/* drivers/net/tulip/media.c Copyright 2000,2001 The Linux Kernel Team Written/copyright 1994-2001 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License, incorporated herein by reference. Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html} for more information on this driver. Please submit bugs to http://bugzilla.kernel.org/ . */ #include <linux/kernel.h> #include <linux/mii.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pci.h> #include "tulip.h" /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually met by back-to-back PCI I/O cycles, but we insert a delay to avoid "overclocking" issues or future 66Mhz PCI. */ #define mdio_delay() ioread32(mdio_addr) /* Read and write the MII registers using software-generated serial MDIO protocol. It is just different enough from the EEPROM protocol to not share code. The maxium data clock rate is 2.5 Mhz. */ #define MDIO_SHIFT_CLK 0x10000 #define MDIO_DATA_WRITE0 0x00000 #define MDIO_DATA_WRITE1 0x20000 #define MDIO_ENB 0x00000 /* Ignore the 0x02000 databook setting. */ #define MDIO_ENB_IN 0x40000 #define MDIO_DATA_READ 0x80000 static const unsigned char comet_miireg2offset[32] = { 0xB4, 0xB8, 0xBC, 0xC0, 0xC4, 0xC8, 0xCC, 0, 0,0,0,0, 0,0,0,0, 0,0xD0,0,0, 0,0,0,0, 0,0,0,0, 0, 0xD4, 0xD8, 0xDC, }; /* MII transceiver control section. Read and write the MII registers using software-generated serial MDIO protocol. See IEEE 802.3-2002.pdf (Section 2, Chapter "22.2.4 Management functions") or DP83840A data sheet for more details. */ int tulip_mdio_read(struct net_device *dev, int phy_id, int location) { struct tulip_private *tp = netdev_priv(dev); int i; int read_cmd = (0xf6 << 10) | ((phy_id & 0x1f) << 5) | location; int retval = 0; void __iomem *ioaddr = tp->base_addr; void __iomem *mdio_addr = ioaddr + CSR9; unsigned long flags; if (location & ~0x1f) return 0xffff; if (tp->chip_id == COMET && phy_id == 30) { if (comet_miireg2offset[location]) return ioread32(ioaddr + comet_miireg2offset[location]); return 0xffff; } spin_lock_irqsave(&tp->mii_lock, flags); if (tp->chip_id == LC82C168) { int i = 1000; iowrite32(0x60020000 + (phy_id<<23) + (location<<18), ioaddr + 0xA0); ioread32(ioaddr + 0xA0); ioread32(ioaddr + 0xA0); while (--i > 0) { barrier(); if ( ! ((retval = ioread32(ioaddr + 0xA0)) & 0x80000000)) break; } spin_unlock_irqrestore(&tp->mii_lock, flags); return retval & 0xffff; } /* Establish sync by sending at least 32 logic ones. */ for (i = 32; i >= 0; i--) { iowrite32(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr); mdio_delay(); iowrite32(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } /* Shift the read command bits out. */ for (i = 15; i >= 0; i--) { int dataval = (read_cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0; iowrite32(MDIO_ENB | dataval, mdio_addr); mdio_delay(); iowrite32(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } /* Read the two transition, 16 data, and wire-idle bits. */ for (i = 19; i > 0; i--) { iowrite32(MDIO_ENB_IN, mdio_addr); mdio_delay(); retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DATA_READ) ? 