/****************************************************************************** * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by reference. * Drivers based on or derived from this code fall under the GPL and must * retain the authorship, copyright and license notice. This file is not * a complete program and may only be used when the entire operating * system is licensed under the GPL. * See the file COPYING in this distribution for more information. * * vxge-config.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O * Virtualized Server Adapter. * Copyright(c) 2002-2009 Neterion Inc. ******************************************************************************/ #include <linux/vmalloc.h> #include <linux/etherdevice.h> #include <linux/pci.h> #include <linux/pci_hotplug.h> #include "vxge-traffic.h" #include "vxge-config.h" /* * __vxge_hw_channel_allocate - Allocate memory for channel * This function allocates required memory for the channel and various arrays * in the channel */ struct __vxge_hw_channel* __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph, enum __vxge_hw_channel_type type, u32 length, u32 per_dtr_space, void *userdata) { struct __vxge_hw_channel *channel; struct __vxge_hw_device *hldev; int size = 0; u32 vp_id; hldev = vph->vpath->hldev; vp_id = vph->vpath->vp_id; switch (type) { case VXGE_HW_CHANNEL_TYPE_FIFO: size = sizeof(struct __vxge_hw_fifo); break; case VXGE_HW_CHANNEL_TYPE_RING: size = sizeof(struct __vxge_hw_ring); break; default: break; } channel = kzalloc(size, GFP_KERNEL); if (channel == NULL) goto exit0; INIT_LIST_HEAD(&channel->item); channel->common_reg = hldev->common_reg; channel->first_vp_id = hldev->first_vp_id; channel->type = type; channel->devh = hldev; channel->vph = vph; channel->userdata = userdata; channel->per_dtr_space = per_dtr_space; channel->length = length; channel->vp_id = vp_id; channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL); if (channel->work_arr == NULL) goto exit1; channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL); if (channel->free_arr == NULL) goto exit1; channel->free_ptr = length; channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL); if (channel->reserve_arr == NULL) goto exit1; channel->reserve_ptr = length; channel->reserve_top = 0; channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL); if (channel->orig_arr == NULL) goto exit1; return channel; exit1: __vxge_hw_channel_free(channel); exit0: return NULL; } /* * __vxge_hw_channel_free - Free memory allocated for channel * This function deallocates memory from the channel and various arrays * in the channel */ void __vxge_hw_channel_free(struct __vxge_hw_channel *channel) { kfree(channel->work_arr); kfree(channel->free_arr); kfree(channel->reserve_arr); kfree(channel->orig_arr); kfree(channel); } /* * __vxge_hw_channel_initialize - Initialize a channel * This function initializes a channel by properly setting the * various references */ enum vxge_hw_status __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel) { u32 i; struct __vxge_hw_virtualpath *vpath; vpath = channel->vph->vpath; if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) { for (i = 0; i < channel->length; i++) channel->orig_arr[i] = channel->reserve_arr[i]; } switch (channel->type) { case VXGE_HW_CHANNEL_TYPE_FIFO: vpath->fifoh = (struct __vxge_hw_fifo *)channel; channel->stats = &((struct __vxge_hw_fifo *) channel)->stats->common_stats; break; case VXGE_HW_CHANNEL_TYPE_RING: vpath->ringh = (struct __vxge_hw_ring *)channel; channel->stats = &((struct __vxge_hw_ring *) channel)->stats->common_stats; break; default: break; } return VXGE_HW_OK; } /* * __vxge_hw_channel_reset - Resets a channel * This function resets a channel by properly setting the various references */ enum vxge_hw_status __vxge_hw_channel_reset(struct __vxge_hw_channel *channel) { u32 i; for (i = 0; i < channel->length; i++) { if (channel->reserve_arr != NULL) channel->reserve_arr[i] = channel->orig_arr[i]; if (channel->free_arr != NULL) channel->free_arr[i] = NULL; if (channel->work_arr != NULL) channel->work_arr[i] = NULL; } channel->free_ptr = channel->length; channel->reserve_ptr = channel->length; channel->reserve_top = 0; channel->post_index = 0; channel->compl_index = 0; return VXGE_HW_OK; } /* * __vxge_hw_device_pci_e_init * Initialize certain PCI/PCI-X configuration registers * with recommended values. Save config space for future hw resets. */ void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev) { u16 cmd = 0; /* Set the PErr Repconse bit and SERR in PCI command register. */ pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd); cmd |= 0x140; pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd); pci_save_state(hldev->pdev); return; } /* * __vxge_hw_device_register_poll * Will poll certain register for specified amount of time. * Will poll until masked bit is not cleared. */ enum vxge_hw_status __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis) { u64 val64; u32 i = 0; enum vxge_hw_status ret = VXGE_HW_FAIL; udelay(10); do { val64 = readq(reg); if (!(val64 & mask)) return VXGE_HW_OK; udelay(100); } while (++i <= 9); i = 0; do { val64 = readq(reg); if (!(val64 & mask)) return VXGE_HW_OK; mdelay(1); } while (++i <= max_millis); return ret; } /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset * in progress * This routine checks the vpath reset in progress register is turned zero */ enum vxge_hw_status __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog) { enum vxge_hw_status status; status = __vxge_hw_device_register_poll(vpath_rst_in_prog, VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff), VXGE_HW_DEF_DEVICE_POLL_MILLIS); return status; } /* * __vxge_hw_device_toc_get * This routine sets the swapper and reads the toc pointer and returns the * memory mapped address of the toc */ struct vxge_hw_toc_reg __iomem * __vxge_hw_device_toc_get(void __iomem *bar0) { u64 val64; struct vxge_hw_toc_reg __iomem *toc = NULL; enum vxge_hw_status status; struct vxge_hw_legacy_reg __iomem *legacy_reg = (struct vxge_hw_legacy_reg __iomem *)bar0; status = __vxge_hw_legacy_swapper_set(legacy_reg); if (status != VXGE_HW_OK) goto exit; val64 = readq(&legacy_reg->toc_first_pointer); toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64); exit: return toc; } /* * __vxge_hw_device_reg_addr_get * This routine sets the swapper and reads the toc pointer and initializes the * register location pointers in the device object. It waits until the ric is * completed initializing registers. */ enum vxge_hw_status __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev) { u64 val64; u32 i; enum vxge_hw_status status = VXGE_HW_OK; hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0; hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0); if (hldev->toc_reg == NULL) { status = VXGE_HW_FAIL; goto exit; } val64 = readq(&hldev->toc_reg->toc_common_pointer); hldev->common_reg = (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64); val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer); hldev->mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64); for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) { val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]); hldev->srpcim_reg[i] = (struct vxge_hw_srpcim_reg __iomem *) (hldev->bar0 + val64); } for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) { val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]); hldev->vpmgmt_reg[i] = (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64); } for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) { val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]); hldev->vpath_reg[i] = (struct vxge_hw_vpath_reg __iomem *) (hldev->bar0 + val64); } val64 = readq(&hldev->toc_reg->toc_kdfc); switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) { case 0: hldev->kdfc = (u8 __iomem *)(hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64)); break; case 2: hldev->kdfc = (u8 __iomem *)(hldev->bar1 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64)); break; case 4: hldev->kdfc = (u8 __iomem *)(hldev->bar2 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64)); break; default: break; } status = __vxge_hw_device_vpath_reset_in_prog_check( (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog); exit: return status; } /* * __vxge_hw_device_id_get * This routine returns sets the device id and revision numbers into the device * structure */ void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev) { u64 val64; val64 = readq(&hldev->common_reg->titan_asic_id); hldev->device_id = (u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64); hldev->major_revision = (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64); hldev->minor_revision = (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64); return; } /* * __vxge_hw_device_access_rights_get: Get Access Rights of the driver * This routine returns the Access Rights of the driver */ static u32 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id) { u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH; switch (host_type) { case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION: if (func_id == 0) { access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; } break; case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION: access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; break; case VXGE_HW_NO_MR_SR_VH0_FUNCTION0: access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM | VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; break; case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION: case VXGE_HW_SR_VH_VIRTUAL_FUNCTION: case VXGE_HW_MR_SR_VH0_INVALID_CONFIG: break; case VXGE_HW_SR_VH_FUNCTION0: case VXGE_HW_VH_NORMAL_FUNCTION: access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM; break; } return access_rights; } /* * __vxge_hw_device_host_info_get * This routine returns the host type assignments */ void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev) { u64 val64; u32 i; val64 = readq(&hldev->common_reg->host_type_assignments); hldev->host_type = (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64); hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments); for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!(hldev->vpath_assignments & vxge_mBIT(i))) continue; hldev->func_id = __vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]); hldev->access_rights = __vxge_hw_device_access_rights_get( hldev->host_type, hldev->func_id); hldev->first_vp_id = i; break; } return; } /* * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as * link width and signalling rate. */ static enum vxge_hw_status __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev) { int exp_cap; u16 lnk; /* Get the negotiated link width and speed from PCI config space */ exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP); pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk); if ((lnk & PCI_EXP_LNKSTA_CLS) != 1) return VXGE_HW_ERR_INVALID_PCI_INFO; switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) { case PCIE_LNK_WIDTH_RESRV: case PCIE_LNK_X1: case PCIE_LNK_X2: case PCIE_LNK_X4: case PCIE_LNK_X8: break; default: return VXGE_HW_ERR_INVALID_PCI_INFO; } return VXGE_HW_OK; } enum vxge_hw_status __vxge_hw_device_is_privilaged(struct __vxge_hw_device *hldev) { if ((hldev->host_type == VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION || hldev->host_type == VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION || hldev->host_type == VXGE_HW_NO_MR_SR_VH0_FUNCTION0) && (hldev->func_id == 0)) return VXGE_HW_OK; else return VXGE_HW_ERR_PRIVILAGED_OPEARATION; } /* * vxge_hw_wrr_rebalance - Rebalance the RX_WRR and KDFC_WRR calandars. * Rebalance the RX_WRR and KDFC_WRR calandars. */ static enum vxge_hw_status vxge_hw_wrr_rebalance(struct __vxge_hw_device *hldev) { u64 val64; u32 wrr_states[VXGE_HW_WEIGHTED_RR_SERVICE_STATES]; u32 i, j, how_often = 1; enum vxge_hw_status status = VXGE_HW_OK; status = __vxge_hw_device_is_privilaged(hldev); if (status != VXGE_HW_OK) goto exit; /* Reset the priorities assigned to the WRR arbitration phases for the receive traffic */ for (i = 0; i < VXGE_HW_WRR_RING_COUNT; i++) writeq(0, ((&hldev->mrpcim_reg->rx_w_round_robin_0) + i)); /* Reset the transmit FIFO servicing calendar for FIFOs */ for (i = 0; i < VXGE_HW_WRR_FIFO_COUNT; i++) { writeq(0, ((&hldev->mrpcim_reg->kdfc_w_round_robin_0) + i)); writeq(0, ((&hldev->mrpcim_reg->kdfc_w_round_robin_20) + i)); } /* Assign WRR priority 0 for all FIFOs */ for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { writeq(VXGE_HW_KDFC_FIFO_0_CTRL_WRR_NUMBER(0), ((&hldev->mrpcim_reg->kdfc_fifo_0_ctrl) + i)); writeq(VXGE_HW_KDFC_FIFO_17_CTRL_WRR_NUMBER(0), ((&hldev->mrpcim_reg->kdfc_fifo_17_ctrl) + i)); } /* Reset to service non-offload doorbells */ writeq(0, &hldev->mrpcim_reg->kdfc_entry_type_sel_0); writeq(0, &hldev->mrpcim_reg->kdfc_entry_type_sel_1); /* Set priority 0 to all receive queues */ writeq(0, &hldev->mrpcim_reg->rx_queue_priority_0); writeq(0, &hldev->mrpcim_reg->rx_queue_priority_1); writeq(0, &hldev->mrpcim_reg->rx_queue_priority_2); /* Initialize all the slots as unused */ for (i = 0; i < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; i++) wrr_states[i] = -1; /* Prepare the Fifo service states */ for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!hldev->config.vp_config[i].min_bandwidth) continue; how_often = VXGE_HW_VPATH_BANDWIDTH_MAX / hldev->config.vp_config[i].min_bandwidth; if (how_often) { for (j = 0; j < VXGE_HW_WRR_FIFO_SERVICE_STATES;) { if (wrr_states[j] == -1) { wrr_states[j] = i; /* Make sure each fifo is serviced * atleast once */ if (i == j) j += VXGE_HW_MAX_VIRTUAL_PATHS; else j += how_often; } else j++; } } } /* Fill the unused slots with 0 */ for (j = 0; j < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; j++) { if (wrr_states[j] == -1) wrr_states[j] = 0; } /* Assign WRR priority number for FIFOs */ for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { writeq(VXGE_HW_KDFC_FIFO_0_CTRL_WRR_NUMBER(i), ((&hldev->mrpcim_reg->kdfc_fifo_0_ctrl) + i)); writeq(VXGE_HW_KDFC_FIFO_17_CTRL_WRR_NUMBER(i), ((&hldev->mrpcim_reg->kdfc_fifo_17_ctrl) + i)); } /* Modify the servicing algorithm applied to the 3 types of doorbells. i.e, none-offload, message and offload */ writeq(VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_0(0) | VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_1(0) | VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_2(0) | VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_3(0) | VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_4(1) | VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_5(0) | VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_6(0) | VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_7(0), &hldev->mrpcim_reg->kdfc_entry_type_sel_0); writeq(VXGE_HW_KDFC_ENTRY_TYPE_SEL_1_NUMBER_8(1), &hldev->mrpcim_reg->kdfc_entry_type_sel_1); for (i = 0, j = 0; i < VXGE_HW_WRR_FIFO_COUNT; i++) { val64 = VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_0(wrr_states[j++]); val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_1(wrr_states[j++]); val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_2(wrr_states[j++]); val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_3(wrr_states[j++]); val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_4(wrr_states[j++]); val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_5(wrr_states[j++]); val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_6(wrr_states[j++]); val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_7(wrr_states[j++]); writeq(val64, (&hldev->mrpcim_reg->kdfc_w_round_robin_0 + i)); writeq(val64, (&hldev->mrpcim_reg->kdfc_w_round_robin_20 + i)); } /* Set up the priorities assigned to receive queues */ writeq(VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_0(0) | VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_1(1) | VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_2(2) | VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_3(3) | VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_4(4) | VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_5(5) | VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_6(6) | VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_7(7), &hldev->mrpcim_reg->rx_queue_priority_0); writeq(VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_8(8) | VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_9(9) | VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_10(10) | VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_11(11) | VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_12(12) | VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_13(13) | VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_14(14) | VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_15(15), &hldev->mrpcim_reg->rx_queue_priority_1); writeq(VXGE_HW_RX_QUEUE_PRIORITY_2_RX_Q_NUMBER_16(16), &hldev->mrpcim_reg->rx_queue_priority_2); /* Initialize all the slots as unused */ for (i = 0; i < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; i++) wrr_states[i] = -1; /* Prepare the Ring service states */ for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!hldev->config.vp_config[i].min_bandwidth) continue; how_often = VXGE_HW_VPATH_BANDWIDTH_MAX / hldev->config.vp_config[i].min_bandwidth; if (how_often) { for (j = 0; j < VXGE_HW_WRR_RING_SERVICE_STATES;) { if (wrr_states[j] == -1) { wrr_states[j] = i; /* Make sure each ring is * serviced atleast once */ if (i == j) j += VXGE_HW_MAX_VIRTUAL_PATHS; else j += how_often; } else j++; } } } /* Fill the unused slots with 0 */ for (j = 0; j < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; j++) { if (wrr_states[j] == -1) wrr_states[j] = 0; } for (i = 0, j = 0; i < VXGE_HW_WRR_RING_COUNT; i++) { val64 = VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_0( wrr_states[j++]); val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_1( wrr_states[j++]); val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_2( wrr_states[j++]); val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_3( wrr_states[j++]); val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_4( wrr_states[j++]); val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_5( wrr_states[j++]); val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_6( wrr_states[j++]); val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_7( wrr_states[j++]); writeq(val64, ((&hldev->mrpcim_reg->rx_w_round_robin_0) + i)); } exit: return status; } /* * __vxge_hw_device_initialize * Initialize Titan-V hardware. */ enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev) { enum vxge_hw_status status = VXGE_HW_OK; if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev)) { /* Validate the pci-e link width and speed */ status = __vxge_hw_verify_pci_e_info(hldev); if (status != VXGE_HW_OK) goto exit; } vxge_hw_wrr_rebalance(hldev); exit: return status; } /** * vxge_hw_device_hw_info_get - Get the hw information * Returns the vpath mask that has the bits set for each vpath allocated * for the driver, FW version information and the first mac addresse for * each vpath */ enum vxge_hw_status __devinit vxge_hw_device_hw_info_get(void __iomem *bar0, struct vxge_hw_device_hw_info *hw_info) { u32 i; u64 val64; struct vxge_hw_toc_reg __iomem *toc; struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg; struct vxge_hw_common_reg __iomem *common_reg; struct vxge_hw_vpath_reg __iomem *vpath_reg; struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg; enum vxge_hw_status status; memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info)); toc = __vxge_hw_device_toc_get(bar0); if (toc == NULL) { status = VXGE_HW_ERR_CRITICAL; goto exit; } val64 = readq(&toc->toc_common_pointer); common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64); status = __vxge_hw_device_vpath_reset_in_prog_check( (u64 __iomem *)&common_reg->vpath_rst_in_prog); if (status != VXGE_HW_OK) goto exit; hw_info->vpath_mask = readq(&common_reg->vpath_assignments); val64 = readq(&common_reg->host_type_assignments); hw_info->host_type = (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64); for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!((hw_info->vpath_mask) & vxge_mBIT(i))) continue; val64 = readq(&toc->toc_vpmgmt_pointer[i]); vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *) (bar0 + val64); hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg); if (__vxge_hw_device_access_rights_get(hw_info->host_type, hw_info->func_id) & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) { val64 = readq(&toc->toc_mrpcim_pointer); mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *) (bar0 + val64); writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask); wmb(); } val64 = readq(&toc->toc_vpath_pointer[i]); vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64); hw_info->function_mode = __vxge_hw_vpath_pci_func_mode_get(i, vpath_reg); status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info); if (status != VXGE_HW_OK) goto exit; break; } for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!((hw_info->vpath_mask) & vxge_mBIT(i))) continue; val64 = readq(&toc->toc_vpath_pointer[i]); vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64); status = __vxge_hw_vpath_addr_get(i, vpath_reg, hw_info->mac_addrs[i], hw_info->mac_addr_masks[i]); if (status != VXGE_HW_OK) goto exit; } exit: return status; } /* * vxge_hw_device_initialize - Initialize Titan device. * Initialize Titan device. Note that all the arguments of this public API * are 'IN', including @hldev. Driver cooperates with * OS to find new Titan device, locate its PCI and memory spaces. * * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW * to enable the latter to perform Titan hardware initialization. */ enum vxge_hw_status __devinit vxge_hw_device_initialize( struct __vxge_hw_device **devh, struct vxge_hw_device_attr *attr, struct vxge_hw_device_config *device_config) { u32 i; u32 nblocks = 0; struct __vxge_hw_device *hldev = NULL; enum vxge_hw_status status = VXGE_HW_OK; status = __vxge_hw_device_config_check(device_config); if (status != VXGE_HW_OK) goto exit; hldev = (struct __vxge_hw_device *) vmalloc(sizeof(struct __vxge_hw_device)); if (hldev == NULL) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } memset(hldev, 0, sizeof(struct __vxge_hw_device)); hldev->magic = VXGE_HW_DEVICE_MAGIC; vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL); /* apply config */ memcpy(&hldev->config, device_config, sizeof(struct vxge_hw_device_config)); hldev->bar0 = attr->bar0; hldev->bar1 = attr->bar1; hldev->bar2 = attr->bar2; hldev->pdev = attr->pdev; hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up; hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down; hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err; __vxge_hw_device_pci_e_init(hldev); status = __vxge_hw_device_reg_addr_get(hldev); if (status != VXGE_HW_OK) goto exit; __vxge_hw_device_id_get(hldev); __vxge_hw_device_host_info_get(hldev); /* Incrementing for stats blocks */ nblocks++; for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!(hldev->vpath_assignments & vxge_mBIT(i))) continue; if (device_config->vp_config[i].ring.enable == VXGE_HW_RING_ENABLE) nblocks += device_config->vp_config[i].ring.ring_blocks; if (device_config->vp_config[i].fifo.enable == VXGE_HW_FIFO_ENABLE) nblocks += device_config->vp_config[i].fifo.fifo_blocks; nblocks++; } if (__vxge_hw_blockpool_create(hldev, &hldev->block_pool, device_config->dma_blockpool_initial + nblocks, device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) { vxge_hw_device_terminate(hldev); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } status = __vxge_hw_device_initialize(hldev); if (status != VXGE_HW_OK) { vxge_hw_device_terminate(hldev); goto exit; } *devh = hldev; exit: return status; } /* * vxge_hw_device_terminate - Terminate Titan device. * Terminate HW device. */ void vxge_hw_device_terminate(struct __vxge_hw_device *hldev) { vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC); hldev->magic = VXGE_HW_DEVICE_DEAD; __vxge_hw_blockpool_destroy(&hldev->block_pool); vfree(hldev); } /* * vxge_hw_device_stats_get - Get the device hw statistics. * Returns the vpath h/w stats for the device. */ enum vxge_hw_status vxge_hw_device_stats_get(struct __vxge_hw_device *hldev, struct vxge_hw_device_stats_hw_info *hw_stats) { u32 i; enum vxge_hw_status status = VXGE_HW_OK; for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!(hldev->vpaths_deployed & vxge_mBIT(i)) || (hldev->virtual_paths[i].vp_open == VXGE_HW_VP_NOT_OPEN)) continue; memcpy(hldev->virtual_paths[i].hw_stats_sav, hldev->virtual_paths[i].hw_stats, sizeof(struct vxge_hw_vpath_stats_hw_info)); status = __vxge_hw_vpath_stats_get( &hldev->virtual_paths[i], hldev->virtual_paths[i].hw_stats); } memcpy(hw_stats, &hldev->stats.hw_dev_info_stats, sizeof(struct vxge_hw_device_stats_hw_info)); return status; } /* * vxge_hw_driver_stats_get - Get the device sw statistics. * Returns the vpath s/w stats for the device. */ enum vxge_hw_status vxge_hw_driver_stats_get( struct __vxge_hw_device *hldev, struct vxge_hw_device_stats_sw_info *sw_stats) { enum vxge_hw_status status = VXGE_HW_OK; memcpy(sw_stats, &hldev->stats.sw_dev_info_stats, sizeof(struct vxge_hw_device_stats_sw_info)); return status; } /* * vxge_hw_mrpcim_stats_access - Access the statistics from the given location * and offset and perform an operation * Get the statistics from the given location and offset. */ enum vxge_hw_status vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev, u32 operation, u32 location, u32 offset, u64 *stat) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; status = __vxge_hw_device_is_privilaged(hldev); if (status != VXGE_HW_OK) goto exit; val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) | VXGE_HW_XMAC_STATS_SYS_CMD_STROBE | VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) | VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset); status = __vxge_hw_pio_mem_write64(val64, &hldev->mrpcim_reg->xmac_stats_sys_cmd, VXGE_HW_XMAC_STATS_SYS_CMD_STROBE, hldev->config.device_poll_millis); if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ)) *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data); else *stat = 0; exit: return status; } /* * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port * Get the Statistics on aggregate port */ enum vxge_hw_status vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port, struct vxge_hw_xmac_aggr_stats *aggr_stats) { u64 *val64; int i; u32 offset = VXGE_HW_STATS_AGGRn_OFFSET; enum vxge_hw_status status = VXGE_HW_OK; val64 = (u64 *)aggr_stats; status = __vxge_hw_device_is_privilaged(hldev); if (status != VXGE_HW_OK) goto exit; for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) { status = vxge_hw_mrpcim_stats_access(hldev, VXGE_HW_STATS_OP_READ, VXGE_HW_STATS_LOC_AGGR, ((offset + (104 * port)) >> 3), val64); if (status != VXGE_HW_OK) goto exit; offset += 8; val64++; } exit: return status; } /* * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port * Get the Statistics on port */ enum vxge_hw_status vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port, struct vxge_hw_xmac_port_stats *port_stats) { u64 *val64; enum vxge_hw_status status = VXGE_HW_OK; int i; u32 offset = 0x0; val64 = (u64 *) port_stats; status = __vxge_hw_device_is_privilaged(hldev); if (status != VXGE_HW_OK) goto exit; for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) { status = vxge_hw_mrpcim_stats_access(hldev, VXGE_HW_STATS_OP_READ, VXGE_HW_STATS_LOC_AGGR, ((offset + (608 * port)) >> 3), val64); if (status != VXGE_HW_OK) goto exit; offset += 8; val64++; } exit: return status; } /* * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics * Get the XMAC Statistics */ enum vxge_hw_status vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev, struct vxge_hw_xmac_stats *xmac_stats) { enum vxge_hw_status status = VXGE_HW_OK; u32 i; status = vxge_hw_device_xmac_aggr_stats_get(hldev, 0, &xmac_stats->aggr_stats[0]); if (status != VXGE_HW_OK) goto exit; status = vxge_hw_device_xmac_aggr_stats_get(hldev, 1, &xmac_stats->aggr_stats[1]); if (status != VXGE_HW_OK) goto exit; for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) { status = vxge_hw_device_xmac_port_stats_get(hldev, i, &xmac_stats->port_stats[i]); if (status != VXGE_HW_OK) goto exit; } for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (!(hldev->vpaths_deployed & vxge_mBIT(i))) continue; status = __vxge_hw_vpath_xmac_tx_stats_get( &hldev->virtual_paths[i], &xmac_stats->vpath_tx_stats[i]); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_xmac_rx_stats_get( &hldev->virtual_paths[i], &xmac_stats->vpath_rx_stats[i]); if (status != VXGE_HW_OK) goto exit; } exit: return status; } /* * vxge_hw_device_debug_set - Set the debug module, level and timestamp * This routine is used to dynamically change the debug output */ void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev, enum vxge_debug_level level, u32 mask) { if (hldev == NULL) return; #if defined(VXGE_DEBUG_TRACE_MASK) || \ defined(VXGE_DEBUG_ERR_MASK) hldev->debug_module_mask = mask; hldev->debug_level = level; #endif #if defined(VXGE_DEBUG_ERR_MASK) hldev->level_err = level & VXGE_ERR; #endif #if defined(VXGE_DEBUG_TRACE_MASK) hldev->level_trace = level & VXGE_TRACE; #endif } /* * vxge_hw_device_error_level_get - Get the error level * This routine returns the current error level set */ u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev) { #if defined(VXGE_DEBUG_ERR_MASK) if (hldev == NULL) return VXGE_ERR; else return hldev->level_err; #else return 0; #endif } /* * vxge_hw_device_trace_level_get - Get the trace level * This routine returns the current trace level set */ u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev) { #if defined(VXGE_DEBUG_TRACE_MASK) if (hldev == NULL) return VXGE_TRACE; else return hldev->level_trace; #else return 0; #endif } /* * vxge_hw_device_debug_mask_get - Get the debug mask * This routine returns the current debug mask set */ u32 vxge_hw_device_debug_mask_get(struct __vxge_hw_device *hldev) { #if defined(VXGE_DEBUG_TRACE_MASK) || defined(VXGE_DEBUG_ERR_MASK) if (hldev == NULL) return 0; return hldev->debug_module_mask; #else return 0; #endif } /* * vxge_hw_getpause_data -Pause frame frame generation and reception. * Returns the Pause frame generation and reception capability of the NIC. */ enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev, u32 port, u32 *tx, u32 *rx) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) { status = VXGE_HW_ERR_INVALID_DEVICE; goto exit; } if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) { status = VXGE_HW_ERR_INVALID_PORT; goto exit; } if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) { status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; goto exit; } val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]); if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN) *tx = 1; if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN) *rx = 1; exit: return status; } /* * vxge_hw_device_setpause_data - set/reset pause frame generation. * It can be used to set or reset Pause frame generation or reception * support of the NIC. */ enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev, u32 port, u32 tx, u32 rx) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) { status = VXGE_HW_ERR_INVALID_DEVICE; goto