/* * Copyright (c) 2004-2008 Reyk Floeter * Copyright (c) 2006-2008 Nick Kossifidis * Copyright (c) 2007-2008 Luis Rodriguez * Copyright (c) 2007-2008 Pavel Roskin * Copyright (c) 2007-2008 Jiri Slaby * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ #define _ATH5K_RESET /*****************************\ Reset functions and helpers \*****************************/ #include #include "ath5k.h" #include "reg.h" #include "base.h" #include "debug.h" /** * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212 * * @ah: the &struct ath5k_hw * @channel: the currently set channel upon reset * * Write the OFDM timings for the AR5212 upon reset. This is a helper for * ath5k_hw_reset(). This seems to tune the PLL a specified frequency * depending on the bandwidth of the channel. * */ static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, struct ieee80211_channel *channel) { /* Get exponent and mantissa and set it */ u32 coef_scaled, coef_exp, coef_man, ds_coef_exp, ds_coef_man, clock; if (!(ah->ah_version == AR5K_AR5212) || !(channel->hw_value & CHANNEL_OFDM)) BUG(); /* Seems there are two PLLs, one for baseband sampling and one * for tuning. Tuning basebands are 40 MHz or 80MHz when in * turbo. */ clock = channel->hw_value & CHANNEL_TURBO ? 80 : 40; coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; for (coef_exp = 31; coef_exp > 0; coef_exp--) if ((coef_scaled >> coef_exp) & 0x1) break; if (!coef_exp) return -EINVAL; coef_exp = 14 - (coef_exp - 24); coef_man = coef_scaled + (1 << (24 - coef_exp - 1)); ds_coef_man = coef_man >> (24 - coef_exp); ds_coef_exp = coef_exp - 16; AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); return 0; } /* * index into rates for control rates, we can set it up like this because * this is only used for AR5212 and we know it supports G mode */ static int control_rates[] = { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 }; /** * ath5k_hw_write_rate_duration - set rate duration during hw resets * * @ah: the &struct ath5k_hw * @mode: one of enum ath5k_driver_mode * * Write the rate duration table upon hw reset. This is a helper for * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout for * the hardware for the current mode for each rate. The rates which are capable * of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have another * register for the short preamble ACK timeout calculation. */ static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah, unsigned int mode) { struct ath5k_softc *sc = ah->ah_sc; struct ieee80211_rate *rate; unsigned int i; /* Write rate duration table */ for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) { u32 reg; u16 tx_time; rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]]; /* Set ACK timeout */ reg = AR5K_RATE_DUR(rate->hw_value); /* An ACK frame consists of 10 bytes. If you add the FCS, * which ieee80211_generic_frame_duration() adds, * its 14 bytes. Note we use the control rate and not the * actual rate for this rate. See mac80211 tx.c * ieee80211_duration() for a brief description of * what rate we should choose to TX ACKs. */ tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw, sc->vif, 10, rate)); ath5k_hw_reg_write(ah, tx_time, reg); if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)) continue; /* * We're not distinguishing short preamble here, * This is true, all we'll get is a longer value here * which is not necessarilly bad. We could use * export ieee80211_frame_duration() but that needs to be * fixed first to be properly used by mac802111 drivers: * * - remove erp stuff and let the routine figure ofdm * erp rates * - remove passing argument ieee80211_local as * drivers don't have access to it * - move drivers using ieee80211_generic_frame_duration() * to this */ ath5k_hw_reg_write(ah, tx_time, reg + (AR5K_SET_SHORT_PREAMBLE << 2)); } } /* * Reset chipset */ static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val) { int ret; u32 mask = val ? val : ~0U; ATH5K_TRACE(ah->ah_sc); /* Read-and-clear RX Descriptor Pointer*/ ath5k_hw_reg_read(ah, AR5K_RXDP); /* * Reset the device and wait until success */ ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL); /* Wait at least 128 PCI clocks */ udelay(15); if (ah->ah_version == AR5K_AR5210) { val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY; } else { val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND; } ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false); /* * Reset configuration register (for hw byte-swap). Note