/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2008 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include <linux/module.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/notifier.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/in.h> #include <linux/crc32.h> #include <linux/ethtool.h> #include <linux/topology.h> #include "net_driver.h" #include "gmii.h" #include "ethtool.h" #include "tx.h" #include "rx.h" #include "efx.h" #include "mdio_10g.h" #include "falcon.h" #include "workarounds.h" #include "mac.h" #define EFX_MAX_MTU (9 * 1024) /* RX slow fill workqueue. If memory allocation fails in the fast path, * a work item is pushed onto this work queue to retry the allocation later, * to avoid the NIC being starved of RX buffers. Since this is a per cpu * workqueue, there is nothing to be gained in making it per NIC */ static struct workqueue_struct *refill_workqueue; /************************************************************************** * * Configurable values * *************************************************************************/ /* * Enable large receive offload (LRO) aka soft segment reassembly (SSR) * * This sets the default for new devices. It can be controlled later * using ethtool. */ static int lro = 1; module_param(lro, int, 0644); MODULE_PARM_DESC(lro, "Large receive offload acceleration"); /* * Use separate channels for TX and RX events * * Set this to 1 to use separate channels for TX and RX. It allows us to * apply a higher level of interrupt moderation to TX events. * * This is forced to 0 for MSI interrupt mode as the interrupt vector * is not written */ static unsigned int separate_tx_and_rx_channels = 1; /* This is the weight assigned to each of the (per-channel) virtual * NAPI devices. */ static int napi_weight = 64; /* This is the time (in jiffies) between invocations of the hardware * monitor, which checks for known hardware bugs and resets the * hardware and driver as necessary. */ unsigned int efx_monitor_interval = 1 * HZ; /* This controls whether or not the hardware monitor will trigger a * reset when it detects an error condition. */ static unsigned int monitor_reset = 1; /* This controls whether or not the driver will initialise devices * with invalid MAC addresses stored in the EEPROM or flash. If true, * such devices will be initialised with a random locally-generated * MAC address. This allows for loading the sfc_mtd driver to * reprogram the flash, even if the flash contents (including the MAC * address) have previously been erased. */ static unsigned int allow_bad_hwaddr; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * The default for RX should strike a balance between increasing the * round-trip latency and reducing overhead. */ static unsigned int rx_irq_mod_usec = 60; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * This default is chosen to ensure that a 10G link does not go idle * while a TX queue is stopped after it has become full. A queue is * restarted when it drops below half full. The time this takes (assuming * worst case 3 descriptors per packet and 1024 descriptors) is * 512 / 3 * 1.2 = 205 usec. */ static unsigned int tx_irq_mod_usec = 150; /* This is the first interrupt mode to try out of: * 0 => MSI-X * 1 => MSI * 2 => legacy */ static unsigned int interrupt_mode; /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), * i.e. the number of CPUs among which we may distribute simultaneous * interrupt handling. * * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. * The default (0) means to assign an interrupt to each package (level II cache) */ static unsigned int rss_cpus; module_param(rss_cpus, uint, 0444); MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); /************************************************************************** * * Utility functions and prototypes * *************************************************************************/ static void efx_remove_channel(struct efx_channel *channel); static void efx_remove_port(struct efx_nic *efx); static void efx_fini_napi(struct efx_nic *efx); static void efx_fini_channels(struct efx_nic *efx); #define EFX_ASSERT_RESET_SERIALISED(efx) \ do { \ if ((efx->state == STATE_RUNNING) || \ (efx->state == STATE_RESETTING)) \ ASSERT_RTNL(); \ } while (0) /************************************************************************** * * Event queue processing * *************************************************************************/ /* Process channel's event queue * * This function is responsible for processing the event queue of a * single channel. The caller must guarantee that this function will * never be concurrently called more than once on the same channel, * though different channels may be being processed concurrently. */ static inline int efx_process_channel(struct efx_channel *channel, int rx_quota) { int rxdmaqs; struct efx_rx_queue *rx_queue; if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE || !channel->enabled)) return rx_quota; rxdmaqs = falcon_process_eventq(channel, &rx_quota); /* Deliver last RX packet. */ if (channel->rx_pkt) { __efx_rx_packet(channel, channel->rx_pkt, channel->rx_pkt_csummed); channel->rx_pkt = NULL; } efx_flush_lro(channel); efx_rx_strategy(channel); /* Refill descriptor rings as necessary */ rx_queue = &channel->efx->rx_queue[0]; while (rxdmaqs) { if (rxdmaqs & 0x01) efx_fast_push_rx_descriptors(rx_queue); rx_queue++; rxdmaqs >>= 1; } return rx_quota; } /* Mark channel as finished processing * * Note that since we will not receive further interrupts for this * channel before we finish processing and call the eventq_read_ack() * method, there is no need to use the interrupt hold-off timers. */ static inline void efx_channel_processed(struct efx_channel *channel) { /* The interrupt handler for this channel may set work_pending * as soon as we acknowledge the events we've seen. Make sure * it's cleared before then. */ channel->work_pending = 0; smp_wmb(); falcon_eventq_read_ack(channel); } /* NAPI poll handler * * NAPI guarantees serialisation of polls of the same device, which * provides the guarantee required by efx_process_channel(). */ static int efx_poll(struct napi_struct *napi, int budget) { struct efx_channel *channel = container_of(napi, struct efx_channel, napi_str); struct net_device *napi_dev = channel->napi_dev; int unused; int rx_packets; EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n", channel->channel, raw_smp_processor_id()); unused = efx_process_channel(channel, budget); rx_packets = (budget - unused); if (rx_packets < budget) { /* There is no race here; although napi_disable() will * only wait for netif_rx_complete(), this isn't a problem * since efx_channel_processed() will have no effect if * interrupts have already been disabled. */ netif_rx_complete(napi_dev, napi); efx_channel_processed(channel); } return