exit; } if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) { status = VXGE_HW_ERR_INVALID_PORT; goto exit; } status = __vxge_hw_device_is_privilaged(hldev); if (status != VXGE_HW_OK) goto exit; val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]); if (tx) val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN; else val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN; if (rx) val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN; else val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN; writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]); exit: return status; } u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev) { int link_width, exp_cap; u16 lnk; exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP); pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk); link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4; return link_width; } /* * __vxge_hw_ring_block_memblock_idx - Return the memblock index * This function returns the index of memory block */ static inline u32 __vxge_hw_ring_block_memblock_idx(u8 *block) { return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)); } /* * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index * This function sets index to a memory block */ static inline void __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx) { *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx; } /* * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer * in RxD block * Sets the next block pointer in RxD block */ static inline void __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next) { *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next; } /* * __vxge_hw_ring_first_block_address_get - Returns the dma address of the * first block * Returns the dma address of the first RxD block */ u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring) { struct vxge_hw_mempool_dma *dma_object; dma_object = ring->mempool->memblocks_dma_arr; vxge_assert(dma_object != NULL); return dma_object->addr; } /* * __vxge_hw_ring_item_dma_addr - Return the dma address of an item * This function returns the dma address of a given item */ static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh, void *item) { u32 memblock_idx; void *memblock; struct vxge_hw_mempool_dma *memblock_dma_object; ptrdiff_t dma_item_offset; /* get owner memblock index */ memblock_idx = __vxge_hw_ring_block_memblock_idx(item); /* get owner memblock by memblock index */ memblock = mempoolh->memblocks_arr[memblock_idx]; /* get memblock DMA object by memblock index */ memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx; /* calculate offset in the memblock of this item */ dma_item_offset = (u8 *)item - (u8 *)memblock; return memblock_dma_object->addr + dma_item_offset; } /* * __vxge_hw_ring_rxdblock_link - Link the RxD blocks * This function returns the dma address of a given item */ static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh, struct __vxge_hw_ring *ring, u32 from, u32 to) { u8 *to_item , *from_item; dma_addr_t to_dma; /* get "from" RxD block */ from_item = mempoolh->items_arr[from]; vxge_assert(from_item); /* get "to" RxD block */ to_item = mempoolh->items_arr[to]; vxge_assert(to_item); /* return address of the beginning of previous RxD block */ to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item); /* set next pointer for this RxD block to point on * previous item's DMA start address */ __vxge_hw_ring_block_next_pointer_set(from_item, to_dma); } /* * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD * block callback * This function is callback passed to __vxge_hw_mempool_create to create memory * pool for RxD block */ static void __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh, u32 memblock_index, struct vxge_hw_mempool_dma *dma_object, u32 index, u32 is_last) { u32 i; void *item = mempoolh->items_arr[index]; struct __vxge_hw_ring *ring = (struct __vxge_hw_ring *)mempoolh->userdata; /* format rxds array */ for (i = 0; i < ring->rxds_per_block; i++) { void *rxdblock_priv; void *uld_priv; struct vxge_hw_ring_rxd_1 *rxdp; u32 reserve_index = ring->channel.reserve_ptr - (index * ring->rxds_per_block + i + 1); u32 memblock_item_idx; ring->channel.reserve_arr[reserve_index] = ((u8 *)item) + i * ring->rxd_size; /* Note: memblock_item_idx is index of the item within * the memblock. For instance, in case of three RxD-blocks * per memblock this value can be 0, 1 or 2. */ rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh, memblock_index, item, &memblock_item_idx); rxdp = (struct vxge_hw_ring_rxd_1 *) ring->channel.reserve_arr[reserve_index]; uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i); /* pre-format Host_Control */ rxdp->host_control = (u64)(size_t)uld_priv; } __vxge_hw_ring_block_memblock_idx_set(item, memblock_index); if (is_last) { /* link last one with first one */ __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0); } if (index > 0) { /* link this RxD block with previous one */ __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index); } return; } /* * __vxge_hw_ring_initial_replenish - Initial replenish of RxDs * This function replenishes the RxDs from reserve array to work array */ enum vxge_hw_status vxge_hw_ring_replenish(struct __vxge_hw_ring *ring, u16 min_flag) { void *rxd; int i = 0; struct __vxge_hw_channel *channel; enum vxge_hw_status status = VXGE_HW_OK; channel = &ring->channel; while (vxge_hw_channel_dtr_count(channel) > 0) { status = vxge_hw_ring_rxd_reserve(ring, &rxd); vxge_assert(status == VXGE_HW_OK); if (ring->rxd_init) { status = ring->rxd_init(rxd, channel->userdata); if (status != VXGE_HW_OK) { vxge_hw_ring_rxd_free(ring, rxd); goto exit; } } vxge_hw_ring_rxd_post(ring, rxd); if (min_flag) { i++; if (i == VXGE_HW_RING_MIN_BUFF_ALLOCATION) break; } } status = VXGE_HW_OK; exit: return status; } /* * __vxge_hw_ring_create - Create a Ring * This function creates Ring and initializes it. * */ enum vxge_hw_status __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp, struct vxge_hw_ring_attr *attr) { enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_ring *ring; u32 ring_length; struct vxge_hw_ring_config *config; struct __vxge_hw_device *hldev; u32 vp_id; struct vxge_hw_mempool_cbs ring_mp_callback; if ((vp == NULL) || (attr == NULL)) { status = VXGE_HW_FAIL; goto exit; } hldev = vp->vpath->hldev; vp_id = vp->vpath->vp_id; config = &hldev->config.vp_config[vp_id].ring; ring_length = config->ring_blocks * vxge_hw_ring_rxds_per_block_get(config->buffer_mode); ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp, VXGE_HW_CHANNEL_TYPE_RING, ring_length, attr->per_rxd_space, attr->userdata); if (ring == NULL) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } vp->vpath->ringh = ring; ring->vp_id = vp_id; ring->vp_reg = vp->vpath->vp_reg; ring->common_reg = hldev->common_reg; ring->stats = &vp->vpath->sw_stats->ring_stats; ring->config = config; ring->callback = attr->callback; ring->rxd_init = attr->rxd_init; ring->rxd_term = attr->rxd_term; ring->buffer_mode = config->buffer_mode; ring->rxds_limit = config->rxds_limit; ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode); ring->rxd_priv_size = sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space; ring->per_rxd_space = attr->per_rxd_space; ring->rxd_priv_size = ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) / VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE; /* how many RxDs can fit into one block. Depends on configured * buffer_mode. */ ring->rxds_per_block = vxge_hw_ring_rxds_per_block_get(config->buffer_mode); /* calculate actual RxD block private size */ ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block; ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc; ring->mempool = __vxge_hw_mempool_create(hldev, VXGE_HW_BLOCK_SIZE, VXGE_HW_BLOCK_SIZE, ring->rxdblock_priv_size, ring->config->ring_blocks, ring->config->ring_blocks, &ring_mp_callback, ring); if (ring->mempool == NULL) { __vxge_hw_ring_delete(vp); return VXGE_HW_ERR_OUT_OF_MEMORY; } status = __vxge_hw_channel_initialize(&ring->channel); if (status != VXGE_HW_OK) { __vxge_hw_ring_delete(vp); goto exit; } /* Note: * Specifying rxd_init callback means two things: * 1) rxds need to be initialized by driver at channel-open time; * 2) rxds need to be posted at channel-open time * (that's what the initial_replenish() below does) * Currently we don't have a case when the 1) is done without the 2). */ if (ring->rxd_init) { status = vxge_hw_ring_replenish(ring, 1); if (status != VXGE_HW_OK) { __vxge_hw_ring_delete(vp); goto exit; } } /* initial replenish will increment the counter in its post() routine, * we have to reset it */ ring->stats->common_stats.usage_cnt = 0; exit: return status; } /* * __vxge_hw_ring_abort - Returns the RxD * This function terminates the RxDs of ring */ enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring) { void *rxdh; struct __vxge_hw_channel *channel; channel = &ring->channel; for (;;) { vxge_hw_channel_dtr_try_complete(channel, &rxdh); if (rxdh == NULL) break; vxge_hw_channel_dtr_complete(channel); if (ring->rxd_term) ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED, channel->userdata); vxge_hw_channel_dtr_free(channel, rxdh); } return VXGE_HW_OK; } /* * __vxge_hw_ring_reset - Resets the ring * This function resets the ring during vpath reset operation */ enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring) { enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_channel *channel; channel = &ring->channel; __vxge_hw_ring_abort(ring); status = __vxge_hw_channel_reset(channel); if (status != VXGE_HW_OK) goto exit; if (ring->rxd_init) { status = vxge_hw_ring_replenish(ring, 1); if (status != VXGE_HW_OK) goto exit; } exit: return status; } /* * __vxge_hw_ring_delete - Removes the ring * This function freeup the memory pool and removes the ring */ enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp) { struct __vxge_hw_ring *ring = vp->vpath->ringh; __vxge_hw_ring_abort(ring); if (ring->mempool) __vxge_hw_mempool_destroy(ring->mempool); vp->vpath->ringh = NULL; __vxge_hw_channel_free(&ring->channel); return VXGE_HW_OK; } /* * __vxge_hw_mempool_grow * Will resize mempool up to %num_allocate value. */ enum vxge_hw_status __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate, u32 *num_allocated) { u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0; u32 n_items = mempool->items_per_memblock; u32 start_block_idx = mempool->memblocks_allocated; u32 end_block_idx = mempool->memblocks_allocated + num_allocate; enum vxge_hw_status status = VXGE_HW_OK; *num_allocated = 0; if (end_block_idx > mempool->memblocks_max) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } for (i = start_block_idx; i < end_block_idx; i++) { u32 j; u32 is_last = ((end_block_idx - 1) == i); struct vxge_hw_mempool_dma *dma_object = mempool->memblocks_dma_arr + i; void *the_memblock; /* allocate memblock's private part. Each DMA memblock * has a space allocated for item's private usage upon * mempool's user request. Each time mempool grows, it will * allocate new memblock and its private part at once. * This helps to minimize memory usage a lot. */ mempool->memblocks_priv_arr[i] = vmalloc(mempool->items_priv_size * n_items); if (mempool->memblocks_priv_arr[i] == NULL) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } memset(mempool->memblocks_priv_arr[i], 0, mempool->items_priv_size * n_items); /* allocate DMA-capable memblock */ mempool->memblocks_arr[i] = __vxge_hw_blockpool_malloc(mempool->devh, mempool->memblock_size, dma_object); if (mempool->memblocks_arr[i] == NULL) { vfree(mempool->memblocks_priv_arr[i]); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } (*num_allocated)++; mempool->memblocks_allocated++; memset(mempool->memblocks_arr[i], 0, mempool->memblock_size); the_memblock = mempool->memblocks_arr[i]; /* fill the items hash array */ for (j = 0; j < n_items; j++) { u32 index = i * n_items + j; if (first_time && index >= mempool->items_initial) break; mempool->items_arr[index] = ((char *)the_memblock + j*mempool->item_size); /* let caller to do more job on each item */ if (mempool->item_func_alloc != NULL) mempool->item_func_alloc(mempool, i, dma_object, index, is_last); mempool->items_current = index + 1; } if (first_time && mempool->items_current == mempool->items_initial) break; } exit: return status; } /* * vxge_hw_mempool_create * This function will create memory pool object. Pool may grow but will * never shrink. Pool consists of number of dynamically allocated blocks * with size enough to hold %items_initial number of items. Memory is * DMA-able but client must map/unmap before interoperating with the device. */ struct vxge_hw_mempool* __vxge_hw_mempool_create( struct __vxge_hw_device *devh, u32 memblock_size, u32 item_size, u32 items_priv_size, u32 items_initial, u32 items_max, struct vxge_hw_mempool_cbs *mp_callback, void *userdata) { enum vxge_hw_status status = VXGE_HW_OK; u32 memblocks_to_allocate; struct vxge_hw_mempool *mempool = NULL; u32 allocated; if (memblock_size < item_size) { status = VXGE_HW_FAIL; goto exit; } mempool = (struct vxge_hw_mempool *) vmalloc(sizeof(struct vxge_hw_mempool)); if (mempool == NULL) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } memset(mempool, 0, sizeof(struct vxge_hw_mempool)); mempool->devh = devh; mempool->memblock_size = memblock_size; mempool->items_max = items_max; mempool->items_initial = items_initial; mempool->item_size = item_size; mempool->items_priv_size = items_priv_size; mempool->item_func_alloc = mp_callback->item_func_alloc; mempool->userdata = userdata; mempool->memblocks_allocated = 0; mempool->items_per_memblock = memblock_size / item_size; mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) / mempool->items_per_memblock; /* allocate array of memblocks */ mempool->memblocks_arr = (void **) vmalloc(sizeof(void *) * mempool->memblocks_max); if (mempool->memblocks_arr == NULL) { __vxge_hw_mempool_destroy(mempool); status = VXGE_HW_ERR_OUT_OF_MEMORY; mempool = NULL; goto exit; } memset(mempool->memblocks_arr, 0, sizeof(void *) * mempool->memblocks_max); /* allocate array of private parts of items per memblocks */ mempool->memblocks_priv_arr = (void **) vmalloc(sizeof(void *) * mempool->memblocks_max); if (mempool->memblocks_priv_arr == NULL) { __vxge_hw_mempool_destroy(mempool); status = VXGE_HW_ERR_OUT_OF_MEMORY; mempool = NULL; goto exit; } memset(mempool->memblocks_priv_arr, 0, sizeof(void *) * mempool->memblocks_max); /* allocate array of memblocks DMA objects */ mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *) vmalloc(sizeof(struct vxge_hw_mempool_dma) * mempool->memblocks_max); if (mempool->memblocks_dma_arr == NULL) { __vxge_hw_mempool_destroy(mempool); status = VXGE_HW_ERR_OUT_OF_MEMORY; mempool = NULL; goto exit; } memset(mempool->memblocks_dma_arr, 0, sizeof(struct vxge_hw_mempool_dma) * mempool->memblocks_max); /* allocate hash array of items */ mempool->items_arr = (void **) vmalloc(sizeof(void *) * mempool->items_max); if (mempool->items_arr == NULL) { __vxge_hw_mempool_destroy(mempool); status = VXGE_HW_ERR_OUT_OF_MEMORY; mempool = NULL; goto exit; } memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max); /* calculate initial number of memblocks */ memblocks_to_allocate = (mempool->items_initial + mempool->items_per_memblock - 1) / mempool->items_per_memblock; /* pre-allocate the mempool */ status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate, &allocated); if (status != VXGE_HW_OK) { __vxge_hw_mempool_destroy(mempool); status = VXGE_HW_ERR_OUT_OF_MEMORY; mempool = NULL; goto exit; } exit: return mempool; } /* * vxge_hw_mempool_destroy */ void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool) { u32 