1 : 0); iowrite32(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } spin_unlock_irqrestore(&tp->mii_lock, flags); return (retval>>1) & 0xffff; } void tulip_mdio_write(struct net_device *dev, int phy_id, int location, int val) { struct tulip_private *tp = netdev_priv(dev); int i; int cmd = (0x5002 << 16) | ((phy_id & 0x1f) << 23) | (location<<18) | (val & 0xffff); void __iomem *ioaddr = tp->base_addr; void __iomem *mdio_addr = ioaddr + CSR9; unsigned long flags; if (location & ~0x1f) return; if (tp->chip_id == COMET && phy_id == 30) { if (comet_miireg2offset[location]) iowrite32(val, ioaddr + comet_miireg2offset[location]); return; } spin_lock_irqsave(&tp->mii_lock, flags); if (tp->chip_id == LC82C168) { int i = 1000; iowrite32(cmd, ioaddr + 0xA0); do { barrier(); if ( ! (ioread32(ioaddr + 0xA0) & 0x80000000)) break; } while (--i > 0); spin_unlock_irqrestore(&tp->mii_lock, flags); return; } /* Establish sync by sending 32 logic ones. */ for (i = 32; i >= 0; i--) { iowrite32(MDIO_ENB | MDIO_DATA_WRITE1, mdio_addr); mdio_delay(); iowrite32(MDIO_ENB | MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (cmd & (1 << i)) ? MDIO_DATA_WRITE1 : 0; iowrite32(MDIO_ENB | dataval, mdio_addr); mdio_delay(); iowrite32(MDIO_ENB | dataval | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } /* Clear out extra bits. */ for (i = 2; i > 0; i--) { iowrite32(MDIO_ENB_IN, mdio_addr); mdio_delay(); iowrite32(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } spin_unlock_irqrestore(&tp->mii_lock, flags); } /* Set up the transceiver control registers for the selected media type. */ void tulip_select_media(struct net_device *dev, int startup) { struct tulip_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->base_addr; struct mediatable *mtable = tp->mtable; u32 new_csr6; int i; if (mtable) { struct medialeaf *mleaf = &mtable->mleaf[tp->cur_index]; unsigned char *p = mleaf->leafdata; switch (mleaf->type) { case 0: /* 21140 non-MII xcvr. */ if (tulip_debug > 1) printk(KERN_DEBUG "%s: Using a 21140 non-MII transceiver" " with control setting %2.2x.\n", dev->name, p[1]); dev->if_port = p[0]; if (startup) iowrite32(mtable->csr12dir | 0x100, ioaddr + CSR12); iowrite32(p[1], ioaddr + CSR12); new_csr6 = 0x02000000 | ((p[2] & 0x71) << 18); break; case 2: case 4: { u16 setup[5]; u32 csr13val, csr14val, csr15dir, csr15val; for (i = 0; i < 5; i++) setup[i] = get_u16(&p[i*2 + 1]); dev->if_port = p[0] & MEDIA_MASK; if (tulip_media_cap[dev->if_port] & MediaAlwaysFD) tp->full_duplex = 1; if (startup && mtable->has_reset) { struct medialeaf *rleaf = &mtable->mleaf[mtable->has_reset]; unsigned char *rst = rleaf->leafdata; if (tulip_debug > 1) printk(KERN_DEBUG "%s: Resetting the transceiver.\n", dev->name); for (i = 0; i < rst[0]; i++) iowrite32(get_u16(rst + 1 + (i<<1)) << 16, ioaddr + CSR15); } if (tulip_debug > 1) printk(KERN_DEBUG "%s: 21143 non-MII %s transceiver control " "%4.4x/%4.4x.