rx_packets; } /* Process the eventq of the specified channel immediately on this CPU * * Disable hardware generated interrupts, wait for any existing * processing to finish, then directly poll (and ack ) the eventq. * Finally reenable NAPI and interrupts. * * Since we are touching interrupts the caller should hold the suspend lock */ void efx_process_channel_now(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; BUG_ON(!channel->used_flags); BUG_ON(!channel->enabled); /* Disable interrupts and wait for ISRs to complete */ falcon_disable_interrupts(efx); if (efx->legacy_irq) synchronize_irq(efx->legacy_irq); if (channel->has_interrupt && channel->irq) synchronize_irq(channel->irq); /* Wait for any NAPI processing to complete */ napi_disable(&channel->napi_str); /* Poll the channel */ efx_process_channel(channel, efx->type->evq_size); /* Ack the eventq. This may cause an interrupt to be generated * when they are reenabled */ efx_channel_processed(channel); napi_enable(&channel->napi_str); falcon_enable_interrupts(efx); } /* Create event queue * Event queue memory allocations are done only once. If the channel * is reset, the memory buffer will be reused; this guards against * errors during channel reset and also simplifies interrupt handling. */ static int efx_probe_eventq(struct efx_channel *channel) { EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel); return falcon_probe_eventq(channel); } /* Prepare channel's event queue */ static int efx_init_eventq(struct efx_channel *channel) { EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel); channel->eventq_read_ptr = 0; return falcon_init_eventq(channel); } static void efx_fini_eventq(struct efx_channel *channel) { EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel); falcon_fini_eventq(channel); } static void efx_remove_eventq(struct efx_channel *channel) { EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel); falcon_remove_eventq(channel); } /************************************************************************** * * Channel handling * *************************************************************************/ static int efx_probe_channel(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int rc; EFX_LOG(channel->efx, "creating channel %d\n", channel->channel); rc = efx_probe_eventq(channel); if (rc) goto fail1; efx_for_each_channel_tx_queue(tx_queue, channel) { rc = efx_probe_tx_queue(tx_queue); if (rc) goto fail2; } efx_for_each_channel_rx_queue(rx_queue, channel) { rc = efx_probe_rx_queue(rx_queue); if (rc) goto fail3; } channel->n_rx_frm_trunc = 0; return 0; fail3: efx_for_each_channel_rx_queue(rx_queue, channel) efx_remove_rx_queue(rx_queue); fail2: efx_for_each_channel_tx_queue(tx_queue, channel) efx_remove_tx_queue(tx_queue); fail1: return rc; } /* Channels are shutdown and reinitialised whilst the NIC is running * to propagate configuration changes (mtu, checksum offload), or * to clear hardware error conditions */ static int efx_init_channels(struct efx_nic *efx) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; struct efx_channel *channel; int rc = 0; /* Calculate the rx buffer allocation parameters required to * support the current MTU, including padding for header * alignment and overruns. */ efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + efx->type->rx_buffer_padding); efx->rx_buffer_order = get_order(efx->rx_buffer_len); /* Initialise the channels */ efx_for_each_channel(channel, efx) { EFX_LOG(channel->efx, "init chan %d\n", channel->channel); rc = efx_init_eventq(channel); if (rc) goto err; efx_for_each_channel_tx_queue(tx_queue, channel) { rc = efx_init_tx_queue(tx_queue); if (rc) goto err; } /* The rx buffer allocation strategy is MTU dependent */ efx_rx_strategy(channel); efx_for_each_channel_rx_queue(rx_queue, channel) { rc = efx_init_rx_queue(rx_queue); if (rc) goto err; } WARN_ON(channel->rx_pkt != NULL); efx_rx_strategy(channel); } return 0; err: EFX_ERR(efx, "failed to initialise channel %d\n", channel ? channel->channel : -1); efx_fini_channels(efx); return rc; } /* This enables event queue processing and packet transmission. * * Note that this function is not allowed to fail, since that would * introduce too much complexity into the suspend/resume path. */ static void efx_start_channel(struct efx_channel *channel) { struct efx_rx_queue *rx_queue; EFX_LOG(channel->efx, "starting chan %d\n", channel->channel); if (!(channel->efx->net_dev->flags & IFF_UP)) netif_napi_add(channel->napi_dev, &channel->napi_str, efx_poll, napi_weight); /* The interrupt handler for this channel may set work_pending * as soon as we enable it. Make sure it's cleared before * then. Similarly, make sure it sees the enabled flag set. */ channel->work_pending = 0; channel->enabled = 1; smp_wmb(); napi_enable(&channel->napi_str); /* Load up RX descriptors */ efx_for_each_channel_rx_queue(rx_queue, channel) efx_fast_push_rx_descriptors(rx_queue); } /* This disables event queue processing and packet transmission. * This function does not guarantee that all queue processing * (e.g. RX refill) is complete. */ static void efx_stop_channel(struct efx_channel *channel) { struct efx_rx_queue *rx_queue; if (!channel->enabled) return; EFX_LOG(channel->efx, "stop chan %d\n", channel->channel); channel->enabled = 0; napi_disable(&channel->napi_str); /* Ensure that any worker threads have exited or will be no-ops */ efx_for_each_channel_rx_queue(rx_queue, channel) { spin_lock_bh(&rx_queue->add_lock); spin_unlock_bh(&rx_queue->add_lock); } } static void efx_fini_channels(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; EFX_ASSERT_RESET_SERIALISED(efx); BUG_ON(efx->port_enabled); efx_for_each_channel(channel, efx) { EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel); efx_for_each_channel_rx_queue(rx_queue, channel) efx_fini_rx_queue(rx_queue); efx_for_each_channel_tx_queue(tx_queue, channel) efx_fini_tx_queue(tx_queue); } /* Do the event queues last so that we can handle flush events * for all DMA queues. */ efx_for_each_channel(channel, efx) { EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel); efx_fini_eventq(channel); } } static void efx_remove_channel(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel); efx_for_each_channel_rx_queue(rx_queue, channel) efx_remove_rx_queue(rx_queue); efx_for_each_channel_tx_queue(tx_queue, channel) efx_remove_tx_queue(tx_queue); efx_remove_eventq(channel); channel->used_flags = 0; } void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay) { queue_delayed_work(refill_workqueue, &rx_queue->work, delay); } /************************************************************************** * * Port handling * **************************************************************************/ /* This ensures that the kernel is kept informed (via * netif_carrier_on/off) of the link status, and also