i, j; struct __vxge_hw_device *devh = mempool->devh; for (i = 0; i < mempool->memblocks_allocated; i++) { struct vxge_hw_mempool_dma *dma_object; vxge_assert(mempool->memblocks_arr[i]); vxge_assert(mempool->memblocks_dma_arr + i); dma_object = mempool->memblocks_dma_arr + i; for (j = 0; j < mempool->items_per_memblock; j++) { u32 index = i * mempool->items_per_memblock + j; /* to skip last partially filled(if any) memblock */ if (index >= mempool->items_current) break; } vfree(mempool->memblocks_priv_arr[i]); __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i], mempool->memblock_size, dma_object); } vfree(mempool->items_arr); vfree(mempool->memblocks_dma_arr); vfree(mempool->memblocks_priv_arr); vfree(mempool->memblocks_arr); vfree(mempool); } /* * __vxge_hw_device_fifo_config_check - Check fifo configuration. * Check the fifo configuration */ enum vxge_hw_status __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config) { if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) || (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS)) return VXGE_HW_BADCFG_FIFO_BLOCKS; return VXGE_HW_OK; } /* * __vxge_hw_device_vpath_config_check - Check vpath configuration. * Check the vpath configuration */ enum vxge_hw_status __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config) { enum vxge_hw_status status; if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) || (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX)) return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH; status = __vxge_hw_device_fifo_config_check(&vp_config->fifo); if (status != VXGE_HW_OK) return status; if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) && ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) || (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU))) return VXGE_HW_BADCFG_VPATH_MTU; if ((vp_config->rpa_strip_vlan_tag != VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) && (vp_config->rpa_strip_vlan_tag != VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) && (vp_config->rpa_strip_vlan_tag != VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE)) return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG; return VXGE_HW_OK; } /* * __vxge_hw_device_config_check - Check device configuration. * Check the device configuration */ enum vxge_hw_status __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config) { u32 i; enum vxge_hw_status status; if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) && (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) && (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) && (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF)) return VXGE_HW_BADCFG_INTR_MODE; if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) && (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE)) return VXGE_HW_BADCFG_RTS_MAC_EN; for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { status = __vxge_hw_device_vpath_config_check( &new_config->vp_config[i]); if (status != VXGE_HW_OK) return status; } return VXGE_HW_OK; } /* * vxge_hw_device_config_default_get - Initialize device config with defaults. * Initialize Titan device config with default values. */ enum vxge_hw_status __devinit vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config) { u32 i; device_config->dma_blockpool_initial = VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE; device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE; device_config->intr_mode = VXGE_HW_INTR_MODE_DEF; device_config->rth_en = VXGE_HW_RTH_DEFAULT; device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT; device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS; device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT; for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { device_config->vp_config[i].vp_id = i; device_config->vp_config[i].min_bandwidth = VXGE_HW_VPATH_BANDWIDTH_DEFAULT; device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT; device_config->vp_config[i].ring.ring_blocks = VXGE_HW_DEF_RING_BLOCKS; device_config->vp_config[i].ring.buffer_mode = VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT; device_config->vp_config[i].ring.scatter_mode = VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT; device_config->vp_config[i].ring.rxds_limit = VXGE_HW_DEF_RING_RXDS_LIMIT; device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE; device_config->vp_config[i].fifo.fifo_blocks = VXGE_HW_MIN_FIFO_BLOCKS; device_config->vp_config[i].fifo.max_frags = VXGE_HW_MAX_FIFO_FRAGS; device_config->vp_config[i].fifo.memblock_size = VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE; device_config->vp_config[i].fifo.alignment_size = VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE; device_config->vp_config[i].fifo.intr = VXGE_HW_FIFO_QUEUE_INTR_DEFAULT; device_config->vp_config[i].fifo.no_snoop_bits = VXGE_HW_FIFO_NO_SNOOP_DEFAULT; device_config->vp_config[i].tti.intr_enable = VXGE_HW_TIM_INTR_DEFAULT; device_config->vp_config[i].tti.btimer_val = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.timer_ac_en = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.timer_ci_en = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.timer_ri_en = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.rtimer_val = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.util_sel = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.ltimer_val = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.urange_a = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.uec_a = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.urange_b = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.uec_b = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.urange_c = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.uec_c = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].tti.uec_d = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.intr_enable = VXGE_HW_TIM_INTR_DEFAULT; device_config->vp_config[i].rti.btimer_val = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.timer_ac_en = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.timer_ci_en = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.timer_ri_en = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.rtimer_val = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.util_sel = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.ltimer_val = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.urange_a = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.uec_a = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.urange_b = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.uec_b = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.urange_c = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.uec_c = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].rti.uec_d = VXGE_HW_USE_FLASH_DEFAULT; device_config->vp_config[i].mtu = VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU; device_config->vp_config[i].rpa_strip_vlan_tag = VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT; } return VXGE_HW_OK; } /* * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion. * Set the swapper bits appropriately for the lagacy section. */ enum vxge_hw_status __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; val64 = readq(&legacy_reg->toc_swapper_fb); wmb(); switch (val64) { case VXGE_HW_SWAPPER_INITIAL_VALUE: return status; case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED: writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE, &legacy_reg->pifm_rd_swap_en); writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE, &legacy_reg->pifm_rd_flip_en); writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE, &legacy_reg->pifm_wr_swap_en); writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE, &legacy_reg->pifm_wr_flip_en); break; case VXGE_HW_SWAPPER_BYTE_SWAPPED: writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE, &legacy_reg->pifm_rd_swap_en); writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE, &legacy_reg->pifm_wr_swap_en); break; case VXGE_HW_SWAPPER_BIT_FLIPPED: writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE, &legacy_reg->pifm_rd_flip_en); writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE, &legacy_reg->pifm_wr_flip_en); break; } wmb(); val64 = readq(&legacy_reg->toc_swapper_fb); if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE) status = VXGE_HW_ERR_SWAPPER_CTRL; return status; } /* * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath. * Set the swapper bits appropriately for the vpath. */ enum vxge_hw_status __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg) { #ifndef __BIG_ENDIAN u64 val64; val64 = readq(&vpath_reg->vpath_general_cfg1); wmb(); val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN; writeq(val64, &vpath_reg->vpath_general_cfg1); wmb(); #endif return VXGE_HW_OK; } /* * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc. * Set the swapper bits appropriately for the vpath. */ enum vxge_hw_status __vxge_hw_kdfc_swapper_set( struct vxge_hw_legacy_reg __iomem *legacy_reg, struct vxge_hw_vpath_reg __iomem *vpath_reg) { u64 val64; val64 = readq(&legacy_reg->pifm_wr_swap_en); if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) { val64 = readq(&vpath_reg->kdfcctl_cfg0); wmb(); val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 | VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 | VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2; writeq(val64, &vpath_reg->kdfcctl_cfg0); wmb(); } return VXGE_HW_OK; } /* * vxge_hw_mgmt_device_config - Retrieve device configuration. * Get device configuration. Permits to retrieve at run-time configuration * values that were used to initialize and configure the device. */ enum vxge_hw_status vxge_hw_mgmt_device_config(struct __vxge_hw_device *hldev, struct vxge_hw_device_config *dev_config, int size) { if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) return VXGE_HW_ERR_INVALID_DEVICE; if (size != sizeof(struct vxge_hw_device_config)) return VXGE_HW_ERR_VERSION_CONFLICT; memcpy(dev_config, &hldev->config, sizeof(struct vxge_hw_device_config)); return VXGE_HW_OK; } /* * vxge_hw_mgmt_reg_read - Read Titan register. */ enum vxge_hw_status vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev, enum vxge_hw_mgmt_reg_type type, u32 index, u32 offset, u64 *value) { enum vxge_hw_status status = VXGE_HW_OK; if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) { status = VXGE_HW_ERR_INVALID_DEVICE; goto exit; } switch (type) { case vxge_hw_mgmt_reg_type_legacy: if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } *value = readq((void __iomem *)hldev->legacy_reg + offset); break; case vxge_hw_mgmt_reg_type_toc: if (offset > sizeof(struct vxge_hw_toc_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } *value = readq((void __iomem *)hldev->toc_reg + offset); break; case vxge_hw_mgmt_reg_type_common: if (offset > sizeof(struct vxge_hw_common_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } *value = readq((void __iomem *)hldev->common_reg + offset); break; case vxge_hw_mgmt_reg_type_mrpcim: if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) { status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; break; } if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } *value = readq((void __iomem *)hldev->mrpcim_reg + offset); break; case vxge_hw_mgmt_reg_type_srpcim: if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) { status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; break; } if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) { status = VXGE_HW_ERR_INVALID_INDEX; break; } if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } *value = readq((void __iomem *)hldev->srpcim_reg[index] + offset); break; case vxge_hw_mgmt_reg_type_vpmgmt: if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) || (!(hldev->vpath_assignments & vxge_mBIT(index)))) { status = VXGE_HW_ERR_INVALID_INDEX; break; } if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } *value = readq((void __iomem *)hldev->vpmgmt_reg[index] + offset); break; case vxge_hw_mgmt_reg_type_vpath: if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) || (!(hldev->vpath_assignments & vxge_mBIT(index)))) { status = VXGE_HW_ERR_INVALID_INDEX; break; } if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) { status = VXGE_HW_ERR_INVALID_INDEX; break; } if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } *value = readq((void __iomem *)hldev->vpath_reg[index] + offset); break; default: status = VXGE_HW_ERR_INVALID_TYPE; break; } exit: return status; } /* * vxge_hw_mgmt_reg_Write - Write Titan register. */ enum vxge_hw_status vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev, enum vxge_hw_mgmt_reg_type type, u32 index, u32 offset, u64 value) { enum vxge_hw_status status = VXGE_HW_OK; if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) { status = VXGE_HW_ERR_INVALID_DEVICE; goto exit; } switch (type) { case vxge_hw_mgmt_reg_type_legacy: if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } writeq(value, (void __iomem *)hldev->legacy_reg + offset); break; case vxge_hw_mgmt_reg_type_toc: if (offset > sizeof(struct vxge_hw_toc_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } writeq(value, (void __iomem *)hldev->toc_reg + offset); break; case vxge_hw_mgmt_reg_type_common: if (offset > sizeof(struct vxge_hw_common_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } writeq(value, (void __iomem *)hldev->common_reg + offset); break; case vxge_hw_mgmt_reg_type_mrpcim: if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) { status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; break; } if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } writeq(value, (void __iomem *)hldev->mrpcim_reg + offset); break; case vxge_hw_mgmt_reg_type_srpcim: if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) { status = VXGE_HW_ERR_PRIVILAGED_OPEARATION; break; } if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) { status = VXGE_HW_ERR_INVALID_INDEX; break; } if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } writeq(value, (void __iomem *)hldev->srpcim_reg[index] + offset); break; case vxge_hw_mgmt_reg_type_vpmgmt: if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) || (!(hldev->vpath_assignments & vxge_mBIT(index)))) { status = VXGE_HW_ERR_INVALID_INDEX; break; } if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] + offset); break; case vxge_hw_mgmt_reg_type_vpath: if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) || (!