/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "core.h" #include "hw.h" #include "reg.h" #include "phy.h" #include "initvals.h" static const u8 CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 }; extern struct hal_percal_data iq_cal_multi_sample; extern struct hal_percal_data iq_cal_single_sample; extern struct hal_percal_data adc_gain_cal_multi_sample; extern struct hal_percal_data adc_gain_cal_single_sample; extern struct hal_percal_data adc_dc_cal_multi_sample; extern struct hal_percal_data adc_dc_cal_single_sample; extern struct hal_percal_data adc_init_dc_cal; static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type); static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode); static u32 ath9k_hw_ini_fixup(struct ath_hal *ah, struct ar5416_eeprom *pEepData, u32 reg, u32 value); static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan); static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan); /********************/ /* Helper Functions */ /********************/ static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks) { if (ah->ah_curchan != NULL) return clks / CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)]; else return clks / CLOCK_RATE[ATH9K_MODE_11B]; } static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks) { struct ath9k_channel *chan = ah->ah_curchan; if (chan && IS_CHAN_HT40(chan)) return ath9k_hw_mac_usec(ah, clks) / 2; else return ath9k_hw_mac_usec(ah, clks); } static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs) { if (ah->ah_curchan != NULL) return usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)]; else return usecs * CLOCK_RATE[ATH9K_MODE_11B]; } static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs) { struct ath9k_channel *chan = ah->ah_curchan; if (chan && IS_CHAN_HT40(chan)) return ath9k_hw_mac_clks(ah, usecs) * 2; else return ath9k_hw_mac_clks(ah, usecs); } enum wireless_mode ath9k_hw_chan2wmode(struct ath_hal *ah, const struct ath9k_channel *chan) { if (IS_CHAN_CCK(chan)) return ATH9K_MODE_11A; if (IS_CHAN_G(chan)) return ATH9K_MODE_11G; return ATH9K_MODE_11A; } bool ath9k_hw_wait(struct ath_hal *ah, u32 reg, u32 mask, u32 val) { int i; for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) { if ((REG_READ(ah, reg) & mask) == val) return true; udelay(AH_TIME_QUANTUM); } DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO, "%s: timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", __func__, reg, REG_READ(ah, reg), mask, val); return false; } u32 ath9k_hw_reverse_bits(u32 val, u32 n) { u32 retval; int i; for (i = 0, retval = 0; i < n; i++) { retval = (retval << 1) | (val & 1); val >>= 1; } return retval; } bool ath9k_get_channel_edges(struct ath_hal *ah, u16 flags, u16 *low, u16 *high) { struct ath9k_hw_capabilities *pCap = &ah->ah_caps; if (flags & CHANNEL_5GHZ) { *low = pCap->low_5ghz_chan; *high = pCap->high_5ghz_chan; return true; } if ((flags & CHANNEL_2GHZ)) { *low = pCap->low_2ghz_chan; *high = pCap->high_2ghz_chan; return true; } return false; } u16 ath9k_hw_computetxtime(struct ath_hal *ah, const struct ath9k_rate_table *rates, u32 frameLen, u16 rateix, bool shortPreamble) { u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; u32 kbps; kbps = rates->info[rateix].rateKbps; if (kbps == 0) return 0; switch (rates->info[rateix].phy) { case PHY_CCK: phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; if (shortPreamble && rates->info[rateix].shortPreamble) phyTime >>= 1; numBits = frameLen << 3; txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); break; case PHY_OFDM: if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_QUARTER + OFDM_PREAMBLE_TIME_QUARTER + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); } else if (ah->ah_curchan && IS_CHAN_HALF_RATE(ah->ah_curchan)) { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_HALF + OFDM_PREAMBLE_TIME_HALF + (numSymbols * OFDM_SYMBOL_TIME_HALF); } else { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME + (numSymbols * OFDM_SYMBOL_TIME); } break; default: DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO, "%s: unknown phy %u (rate ix %u)\n", __func__, rates->info[rateix].phy, rateix); txTime = 0; break; } return txTime; } u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags) { if (flags & CHANNEL_2GHZ) { if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; else return 15 + ((freq - 2512) / 20); } else if (flags & CHANNEL_5GHZ) { if (ath9k_regd_is_public_safety_sku(ah) && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) { return ((freq * 10) + (((freq % 5) == 2) ? 5 : 0) - 49400) / 5; } else if ((flags & CHANNEL_A) && (freq <= 5000)) { return (freq - 4000) / 5; } else { return (freq - 5000) / 5; } } else { if (freq == 2484) return 14; if (freq < 2484) return (freq - 2407) / 5; if (freq < 5000) { if (ath9k_regd_is_public_safety_sku(ah) && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) { return ((freq * 10) + (((freq % 5) == 2) ? 5 : 0) - 49400) / 5; } else if (freq > 4900) { return (freq - 4000) / 5; } else { return 15 + ((freq - 2512) / 20); } } return (freq - 5000) / 5; } } void ath9k_hw_get_channel_centers(struct ath_hal *ah, struct ath9k_channel *chan, struct chan_centers *centers) { int8_t extoff; struct ath_hal_5416 *ahp = AH5416(ah); if (!IS_CHAN_HT40(chan)) { centers->ctl_center = centers->ext_center = centers->synth_center = chan->channel; return; } if ((chan->chanmode == CHANNEL_A_HT40PLUS) || (chan->chanmode == CHANNEL_G_HT40PLUS)) { centers->synth_center = chan->channel + HT40_CHANNEL_CENTER_SHIFT; extoff = 1; } else { centers->synth_center = chan->channel - HT40_CHANNEL_CENTER_SHIFT; extoff = -1; } centers->ctl_center = centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); centers->ext_center = centers->synth_center + (extoff * ((ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ? HT40_CHANNEL_CENTER_SHIFT : 15)); } /******************/ /* Chip Revisions */ /******************/ static void ath9k_hw_read_revisions(struct ath_hal *ah) { u32 val; val = REG_READ(ah, AR_SREV) & AR_SREV_ID; if (val == 0xFF) { val = REG_READ(ah, AR_SREV); ah->ah_macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; ah->ah_macRev = MS(val, AR_SREV_REVISION2); ah->ah_isPciExpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; } else { if (!AR_SREV_9100(ah)) ah->ah_macVersion = MS(val, AR_SREV_VERSION); ah->ah_macRev = val & AR_SREV_REVISION; if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ah->ah_isPciExpress = true; } } static int ath9k_hw_get_radiorev(struct ath_hal *ah) { u32 val; int i; REG_WRITE(ah, AR_PHY(0x36), 0x00007058); for (i = 0; i < 8; i++) REG_WRITE(ah, AR_PHY(0x20), 0x00010000); val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff; val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4); return ath9k_hw_reverse_bits(val, 8); } /************************************/ /* HW Attach, Detach, Init Routines */ /************************************/ static void ath9k_hw_disablepcie(struct ath_hal *ah) { if (!AR_SREV_9100(ah)) return; REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); } static bool ath9k_hw_chip_test(struct ath_hal *ah) { u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) }; u32 regHold[2]; u32 patternData[4] = { 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 }; int i, j; for (i = 0; i < 2; i++) { u32 addr = regAddr[i]; u32 wrData, rdData; regHold[i] = REG_READ(ah, addr); for (j = 0; j < 0x100; j++) { wrData = (j << 16) | j; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (rdData != wrData) { DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%s: address test failed " "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", __func__, addr, wrData, rdData); return false; } } for (j = 0; j < 4; j++) { wrData = patternData[j]; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (wrData != rdData) { DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%s: address test failed " "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", __func__, addr, wrData, rdData); return false; } } REG_WRITE(ah, regAddr[i], regHold[i]); } udelay(100); return true; } static const char *ath9k_hw_devname(u16 devid) { switch (devid) { case AR5416_DEVID_PCI: case AR5416_DEVID_PCIE: return "Atheros 5416"; case AR9160_DEVID_PCI: return "Atheros 9160"; case AR9280_DEVID_PCI: case AR9280_DEVID_PCIE: return "Atheros 9280"; } return NULL; } static void ath9k_hw_set_defaults(struct ath_hal *ah) { int i; ah->ah_config.dma_beacon_response_time = 2; ah->ah_config.sw_beacon_response_time = 10; ah->ah_config.additional_swba_backoff = 0; ah->ah_config.ack_6mb = 0x0; ah->ah_config.cwm_ignore_extcca = 0; ah->ah_config.pcie_powersave_enable = 0; ah->ah_config.pcie_l1skp_enable = 0; ah->ah_config.pcie_clock_req = 0; ah->ah_config.pcie_power_reset = 0x100; ah->ah_config.pcie_restore = 0; ah->ah_config.pcie_waen = 0; ah->ah_config.analog_shiftreg = 1; ah->ah_config.ht_enable = 1; ah->ah_config.ofdm_trig_low = 200; ah->ah_config.ofdm_trig_high = 500; ah->ah_config.cck_trig_high = 200; ah->ah_config.cck_trig_low = 100; ah->ah_config.enable_ani = 1; ah->ah_config.noise_immunity_level = 4; ah->ah_config.ofdm_weaksignal_det = 1; ah->ah_config.cck_weaksignal_thr = 0; ah->ah_config.spur_immunity_level = 2; ah->ah_config.firstep_level = 0; ah->ah_config.rssi_thr_high = 40; ah->ah_config.rssi_thr_low = 7; ah->ah_config.diversity_control = 0; ah->ah_config.antenna_switch_swap = 0; for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { ah->ah_config.spurchans[i][0] = AR_NO_SPUR; ah->ah_config.spurchans[i][1] = AR_NO_SPUR; } ah->ah_config.intr_mitigation = 1; } static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid, struct ath_softc *sc, void __iomem *mem, int *status) { static const u8 defbssidmask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; struct ath_hal_5416 *ahp; struct ath_hal *ah; ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL); if (ahp == NULL) { DPRINTF(sc, ATH_DBG_FATAL, "%s: cannot allocate memory for state block\n", __func__); *status = -ENOMEM; return NULL; } ah = &ahp->ah; ah->ah_sc = sc; ah->ah_sh = mem; ah->ah_magic = AR5416_MAGIC; ah->ah_countryCode = CTRY_DEFAULT; ah->ah_devid = devid; ah->ah_subvendorid = 0; ah->ah_flags = 0; if ((devid == AR5416_AR9100_DEVID)) ah->ah_macVersion = AR_SREV_VERSION_9100; if (!AR_SREV_9100(ah)) ah->ah_flags = AH_USE_EEPROM; ah->ah_powerLimit = MAX_RATE_POWER; ah->ah_tpScale = ATH9K_TP_SCALE_MAX; ahp->ah_atimWindow = 0; ahp->ah_diversityControl = ah->ah_config.diversity_control; ahp->ah_antennaSwitchSwap = ah->ah_config.antenna_switch_swap; ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE; ahp->ah_beaconInterval = 100; ahp->ah_enable32kHzClock = DONT_USE_32KHZ; ahp->ah_slottime = (u32) -1; ahp->ah_acktimeout = (u32) -1; ahp->ah_ctstimeout = (u32) -1; ahp->ah_globaltxtimeout = (u32) -1; memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN); ahp->ah_gBeaconRate = 0; return ahp; } static int ath9k_hw_rfattach(struct ath_hal *ah) { bool rfStatus = false; int ecode = 0; rfStatus = ath9k_hw_init_rf(ah, &ecode); if (!rfStatus) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RF setup failed, status %u\n", __func__, ecode); return ecode; } return 0; } static int ath9k_hw_rf_claim(struct