maintains the * link status's stop on the port's TX queue. */ static void efx_link_status_changed(struct efx_nic *efx) { int carrier_ok; /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure * that no events are triggered between unregister_netdev() and the * driver unloading. A more general condition is that NETDEV_CHANGE * can only be generated between NETDEV_UP and NETDEV_DOWN */ if (!netif_running(efx->net_dev)) return; carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0; if (efx->link_up != carrier_ok) { efx->n_link_state_changes++; if (efx->link_up) netif_carrier_on(efx->net_dev); else netif_carrier_off(efx->net_dev); } /* Status message for kernel log */ if (efx->link_up) { struct mii_if_info *gmii = &efx->mii; unsigned adv, lpa; /* NONE here means direct XAUI from the controller, with no * MDIO-attached device we can query. */ if (efx->phy_type != PHY_TYPE_NONE) { adv = gmii_advertised(gmii); lpa = gmii_lpa(gmii); } else { lpa = GM_LPA_10000 | LPA_DUPLEX; adv = lpa; } EFX_INFO(efx, "link up at %dMbps %s-duplex " "(adv %04x lpa %04x) (MTU %d)%s\n", (efx->link_options & GM_LPA_10000 ? 10000 : (efx->link_options & GM_LPA_1000 ? 1000 : (efx->link_options & GM_LPA_100 ? 100 : 10))), (efx->link_options & GM_LPA_DUPLEX ? "full" : "half"), adv, lpa, efx->net_dev->mtu, (efx->promiscuous ? " [PROMISC]" : "")); } else { EFX_INFO(efx, "link down\n"); } } /* This call reinitialises the MAC to pick up new PHY settings. The * caller must hold the mac_lock */ static void __efx_reconfigure_port(struct efx_nic *efx) { WARN_ON(!mutex_is_locked(&efx->mac_lock)); EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n", raw_smp_processor_id()); falcon_reconfigure_xmac(efx); /* Inform kernel of loss/gain of carrier */ efx_link_status_changed(efx); } /* Reinitialise the MAC to pick up new PHY settings, even if the port is * disabled. */ void efx_reconfigure_port(struct efx_nic *efx) { EFX_ASSERT_RESET_SERIALISED(efx); mutex_lock(&efx->mac_lock); __efx_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); } /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all() * we don't efx_reconfigure_port() if the port is disabled. Care is taken * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */ static void efx_reconfigure_work(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, reconfigure_work); mutex_lock(&efx->mac_lock); if (efx->port_enabled) __efx_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); } static int efx_probe_port(struct efx_nic *efx) { int rc; EFX_LOG(efx, "create port\n"); /* Connect up MAC/PHY operations table and read MAC address */ rc = falcon_probe_port(efx); if (rc) goto err; /* Sanity check MAC address */ if (is_valid_ether_addr(efx->mac_address)) { memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN); } else { DECLARE_MAC_BUF(mac); EFX_ERR(efx, "invalid MAC address %s\n", print_mac(mac, efx->mac_address)); if (!allow_bad_hwaddr) { rc = -EINVAL; goto err; } random_ether_addr(efx->net_dev->dev_addr); EFX_INFO(efx, "using locally-generated MAC %s\n", print_mac(mac, efx->net_dev->dev_addr)); } return 0; err: efx_remove_port(efx); return rc; } static int efx_init_port(struct efx_nic *efx) { int rc; EFX_LOG(efx, "init port\n"); /* Initialise the MAC and PHY */ rc = falcon_init_xmac(efx); if (rc) return rc; efx->port_initialized = 1; /* Reconfigure port to program MAC registers */ falcon_reconfigure_xmac(efx); return 0; } /* Allow efx_reconfigure_port() to be scheduled, and close the window * between efx_stop_port and efx_flush_all whereby a previously scheduled * efx_reconfigure_port() may have been cancelled */ static void efx_start_port(struct efx_nic *efx) { EFX_LOG(efx, "start port\n"); BUG_ON(efx->port_enabled); mutex_lock(&efx->mac_lock); efx->port_enabled = 1; __efx_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); } /* Prevent efx_reconfigure_work and efx_monitor() from executing, and * efx_set_multicast_list() from scheduling efx_reconfigure_work. * efx_reconfigure_work can still be scheduled via NAPI processing * until efx_flush_all() is called */ static void efx_stop_port(struct efx_nic *efx) { EFX_LOG(efx, "stop port\n"); mutex_lock(&efx->mac_lock); efx->port_enabled = 0; mutex_unlock(&efx->mac_lock); /* Serialise against efx_set_multicast_list() */ if (efx_dev_registered(efx)) { netif_addr_lock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev); } } static void efx_fini_port(struct efx_nic *efx) { EFX_LOG(efx, "shut down port\n"); if (!efx->port_initialized) return; falcon_fini_xmac(efx); efx->port_initialized = 0; efx->link_up = 0; efx_link_status_changed(efx); } static void efx_remove_port(struct efx_nic *efx) { EFX_LOG(efx, "destroying port\n"); falcon_remove_port(efx); } /************************************************************************** * * NIC handling * **************************************************************************/ /* This configures the PCI device to enable I/O and DMA. */ static int efx_init_io(struct efx_nic *efx) { struct pci_dev *pci_dev = efx->pci_dev; dma_addr_t dma_mask = efx->type->max_dma_mask; int rc; EFX_LOG(efx, "initialising I/O\n"); rc = pci_enable_device(pci_dev); if (rc) { EFX_ERR(efx, "failed to enable PCI device\n"); goto fail1; } pci_set_master(pci_dev); /* Set the PCI DMA mask. Try all possibilities from our * genuine mask down to 32 bits, because some architectures * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit * masks event though they reject 46 bit masks. */ while (dma_mask > 0x7fffffffUL) { if (pci_dma_supported(pci_dev, dma_mask) && ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) break; dma_mask >>= 1; } if (rc) { EFX_ERR(efx, "could not find a suitable DMA mask\n"); goto fail2; } EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask); rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); if (rc) { /* pci_set_consistent_dma_mask() is not *allowed* to * fail with a mask that pci_set_dma_mask() accepted, * but just in case... */ EFX_ERR(efx, "failed to set consistent DMA mask\n"); goto fail2; } efx->membase_phys = pci_resource_start(efx->pci_dev, efx->type->mem_bar); rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc"); if (rc) { EFX_ERR(efx, "request for memory BAR failed\n"); rc = -EIO; goto fail3; } efx->membase = ioremap_nocache(efx->membase_phys, efx->type->mem_map_size); if (!efx->membase) { EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n", efx->type->mem_bar, (unsigned long long)efx->membase_phys, efx->type->mem_map_size); rc = -ENOMEM; goto fail4; } EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n", efx->type->mem_bar, (unsigned long long)efx->membase_phys, efx->type->mem_map_size, efx->membase); return 0; fail4: release_mem_region(efx->membase_phys, efx->type->mem_map_size); fail3: efx->membase_phys = 0; fail2: pci_disable_device(efx->pci_dev); fail1: return rc; } static