\n", dev->name, medianame[dev->if_port], setup[0], setup[1]); if (p[0] & 0x40) { /* SIA (CSR13-15) setup values are provided. */ csr13val = setup[0]; csr14val = setup[1]; csr15dir = (setup[3]<<16) | setup[2]; csr15val = (setup[4]<<16) | setup[2]; iowrite32(0, ioaddr + CSR13); iowrite32(csr14val, ioaddr + CSR14); iowrite32(csr15dir, ioaddr + CSR15); /* Direction */ iowrite32(csr15val, ioaddr + CSR15); /* Data */ iowrite32(csr13val, ioaddr + CSR13); } else { csr13val = 1; csr14val = 0; csr15dir = (setup[0]<<16) | 0x0008; csr15val = (setup[1]<<16) | 0x0008; if (dev->if_port <= 4) csr14val = t21142_csr14[dev->if_port]; if (startup) { iowrite32(0, ioaddr + CSR13); iowrite32(csr14val, ioaddr + CSR14); } iowrite32(csr15dir, ioaddr + CSR15); /* Direction */ iowrite32(csr15val, ioaddr + CSR15); /* Data */ if (startup) iowrite32(csr13val, ioaddr + CSR13); } if (tulip_debug > 1) printk(KERN_DEBUG "%s: Setting CSR15 to %8.8x/%8.8x.\n", dev->name, csr15dir, csr15val); if (mleaf->type == 4) new_csr6 = 0x82020000 | ((setup[2] & 0x71) << 18); else new_csr6 = 0x82420000; break; } case 1: case 3: { int phy_num = p[0]; int init_length = p[1]; u16 *misc_info, tmp_info; dev->if_port = 11; new_csr6 = 0x020E0000; if (mleaf->type == 3) { /* 21142 */ u16 *init_sequence = (u16*)(p+2); u16 *reset_sequence = &((u16*)(p+3))[init_length]; int reset_length = p[2 + init_length*2]; misc_info = reset_sequence + reset_length; if (startup) { int timeout = 10; /* max 1 ms */ for (i = 0; i < reset_length; i++) iowrite32(get_u16(&reset_sequence[i]) << 16, ioaddr + CSR15); /* flush posted writes */ ioread32(ioaddr + CSR15); /* Sect 3.10.3 in DP83840A.pdf (p39) */ udelay(500); /* Section 4.2 in DP83840A.pdf (p43) */ /* and IEEE 802.3 "22.2.4.1.1 Reset" */ while (timeout-- && (tulip_mdio_read (dev, phy_num, MII_BMCR) & BMCR_RESET)) udelay(100); } for (i = 0; i < init_length; i++) iowrite32(get_u16(&init_sequence[i]) << 16, ioaddr + CSR15); ioread32(ioaddr + CSR15); /* flush posted writes */ } else { u8 *init_sequence = p + 2; u8 *reset_sequence = p + 3 + init_length; int reset_length = p[2 + init_length]; misc_info = (u16*)(reset_sequence + reset_length); if (startup) { int timeout = 10; /* max 1 ms */ iowrite32(mtable->csr12dir | 0x100, ioaddr + CSR12); for (i = 0; i < reset_length; i++) iowrite32(reset_sequence[i], ioaddr + CSR12); /* flush posted writes */ ioread32(ioaddr + CSR12); /* Sect 3.10.3 in DP83840A.pdf (p39) */ udelay(500); /* Section 4.2 in DP83840A.pdf (p43) */ /* and IEEE 802.3 "22.2.4.1.1 Reset" */ while (timeout-- && (tulip_mdio_read (dev, phy_num, MII_BMCR) & BMCR_RESET)) udelay(100); } for (i = 0; i < init_length; i++) iowrite32(init_sequence[i], ioaddr + CSR12); ioread32(ioaddr + CSR12); /* flush posted writes */ } tmp_info = get_u16(&misc_info[1]); if (tmp_info) tp->advertising[phy_num] = tmp_info | 1; if (tmp_info && startup < 2) { if (tp->mii_advertise == 0) tp->mii_advertise = tp->advertising[phy_num]; if (tulip_debug > 1) printk(KERN_DEBUG "%s: Advertising %4.4x on MII %d.\n", dev->name, tp->mii_advertise, tp->phys[phy_num]); tulip_mdio_write(dev, tp->phys[phy_num], 4, tp->mii_advertise); } break; } case 5: case 6: { u16 setup[5]; new_csr6 = 0; /* FIXME */ for (i = 0; i < 5; i++) setup[i] = get_u16(&p[i*2 + 1]); if (startup && mtable->has_reset) { struct medialeaf *rleaf = &mtable->mleaf[mtable->has_reset]; unsigned char *rst = rleaf->leafdata; if (tulip_debug > 1) printk(KERN_DEBUG "%s: Resetting the transceiver.