(hldev->vpath_assignments & vxge_mBIT(index)))) { status = VXGE_HW_ERR_INVALID_INDEX; break; } if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) { status = VXGE_HW_ERR_INVALID_OFFSET; break; } writeq(value, (void __iomem *)hldev->vpath_reg[index] + offset); break; default: status = VXGE_HW_ERR_INVALID_TYPE; break; } exit: return status; } /* * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD * list callback * This function is callback passed to __vxge_hw_mempool_create to create memory * pool for TxD list */ static void __vxge_hw_fifo_mempool_item_alloc( struct vxge_hw_mempool *mempoolh, u32 memblock_index, struct vxge_hw_mempool_dma *dma_object, u32 index, u32 is_last) { u32 memblock_item_idx; struct __vxge_hw_fifo_txdl_priv *txdl_priv; struct vxge_hw_fifo_txd *txdp = (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index]; struct __vxge_hw_fifo *fifo = (struct __vxge_hw_fifo *)mempoolh->userdata; void *memblock = mempoolh->memblocks_arr[memblock_index]; vxge_assert(txdp); txdp->host_control = (u64) (size_t) __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp, &memblock_item_idx); txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp); vxge_assert(txdl_priv); fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp; /* pre-format HW's TxDL's private */ txdl_priv->dma_offset = (char *)txdp - (char *)memblock; txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset; txdl_priv->dma_handle = dma_object->handle; txdl_priv->memblock = memblock; txdl_priv->first_txdp = txdp; txdl_priv->next_txdl_priv = NULL; txdl_priv->alloc_frags = 0; return; } /* * __vxge_hw_fifo_create - Create a FIFO * This function creates FIFO and initializes it. */ enum vxge_hw_status __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp, struct vxge_hw_fifo_attr *attr) { enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_fifo *fifo; struct vxge_hw_fifo_config *config; u32 txdl_size, txdl_per_memblock; struct vxge_hw_mempool_cbs fifo_mp_callback; struct __vxge_hw_virtualpath *vpath; if ((vp == NULL) || (attr == NULL)) { status = VXGE_HW_ERR_INVALID_HANDLE; goto exit; } vpath = vp->vpath; config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo; txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd); txdl_per_memblock = config->memblock_size / txdl_size; fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp, VXGE_HW_CHANNEL_TYPE_FIFO, config->fifo_blocks * txdl_per_memblock, attr->per_txdl_space, attr->userdata); if (fifo == NULL) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } vpath->fifoh = fifo; fifo->nofl_db = vpath->nofl_db; fifo->vp_id = vpath->vp_id; fifo->vp_reg = vpath->vp_reg; fifo->stats = &vpath->sw_stats->fifo_stats; fifo->config = config; /* apply "interrupts per txdl" attribute */ fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ; if (fifo->config->intr) fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST; fifo->no_snoop_bits = config->no_snoop_bits; /* * FIFO memory management strategy: * * TxDL split into three independent parts: * - set of TxD's * - TxD HW private part * - driver private part * * Adaptative memory allocation used. i.e. Memory allocated on * demand with the size which will fit into one memory block. * One memory block may contain more than one TxDL. * * During "reserve" operations more memory can be allocated on demand * for example due to FIFO full condition. * * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close * routine which will essentially stop the channel and free resources. */ /* TxDL common private size == TxDL private + driver private */ fifo->priv_size = sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space; fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) / VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE; fifo->per_txdl_space = attr->per_txdl_space; /* recompute txdl size to be cacheline aligned */ fifo->txdl_size = txdl_size; fifo->txdl_per_memblock = txdl_per_memblock; fifo->txdl_term = attr->txdl_term; fifo->callback = attr->callback; if (fifo->txdl_per_memblock == 0) { __vxge_hw_fifo_delete(vp); status = VXGE_HW_ERR_INVALID_BLOCK_SIZE; goto exit; } fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc; fifo->mempool = __vxge_hw_mempool_create(vpath->hldev, fifo->config->memblock_size, fifo->txdl_size, fifo->priv_size, (fifo->config->fifo_blocks * fifo->txdl_per_memblock), (fifo->config->fifo_blocks * fifo->txdl_per_memblock), &fifo_mp_callback, fifo); if (fifo->mempool == NULL) { __vxge_hw_fifo_delete(vp); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } status = __vxge_hw_channel_initialize(&fifo->channel); if (status != VXGE_HW_OK) { __vxge_hw_fifo_delete(vp); goto exit; } vxge_assert(fifo->channel.reserve_ptr); exit: return status; } /* * __vxge_hw_fifo_abort - Returns the TxD * This function terminates the TxDs of fifo */ enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo) { void *txdlh; for (;;) { vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh); if (txdlh == NULL) break; vxge_hw_channel_dtr_complete(&fifo->channel); if (fifo->txdl_term) { fifo->txdl_term(txdlh, VXGE_HW_TXDL_STATE_POSTED, fifo->channel.userdata); } vxge_hw_channel_dtr_free(&fifo->channel, txdlh); } return VXGE_HW_OK; } /* * __vxge_hw_fifo_reset - Resets the fifo * This function resets the fifo during vpath reset operation */ enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo) { enum vxge_hw_status status = VXGE_HW_OK; __vxge_hw_fifo_abort(fifo); status = __vxge_hw_channel_reset(&fifo->channel); return status; } /* * __vxge_hw_fifo_delete - Removes the FIFO * This function freeup the memory pool and removes the FIFO */ enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp) { struct __vxge_hw_fifo *fifo = vp->vpath->fifoh; __vxge_hw_fifo_abort(fifo); if (fifo->mempool) __vxge_hw_mempool_destroy(fifo->mempool); vp->vpath->fifoh = NULL; __vxge_hw_channel_free(&fifo->channel); return VXGE_HW_OK; } /* * __vxge_hw_vpath_pci_read - Read the content of given address * in pci config space. * Read from the vpath pci config space. */ enum vxge_hw_status __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath, u32 phy_func_0, u32 offset, u32 *val) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg; val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset); if (phy_func_0) val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0; writeq(val64, &vp_reg->pci_config_access_cfg1); wmb(); writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ, &vp_reg->pci_config_access_cfg2); wmb(); status = __vxge_hw_device_register_poll( &vp_reg->pci_config_access_cfg2, VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vp_reg->pci_config_access_status); if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) { status = VXGE_HW_FAIL; *val = 0; } else *val = (u32)vxge_bVALn(val64, 32, 32); exit: return status; } /* * __vxge_hw_vpath_func_id_get - Get the function id of the vpath. * Returns the function number of the vpath. */ u32 __vxge_hw_vpath_func_id_get(u32 vp_id, struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg) { u64 val64; val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1); return (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64); } /* * __vxge_hw_read_rts_ds - Program RTS steering critieria */ static inline void __vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg, u64 dta_struct_sel) { writeq(0, &vpath_reg->rts_access_steer_ctrl); wmb(); writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0); writeq(0, &vpath_reg->rts_access_steer_data1); wmb(); return; } /* * __vxge_hw_vpath_card_info_get - Get the serial numbers, * part number and product description. */ enum vxge_hw_status __vxge_hw_vpath_card_info_get( u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg, struct vxge_hw_device_hw_info *hw_info) { u32 i, j; u64 val64; u64 data1 = 0ULL; u64 data2 = 0ULL; enum vxge_hw_status status = VXGE_HW_OK; u8 *serial_number = hw_info->serial_number; u8 *part_number = hw_info->part_number; u8 *product_desc = hw_info->product_desc; __vxge_hw_read_rts_ds(vpath_reg, VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) return status; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); ((u64 *)serial_number)[0] = be64_to_cpu(data1); data2 = readq(&vpath_reg->rts_access_steer_data1); ((u64 *)serial_number)[1] = be64_to_cpu(data2); status = VXGE_HW_OK; } else *serial_number = 0; __vxge_hw_read_rts_ds(vpath_reg, VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) return status; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); ((u64 *)part_number)[0] = be64_to_cpu(data1); data2 = readq(&vpath_reg->rts_access_steer_data1); ((u64 *)part_number)[1] = be64_to_cpu(data2); status = VXGE_HW_OK; } else *part_number = 0; j = 0; for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0; i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) { __vxge_hw_read_rts_ds(vpath_reg, i); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) return status; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); ((u64 *)product_desc)[j++] = be64_to_cpu(data1); data2 = readq(&vpath_reg->rts_access_steer_data1); ((u64 *)product_desc)[j++] = be64_to_cpu(data2); status = VXGE_HW_OK; } else *product_desc = 0; } return status; } /* * __vxge_hw_vpath_fw_ver_get - Get the fw version * Returns FW Version */ enum vxge_hw_status __vxge_hw_vpath_fw_ver_get( u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg, struct vxge_hw_device_hw_info *hw_info) { u64 val64; u64 data1 = 0ULL; u64 data2 = 0ULL; struct vxge_hw_device_version *fw_version = &hw_info->fw_version; struct vxge_hw_device_date *fw_date = &hw_info->fw_date; struct vxge_hw_device_version *flash_version = &hw_info->flash_version; struct vxge_hw_device_date *flash_date = &hw_info->flash_date; enum vxge_hw_status status = VXGE_HW_OK; val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); data2 = readq(&vpath_reg->rts_access_steer_data1); fw_date->day = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY( data1); fw_date->month = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH( data1); fw_date->year = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR( data1); snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d", fw_date->month, fw_date->day, fw_date->year); fw_version->major = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1); fw_version->minor = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1); fw_version->build = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1); snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d", fw_version->major, fw_version->minor, fw_version->build); flash_date->day = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2); flash_date->month = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2); flash_date->year = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2); snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d", flash_date->month, flash_date->day, flash_date->year); flash_version->major = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2); flash_version->minor = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2); flash_version->build = (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2); snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d", flash_version->major, flash_version->minor, flash_version->build); status = VXGE_HW_OK; } else status = VXGE_HW_FAIL; exit: return status; } /* * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode * Returns pci function mode */ u64 __vxge_hw_vpath_pci_func_mode_get( u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg) { u64 val64; u64 data1 = 0ULL; enum vxge_hw_status status = VXGE_HW_OK; __vxge_hw_read_rts_ds(vpath_reg, VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); status = VXGE_HW_OK; } else { data1 = 0; status = VXGE_HW_FAIL; } exit: return data1; } /** * vxge_hw_device_flick_link_led - Flick (blink) link LED. * @hldev: HW device. * @on_off: TRUE if flickering to be on, FALSE to be off * * Flicker the link LED. */ enum vxge_hw_status vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct vxge_hw_vpath_reg __iomem *vp_reg; if (hldev == NULL) { status = VXGE_HW_ERR_INVALID_DEVICE; goto exit; } vp_reg = hldev->vpath_reg[hldev->first_vp_id]; writeq(0, &vp_reg->rts_access_steer_ctrl); wmb(); writeq(on_off, &vp_reg->rts_access_steer_data0); writeq(0, &vp_reg->rts_access_steer_data1); wmb(); val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vp_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); exit: return status; } /* * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables */ enum vxge_hw_status __vxge_hw_vpath_rts_table_get( struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2) { u64 val64; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; enum vxge_hw_status status = VXGE_HW_OK; if (vp == NULL) { status = VXGE_HW_ERR_INVALID_HANDLE; goto exit; } vpath = vp->vpath; vp_reg = vpath->vp_reg; val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset); if ((rts_table == VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) || (rts_table == VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) || (rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) || (rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) { val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL; } status = __vxge_hw_pio_mem_write64(val64, &vp_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, vpath->hldev->config.device_poll_millis); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vp_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { *data1 = readq(&vp_reg->rts_access_steer_data0); if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) || (rts_table == VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) { *data2 = readq(&vp_reg->rts_access_steer_data1); } status = VXGE_HW_OK; } else status = VXGE_HW_FAIL; exit: return status; } /* * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables */ enum vxge_hw_status __vxge_hw_vpath_rts_table_set( struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table, u32 offset, u64 data1, u64 data2) { u64 val64; struct __vxge_hw_virtualpath *vpath; enum vxge_hw_status status = VXGE_HW_OK; struct vxge_hw_vpath_reg __iomem *vp_reg; if (vp == NULL) { status = VXGE_HW_ERR_INVALID_HANDLE; goto exit; } vpath = vp->vpath; vp_reg = vpath->vp_reg; writeq(data1, &vp_reg->rts_access_steer_data0); wmb(); if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) || (rts_table == VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) { writeq(data2, &vp_reg->rts_access_steer_data1); wmb(); } val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset); status = __vxge_hw_pio_mem_write64(val64, &vp_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, vpath->hldev->config.device_poll_millis); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vp_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) status = VXGE_HW_OK; else status = VXGE_HW_FAIL; exit: return status; } /* * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath * from MAC address table. */ enum vxge_hw_status __vxge_hw_vpath_addr_get( u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg, u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN]) { u32 i; u64 val64; u64 data1 = 0ULL; u64 data2 = 0ULL; enum vxge_hw_status status = VXGE_HW_OK; val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION( VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) | VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL( VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) | VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE | VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0); status = __vxge_hw_pio_mem_write64(val64, &vpath_reg->rts_access_steer_ctrl, VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE, VXGE_HW_DEF_DEVICE_POLL_MILLIS); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vpath_reg->rts_access_steer_ctrl); if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) { data1 = readq(&vpath_reg->rts_access_steer_data0); data2 = readq(&vpath_reg->rts_access_steer_data1); data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1); data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK( data2); for (i = ETH_ALEN; i > 0; i--) { macaddr[i-1] = (u8)(data1 & 0xFF); data1 >>= 8; macaddr_mask[i-1] = (u8)(data2 & 0xFF); data2 >>= 8; } status = VXGE_HW_OK; } else status = VXGE_HW_FAIL; exit: return status; } /* * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing. */ enum vxge_hw_status vxge_hw_vpath_rts_rth_set( struct __vxge_hw_vpath_handle *vp, enum vxge_hw_rth_algoritms algorithm, struct vxge_hw_rth_hash_types *hash_type, u16 bucket_size) { u64 data0, data1; enum vxge_hw_status status = VXGE_HW_OK; if (vp == NULL) { status = VXGE_HW_ERR_INVALID_HANDLE; goto exit; } status = __vxge_hw_vpath_rts_table_get(vp, VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY, VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG, 