void efx_fini_io(struct efx_nic *efx) { EFX_LOG(efx, "shutting down I/O\n"); if (efx->membase) { iounmap(efx->membase); efx->membase = NULL; } if (efx->membase_phys) { pci_release_region(efx->pci_dev, efx->type->mem_bar); efx->membase_phys = 0; } pci_disable_device(efx->pci_dev); } /* Probe the number and type of interrupts we are able to obtain. */ static void efx_probe_interrupts(struct efx_nic *efx) { int max_channel = efx->type->phys_addr_channels - 1; struct msix_entry xentries[EFX_MAX_CHANNELS]; int rc, i; if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX)); if (rss_cpus == 0) { cpumask_t core_mask; int cpu; cpus_clear(core_mask); efx->rss_queues = 0; for_each_online_cpu(cpu) { if (!cpu_isset(cpu, core_mask)) { ++efx->rss_queues; cpus_or(core_mask, core_mask, topology_core_siblings(cpu)); } } } else { efx->rss_queues = rss_cpus; } efx->rss_queues = min(efx->rss_queues, max_channel + 1); efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS); /* Request maximum number of MSI interrupts, and fill out * the channel interrupt information the allowed allocation */ for (i = 0; i < efx->rss_queues; i++) xentries[i].entry = i; rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues); if (rc > 0) { EFX_BUG_ON_PARANOID(rc >= efx->rss_queues); efx->rss_queues = rc; rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues); } if (rc == 0) { for (i = 0; i < efx->rss_queues; i++) { efx->channel[i].has_interrupt = 1; efx->channel[i].irq = xentries[i].vector; } } else { /* Fall back to single channel MSI */ efx->interrupt_mode = EFX_INT_MODE_MSI; EFX_ERR(efx, "could not enable MSI-X\n"); } } /* Try single interrupt MSI */ if (efx->interrupt_mode == EFX_INT_MODE_MSI) { efx->rss_queues = 1; rc = pci_enable_msi(efx->pci_dev); if (rc == 0) { efx->channel[0].irq = efx->pci_dev->irq; efx->channel[0].has_interrupt = 1; } else { EFX_ERR(efx, "could not enable MSI\n"); efx->interrupt_mode = EFX_INT_MODE_LEGACY; } } /* Assume legacy interrupts */ if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { efx->rss_queues = 1; /* Every channel is interruptible */ for (i = 0; i < EFX_MAX_CHANNELS; i++) efx->channel[i].has_interrupt = 1; efx->legacy_irq = efx->pci_dev->irq; } } static void efx_remove_interrupts(struct efx_nic *efx) { struct efx_channel *channel; /* Remove MSI/MSI-X interrupts */ efx_for_each_channel_with_interrupt(channel, efx) channel->irq = 0; pci_disable_msi(efx->pci_dev); pci_disable_msix(efx->pci_dev); /* Remove legacy interrupt */ efx->legacy_irq = 0; } /* Select number of used resources * Should be called after probe_interrupts() */ static void efx_select_used(struct efx_nic *efx) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int i; /* TX queues. One per port per channel with TX capability * (more than one per port won't work on Linux, due to out * of order issues... but will be fine on Solaris) */ tx_queue = &efx->tx_queue[0]; /* Perform this for each channel with TX capabilities. * At the moment, we only support a single TX queue */ tx_queue->used = 1; if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels) tx_queue->channel = &efx->channel[1]; else tx_queue->channel = &efx->channel[0]; tx_queue->channel->used_flags |= EFX_USED_BY_TX; tx_queue++; /* RX queues. Each has a dedicated channel. */ for (i = 0; i < EFX_MAX_RX_QUEUES; i++) { rx_queue = &efx->rx_queue[i]; if (i < efx->rss_queues) { rx_queue->used = 1; /* If we allow multiple RX queues per channel * we need to decide that here */ rx_queue->channel = &efx->channel[rx_queue->queue]; rx_queue->channel->used_flags |= EFX_USED_BY_RX; rx_queue++; } } } static int efx_probe_nic(struct efx_nic *efx) { int rc; EFX_LOG(efx, "creating NIC\n"); /* Carry out hardware-type specific initialisation */ rc = falcon_probe_nic(efx); if (rc) return rc; /* Determine the number of channels and RX queues by trying to hook * in MSI-X interrupts. */ efx_probe_interrupts(efx); /* Determine number of RX queues and TX queues */ efx_select_used(efx); /* Initialise the interrupt moderation settings */ efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec); return 0; } static void efx_remove_nic(struct efx_nic *efx) { EFX_LOG(efx, "destroying NIC\n"); efx_remove_interrupts(efx); falcon_remove_nic(efx); } /************************************************************************** * * NIC startup/shutdown * *************************************************************************/ static int efx_probe_all(struct efx_nic *efx) { struct efx_channel *channel; int rc; /* Create NIC */ rc = efx_probe_nic(efx); if (rc) { EFX_ERR(efx, "failed to create NIC\n"); goto fail1; } /* Create port */ rc = efx_probe_port(efx); if (rc) { EFX_ERR(efx, "failed to create port\n"); goto fail2; } /* Create channels */ efx_for_each_channel(channel, efx) { rc = efx_probe_channel(channel); if (rc) { EFX_ERR(efx, "failed to create channel %d\n", channel->channel); goto fail3; } } return 0; fail3: efx_for_each_channel(channel, efx) efx_remove_channel(channel); efx_remove_port(efx); fail2: efx_remove_nic(efx); fail1: return rc; } /* Called after previous invocation(s) of efx_stop_all, restarts the * port, kernel transmit queue, NAPI processing and hardware interrupts, * and ensures that the port is scheduled to be reconfigured. * This function is safe to call multiple times when the NIC is in any * state. */ static void efx_start_all(struct efx_nic *efx) { struct efx_channel *channel; EFX_ASSERT_RESET_SERIALISED(efx); /* Check that it is appropriate to restart the interface. All * of these flags are safe to read under just the rtnl lock */ if (efx->port_enabled) return; if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) return; if (efx_dev_registered(efx) && !netif_running(efx->net_dev)) return; /* Mark the port as enabled so port reconfigurations can start, then * restart the transmit interface early so the watchdog timer stops */ efx_start_port(efx); efx_wake_queue(efx); efx_for_each_channel(channel, efx) efx_start_channel(channel); falcon_enable_interrupts(efx); /* Start hardware monitor if we're in RUNNING */ if (efx->state == STATE_RUNNING) queue_delayed_work(efx->workqueue, &efx->monitor_work, efx_monitor_interval); } /* Flush all delayed work. Should only be called when no more delayed work * will be scheduled. This doesn't flush pending online resets (efx_reset), * since we're holding the rtnl_lock at this point. */ static void efx_flush_all(struct efx_nic *efx) { struct efx_rx_queue *rx_queue; /* Make sure the hardware monitor is stopped */ cancel_delayed_work_sync(&efx->monitor_work); /* Ensure that all RX slow refills are complete. */ efx_for_each_rx_queue(rx_queue, efx) cancel_delayed_work_sync(&rx_queue->work); /* Stop scheduled port reconfigurations */ cancel_work_sync(&efx->reconfigure_work); } /* Quiesce hardware and software without bringing the link down. * Safe to call