that this * is only set for big endian. We do the necessary magic in * AR5K_INIT_CFG. */ if ((val & AR5K_RESET_CTL_PCU) == 0) ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG); return ret; } /* * Sleep control */ int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode, bool set_chip, u16 sleep_duration) { unsigned int i; u32 staid, data; ATH5K_TRACE(ah->ah_sc); staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1); switch (mode) { case AR5K_PM_AUTO: staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA; /* fallthrough */ case AR5K_PM_NETWORK_SLEEP: if (set_chip) ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_ALLOW | sleep_duration, AR5K_SLEEP_CTL); staid |= AR5K_STA_ID1_PWR_SV; break; case AR5K_PM_FULL_SLEEP: if (set_chip) ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP, AR5K_SLEEP_CTL); staid |= AR5K_STA_ID1_PWR_SV; break; case AR5K_PM_AWAKE: staid &= ~AR5K_STA_ID1_PWR_SV; if (!set_chip) goto commit; /* Preserve sleep duration */ data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL); if (data & 0xffc00000) data = 0; else data = data & 0xfffcffff; ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL); udelay(15); for (i = 50; i > 0; i--) { /* Check if the chip did wake up */ if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_SPWR_DN) == 0) break; /* Wait a bit and retry */ udelay(200); ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL); } /* Fail if the chip didn't wake up */ if (i <= 0) return -EIO; break; default: return -EINVAL; } commit: ah->ah_power_mode = mode; ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1); return 0; } /* * Bring up MAC + PHY Chips */ int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial) { struct pci_dev *pdev = ah->ah_sc->pdev; u32 turbo, mode, clock, bus_flags; int ret; turbo = 0; mode = 0; clock = 0; ATH5K_TRACE(ah->ah_sc); /* Wakeup the device */ ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0); if (ret) { ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n"); return ret; } if (ah->ah_version != AR5K_AR5210) { /* * Get channel mode flags */ if (ah->ah_radio >= AR5K_RF5112) { mode = AR5K_PHY_MODE_RAD_RF5112; clock = AR5K_PHY_PLL_RF5112; } else { mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/ clock = AR5K_PHY_PLL_RF5111; /*Zero*/ } if (flags & CHANNEL_2GHZ) { mode |= AR5K_PHY_MODE_FREQ_2GHZ; clock |= AR5K_PHY_PLL_44MHZ; if (flags & CHANNEL_CCK) { mode |= AR5K_PHY_MODE_MOD_CCK; } else if (flags & CHANNEL_OFDM) { /* XXX Dynamic OFDM/CCK is not supported by the * AR5211 so we set MOD_OFDM for plain g (no * CCK headers) operation. We need to test * this, 5211 might support ofdm-only g after * all, there are also initial register values * in the code for g mode (see initvals.c). */ if (ah->ah_version == AR5K_AR5211) mode |= AR5K_PHY_MODE_MOD_OFDM; else mode |= AR5K_PHY_MODE_MOD_DYN; } else { ATH5K_ERR(ah->ah_sc, "invalid radio modulation mode\n"); return -EINVAL; } } else if (flags & CHANNEL_5GHZ) { mode |= AR5K_PHY_MODE_FREQ_5GHZ; clock |= AR5K_PHY_PLL_40MHZ; if (flags & CHANNEL_OFDM) mode |= AR5K_PHY_MODE_MOD_OFDM; else { ATH5K_ERR(ah->ah_sc, "invalid radio modulation mode\n"); return -EINVAL; } } else { ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n"); return -EINVAL; } if (flags & CHANNEL_TURBO) turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT; } else { /* Reset the device */ /* ...enable Atheros turbo mode if requested */ if (flags & CHANNEL_TURBO) ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE, AR5K_PHY_TURBO); } /* reseting PCI on PCI-E cards results card to hang * and always return 0xffff... so we ingore that flag * for PCI-E cards */ bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI; /* Reset chipset */ if (ah->ah_version == AR5K_AR5210) { ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA | AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI); mdelay(2); } else { ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND | bus_flags); } if (ret) { ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n"); return -EIO; } /* ...wakeup again!