0, &data0, &data1); data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) | VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3)); data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN | VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) | VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm); if (hash_type->hash_type_tcpipv4_en) data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN; if (hash_type->hash_type_ipv4_en) data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN; if (hash_type->hash_type_tcpipv6_en) data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN; if (hash_type->hash_type_ipv6_en) data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN; if (hash_type->hash_type_tcpipv6ex_en) data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN; if (hash_type->hash_type_ipv6ex_en) data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN; if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0)) data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE; else data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE; status = __vxge_hw_vpath_rts_table_set(vp, VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY, VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG, 0, data0, 0); exit: return status; } static void vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1, u16 flag, u8 *itable) { switch (flag) { case 1: *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN | VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA( itable[j]); case 2: *data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)| VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN | VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA( itable[j]); case 3: *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)| VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN | VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA( itable[j]); case 4: *data1 |= VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)| VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN | VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA( itable[j]); default: return; } } /* * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT). */ enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set( struct __vxge_hw_vpath_handle **vpath_handles, u32 vpath_count, u8 *mtable, u8 *itable, u32 itable_size) { u32 i, j, action, rts_table; u64 data0; u64 data1; u32 max_entries; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_vpath_handle *vp = vpath_handles[0]; if (vp == NULL) { status = VXGE_HW_ERR_INVALID_HANDLE; goto exit; } max_entries = (((u32)1) << itable_size); if (vp->vpath->hldev->config.rth_it_type == VXGE_HW_RTH_IT_TYPE_SOLO_IT) { action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY; rts_table = VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT; for (j = 0; j < max_entries; j++) { data1 = 0; data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA( itable[j]); status = __vxge_hw_vpath_rts_table_set(vpath_handles[0], action, rts_table, j, data0, data1); if (status != VXGE_HW_OK) goto exit; } for (j = 0; j < max_entries; j++) { data1 = 0; data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN | VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA( itable[j]); status = __vxge_hw_vpath_rts_table_set( vpath_handles[mtable[itable[j]]], action, rts_table, j, data0, data1); if (status != VXGE_HW_OK) goto exit; } } else { action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY; rts_table = VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT; for (i = 0; i < vpath_count; i++) { for (j = 0; j < max_entries;) { data0 = 0; data1 = 0; while (j < max_entries) { if (mtable[itable[j]] != i) { j++; continue; } vxge_hw_rts_rth_data0_data1_get(j, &data0, &data1, 1, itable); j++; break; } while (j < max_entries) { if (mtable[itable[j]] != i) { j++; continue; } vxge_hw_rts_rth_data0_data1_get(j, &data0, &data1, 2, itable); j++; break; } while (j < max_entries) { if (mtable[itable[j]] != i) { j++; continue; } vxge_hw_rts_rth_data0_data1_get(j, &data0, &data1, 3, itable); j++; break; } while (j < max_entries) { if (mtable[itable[j]] != i) { j++; continue; } vxge_hw_rts_rth_data0_data1_get(j, &data0, &data1, 4, itable); j++; break; } if (data0 != 0) { status = __vxge_hw_vpath_rts_table_set( vpath_handles[i], action, rts_table, 0, data0, data1); if (status != VXGE_HW_OK) goto exit; } } } } exit: return status; } /** * vxge_hw_vpath_check_leak - Check for memory leak * @ringh: Handle to the ring object used for receive * * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred. * Returns: VXGE_HW_FAIL, if leak has occurred. * */ enum vxge_hw_status vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring) { enum vxge_hw_status status = VXGE_HW_OK; u64 rxd_new_count, rxd_spat; if (ring == NULL) return status; rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell); rxd_spat = readq(&ring->vp_reg->prc_cfg6); rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat); if (rxd_new_count >= rxd_spat) status = VXGE_HW_FAIL; return status; } /* * __vxge_hw_vpath_mgmt_read * This routine reads the vpath_mgmt registers */ static enum vxge_hw_status __vxge_hw_vpath_mgmt_read( struct __vxge_hw_device *hldev, struct __vxge_hw_virtualpath *vpath) { u32 i, mtu = 0, max_pyld = 0; u64 val64; enum vxge_hw_status status = VXGE_HW_OK; for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) { val64 = readq(&vpath->vpmgmt_reg-> rxmac_cfg0_port_vpmgmt_clone[i]); max_pyld = (u32) VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN (val64); if (mtu < max_pyld) mtu = max_pyld; } vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE; val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp); for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) { if (val64 & vxge_mBIT(i)) vpath->vsport_number = i; } val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone); if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK) VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP); else VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN); return status; } /* * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed * This routine checks the vpath_rst_in_prog register to see if * adapter completed the reset process for the vpath */ enum vxge_hw_status __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath) { enum vxge_hw_status status; status = __vxge_hw_device_register_poll( &vpath->hldev->common_reg->vpath_rst_in_prog, VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG( 1 << (16 - vpath->vp_id)), vpath->hldev->config.device_poll_millis); return status; } /* * __vxge_hw_vpath_reset * This routine resets the vpath on the device */ enum vxge_hw_status __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id)); __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), &hldev->common_reg->cmn_rsthdlr_cfg0); return status; } /* * __vxge_hw_vpath_sw_reset * This routine resets the vpath structures */ enum vxge_hw_status __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id) { enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id]; if (vpath->ringh) { status = __vxge_hw_ring_reset(vpath->ringh); if (status != VXGE_HW_OK) goto exit; } if (vpath->fifoh) status = __vxge_hw_fifo_reset(vpath->fifoh); exit: return status; } /* * __vxge_hw_vpath_prc_configure * This routine configures the prc registers of virtual path using the config * passed */ void __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vp_config *vp_config; struct vxge_hw_vpath_reg __iomem *vp_reg; vpath = &hldev->virtual_paths[vp_id]; vp_reg = vpath->vp_reg; vp_config = vpath->vp_config; if (vp_config->ring.enable == VXGE_HW_RING_DISABLE) return; val64 = readq(&vp_reg->prc_cfg1); val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE; writeq(val64, &vp_reg->prc_cfg1); val64 = readq(&vpath->vp_reg->prc_cfg6); val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN; writeq(val64, &vpath->vp_reg->prc_cfg6); val64 = readq(&vp_reg->prc_cfg7); if (vpath->vp_config->ring.scatter_mode != VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3); switch (vpath->vp_config->ring.scatter_mode) { case VXGE_HW_RING_SCATTER_MODE_A: val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE( VXGE_HW_PRC_CFG7_SCATTER_MODE_A); break; case VXGE_HW_RING_SCATTER_MODE_B: val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE( VXGE_HW_PRC_CFG7_SCATTER_MODE_B); break; case VXGE_HW_RING_SCATTER_MODE_C: val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE( VXGE_HW_PRC_CFG7_SCATTER_MODE_C); break; } } writeq(val64, &vp_reg->prc_cfg7); writeq(VXGE_HW_PRC_CFG5_RXD0_ADD( __vxge_hw_ring_first_block_address_get( vpath->ringh) >> 3), &vp_reg->prc_cfg5); val64 = readq(&vp_reg->prc_cfg4); val64 |= VXGE_HW_PRC_CFG4_IN_SVC; val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3); val64 |= VXGE_HW_PRC_CFG4_RING_MODE( VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER); if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE) val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE; else val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE; writeq(val64, &vp_reg->prc_cfg4); return; } /* * __vxge_hw_vpath_kdfc_configure * This routine configures the kdfc registers of virtual path using the * config passed */ enum vxge_hw_status __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; u64 vpath_stride; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; vpath = &hldev->virtual_paths[vp_id]; vp_reg = vpath->vp_reg; status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg); if (status != VXGE_HW_OK) goto exit; val64 = readq(&vp_reg->kdfc_drbl_triplet_total); vpath->max_kdfc_db = (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE( val64+1)/2; if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) { vpath->max_nofl_db = vpath->max_kdfc_db; if (vpath->max_nofl_db < ((vpath->vp_config->fifo.memblock_size / (vpath->vp_config->fifo.max_frags * sizeof(struct vxge_hw_fifo_txd))) * vpath->vp_config->fifo.fifo_blocks)) { return VXGE_HW_BADCFG_FIFO_BLOCKS; } val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0( (vpath->max_nofl_db*2)-1); } writeq(val64, &vp_reg->kdfc_fifo_trpl_partition); writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE, &vp_reg->kdfc_fifo_trpl_ctrl); val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl); val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) | VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF)); val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE( VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) | #ifndef __BIG_ENDIAN VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN | #endif VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0); writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl); writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address); wmb(); vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride); vpath->nofl_db = (struct __vxge_hw_non_offload_db_wrapper __iomem *) (hldev->kdfc + (vp_id * VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE( vpath_stride))); exit: return status; } /* * __vxge_hw_vpath_mac_configure * This routine configures the mac of virtual path using the config passed */ enum vxge_hw_status __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vp_config *vp_config; struct vxge_hw_vpath_reg __iomem *vp_reg; vpath = &hldev->virtual_paths[vp_id]; vp_reg = vpath->vp_reg; vp_config = vpath->vp_config; writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER( vpath->vsport_number), &vp_reg->xmac_vsport_choice); if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) { val64 = readq(&vp_reg->xmac_rpa_vcfg); if (vp_config->rpa_strip_vlan_tag != VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) { if (vp_config->rpa_strip_vlan_tag) val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG; else val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG; } writeq(val64, &vp_reg->xmac_rpa_vcfg); val64 = readq(&vp_reg->rxmac_vcfg0); if (vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) { val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff); if ((vp_config->mtu + VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu) val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN( vp_config->mtu + VXGE_HW_MAC_HEADER_MAX_SIZE); else val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN( vpath->max_mtu); } writeq(val64, &vp_reg->rxmac_vcfg0); val64 = readq(&vp_reg->rxmac_vcfg1); val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) | VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE); if (hldev->config.rth_it_type == VXGE_HW_RTH_IT_TYPE_MULTI_IT) { val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE( 0x2) | VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE; } writeq(val64, &vp_reg->rxmac_vcfg1); } return status; } /* * __vxge_hw_vpath_tim_configure * This routine configures the tim registers of virtual path using the config * passed */ enum vxge_hw_status __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; struct vxge_hw_vp_config *config; vpath = &hldev->virtual_paths[vp_id]; vp_reg = vpath->vp_reg; config = vpath->vp_config; writeq((u64)0, &vp_reg->tim_dest_addr); writeq((u64)0, &vp_reg->tim_vpath_map); writeq((u64)0, &vp_reg->tim_bitmap); writeq((u64)0, &vp_reg->tim_remap); if (config->ring.enable == VXGE_HW_RING_ENABLE) writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM( (vp_id * VXGE_HW_MAX_INTR_PER_VP) + VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn); val64 = readq(&vp_reg->tim_pci_cfg); val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD; writeq(val64, &vp_reg->tim_pci_cfg); if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) { val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]); if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( 0x3ffffff); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( config->tti.btimer_val); } val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN; if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) { if (config->tti.timer_ac_en) val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; else val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; } if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) { if (config->tti.timer_ci_en) val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; else val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; } if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A( config->tti.urange_a); } if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B( config->tti.urange_b); } if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C( config->tti.urange_c); } writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]); val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]); if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff); val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A( config->tti.uec_a); } if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff); val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B( config->tti.uec_b); } if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff); val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C( config->tti.uec_c); } if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff); val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D( config->tti.uec_d); } writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]); val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]); if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) { if (config->tti.timer_ri_en) val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI; else val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI; } if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL( 