multiple times, when the nic and interface is in any * state. The caller is guaranteed to subsequently be in a position * to modify any hardware and software state they see fit without * taking locks. */ static void efx_stop_all(struct efx_nic *efx) { struct efx_channel *channel; EFX_ASSERT_RESET_SERIALISED(efx); /* port_enabled can be read safely under the rtnl lock */ if (!efx->port_enabled) return; /* Disable interrupts and wait for ISR to complete */ falcon_disable_interrupts(efx); if (efx->legacy_irq) synchronize_irq(efx->legacy_irq); efx_for_each_channel_with_interrupt(channel, efx) { if (channel->irq) synchronize_irq(channel->irq); } /* Stop all NAPI processing and synchronous rx refills */ efx_for_each_channel(channel, efx) efx_stop_channel(channel); /* Stop all asynchronous port reconfigurations. Since all * event processing has already been stopped, there is no * window to loose phy events */ efx_stop_port(efx); /* Flush reconfigure_work, refill_workqueue, monitor_work */ efx_flush_all(efx); /* Isolate the MAC from the TX and RX engines, so that queue * flushes will complete in a timely fashion. */ falcon_deconfigure_mac_wrapper(efx); falcon_drain_tx_fifo(efx); /* Stop the kernel transmit interface late, so the watchdog * timer isn't ticking over the flush */ efx_stop_queue(efx); if (efx_dev_registered(efx)) { netif_tx_lock_bh(efx->net_dev); netif_tx_unlock_bh(efx->net_dev); } } static void efx_remove_all(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_remove_channel(channel); efx_remove_port(efx); efx_remove_nic(efx); } /* A convinience function to safely flush all the queues */ int efx_flush_queues(struct efx_nic *efx) { int rc; EFX_ASSERT_RESET_SERIALISED(efx); efx_stop_all(efx); efx_fini_channels(efx); rc = efx_init_channels(efx); if (rc) { efx_schedule_reset(efx, RESET_TYPE_DISABLE); return rc; } efx_start_all(efx); return 0; } /************************************************************************** * * Interrupt moderation * **************************************************************************/ /* Set interrupt moderation parameters */ void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; EFX_ASSERT_RESET_SERIALISED(efx); efx_for_each_tx_queue(tx_queue, efx) tx_queue->channel->irq_moderation = tx_usecs; efx_for_each_rx_queue(rx_queue, efx) rx_queue->channel->irq_moderation = rx_usecs; } /************************************************************************** * * Hardware monitor * **************************************************************************/ /* Run periodically off the general workqueue. Serialised against * efx_reconfigure_port via the mac_lock */ static void efx_monitor(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, monitor_work.work); int rc = 0; EFX_TRACE(efx, "hardware monitor executing on CPU %d\n", raw_smp_processor_id()); /* If the mac_lock is already held then it is likely a port * reconfiguration is already in place, which will likely do * most of the work of check_hw() anyway. */ if (!mutex_trylock(&efx->mac_lock)) { queue_delayed_work(efx->workqueue, &efx->monitor_work, efx_monitor_interval); return; } if (efx->port_enabled) rc = falcon_check_xmac(efx); mutex_unlock(&efx->mac_lock); if (rc) { if (monitor_reset) { EFX_ERR(efx, "hardware monitor detected a fault: " "triggering reset\n"); efx_schedule_reset(efx, RESET_TYPE_MONITOR); } else { EFX_ERR(efx, "hardware monitor detected a fault, " "skipping reset\n"); } } queue_delayed_work(efx->workqueue, &efx->monitor_work, efx_monitor_interval); } /************************************************************************** * * ioctls * *************************************************************************/ /* Net device ioctl * Context: process, rtnl_lock() held. */ static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) { struct efx_nic *efx = net_dev->priv; EFX_ASSERT_RESET_SERIALISED(efx); return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL); } /************************************************************************** * * NAPI interface * **************************************************************************/ static int efx_init_napi(struct efx_nic *efx) { struct efx_channel *channel; int rc; efx_for_each_channel(channel, efx) { channel->napi_dev = efx->net_dev; rc = efx_lro_init(&channel->lro_mgr, efx); if (rc) goto err; } return 0; err: efx_fini_napi(efx); return rc; } static void efx_fini_napi(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) { efx_lro_fini(&channel->lro_mgr); channel->napi_dev = NULL; } } /************************************************************************** * * Kernel netpoll interface * *************************************************************************/ #ifdef CONFIG_NET_POLL_CONTROLLER /* Although in the common case interrupts will be disabled, this is not * guaranteed. However, all our work happens inside the NAPI callback, * so no locking is required. */ static void efx_netpoll(struct net_device *net_dev) { struct efx_nic *efx = net_dev->priv; struct efx_channel *channel; efx_for_each_channel_with_interrupt(channel, efx) efx_schedule_channel(channel); } #endif /************************************************************************** * * Kernel net device interface * *************************************************************************/ /* Context: process, rtnl_lock() held. */ static int efx_net_open(struct net_device *net_dev) { struct efx_nic *efx = net_dev->priv; EFX_ASSERT_RESET_SERIALISED(efx); EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name, raw_smp_processor_id()); efx_start_all(efx); return 0; } /* Context: process, rtnl_lock() held. * Note that the kernel will ignore our return code; this method * should really be a void. */ static int efx_net_stop(struct net_device *net_dev) { struct efx_nic *efx = net_dev->priv; int rc; EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name, raw_smp_processor_id()); /* Stop the device and flush all the channels */ efx_stop_all(efx); efx_fini_channels(efx); rc = efx_init_channels(efx); if (rc) efx_schedule_reset(efx, RESET_TYPE_DISABLE); return 0; } /* Context: process, dev_base_lock or RTNL held, non-blocking. */ static struct net_device_stats *efx_net_stats(struct net_device *net_dev) { struct efx_nic *efx = net_dev->priv; struct efx_mac_stats *mac_stats = &efx->mac_stats; struct net_device_stats *stats = &net_dev->stats; /* Update stats if possible, but do not wait if another thread * is updating them (or resetting the NIC); slightly stale * stats are acceptable. */ if (!spin_trylock(&efx->stats_lock)) return stats; if (efx->state == STATE_RUNNING) { falcon_update_stats_xmac(efx); falcon_update_nic_stats(efx); } spin_unlock(&efx->stats_lock); stats->rx_packets = mac_stats->rx_packets; stats->tx_packets = mac_stats->tx_packets; stats->rx_bytes = mac_stats->rx_bytes; stats->tx_bytes = mac_stats->tx_bytes; stats->multicast = mac_stats->rx_multicast; stats->collisions = mac_stats->tx_collision; stats->rx_length_errors = (mac_stats->rx_gtjumbo + mac_stats->rx_length_error); stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt; stats->rx_crc_errors = mac_stats->rx_bad; stats->rx_frame_errors = mac_stats->rx_align_error; stats->rx_fifo_errors = mac_stats->rx_overflow; stats->rx_missed_errors = mac_stats->rx_missed; stats->tx_window_errors = mac_stats->tx_late_collision; stats->rx_errors = (stats->rx_length_errors + stats->rx_over_errors + stats->rx_crc_errors + stats->rx_frame_errors + stats->rx_fifo_errors + stats->rx_missed_errors + mac_stats->rx_symbol_error); stats->tx_errors = (stats->tx_window_errors + mac_stats->tx_bad); return stats; } /* Context: netif_tx_lock held, BHs disabled. */ static void efx_watchdog(struct net_device *net_dev) { struct efx_nic *efx = net_dev->priv; EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n", atomic_read(&efx->netif_stop_count), efx->port_enabled, monitor_reset ? "resetting channels" : "skipping reset"); if (monitor_reset) efx_schedule_reset(efx, RESET_TYPE_MONITOR); } /* Context: process, rtnl_lock() held. */ static int efx_change_mtu(struct net_device *net_dev, int new_mtu) { struct efx_nic *efx = net_dev->priv; int rc = 0; EFX_ASSERT_RESET_SERIALISED(efx); if (new_mtu > EFX_MAX_MTU) return -EINVAL; efx_stop_all(efx); EFX_LOG(efx, "changing MTU to %d\n", new_mtu); efx_fini_channels(efx); net_dev->mtu = new_mtu; rc = efx_init_channels(efx); if (rc) goto fail; efx_start_all(efx); return rc; fail: efx_schedule_reset(efx, RESET_TYPE_DISABLE); return rc; } static int efx_set_mac_address(struct net_device *net_dev, void *data) { struct efx_nic *efx = net_dev->priv; struct sockaddr *addr = data; char *new_addr = addr->sa_data; EFX_ASSERT_RESET_SERIALISED(efx); if (!is_valid_ether_addr(new_addr)) { DECLARE_MAC_BUF(mac); EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n", print_mac(mac, new_addr)); return -EINVAL; } memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); /* Reconfigure the MAC */ efx_reconfigure_port(efx); return 0; } /* Context: netif_tx_lock held, BHs disabled. */ static void efx_set_multicast_list(struct net_device *net_dev) { struct efx_nic *efx = net_dev->priv; struct dev_mc_list *mc_list = net_dev->mc_list; union efx_multicast_hash *mc_hash = &efx->multicast_hash; int promiscuous; u32 crc; int bit; int i; /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */ promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0; if (efx->promiscuous != promiscuous) { efx->promiscuous = promiscuous; /* Close the window between efx_stop_port() and efx_flush_all() * by only queuing work when the port is enabled. */ if (efx->port_enabled) queue_work(efx->workqueue, &efx->reconfigure_work); } /* Build multicast hash table */ if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) { memset(mc_hash, 0xff, sizeof(*mc_hash)); } else { memset(mc_hash, 0x00, sizeof(*mc_hash)); for (i = 0; i < net_dev->mc_count; i++) { crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr); bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); set_bit_le(bit, mc_hash->byte); mc_list = mc_list->next; } } /* Create and activate new global multicast hash table */ falcon_set_multicast_hash(efx); } static int efx_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *net_dev = ptr; if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) { struct efx_nic *efx = net_dev->priv; strcpy(efx->name, net_dev->name); } return NOTIFY_DONE; } static struct notifier_block efx_netdev_notifier = { .notifier_call = efx_netdev_event, }; static int efx_register_netdev(struct efx_nic *efx) { struct net_device *net_dev = efx->net_dev; int rc; net_dev->watchdog_timeo = 5 * HZ; net_dev->irq = efx->pci_dev->irq; net_dev->open = efx_net_open; net_dev->stop = efx_net_stop; net_dev->get_stats = efx_net_stats; net_dev->tx_timeout = &efx_watchdog; net_dev->hard_start_xmit = efx_hard_start_xmit; net_dev->do_ioctl = efx_ioctl; net_dev->change_mtu = efx_change_mtu; net_dev->set_mac_address = efx_set_mac_address; net_dev->set_multicast_list = efx_set_multicast_list; #ifdef CONFIG_NET_POLL_CONTROLLER net_dev->poll_controller = efx_netpoll; #endif SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev); SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); /* Always start with carrier off; PHY events will detect the link */ netif_carrier_off(efx->net_dev); /* Clear MAC statistics */ falcon_update_stats_xmac(efx); memset(&efx->mac_stats, 0, sizeof(efx->mac_stats)); rc = register_netdev(net_dev); if (rc) { EFX_ERR(efx, "could not register net dev\n"); return rc; } strcpy(efx->name, net_dev->name); return 0; } static void efx_unregister_netdev(struct efx_nic *efx) { struct efx_tx_queue *tx_queue; if (!efx->net_dev) return; BUG_ON(efx->net_dev->priv != efx); /* Free up any skbs still remaining. This has to happen before * we try to unregister the netdev as running their destructors * may be needed to get the device ref. count to 0. */ efx_for_each_tx_queue(tx_queue, efx) efx_release_tx_buffers(tx_queue); if (efx_dev_registered(efx)) { strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); unregister_netdev(efx->net_dev); } } /************************************************************************** * * Device reset and suspend * **************************************************************************/ /* The final hardware and software finalisation before reset. */ static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd) { int rc; EFX_ASSERT_RESET_SERIALISED(efx); rc = falcon_xmac_get_settings(efx, ecmd); if (rc) { EFX_ERR(efx, "could not back up PHY settings\n"); goto fail; } efx_fini_channels(efx); return 0; fail: return rc; } /* The first part of software initialisation after a hardware reset * This function does not handle serialisation with the kernel, it * assumes the caller has done this */ static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd) { int rc; rc = efx_init_channels(efx); if (rc) goto fail1; /* Restore MAC and PHY settings. */ rc = falcon_xmac_set_settings(efx, ecmd); if (rc) { EFX_ERR(efx, "could not restore PHY settings\n"); goto fail2; } return 0; fail2: efx_fini_channels(efx); fail1: return rc; } /* Reset the NIC as transparently as possible. Do not reset the PHY * Note that the reset may fail, in which case the card will be left * in a most-probably-unusable state. * * This function will sleep. You cannot reset from within an atomic * state; use efx_schedule_reset() instead. * * Grabs the rtnl_lock. */ static int efx_reset(struct efx_nic *efx) { struct ethtool_cmd ecmd; enum reset_type method = efx->reset_pending; int rc; /* Serialise with kernel interfaces */ rtnl_lock(); /* If we're not RUNNING then don't reset. Leave the reset_pending * flag