; pPacket = (unsigned int *) lp-> RcvBuffer[BufferIndex][PacketIndex]; rx_status = le32_to_cpu(*pPacket); } /* Make sure A and B are available to hardware. */ OUTL(OK2USE_RX_A | OK2USE_RX_B, &lp->lan_saa9730_regs->Ok2Use); return 0; } static irqreturn_t lan_saa9730_interrupt(const int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *) dev_id; struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; if (lan_saa9730_debug > 5) printk("lan_saa9730_interrupt\n"); /* Disable the EVM LAN interrupt. */ evm_saa9730_block_lan_int(lp); /* Clear the EVM LAN interrupt. */ evm_saa9730_clear_lan_int(lp); /* Service pending transmit interrupts. */ if (INL(&lp->lan_saa9730_regs->DmaStatus) & DMA_STATUS_MAC_TX_INT) lan_saa9730_tx(dev); /* Service pending receive interrupts. */ if (INL(&lp->lan_saa9730_regs->DmaStatus) & (DMA_STATUS_MAC_RX_INT | DMA_STATUS_RX_INT | DMA_STATUS_RX_TO_INT)) lan_saa9730_rx(dev); /* Enable the EVM LAN interrupt. */ evm_saa9730_unblock_lan_int(lp); return IRQ_HANDLED; } static int lan_saa9730_open_fail(struct net_device *dev) { return -ENODEV; } static int lan_saa9730_open(struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; /* Associate IRQ with lan_saa9730_interrupt */ if (request_irq(dev->irq, &lan_saa9730_interrupt, 0, "SAA9730 Eth", dev)) { printk("lan_saa9730_open: Can't get irq %d\n", dev->irq); return -EAGAIN; } /* Enable the Lan interrupt in the event manager. */ evm_saa9730_enable_lan_int(lp); /* Start the LAN controller */ if (lan_saa9730_start(lp)) return -1; netif_start_queue(dev); return 0; } static int lan_saa9730_write(struct lan_saa9730_private *lp, struct sk_buff *skb, int skblen) { unsigned char *pbData = skb->data; unsigned int len = skblen; unsigned char *pbPacketData; unsigned int tx_status; int BufferIndex; int PacketIndex; if (lan_saa9730_debug > 5) printk("lan_saa9730_write: skb=%08x\n", (unsigned int) skb); BufferIndex = lp->NextTxmBufferIndex; PacketIndex = lp->NextTxmPacketIndex; tx_status = le32_to_cpu(*(unsigned int *) lp-> TxmBuffer[BufferIndex][PacketIndex]); if ((tx_status & TX_STAT_CTL_OWNER_MSK) != (TXSF_EMPTY << TX_STAT_CTL_OWNER_SHF)) { if (lan_saa9730_debug > 4) printk ("lan_saa9730_write: Tx buffer not available: tx_status = %x\n", tx_status); return -1; } lp->NextTxmPacketIndex++; if (lp->NextTxmPacketIndex >= LAN_SAA9730_TXM_Q_SIZE) { lp->NextTxmPacketIndex = 0; lp->NextTxmBufferIndex ^= 1; } pbPacketData = (unsigned char *) lp->TxmBuffer[BufferIndex][PacketIndex]; pbPacketData += 4; /* copy the bits */ memcpy(pbPacketData, pbData, len); /* Set transmit status for hardware */ *(unsigned int *) lp->TxmBuffer[BufferIndex][PacketIndex] = cpu_to_le32((TXSF_READY << TX_STAT_CTL_OWNER_SHF) | (TX_STAT_CTL_INT_AFTER_TX << TX_STAT_CTL_FRAME_SHF) | (len << TX_STAT_CTL_LENGTH_SHF)); /* Set hardware tx buffer. */ OUTL(OK2USE_TX_A | OK2USE_TX_B, &lp->lan_saa9730_regs->Ok2Use); return 0; } static void lan_saa9730_tx_timeout(struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; /* Transmitter timeout, serious problems */ lp->stats.tx_errors++; printk("%s: transmit timed out, reset\n", dev->name); /*show_saa9730_regs(lp); */ lan_saa9730_restart(lp); dev->trans_start = jiffies; netif_start_queue(dev); } static int lan_saa9730_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; unsigned long flags; int skblen; int len; if (lan_saa9730_debug > 4) printk("Send packet: skb=%08x\n", (unsigned int) skb); skblen = skb->len; spin_lock_irqsave(&lp->lock, flags); len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen; if (lan_saa9730_write(lp, skb, skblen)) { spin_unlock_irqrestore(&lp->lock, flags); printk("Error when writing packet to controller: skb=%08x\n", (unsigned int) skb); netif_stop_queue(dev); return -1; } lp->stats.tx_bytes += len; lp->stats.tx_packets++; dev->trans_start = jiffies; netif_start_queue(dev); dev_kfree_skb(skb); spin_unlock_irqrestore(&lp->lock, flags); return 0; } static int lan_saa9730_close(struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; if (lan_saa9730_debug > 1) printk("lan_saa9730_close:\n"); netif_stop_queue(dev); /* Disable the Lan interrupt in the event manager. */ evm_saa9730_disable_lan_int(lp); /* Stop the controller */ if (lan_saa9730_stop(lp)) return -1; free_irq(dev->irq, (void *) dev); return 0; } static struct net_device_stats *lan_saa9730_get_stats(struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; return &lp->stats; } static void lan_saa9730_set_multicast(struct net_device *dev) { struct lan_saa9730_private *lp = (struct lan_saa9730_private *) dev->priv; /* Stop the controller */ lan_saa9730_stop(lp); if (dev->flags & IFF_PROMISC) { /* accept all packets */ OUTL(CAM_CONTROL_COMP_EN | CAM_CONTROL_STATION_ACC | CAM_CONTROL_GROUP_ACC | CAM_CONTROL_BROAD_ACC, &lp->lan_saa9730_regs->CamCtl); } else { if (dev->flags & IFF_ALLMULTI) { /* accept all multicast packets */ OUTL(CAM_CONTROL_COMP_EN | CAM_CONTROL_GROUP_ACC | CAM_CONTROL_BROAD_ACC, &lp->lan_saa9730_regs->CamCtl); } else { /* * Will handle the multicast stuff later. -carstenl */ } } lan_saa9730_restart(lp); } static void __devexit saa9730_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev) { unregister_netdev(dev); kfree(dev->priv); free_netdev(dev); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } } static int lan_saa9730_init(struct net_device *dev, int ioaddr, int irq) { struct lan_saa9730_private *lp; unsigned char ethernet_addr[6]; int ret = 0; dev->open = lan_saa9730_open_fail; if (get_ethernet_addr(ethernet_addr)) return -ENODEV; memcpy(dev->dev_addr, ethernet_addr, 6); dev->base_addr = ioaddr; dev->irq = irq; /* * Make certain the data structures used by the controller are aligned * and DMAble. */ /* * XXX: that is obviously broken - kfree() won't be happy with us. */ lp = (struct lan_saa9730_private *) (((unsigned long) kmalloc(sizeof(*lp) + 7, GFP_DMA | GFP_KERNEL) + 7) & ~7); if (!lp) return -ENOMEM; dev->priv = lp; memset(lp, 0, sizeof(*lp)); /* Set SAA9730 LAN base address. */ lp->lan_saa9730_regs = (t_lan_saa9730_regmap *) (ioaddr + SAA9730_LAN_REGS_ADDR); /* Set SAA9730 EVM base address. */ lp->evm_saa9730_regs = (t_evm_saa9730_regmap *) (ioaddr + SAA9730_EVM_REGS_ADDR); /* Allocate LAN RX/TX frame buffer space. */ /* FIXME: a leak */ if ((ret = lan_saa9730_allocate_buffers(lp))) goto out; /* Stop LAN controller. */ if ((ret = lan_saa9730_stop(lp))) goto out; /* Initialize CAM registers. */ if ((ret = lan_saa9730_cam_init(dev))) goto out; /* Initialize MII registers. */ if ((ret = lan_saa9730_mii_init(lp))) goto out; /* Initialize control registers. */ if ((ret = lan_saa9730_control_init(lp))) goto out; /* Load CAM registers. */ if ((ret = lan_saa9730_cam_load(lp))) goto out; /* Initialize DMA context registers. */ if ((ret = lan_saa9730_dma_init(lp))) goto out; spin_lock_init(&lp->lock); dev->open = lan_saa9730_open; dev->hard_start_xmit = lan_saa9730_start_xmit; dev->stop = lan_saa9730_close; dev->get_stats = lan_saa9730_get_stats; dev->set_multicast_list = lan_saa9730_set_multicast; dev->tx_timeout = lan_saa9730_tx_timeout; dev->watchdog_timeo = (HZ >> 1); dev->dma = 0; ret = register_netdev(dev); if (ret) goto out; return 0; out: kfree(dev->priv); return ret; } static int __devinit saa9730_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; unsigned int pci_ioaddr; int err; if (lan_saa9730_debug > 1) printk("saa9730.c: PCI bios is present, checking for devices...\n"); err = -ENOMEM; dev = alloc_etherdev(0); if (!dev) goto out; SET_MODULE_OWNER(dev); err = pci_enable_device(pdev); if (err) { printk(KERN_ERR "Cannot enable PCI device, aborting.\n"); goto out1; } err = pci_request_regions(pdev, DRV_MODULE_NAME); if (err) { printk(KERN_ERR "Cannot obtain PCI resources, aborting.\n"); goto out2; } pci_irq_line = pdev->irq; /* LAN base address in located at BAR 1. */ pci_ioaddr = pci_resource_start(pdev, 1); pci_set_master(pdev); printk("Found SAA9730 (PCI) at %#x, irq %d.\n", pci_ioaddr, pci_irq_line); err = lan_saa9730_init(dev, pci_ioaddr, pci_irq_line); if (err) { printk("Lan init failed"); goto out2; } pci_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); return 0; out2: pci_disable_device(pdev); out1: free_netdev(dev); out: return err; } static struct pci_driver saa9730_driver = { .name = DRV_MODULE_NAME, .id_table = saa9730_pci_tbl, .probe = saa9730_init_one, .remove = __devexit_p(saa9730_remove_one), }; static int __init saa9730_init(void) { return pci_module_init(&saa9730_driver); } static void __exit saa9730_cleanup(void) { pci_unregister_driver(&saa9730_driver); } module_init(saa9730_init); module_exit(saa9730_cleanup); MODULE_LICENSE("GPL");