0x3ffffff); val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL( config->tti.rtimer_val); } if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f); val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL( config->tti.util_sel); } if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( 0x3ffffff); val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( config->tti.ltimer_val); } writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]); } if (config->ring.enable == VXGE_HW_RING_ENABLE) { val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]); if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( 0x3ffffff); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL( config->rti.btimer_val); } val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN; if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) { if (config->rti.timer_ac_en) val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; else val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC; } if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) { if (config->rti.timer_ci_en) val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; else val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI; } if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A( config->rti.urange_a); } if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B( config->rti.urange_b); } if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f); val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C( config->rti.urange_c); } writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]); val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]); if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff); val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A( config->rti.uec_a); } if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff); val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B( config->rti.uec_b); } if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff); val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C( config->rti.uec_c); } if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff); val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D( config->rti.uec_d); } writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]); val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]); if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) { if (config->rti.timer_ri_en) val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI; else val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI; } if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL( 0x3ffffff); val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL( config->rti.rtimer_val); } if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f); val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL( config->rti.util_sel); } if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) { val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( 0x3ffffff); val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL( config->rti.ltimer_val); } writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]); } val64 = 0; writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]); writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]); writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]); writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]); writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]); writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]); return status; } /* * __vxge_hw_vpath_initialize * This routine is the final phase of init which initializes the * registers of the vpath using the configuration passed. */ enum vxge_hw_status __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id) { u64 val64; u32 val32; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; struct vxge_hw_vpath_reg __iomem *vp_reg; vpath = &hldev->virtual_paths[vp_id]; if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) { status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE; goto exit; } vp_reg = vpath->vp_reg; status = __vxge_hw_vpath_swapper_set(vpath->vp_reg); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_mac_configure(hldev, vp_id); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_tim_configure(hldev, vp_id); if (status != VXGE_HW_OK) goto exit; writeq(0, &vp_reg->gendma_int); val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl); /* Get MRRS value from device control */ status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32); if (status == VXGE_HW_OK) { val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12; val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7)); val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32); val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE; } val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7)); val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY( VXGE_HW_MAX_PAYLOAD_SIZE_512); val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN; writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl); exit: return status; } /* * __vxge_hw_vp_initialize - Initialize Virtual Path structure * This routine is the initial phase of init which resets the vpath and * initializes the software support structures. */ enum vxge_hw_status __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id, struct vxge_hw_vp_config *config) { struct __vxge_hw_virtualpath *vpath; enum vxge_hw_status status = VXGE_HW_OK; if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) { status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE; goto exit; } vpath = &hldev->virtual_paths[vp_id]; vpath->vp_id = vp_id; vpath->vp_open = VXGE_HW_VP_OPEN; vpath->hldev = hldev; vpath->vp_config = config; vpath->vp_reg = hldev->vpath_reg[vp_id]; vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id]; __vxge_hw_vpath_reset(hldev, vp_id); status = __vxge_hw_vpath_reset_check(vpath); if (status != VXGE_HW_OK) { memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath)); goto exit; } status = __vxge_hw_vpath_mgmt_read(hldev, vpath); if (status != VXGE_HW_OK) { memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath)); goto exit; } INIT_LIST_HEAD(&vpath->vpath_handles); vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id]; VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0, hldev->tim_int_mask1, vp_id); status = __vxge_hw_vpath_initialize(hldev, vp_id); if (status != VXGE_HW_OK) __vxge_hw_vp_terminate(hldev, vp_id); exit: return status; } /* * __vxge_hw_vp_terminate - Terminate Virtual Path structure * This routine closes all channels it opened and freeup memory */ void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id) { struct __vxge_hw_virtualpath *vpath; vpath = &hldev->virtual_paths[vp_id]; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) goto exit; VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0, vpath->hldev->tim_int_mask1, vpath->vp_id); hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL; memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath)); exit: return; } /* * vxge_hw_vpath_mtu_set - Set MTU. * Set new MTU value. Example, to use jumbo frames: * vxge_hw_vpath_mtu_set(my_device, 9600); */ enum vxge_hw_status vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; if (vp == NULL) { status = VXGE_HW_ERR_INVALID_HANDLE; goto exit; } vpath = vp->vpath; new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE; if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu)) status = VXGE_HW_ERR_INVALID_MTU_SIZE; val64 = readq(&vpath->vp_reg->rxmac_vcfg0); val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff); val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu); writeq(val64, &vpath->vp_reg->rxmac_vcfg0); vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE; exit: return status; } /* * vxge_hw_vpath_open - Open a virtual path on a given adapter * This function is used to open access to virtual path of an * adapter for offload, GRO operations. This function returns * synchronously. */ enum vxge_hw_status vxge_hw_vpath_open(struct __vxge_hw_device *hldev, struct vxge_hw_vpath_attr *attr, struct __vxge_hw_vpath_handle **vpath_handle) { struct __vxge_hw_virtualpath *vpath; struct __vxge_hw_vpath_handle *vp; enum vxge_hw_status status; vpath = &hldev->virtual_paths[attr->vp_id]; if (vpath->vp_open == VXGE_HW_VP_OPEN) { status = VXGE_HW_ERR_INVALID_STATE; goto vpath_open_exit1; } status = __vxge_hw_vp_initialize(hldev, attr->vp_id, &hldev->config.vp_config[attr->vp_id]); if (status != VXGE_HW_OK) goto vpath_open_exit1; vp = (struct __vxge_hw_vpath_handle *) vmalloc(sizeof(struct __vxge_hw_vpath_handle)); if (vp == NULL) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto vpath_open_exit2; } memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle)); vp->vpath = vpath; if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) { status = __vxge_hw_fifo_create(vp, &attr->fifo_attr); if (status != VXGE_HW_OK) goto vpath_open_exit6; } if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) { status = __vxge_hw_ring_create(vp, &attr->ring_attr); if (status != VXGE_HW_OK) goto vpath_open_exit7; __vxge_hw_vpath_prc_configure(hldev, attr->vp_id); } vpath->fifoh->tx_intr_num = (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) + VXGE_HW_VPATH_INTR_TX; vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev, VXGE_HW_BLOCK_SIZE); if (vpath->stats_block == NULL) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto vpath_open_exit8; } vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath-> stats_block->memblock; memset(vpath->hw_stats, 0, sizeof(struct vxge_hw_vpath_stats_hw_info)); hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] = vpath->hw_stats; vpath->hw_stats_sav = &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id]; memset(vpath->hw_stats_sav, 0, sizeof(struct vxge_hw_vpath_stats_hw_info)); writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg); status = vxge_hw_vpath_stats_enable(vp); if (status != VXGE_HW_OK) goto vpath_open_exit8; list_add(&vp->item, &vpath->vpath_handles); hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id); *vpath_handle = vp; attr->fifo_attr.userdata = vpath->fifoh; attr->ring_attr.userdata = vpath->ringh; return VXGE_HW_OK; vpath_open_exit8: if (vpath->ringh != NULL) __vxge_hw_ring_delete(vp); vpath_open_exit7: if (vpath->fifoh != NULL) __vxge_hw_fifo_delete(vp); vpath_open_exit6: vfree(vp); vpath_open_exit2: __vxge_hw_vp_terminate(hldev, attr->vp_id); vpath_open_exit1: return status; } /** * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath * (vpath) open * @vp: Handle got from previous vpath open * * This function is used to close access to virtual path opened * earlier. */ void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp) { struct __vxge_hw_virtualpath *vpath = NULL; u64 new_count, val64, val164; struct __vxge_hw_ring *ring; vpath = vp->vpath; ring = vpath->ringh; new_count = readq(&vpath->vp_reg->rxdmem_size); new_count &= 0x1fff; val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count)); writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164), &vpath->vp_reg->prc_rxd_doorbell); readl(&vpath->vp_reg->prc_rxd_doorbell); val164 /= 2; val64 = readq(&vpath->vp_reg->prc_cfg6); val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64); val64 &= 0x1ff; /* * Each RxD is of 4 qwords */ new_count -= (val64 + 1); val64 = min(val164, new_count) / 4; ring->rxds_limit = min(ring->rxds_limit, val64); if (ring->rxds_limit < 4) ring->rxds_limit = 4; } /* * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open * This function is used to close access to virtual path opened * earlier. */ enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp) { struct __vxge_hw_virtualpath *vpath = NULL; struct __vxge_hw_device *devh = NULL; u32 vp_id = vp->vpath->vp_id; u32 is_empty = TRUE; enum vxge_hw_status status = VXGE_HW_OK; vpath = vp->vpath; devh = vpath->hldev; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto vpath_close_exit; } list_del(&vp->item); if (!list_empty(&vpath->vpath_handles)) { list_add(&vp->item, &vpath->vpath_handles); is_empty = FALSE; } if (!is_empty) { status = VXGE_HW_FAIL; goto vpath_close_exit; } devh->vpaths_deployed &= ~vxge_mBIT(vp_id); if (vpath->ringh != NULL) __vxge_hw_ring_delete(vp); if (vpath->fifoh != NULL) __vxge_hw_fifo_delete(vp); if (vpath->stats_block != NULL) __vxge_hw_blockpool_block_free(devh, vpath->stats_block); vfree(vp); __vxge_hw_vp_terminate(devh, vp_id); vpath->vp_open = VXGE_HW_VP_NOT_OPEN; vpath_close_exit: return status; } /* * vxge_hw_vpath_reset - Resets vpath * This function is used to request a reset of vpath */ enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp) { enum vxge_hw_status status; u32 vp_id; struct __vxge_hw_virtualpath *vpath = vp->vpath; vp_id = vpath->vp_id; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto exit; } status = __vxge_hw_vpath_reset(vpath->hldev, vp_id); if (status == VXGE_HW_OK) vpath->sw_stats->soft_reset_cnt++; exit: return status; } /* * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize. * This function poll's for the vpath reset completion and re initializes * the vpath. */ enum vxge_hw_status vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp) { struct __vxge_hw_virtualpath *vpath = NULL; enum vxge_hw_status status; struct __vxge_hw_device *hldev; u32 vp_id; vp_id = vp->vpath->vp_id; vpath = vp->vpath; hldev = vpath->hldev; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto exit; } status = __vxge_hw_vpath_reset_check(vpath); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_sw_reset(hldev, vp_id); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_initialize(hldev, vp_id); if (status != VXGE_HW_OK) goto exit; if (vpath->ringh != NULL) __vxge_hw_vpath_prc_configure(hldev, vp_id); memset(vpath->hw_stats, 0, sizeof(struct vxge_hw_vpath_stats_hw_info)); memset(vpath->hw_stats_sav, 0, sizeof(struct vxge_hw_vpath_stats_hw_info)); writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg); status = vxge_hw_vpath_stats_enable(vp); exit: return status; } /* * vxge_hw_vpath_enable - Enable vpath. * This routine clears the vpath reset thereby enabling a vpath * to start forwarding frames and generating interrupts. */ void vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp) { struct __vxge_hw_device *hldev; u64 val64; hldev = vp->vpath->hldev; val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET( 1 << (16 - vp->vpath->vp_id)); __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), &hldev->common_reg->cmn_rsthdlr_cfg1); } /* * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics. * Enable the DMA vpath statistics. The function is to be called to re-enable * the adapter to update stats into the host memory */ enum vxge_hw_status vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp) { enum vxge_hw_status status = VXGE_HW_OK; struct __vxge_hw_virtualpath *vpath; vpath = vp->vpath; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto exit; } memcpy(vpath->hw_stats_sav, vpath->hw_stats, sizeof(struct vxge_hw_vpath_stats_hw_info)); status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats); exit: return status; } /* * __vxge_hw_vpath_stats_access - Get the statistics from the given location * and offset and perform an operation */ enum vxge_hw_status __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath, u32 operation, u32 offset, u64 *stat) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct vxge_hw_vpath_reg __iomem *vp_reg; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto vpath_stats_access_exit; } vp_reg = vpath->vp_reg; val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) | VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE | VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset); status = __vxge_hw_pio_mem_write64(val64, &vp_reg->xmac_stats_access_cmd, VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE, vpath->hldev->config.device_poll_millis); if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ)) *stat = readq(&vp_reg->xmac_stats_access_data); else *stat = 0; vpath_stats_access_exit: return status; } /* * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath */ enum vxge_hw_status __vxge_hw_vpath_xmac_tx_stats_get( struct __vxge_hw_virtualpath *vpath, struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats) { u64 *val64; int i; u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET; enum vxge_hw_status status = VXGE_HW_OK; val64 = (u64 *) vpath_tx_stats; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto exit; } for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) { status = __vxge_hw_vpath_stats_access(vpath, VXGE_HW_STATS_OP_READ, offset, val64); if (status != VXGE_HW_OK) goto exit; offset++; val64++; } exit: return status; } /* * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath */ enum vxge_hw_status __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath, struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats) { u64 *val64; enum vxge_hw_status status = VXGE_HW_OK; int i; u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET; val64 = (u64 *) vpath_rx_stats; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto exit; } for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) { status = __vxge_hw_vpath_stats_access(vpath, VXGE_HW_STATS_OP_READ, offset >> 3, val64); if (status != VXGE_HW_OK) goto exit; offset += 8; val64++; } exit: return status; } /* * __vxge_hw_vpath_stats_get - Get the vpath hw statistics. */ enum vxge_hw_status __vxge_hw_vpath_stats_get( struct __vxge_hw_virtualpath *vpath, struct vxge_hw_vpath_stats_hw_info *hw_stats) { u64 val64; enum vxge_hw_status status = VXGE_HW_OK; struct vxge_hw_vpath_reg __iomem *vp_reg; if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) { status = VXGE_HW_ERR_VPATH_NOT_OPEN; goto exit; } vp_reg = vpath->vp_reg; val64 = readq(&vp_reg->vpath_debug_stats0); hw_stats->ini_num_mwr_sent = (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64); val64 = readq(&vp_reg->vpath_debug_stats1); hw_stats->ini_num_mrd_sent = (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64); val64 = readq(&vp_reg->vpath_debug_stats2); hw_stats->ini_num_cpl_rcvd = (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64); val64 = readq(&vp_reg->vpath_debug_stats3); hw_stats->ini_num_mwr_byte_sent = VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64); val64 = readq(&vp_reg->vpath_debug_stats4); hw_stats->ini_num_cpl_byte_rcvd = VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64); val64 = readq(&vp_reg->vpath_debug_stats5); hw_stats->wrcrdtarb_xoff = (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64); val64 = readq(&vp_reg->vpath_debug_stats6); hw_stats->rdcrdtarb_xoff = (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64); val64 = readq(&vp_reg->vpath_genstats_count01); hw_stats->vpath_genstats_count0 = (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0( val64); val64 = readq(&vp_reg->vpath_genstats_count01); hw_stats->vpath_genstats_count1 = (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1( val64); val64 = readq(&vp_reg->vpath_genstats_count23); hw_stats->vpath_genstats_count2 = (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2( val64); val64 = readq(&vp_reg->vpath_genstats_count01); hw_stats->vpath_genstats_count3 = (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3( val64); val64 = readq(&vp_reg->vpath_genstats_count4); hw_stats->vpath_genstats_count4 = (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4( val64); val64 = readq(&vp_reg->vpath_genstats_count5); hw_stats->vpath_genstats_count5 = (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5( val64); status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats); if (status != VXGE_HW_OK) goto exit; status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats); if (status != VXGE_HW_OK) goto exit; VXGE_HW_VPATH_STATS_PIO_READ( VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET); hw_stats->prog_event_vnum0 = (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64); hw_stats->prog_event_vnum1 = (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64); VXGE_HW_VPATH_STATS_PIO_READ( VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET); hw_stats->prog_event_vnum2 = (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64); hw_stats->prog_event_vnum3 = (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64); val64 = readq(&vp_reg->rx_multi_cast_stats); hw_stats->rx_multi_cast_frame_discard = (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64); val64 = readq(&vp_reg->rx_frm_transferred); hw_stats->rx_frm_transferred = (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64); val64 = readq(&vp_reg->rxd_returned); hw_stats->rxd_returned = (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64); val64 = readq(&vp_reg->dbg_stats_rx_mpa); hw_stats->rx_mpa_len_fail_frms = (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64); hw_stats->rx_mpa_mrk_fail_frms = (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64); hw_stats->rx_mpa_crc_fail_frms = (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64); val64 = readq(&vp_reg->dbg_stats_rx_fau); hw_stats->rx_permitted_frms = (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64); hw_stats->rx_vp_reset_discarded_frms = (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64); hw_stats->rx_wol_frms = (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64); val64 = readq(&vp_reg->tx_vp_reset_discarded_frms); hw_stats->tx_vp_reset_discarded_frms = (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS( val64); exit: return status; } /* * __vxge_hw_blockpool_create - Create block pool */ enum vxge_hw_status __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev, struct __vxge_hw_blockpool *blockpool, u32 pool_size, u32 pool_max) { u32 i; struct __vxge_hw_blockpool_entry *entry = NULL; void *memblock; dma_addr_t dma_addr; struct pci_dev *dma_handle; struct pci_dev *acc_handle; enum vxge_hw_status status = VXGE_HW_OK; if (blockpool == NULL) { status = VXGE_HW_FAIL; goto blockpool_create_exit; } blockpool->hldev = hldev; blockpool->block_size = VXGE_HW_BLOCK_SIZE; blockpool->pool_size = 0; blockpool->pool_max = pool_max; blockpool->req_out = 0; INIT_LIST_HEAD(&blockpool->free_block_list); INIT_LIST_HEAD(&blockpool->free_entry_list); for (i = 0; i < pool_size + pool_max; i++) { entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry), GFP_KERNEL); if (entry == NULL) { __vxge_hw_blockpool_destroy(blockpool); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto blockpool_create_exit; } list_add(&entry->item, &blockpool->free_entry_list); } for (i = 0; i < pool_size; i++) { memblock = vxge_os_dma_malloc( hldev->pdev, VXGE_HW_BLOCK_SIZE, &dma_handle, &acc_handle); if (memblock == NULL) { __vxge_hw_blockpool_destroy(blockpool); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto blockpool_create_exit; } dma_addr = pci_map_single(hldev->pdev, memblock, VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL); if (unlikely(pci_dma_mapping_error(hldev->pdev, dma_addr))) { vxge_os_dma_free(hldev->pdev, memblock, &acc_handle); __vxge_hw_blockpool_destroy(blockpool); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto blockpool_create_exit; } if (!list_empty(&blockpool->free_entry_list)) entry = (struct __vxge_hw_blockpool_entry *) list_first_entry(&blockpool->free_entry_list, struct __vxge_hw_blockpool_entry, item); if (entry == NULL) entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry), GFP_KERNEL); if (entry != NULL) { list_del(&entry->item); entry->length = VXGE_HW_BLOCK_SIZE; entry->memblock = memblock; entry->dma_addr = dma_addr; entry->acc_handle = acc_handle; entry->dma_handle = dma_handle; list_add(&entry->item, &blockpool->free_block_list); blockpool->pool_size++; } else { __vxge_hw_blockpool_destroy(blockpool); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto blockpool_create_exit; } } blockpool_create_exit: return status; } /* * __vxge_hw_blockpool_destroy - Deallocates the block pool */ void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool) { struct __vxge_hw_device *hldev; struct list_head *p, *n; u16 ret; if (blockpool == NULL) { ret = 1; goto exit; } hldev = blockpool->hldev; list_for_each_safe(p, n, &blockpool->free_block_list) { pci_unmap_single(hldev->pdev, ((struct __vxge_hw_blockpool_entry *)p)->dma_addr, ((struct __vxge_hw_blockpool_entry *)p)->length, PCI_DMA_BIDIRECTIONAL); vxge_os_dma_free(hldev->pdev, ((struct __vxge_hw_blockpool_entry *)p)->memblock, &((struct __vxge_hw_blockpool_entry *) p)->acc_handle); list_del( &((struct __vxge_hw_blockpool_entry *)p)->item); kfree(p); blockpool->pool_size--; } list_for_each_safe(p, n, &blockpool->free_entry_list) { list_del( &((struct __vxge_hw_blockpool_entry *)p)->item); kfree((void *)p); } ret = 0; exit: return; } /* * __vxge_hw_blockpool_blocks_add - Request additional blocks */ static void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool) { u32 nreq = 0, i; if ((blockpool->pool_size + blockpool->req_out) < VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) { nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE; blockpool->req_out += nreq; } for (i = 0; i < nreq; i++) vxge_os_dma_malloc_async( ((struct __vxge_hw_device *)blockpool->hldev)->pdev, blockpool->hldev, VXGE_HW_BLOCK_SIZE); } /* * __vxge_hw_blockpool_blocks_remove - Free additional blocks */ static void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool) { struct list_head *p, *n; list_for_each_safe(p, n, &blockpool->free_block_list) { if (blockpool->pool_size < blockpool->pool_max) break; pci_unmap_single( ((struct __vxge_hw_device *)blockpool->hldev)->pdev, ((struct __vxge_hw_blockpool_entry *)p)->dma_addr, ((struct __vxge_hw_blockpool_entry *)p)->length, PCI_DMA_BIDIRECTIONAL); vxge_os_dma_free( ((struct __vxge_hw_device *)blockpool->hldev)->pdev, ((struct __vxge_hw_blockpool_entry *)p)->memblock, &((struct __vxge_hw_blockpool_entry *)p)->acc_handle); list_del(&((struct __vxge_hw_blockpool_entry *)p)->item); list_add(p, &blockpool->free_entry_list); blockpool->pool_size--; } } /* * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async * Adds a block to block pool */ void vxge_hw_blockpool_block_add( struct __vxge_hw_device *devh, void *block_addr, u32 length, struct pci_dev *dma_h, struct pci_dev *acc_handle) { struct __vxge_hw_blockpool *blockpool; struct __vxge_hw_blockpool_entry *entry = NULL; dma_addr_t dma_addr; enum vxge_hw_status status = VXGE_HW_OK; u32 req_out; blockpool = &devh->block_pool; if (block_addr == NULL) { blockpool->req_out--; status = VXGE_HW_FAIL; goto exit; } dma_addr = pci_map_single(devh->pdev, block_addr, length, PCI_DMA_BIDIRECTIONAL); if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) { vxge_os_dma_free(devh->pdev, block_addr, &acc_handle); blockpool->req_out--; status = VXGE_HW_FAIL; goto exit; } if (!list_empty(&blockpool->free_entry_list)) entry = (struct __vxge_hw_blockpool_entry *) list_first_entry(&blockpool->free_entry_list, struct __vxge_hw_blockpool_entry, item); if (entry == NULL) entry = (struct __vxge_hw_blockpool_entry *) vmalloc(sizeof(struct __vxge_hw_blockpool_entry)); else list_del(&entry->item); if (entry != NULL) { entry->length = length; entry->memblock = block_addr; entry->dma_addr = dma_addr; entry->acc_handle = acc_handle; entry->dma_handle = dma_h; list_add(&entry->item, &blockpool->free_block_list); blockpool->pool_size++; status = VXGE_HW_OK; } else status = VXGE_HW_ERR_OUT_OF_MEMORY; blockpool->req_out--; req_out = blockpool->req_out; exit: return; } /* * __vxge_hw_blockpool_malloc - Allocate a memory block from pool * Allocates a block of memory of given size, either from block pool * or by calling vxge_os_dma_malloc() */ void * __vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size, struct vxge_hw_mempool_dma *dma_object) { struct __vxge_hw_blockpool_entry *entry = NULL; struct __vxge_hw_blockpool *blockpool; void *memblock = NULL; enum vxge_hw_status status = VXGE_HW_OK; blockpool = &devh->block_pool; if (size != blockpool->block_size) { memblock = vxge_os_dma_malloc(devh->pdev, size, &dma_object->handle, &dma_object->acc_handle); if (memblock == NULL) { status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } dma_object->addr = pci_map_single(devh->pdev, memblock, size, PCI_DMA_BIDIRECTIONAL); if (unlikely(pci_dma_mapping_error(devh->pdev, dma_object->addr))) { vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle); status = VXGE_HW_ERR_OUT_OF_MEMORY; goto exit; } } else { if (!list_empty(&blockpool->free_block_list)) entry = (struct __vxge_hw_blockpool_entry *) list_first_entry(&blockpool->free_block_list, struct __vxge_hw_blockpool_entry, item); if (entry != NULL) { list_del(&entry->item); dma_object->addr = entry->dma_addr; dma_object->handle = entry->dma_handle; dma_object->acc_handle = entry->acc_handle; memblock = entry->memblock; list_add(&entry->item, &blockpool->free_entry_list); blockpool->pool_size--; } if (memblock != NULL) __vxge_hw_blockpool_blocks_add(blockpool); } exit: return memblock; } /* * __vxge_hw_blockpool_free - Frees the memory allcoated with __vxge_hw_blockpool_malloc */ void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh, void *memblock, u32 size, struct vxge_hw_mempool_dma *dma_object) { struct __vxge_hw_blockpool_entry *entry = NULL; struct __vxge_hw_blockpool *blockpool; enum vxge_hw_status status = VXGE_HW_OK; blockpool = &devh->block_pool; if (size != blockpool->block_size) { pci_unmap_single(devh->pdev, dma_object->addr, size, PCI_DMA_BIDIRECTIONAL); vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle); } else { if (!list_empty(&blockpool->free_entry_list)) entry = (struct __vxge_hw_blockpool_entry *) list_first_entry(&blockpool->free_entry_list, struct __vxge_hw_blockpool_entry, item); if (entry == NULL) entry = (struct __vxge_hw_blockpool_entry *) vmalloc(sizeof( struct __vxge_hw_blockpool_entry)); else list_del(&entry->item); if (entry != NULL) { entry->length = size; entry->memblock = memblock; entry->dma_addr = dma_object->addr; entry->acc_handle = dma_object->acc_handle; entry->dma_handle = dma_object->handle; list_add(&entry->item, &blockpool->free_block_list); blockpool->pool_size++; status = VXGE_HW_OK; } else status = VXGE_HW_ERR_OUT_OF_MEMORY; if (status == VXGE_HW_OK) __vxge_hw_blockpool_blocks_remove(blockpool); } return; } /* * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool * This function allocates a block from block pool or from the system */ struct __vxge_hw_blockpool_entry * __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size) { struct __vxge_hw_blockpool_entry *entry = NULL; struct __vxge_hw_blockpool *blockpool; blockpool = &devh->block_pool; if (size == blockpool->block_size) { if (!list_empty(&blockpool->free_block_list)) entry = (struct __vxge_hw_blockpool_entry *) list_first_entry(&blockpool->free_block_list, struct __vxge_hw_blockpool_entry, item); if (entry != NULL) { list_del(&entry->item); blockpool->pool_size--; } } if (entry != NULL) __vxge_hw_blockpool_blocks_add(blockpool); return entry; } /* * __vxge_hw_blockpool_block_free - Frees a block from block pool * @devh: Hal device * @entry: Entry of block to be freed * * This function frees a block from block pool */ void __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh, struct __vxge_hw_blockpool_entry *entry) { struct __vxge_hw_blockpool *blockpool; blockpool = &devh->block_pool; if (entry->length == blockpool->block_size) { list_add(&entry->item, &blockpool->free_block_list); blockpool->pool_size++; } __vxge_hw_blockpool_blocks_remove(blockpool); return; }