set so that efx_pci_probe_main will be retried */ if (efx->state != STATE_RUNNING) { EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n"); goto unlock_rtnl; } efx->state = STATE_RESETTING; EFX_INFO(efx, "resetting (%d)\n", method); /* The net_dev->get_stats handler is quite slow, and will fail * if a fetch is pending over reset. Serialise against it. */ spin_lock(&efx->stats_lock); spin_unlock(&efx->stats_lock); efx_stop_all(efx); mutex_lock(&efx->mac_lock); rc = efx_reset_down(efx, &ecmd); if (rc) goto fail1; rc = falcon_reset_hw(efx, method); if (rc) { EFX_ERR(efx, "failed to reset hardware\n"); goto fail2; } /* Allow resets to be rescheduled. */ efx->reset_pending = RESET_TYPE_NONE; /* Reinitialise bus-mastering, which may have been turned off before * the reset was scheduled. This is still appropriate, even in the * RESET_TYPE_DISABLE since this driver generally assumes the hardware * can respond to requests. */ pci_set_master(efx->pci_dev); /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE * case so the driver can talk to external SRAM */ rc = falcon_init_nic(efx); if (rc) { EFX_ERR(efx, "failed to initialise NIC\n"); goto fail3; } /* Leave device stopped if necessary */ if (method == RESET_TYPE_DISABLE) { /* Reinitialise the device anyway so the driver unload sequence * can talk to the external SRAM */ falcon_init_nic(efx); rc = -EIO; goto fail4; } rc = efx_reset_up(efx, &ecmd); if (rc) goto fail5; mutex_unlock(&efx->mac_lock); EFX_LOG(efx, "reset complete\n"); efx->state = STATE_RUNNING; efx_start_all(efx); unlock_rtnl: rtnl_unlock(); return 0; fail5: fail4: fail3: fail2: fail1: EFX_ERR(efx, "has been disabled\n"); efx->state = STATE_DISABLED; mutex_unlock(&efx->mac_lock); rtnl_unlock(); efx_unregister_netdev(efx); efx_fini_port(efx); return rc; } /* The worker thread exists so that code that cannot sleep can * schedule a reset for later. */ static void efx_reset_work(struct work_struct *data) { struct efx_nic *nic = container_of(data, struct efx_nic, reset_work); efx_reset(nic); } void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) { enum reset_type method; if (efx->reset_pending != RESET_TYPE_NONE) { EFX_INFO(efx, "quenching already scheduled reset\n"); return; } switch (type) { case RESET_TYPE_INVISIBLE: case RESET_TYPE_ALL: case RESET_TYPE_WORLD: case RESET_TYPE_DISABLE: method = type; break; case RESET_TYPE_RX_RECOVERY: case RESET_TYPE_RX_DESC_FETCH: case RESET_TYPE_TX_DESC_FETCH: case RESET_TYPE_TX_SKIP: method = RESET_TYPE_INVISIBLE; break; default: method = RESET_TYPE_ALL; break; } if (method != type) EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method); else EFX_LOG(efx, "scheduling reset (%d)\n", method); efx->reset_pending = method; queue_work(efx->reset_workqueue, &efx->reset_work); } /************************************************************************** * * List of NICs we support * **************************************************************************/ /* PCI device ID table */ static struct pci_device_id efx_pci_table[] __devinitdata = { {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID), .driver_data = (unsigned long) &falcon_a_nic_type}, {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID), .driver_data = (unsigned long) &falcon_b_nic_type}, {0} /* end of list */ }; /************************************************************************** * * Dummy PHY/MAC/Board operations * * Can be used where the MAC does not implement this operation * Needed so all function pointers are valid and do not have to be tested * before use * **************************************************************************/ int efx_port_dummy_op_int(struct efx_nic *efx) { return 0; } void efx_port_dummy_op_void(struct efx_nic *efx) {} void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {} static struct efx_phy_operations efx_dummy_phy_operations = { .init = efx_port_dummy_op_int, .reconfigure = efx_port_dummy_op_void, .check_hw = efx_port_dummy_op_int, .fini = efx_port_dummy_op_void, .clear_interrupt = efx_port_dummy_op_void, .reset_xaui = efx_port_dummy_op_void, }; /* Dummy board operations */ static int efx_nic_dummy_op_int(struct efx_nic *nic) { return 0; } static struct efx_board efx_dummy_board_info = { .init = efx_nic_dummy_op_int, .init_leds = efx_port_dummy_op_int, .set_fault_led = efx_port_dummy_op_blink, .fini = efx_port_dummy_op_void, }; /************************************************************************** * * Data housekeeping * **************************************************************************/ /* This zeroes out and then fills in the invariants in a struct * efx_nic (including all sub-structures). */ static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type, struct pci_dev *pci_dev, struct net_device *net_dev) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int i, rc; /* Initialise common structures */ memset(efx, 0, sizeof(*efx)); spin_lock_init(&efx->biu_lock); spin_lock_init(&efx->phy_lock); INIT_WORK(&efx->reset_work, efx_reset_work); INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); efx->pci_dev = pci_dev; efx->state = STATE_INIT; efx->reset_pending = RESET_TYPE_NONE; strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); efx->board_info = efx_dummy_board_info; efx->net_dev = net_dev; efx->rx_checksum_enabled = 1; spin_lock_init(&efx->netif_stop_lock); spin_lock_init(&efx->stats_lock); mutex_init(&efx->mac_lock); efx->phy_op = &efx_dummy_phy_operations; efx->mii.dev = net_dev; INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work); atomic_set(&efx->netif_stop_count, 1); for (i = 0; i < EFX_MAX_CHANNELS; i++) { channel = &efx->channel[i]; channel->efx = efx; channel->channel = i; channel->evqnum = i; channel->work_pending = 0; } for (i = 0; i < EFX_MAX_TX_QUEUES; i++) { tx_queue = &efx->tx_queue[i]; tx_queue->efx = efx; tx_queue->queue = i; tx_queue->buffer = NULL; tx_queue->channel = &efx->channel[0]; /* for safety */ tx_queue->tso_headers_free = NULL; } for (i = 0; i < EFX_MAX_RX_QUEUES; i++) { rx_queue = &efx->rx_queue[i]; rx_queue->efx = efx; rx_queue->queue = i; rx_queue->channel = &efx->channel[0]; /* for safety */ rx_queue->buffer = NULL; spin_lock_init(&rx_queue->add_lock); INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work); } efx->type = type; /* Sanity-check NIC type */ EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask & (efx->type->txd_ring_mask + 1)); EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask & (efx->type->rxd_ring_mask + 1)); EFX_BUG_ON_PARANOID(efx->type->evq_size & (efx->type->evq_size - 1)); /* As close as we can get to guaranteeing that we don't overflow */ EFX_BUG_ON_PARANOID(efx->type->evq_size < (efx->type->txd_ring_mask + 1 + efx->type->rxd_ring_mask + 1)); EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); /* Higher numbered interrupt modes are less