\n", dev->name); for (i = 0; i < rst[0]; i++) iowrite32(get_u16(rst + 1 + (i<<1)) << 16, ioaddr + CSR15); } break; } default: printk(KERN_DEBUG "%s: Invalid media table selection %d.\n", dev->name, mleaf->type); new_csr6 = 0x020E0000; } if (tulip_debug > 1) printk(KERN_DEBUG "%s: Using media type %s, CSR12 is %2.2x.\n", dev->name, medianame[dev->if_port], ioread32(ioaddr + CSR12) & 0xff); } else if (tp->chip_id == LC82C168) { if (startup && ! tp->medialock) dev->if_port = tp->mii_cnt ? 11 : 0; if (tulip_debug > 1) printk(KERN_DEBUG "%s: PNIC PHY status is %3.3x, media %s.\n", dev->name, ioread32(ioaddr + 0xB8), medianame[dev->if_port]); if (tp->mii_cnt) { new_csr6 = 0x810C0000; iowrite32(0x0001, ioaddr + CSR15); iowrite32(0x0201B07A, ioaddr + 0xB8); } else if (startup) { /* Start with 10mbps to do autonegotiation. */ iowrite32(0x32, ioaddr + CSR12); new_csr6 = 0x00420000; iowrite32(0x0001B078, ioaddr + 0xB8); iowrite32(0x0201B078, ioaddr + 0xB8); } else if (dev->if_port == 3 || dev->if_port == 5) { iowrite32(0x33, ioaddr + CSR12); new_csr6 = 0x01860000; /* Trigger autonegotiation. */ iowrite32(startup ? 0x0201F868 : 0x0001F868, ioaddr + 0xB8); } else { iowrite32(0x32, ioaddr + CSR12); new_csr6 = 0x00420000; iowrite32(0x1F078, ioaddr + 0xB8); } } else { /* Unknown chip type with no media table. */ if (tp->default_port == 0) dev->if_port = tp->mii_cnt ? 11 : 3; if (tulip_media_cap[dev->if_port] & MediaIsMII) { new_csr6 = 0x020E0000; } else if (tulip_media_cap[dev->if_port] & MediaIsFx) { new_csr6 = 0x02860000; } else new_csr6 = 0x03860000; if (tulip_debug > 1) printk(KERN_DEBUG "%s: No media description table, assuming " "%s transceiver, CSR12 %2.2x.\n", dev->name, medianame[dev->if_port], ioread32(ioaddr + CSR12)); } tp->csr6 = new_csr6 | (tp->csr6 & 0xfdff) | (tp->full_duplex ? 0x0200 : 0); mdelay(1); return; } /* Check the MII negotiated duplex and change the CSR6 setting if required. Return 0 if everything is OK. Return < 0 if the transceiver is missing or has no link beat. */ int tulip_check_duplex(struct net_device *dev) { struct tulip_private *tp = netdev_priv(dev); unsigned int bmsr, lpa, negotiated, new_csr6; bmsr = tulip_mdio_read(dev, tp->phys[0], MII_BMSR); lpa = tulip_mdio_read(dev, tp->phys[0], MII_LPA); if (tulip_debug > 1) printk(KERN_INFO "%s: MII status %4.4x, Link partner report " "%4.4x.\n", dev->name, bmsr, lpa); if (bmsr == 0xffff) return -2; if ((bmsr & BMSR_LSTATUS) == 0) { int new_bmsr = tulip_mdio_read(dev, tp->phys[0], MII_BMSR); if ((new_bmsr & BMSR_LSTATUS) == 0) { if (tulip_debug > 1) printk(KERN_INFO "%s: No link beat on the MII interface," " status %4.4x.\n", dev->name, new_bmsr); return -1; } } negotiated = lpa & tp->advertising[0]; tp->full_duplex = mii_duplex(tp->full_duplex_lock, negotiated); new_csr6 = tp->csr6; if (negotiated & LPA_100) new_csr6 &= ~TxThreshold; else new_csr6 |= TxThreshold; if (tp->full_duplex) new_csr6 |= FullDuplex; else new_csr6 &= ~FullDuplex; if (new_csr6 != tp->csr6) { tp->csr6 = new_csr6; tulip_restart_rxtx(tp); if (tulip_debug > 0) printk(KERN_INFO "%s: Setting %s-duplex based on MII" "#%d link partner capability of %4.4x.