*/ ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0); if (ret) { ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n"); return ret; } /* ...final warm reset */ if (ath5k_hw_nic_reset(ah, 0)) { ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n"); return -EIO; } if (ah->ah_version != AR5K_AR5210) { /* ...set the PHY operating mode */ ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL); udelay(300); ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE); ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO); } return 0; } /* * Main reset function */ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, struct ieee80211_channel *channel, bool change_channel) { struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct pci_dev *pdev = ah->ah_sc->pdev; u32 data, s_seq, s_ant, s_led[3], dma_size; unsigned int i, mode, freq, ee_mode, ant[2]; int ret; ATH5K_TRACE(ah->ah_sc); s_seq = 0; s_ant = 0; ee_mode = 0; freq = 0; mode = 0; /* * Save some registers before a reset */ /*DCU/Antenna selection not available on 5210*/ if (ah->ah_version != AR5K_AR5210) { if (change_channel) { /* Seq number for queue 0 -do this for all queues ? */ s_seq = ath5k_hw_reg_read(ah, AR5K_QUEUE_DFS_SEQNUM(0)); /*Default antenna*/ s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); } } /*GPIOs*/ s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE; s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR); s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO); if (change_channel && ah->ah_rf_banks != NULL) ath5k_hw_get_rf_gain(ah); /*Wakeup the device*/ ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false); if (ret) return ret; /* * Initialize operating mode */ ah->ah_op_mode = op_mode; /* * 5111/5112 Settings * 5210 only comes with RF5110 */ if (ah->ah_version != AR5K_AR5210) { if (ah->ah_radio != AR5K_RF5111 && ah->ah_radio != AR5K_RF5112 && ah->ah_radio != AR5K_RF5413 && ah->ah_radio != AR5K_RF2413 && ah->ah_radio != AR5K_RF2425) { ATH5K_ERR(ah->ah_sc, "invalid phy radio: %u\n", ah->ah_radio); return -EINVAL; } switch (channel->hw_value & CHANNEL_MODES) { case CHANNEL_A: mode = AR5K_MODE_11A; freq = AR5K_INI_RFGAIN_5GHZ; ee_mode = AR5K_EEPROM_MODE_11A; break; case CHANNEL_G: mode = AR5K_MODE_11G; freq = AR5K_INI_RFGAIN_2GHZ; ee_mode = AR5K_EEPROM_MODE_11G; break; case CHANNEL_B: mode = AR5K_MODE_11B; freq = AR5K_INI_RFGAIN_2GHZ; ee_mode = AR5K_EEPROM_MODE_11B; break; case CHANNEL_T: mode = AR5K_MODE_11A_TURBO; freq = AR5K_INI_RFGAIN_5GHZ; ee_mode = AR5K_EEPROM_MODE_11A; break; /*Is this ok on 5211 too ?*/ case CHANNEL_TG: mode = AR5K_MODE_11G_TURBO; freq = AR5K_INI_RFGAIN_2GHZ; ee_mode = AR5K_EEPROM_MODE_11G; break; case CHANNEL_XR: if (ah->ah_version == AR5K_AR5211) { ATH5K_ERR(ah->ah_sc, "XR mode not available on 5211"); return -EINVAL; } mode = AR5K_MODE_XR; freq = AR5K_INI_RFGAIN_5GHZ; ee_mode = AR5K_EEPROM_MODE_11A; break; default: ATH5K_ERR(ah->ah_sc, "invalid channel: %d\n", channel->center_freq); return -EINVAL; } /* PHY access enable */ ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); } ret = ath5k_hw_write_initvals(ah, mode, change_channel); if (ret) return ret; /* * 5211/5212 Specific */ if (ah->ah_version != AR5K_AR5210) { /* * Write initial RF gain settings * This should work for both 5111/5112 */ ret = ath5k_hw_rfgain(ah, freq); if (ret) return ret; mdelay(1); /* * Write some more initial register settings */ if (ah->ah_version == AR5K_AR5212) { ath5k_hw_reg_write(ah, 0x0002a002, 0x982c); if (channel->hw_value == CHANNEL_G) if (ah->ah_mac_srev < AR5K_SREV_AR2413) ath5k_hw_reg_write(ah, 0x00f80d80, 0x994c); else if (ah->ah_mac_srev < AR5K_SREV_AR5424) ath5k_hw_reg_write(ah, 0x00380140, 0x994c); else if (ah->ah_mac_srev < AR5K_SREV_AR2425) ath5k_hw_reg_write(ah, 0x00fc0ec0, 0x994c); else /* 2425 */ ath5k_hw_reg_write(ah, 0x00fc0fc0, 0x994c); else ath5k_hw_reg_write(ah, 0x00000000, 0x994c); /* Some bits are disabled here, we know nothing about * register 0xa228 yet, most of the times this ends up * with a value 0x9b5 -haven't seen any dump with * a different value- */ /* Got this from decompiling binary HAL */ data = ath5k_hw_reg_read(ah, 0xa228); data &= 0xfffffdff; ath5k_hw_reg_write(ah, data, 0xa228); data = ath5k_hw_reg_read(ah, 0xa228); data &= 0xfffe03ff; ath5k_hw_reg_write(ah, data, 0xa228); data = 0; /* Just write 0x9b5 ? */ /* ath5k_hw_reg_write(ah, 0x000009b5, 0xa228); */ ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK); ath5k_hw_reg_write(ah, 0x00000000, 0xa254); ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL); } /* Fix for first revision of the RF5112 RF chipset */ if (ah->ah_radio >= AR5K_RF5112 && ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD, AR5K_PHY_CCKTXCTL); if (channel->hw_value & CHANNEL_5GHZ) data = 0xffb81020; else data = 0xffb80d20; ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL); data = 0; } /* * Set TX power (FIXME) */ ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER); if (ret) return ret; /* Write rate duration table only on AR5212 and if * virtual interface has already been brought up * XXX: rethink this after new mode changes to * mac80211 are integrated */ if (ah->ah_version == AR5K_AR5212 && ah->ah_sc->vif != NULL) ath5k_hw_write_rate_duration(ah, mode); /* * Write RF registers */ ret = ath5k_hw_rfregs(ah, channel, mode); if (ret) return ret; /* * Configure additional registers */ /* Write OFDM timings on 5212*/ if (ah->ah_version == AR5K_AR5212 && channel->hw_value & CHANNEL_OFDM) { ret = ath5k_hw_write_ofdm_timings(ah, channel); if (ret) return ret; } /*Enable/disable 802.11b mode on 5111 (enable 2111 frequency converter + CCK)*/ if (ah->ah_radio == AR5K_RF5111) { if (mode == AR5K_MODE_11B) AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_B_MODE); else AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_B_MODE); } /* * Set channel and calibrate the PHY */ ret = ath5k_hw_channel(ah, channel); if (ret) return ret; /* Set antenna mode */ AR5K_REG_MASKED_BITS(ah, AR5K_PHY_ANT_CTL, ah->ah_antenna[ee_mode][0], 0xfffffc06); /* * In case a fixed antenna was set as default * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE * registers. */ if (s_ant != 0) { if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */ ant[0] = ant[1] = AR5K_ANT_FIXED_A; else /* 2 - Aux */ ant[0] = ant[1] = AR5K_ANT_FIXED_B; } else { ant[0] = AR5K_ANT_FIXED_A; ant[1] = AR5K_ANT_FIXED_B; } ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]], AR5K_PHY_ANT_SWITCH_TABLE_0); ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]], AR5K_PHY_ANT_SWITCH_TABLE_1); /* Commit values from EEPROM */ if (ah->ah_radio == AR5K_RF5111) AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip); ath5k_hw_reg_write(ah, AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]), AR5K_PHY_NFTHRES); AR5K_REG_MASKED_BITS(ah, AR5K_PHY_SETTLING, (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80, 0xffffc07f); AR5K_REG_MASKED_BITS(ah, AR5K_PHY_GAIN, (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000, 0xfffc0fff); AR5K_REG_MASKED_BITS(ah, AR5K_PHY_DESIRED_SIZE, (ee->ee_adc_desired_size[ee_mode] & 0x00ff) | ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00), 0xffff0000); ath5k_hw_reg_write(ah, (ee->ee_tx_end2xpa_disable[ee_mode] << 24) | (ee->ee_tx_end2xpa_disable[ee_mode] << 16) | (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) | (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4); AR5K_REG_MASKED_BITS(ah, AR5K_PHY_RF_CTL3, ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff); AR5K_REG_MASKED_BITS(ah, AR5K_PHY_NF, (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff); AR5K_REG_MASKED_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 4, 0xffffff01); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE | (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) | ee->ee_q_cal[ee_mode]); if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ, AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX, ee->ee_margin_tx_rx[ee_mode]); } else { mdelay(1); /* Disable phy and wait */ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); mdelay(1); } /* * Restore saved values */ /*DCU/Antenna selection not available on 5210*/ if (ah->ah_version != AR5K_AR5210) { ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0)); ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA); } AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]); ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR); ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO); /* * Misc */ /* XXX: add ah->aid once mac80211 gives this to us */ ath5k_hw_set_associd(ah, ah->ah_bssid, 0); ath5k_hw_set_opmode(ah); /*PISR/SISR Not available on 5210*/ if (ah->ah_version != AR5K_AR5210) { ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR); /* If we later allow tuning for this, store into sc structure */ data = AR5K_TUNE_RSSI_THRES | AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S; ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR); } /* * Set Rx/Tx DMA Configuration * * Set maximum DMA size (512) except for PCI-E cards since * it causes rx overruns and tx errors (tested on 5424 but since * rx overruns also occur on 5416/5418 with madwifi we set 128 * for all PCI-E cards to be safe). * * In dumps this is 128 for allchips. * * XXX: need to check 5210 for this * TODO: Check out tx triger level, it's always 64 on dumps but I * guess we can tweak it and