capable! */ efx->interrupt_mode = max(efx->type->max_interrupt_mode, interrupt_mode); efx->workqueue = create_singlethread_workqueue("sfc_work"); if (!efx->workqueue) { rc = -ENOMEM; goto fail1; } efx->reset_workqueue = create_singlethread_workqueue("sfc_reset"); if (!efx->reset_workqueue) { rc = -ENOMEM; goto fail2; } return 0; fail2: destroy_workqueue(efx->workqueue); efx->workqueue = NULL; fail1: return rc; } static void efx_fini_struct(struct efx_nic *efx) { if (efx->reset_workqueue) { destroy_workqueue(efx->reset_workqueue); efx->reset_workqueue = NULL; } if (efx->workqueue) { destroy_workqueue(efx->workqueue); efx->workqueue = NULL; } } /************************************************************************** * * PCI interface * **************************************************************************/ /* Main body of final NIC shutdown code * This is called only at module unload (or hotplug removal). */ static void efx_pci_remove_main(struct efx_nic *efx) { EFX_ASSERT_RESET_SERIALISED(efx); /* Skip everything if we never obtained a valid membase */ if (!efx->membase) return; efx_fini_channels(efx); efx_fini_port(efx); /* Shutdown the board, then the NIC and board state */ efx->board_info.fini(efx); falcon_fini_interrupt(efx); efx_fini_napi(efx); efx_remove_all(efx); } /* Final NIC shutdown * This is called only at module unload (or hotplug removal). */ static void efx_pci_remove(struct pci_dev *pci_dev) { struct efx_nic *efx; efx = pci_get_drvdata(pci_dev); if (!efx) return; /* Mark the NIC as fini, then stop the interface */ rtnl_lock(); efx->state = STATE_FINI; dev_close(efx->net_dev); /* Allow any queued efx_resets() to complete */ rtnl_unlock(); if (efx->membase == NULL) goto out; efx_unregister_netdev(efx); /* Wait for any scheduled resets to complete. No more will be * scheduled from this point because efx_stop_all() has been * called, we are no longer registered with driverlink, and * the net_device's have been removed. */ flush_workqueue(efx->reset_workqueue); efx_pci_remove_main(efx); out: efx_fini_io(efx); EFX_LOG(efx, "shutdown successful\n"); pci_set_drvdata(pci_dev, NULL); efx_fini_struct(efx); free_netdev(efx->net_dev); }; /* Main body of NIC initialisation * This is called at module load (or hotplug insertion, theoretically). */ static int efx_pci_probe_main(struct efx_nic *efx) { int rc; /* Do start-of-day initialisation */ rc = efx_probe_all(efx); if (rc) goto fail1; rc = efx_init_napi(efx); if (rc) goto fail2; /* Initialise the board */ rc = efx->board_info.init(efx); if (rc) { EFX_ERR(efx, "failed to initialise board\n"); goto fail3; } rc = falcon_init_nic(efx); if (rc) { EFX_ERR(efx, "failed to initialise NIC\n"); goto fail4; } rc = efx_init_port(efx); if (rc) { EFX_ERR(efx, "failed to initialise port\n"); goto fail5; } rc = efx_init_channels(efx); if (rc) goto fail6; rc = falcon_init_interrupt(efx); if (rc) goto fail7; return 0; fail7: efx_fini_channels(efx); fail6: efx_fini_port(efx); fail5: fail4: fail3: efx_fini_napi(efx); fail2: efx_remove_all(efx); fail1: return rc; } /* NIC initialisation * * This is called at module load (or hotplug insertion, * theoretically). It sets up PCI mappings, tests and resets the NIC, * sets up and registers the network devices with the kernel and hooks * the interrupt service routine. It does not prepare the device for * transmission; this is left to the first time one of the network * interfaces is brought up (i.e. efx_net_open). */ static int __devinit efx_pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *entry) { struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data; struct net_device *net_dev; struct efx_nic *efx; int i, rc; /* Allocate and initialise a struct net_device and struct efx_nic */ net_dev = alloc_etherdev(sizeof(*efx)); if (!net_dev) return -ENOMEM; net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_TSO); if (lro) net_dev->features |= NETIF_F_LRO; efx = net_dev->priv; pci_set_drvdata(pci_dev, efx); rc = efx_init_struct(efx, type, pci_dev, net_dev); if (rc) goto fail1; EFX_INFO(efx, "Solarflare Communications NIC detected\n"); /* Set up basic I/O (BAR mappings etc) */ rc = efx_init_io(efx); if (rc) goto fail2; /* No serialisation is required with the reset path because * we're in STATE_INIT. */ for (i = 0; i < 5; i++) { rc = efx_pci_probe_main(efx); if (rc == 0) break; /* Serialise against efx_reset(). No more resets will be * scheduled since efx_stop_all() has been called, and we * have not and never have been registered with either * the rtnetlink or driverlink layers. */ flush_workqueue(efx->reset_workqueue); /* Retry if a recoverably reset event has been scheduled */ if ((efx->reset_pending != RESET_TYPE_INVISIBLE) && (efx->reset_pending != RESET_TYPE_ALL)) goto fail3; efx->reset_pending = RESET_TYPE_NONE; } if (rc) { EFX_ERR(efx, "Could not reset NIC\n"); goto fail4; } /* Switch to the running state before we expose the device to * the OS. This is to ensure that the initial gathering of * MAC stats succeeds. */ rtnl_lock(); efx->state = STATE_RUNNING; rtnl_unlock(); rc = efx_register_netdev(efx); if (rc) goto fail5; EFX_LOG(efx, "initialisation successful\n"); return 0; fail5: efx_pci_remove_main(efx); fail4: fail3: efx_fini_io(efx); fail2: efx_fini_struct(efx); fail1: EFX_LOG(efx, "initialisation failed. rc=%d\n", rc); free_netdev(net_dev); return rc; } static struct pci_driver efx_pci_driver = { .name = EFX_DRIVER_NAME, .id_table = efx_pci_table, .probe = efx_pci_probe, .remove = efx_pci_remove, }; /************************************************************************** * * Kernel module interface * *************************************************************************/ module_param(interrupt_mode, uint, 0444); MODULE_PARM_DESC(interrupt_mode, "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); static int __init efx_init_module(void) { int rc; printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); rc = register_netdevice_notifier(&efx_netdev_notifier); if (rc) goto err_notifier; refill_workqueue = create_workqueue("sfc_refill"); if (!refill_workqueue) { rc = -ENOMEM; goto err_refill; } rc = pci_register_driver(&efx_pci_driver); if (rc < 0) goto err_pci; return 0; err_pci: destroy_workqueue(refill_workqueue); err_refill: unregister_netdevice_notifier(&efx_netdev_notifier); err_notifier: return rc; } static void __exit efx_exit_module(void) { printk(KERN_INFO "Solarflare NET driver unloading\n"); pci_unregister_driver(&efx_pci_driver); destroy_workqueue(refill_workqueue); unregister_netdevice_notifier(&efx_netdev_notifier); } module_init(efx_init_module); module_exit(efx_exit_module); MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and " "Solarflare Communications"); MODULE_DESCRIPTION("Solarflare Communications network driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, efx_pci_table);