\n", dev->name, tp->full_duplex ? "full" : "half", tp->phys[0], lpa); return 1; } return 0; } void __devinit tulip_find_mii (struct net_device *dev, int board_idx) { struct tulip_private *tp = netdev_priv(dev); int phyn, phy_idx = 0; int mii_reg0; int mii_advert; unsigned int to_advert, new_bmcr, ane_switch; /* Find the connected MII xcvrs. Doing this in open() would allow detecting external xcvrs later, but takes much time. */ for (phyn = 1; phyn <= 32 && phy_idx < sizeof (tp->phys); phyn++) { int phy = phyn & 0x1f; int mii_status = tulip_mdio_read (dev, phy, MII_BMSR); if ((mii_status & 0x8301) == 0x8001 || ((mii_status & BMSR_100BASE4) == 0 && (mii_status & 0x7800) != 0)) { /* preserve Becker logic, gain indentation level */ } else { continue; } mii_reg0 = tulip_mdio_read (dev, phy, MII_BMCR); mii_advert = tulip_mdio_read (dev, phy, MII_ADVERTISE); ane_switch = 0; /* if not advertising at all, gen an * advertising value from the capability * bits in BMSR */ if ((mii_advert & ADVERTISE_ALL) == 0) { unsigned int tmpadv = tulip_mdio_read (dev, phy, MII_BMSR); mii_advert = ((tmpadv >> 6) & 0x3e0) | 1; } if (tp->mii_advertise) { tp->advertising[phy_idx] = to_advert = tp->mii_advertise; } else if (tp->advertising[phy_idx]) { to_advert = tp->advertising[phy_idx]; } else { tp->advertising[phy_idx] = tp->mii_advertise = to_advert = mii_advert; } tp->phys[phy_idx++] = phy; printk (KERN_INFO "tulip%d: MII transceiver #%d " "config %4.4x status %4.4x advertising %4.4x.\n", board_idx, phy, mii_reg0, mii_status, mii_advert); /* Fixup for DLink with miswired PHY. */ if (mii_advert != to_advert) { printk (KERN_DEBUG "tulip%d: Advertising %4.4x on PHY %d," " previously advertising %4.4x.\n", board_idx, to_advert, phy, mii_advert); tulip_mdio_write (dev, phy, 4, to_advert); } /* Enable autonegotiation: some boards default to off. */ if (tp->default_port == 0) { new_bmcr = mii_reg0 | BMCR_ANENABLE; if (new_bmcr != mii_reg0) { new_bmcr |= BMCR_ANRESTART; ane_switch = 1; } } /* ...or disable nway, if forcing media */ else { new_bmcr = mii_reg0 & ~BMCR_ANENABLE; if (new_bmcr != mii_reg0) ane_switch = 1; } /* clear out bits we never want at this point */ new_bmcr &= ~(BMCR_CTST | BMCR_FULLDPLX | BMCR_ISOLATE | BMCR_PDOWN | BMCR_SPEED100 | BMCR_LOOPBACK | BMCR_RESET); if (tp->full_duplex) new_bmcr |= BMCR_FULLDPLX; if (tulip_media_cap[tp->default_port] & MediaIs100) new_bmcr |= BMCR_SPEED100; if (new_bmcr != mii_reg0) { /* some phys need the ANE switch to * happen before forced media settings * will "take." However, we write the * same value twice in order not to * confuse the sane phys. */ if (ane_switch) { tulip_mdio_write (dev, phy, MII_BMCR, new_bmcr); udelay (10); } tulip_mdio_write (dev, phy, MII_BMCR, new_bmcr); } } tp->mii_cnt = phy_idx; if (tp->mtable && tp->mtable->has_mii && phy_idx == 0) { printk (KERN_INFO "tulip%d: ***WARNING***: No MII transceiver found!\n", board_idx); tp->phys[0] = 1; } }