see how it goes ;-) */ dma_size = (pdev->is_pcie) ? AR5K_DMASIZE_128B : AR5K_DMASIZE_512B; if (ah->ah_version != AR5K_AR5210) { AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_SDMAMR, dma_size); AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_SDMAMW, dma_size); } /* * Enable the PHY and wait until completion */ ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); /* * On 5211+ read activation -> rx delay * and use it. */ if (ah->ah_version != AR5K_AR5210) { data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & AR5K_PHY_RX_DELAY_M; data = (channel->hw_value & CHANNEL_CCK) ? ((data << 2) / 22) : (data / 10); udelay(100 + (2 * data)); data = 0; } else { mdelay(1); } /* * Perform ADC test (?) */ data = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); for (i = 0; i <= 20; i++) { if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) break; udelay(200); } ath5k_hw_reg_write(ah, data, AR5K_PHY_TST1); data = 0; /* * Start automatic gain calibration * * During AGC calibration RX path is re-routed to * a signal detector so we don't receive anything. * * This method is used to calibrate some static offsets * used together with on-the fly I/Q calibration (the * one performed via ath5k_hw_phy_calibrate), that doesn't * interrupt rx path. * * If we are in a noisy environment AGC calibration may time * out. */ AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); /* At the same time start I/Q calibration for QAM constellation * -no need for CCK- */ ah->ah_calibration = false; if (!(mode == AR5K_MODE_11B)) { ah->ah_calibration = true; AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); } /* Wait for gain calibration to finish (we check for I/Q calibration * during ath5k_phy_calibrate) */ if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL, 0, false)) { ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n", channel->center_freq); return -EAGAIN; } /* * Start noise floor calibration * * If we run NF calibration before AGC, it always times out. * Binary HAL starts NF and AGC calibration at the same time * and only waits for AGC to finish. I believe that's wrong because * during NF calibration, rx path is also routed to a detector, so if * it doesn't finish we won't have RX. * * XXX: Find an interval that's OK for all cards... */ ret = ath5k_hw_noise_floor_calibration(ah, channel->center_freq); if (ret) return ret; /* * Reset queues and start beacon timers at the end of the reset routine */ for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) { /*No QCU on 5210*/ if (ah->ah_version != AR5K_AR5210) AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i); ret = ath5k_hw_reset_tx_queue(ah, i); if (ret) { ATH5K_ERR(ah->ah_sc, "failed to reset TX queue #%d\n", i); return ret; } } /* Pre-enable interrupts on 5211/5212*/ if (ah->ah_version != AR5K_AR5210) ath5k_hw_set_imr(ah, AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_FATAL); /* * Set RF kill flags if supported by the device (read from the EEPROM) * Disable gpio_intr for now since it results system hang. * TODO: Handle this in ath5k_intr */ #if 0 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) { ath5k_hw_set_gpio_input(ah, 0); ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0); if (ah->ah_gpio[0] == 0) ath5k_hw_set_gpio_intr(ah, 0, 1); else ath5k_hw_set_gpio_intr(ah, 0, 0); } #endif /* * Set the 32MHz reference clock on 5212 phy clock sleep register * * TODO: Find out how to switch to external 32Khz clock to save power */ if (ah->ah_version == AR5K_AR5212) { ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR); ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT); ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL); ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK); ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY); ath5k_hw_reg_write(ah, ah->ah_phy_spending, AR5K_PHY_SPENDING); data = ath5k_hw_reg_read(ah, AR5K_USEC_5211) & 0xffffc07f ; data |= (ah->ah_phy_spending == AR5K_PHY_SPENDING_18) ? 0x00000f80 : 0x00001380 ; ath5k_hw_reg_write(ah, data, AR5K_USEC_5211); data = 0; } if (ah->ah_version == AR5K_AR5212) { ath5k_hw_reg_write(ah, 0x000100aa, 0x8118); ath5k_hw_reg_write(ah, 0x00003210, 0x811c); ath5k_hw_reg_write(ah, 0x00000052, 0x8108); if (ah->ah_mac_srev >= AR5K_SREV_AR2413) ath5k_hw_reg_write(ah, 0x00000004, 0x8120); } /* * Disable beacons and reset the register */ AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE | AR5K_BEACON_RESET_TSF); return 0; } #undef _ATH5K_RESET