ath_hal *ah) { u32 val; REG_WRITE(ah, AR_PHY(0), 0x00000007); val = ath9k_hw_get_radiorev(ah); switch (val & AR_RADIO_SREV_MAJOR) { case 0: val = AR_RAD5133_SREV_MAJOR; break; case AR_RAD5133_SREV_MAJOR: case AR_RAD5122_SREV_MAJOR: case AR_RAD2133_SREV_MAJOR: case AR_RAD2122_SREV_MAJOR: break; default: DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: 5G Radio Chip Rev 0x%02X is not " "supported by this driver\n", __func__, ah->ah_analog5GhzRev); return -EOPNOTSUPP; } ah->ah_analog5GhzRev = val; return 0; } static int ath9k_hw_init_macaddr(struct ath_hal *ah) { u32 sum; int i; u16 eeval; struct ath_hal_5416 *ahp = AH5416(ah); sum = 0; for (i = 0; i < 3; i++) { eeval = ath9k_hw_get_eeprom(ah, AR_EEPROM_MAC(i)); sum += eeval; ahp->ah_macaddr[2 * i] = eeval >> 8; ahp->ah_macaddr[2 * i + 1] = eeval & 0xff; } if (sum == 0 || sum == 0xffff * 3) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: mac address read failed: %pM\n", __func__, ahp->ah_macaddr); return -EADDRNOTAVAIL; } return 0; } static int ath9k_hw_post_attach(struct ath_hal *ah) { int ecode; if (!ath9k_hw_chip_test(ah)) { DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%s: hardware self-test failed\n", __func__); return -ENODEV; } ecode = ath9k_hw_rf_claim(ah); if (ecode != 0) return ecode; ecode = ath9k_hw_eeprom_attach(ah); if (ecode != 0) return ecode; ecode = ath9k_hw_rfattach(ah); if (ecode != 0) return ecode; if (!AR_SREV_9100(ah)) { ath9k_hw_ani_setup(ah); ath9k_hw_ani_attach(ah); } return 0; } static struct ath_hal *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc, void __iomem *mem, int *status) { struct ath_hal_5416 *ahp; struct ath_hal *ah; int ecode; #ifndef CONFIG_SLOW_ANT_DIV u32 i; u32 j; #endif ahp = ath9k_hw_newstate(devid, sc, mem, status); if (ahp == NULL) return NULL; ah = &ahp->ah; ath9k_hw_set_defaults(ah); if (ah->ah_config.intr_mitigation != 0) ahp->ah_intrMitigation = true; if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't reset chip\n", __func__); ecode = -EIO; goto bad; } if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: couldn't wakeup chip\n", __func__); ecode = -EIO; goto bad; } if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) { if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) { ah->ah_config.serialize_regmode = SER_REG_MODE_ON; } else { ah->ah_config.serialize_regmode = SER_REG_MODE_OFF; } } DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: serialize_regmode is %d\n", __func__, ah->ah_config.serialize_regmode); if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) && (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) && (ah->ah_macVersion != AR_SREV_VERSION_9160) && (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah))) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: Mac Chip Rev 0x%02x.%x is not supported by " "this driver\n", __func__, ah->ah_macVersion, ah->ah_macRev); ecode = -EOPNOTSUPP; goto bad; } if (AR_SREV_9100(ah)) { ahp->ah_iqCalData.calData = &iq_cal_multi_sample; ahp->ah_suppCals = IQ_MISMATCH_CAL; ah->ah_isPciExpress = false; } ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID); if (AR_SREV_9160_10_OR_LATER(ah)) { if (AR_SREV_9280_10_OR_LATER(ah)) { ahp->ah_iqCalData.calData = &iq_cal_single_sample; ahp->ah_adcGainCalData.calData = &adc_gain_cal_single_sample; ahp->ah_adcDcCalData.calData = &adc_dc_cal_single_sample; ahp->ah_adcDcCalInitData.calData = &adc_init_dc_cal; } else { ahp->ah_iqCalData.calData = &iq_cal_multi_sample; ahp->ah_adcGainCalData.calData = &adc_gain_cal_multi_sample; ahp->ah_adcDcCalData.calData = &adc_dc_cal_multi_sample; ahp->ah_adcDcCalInitData.calData = &adc_init_dc_cal; } ahp->ah_suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; } if (AR_SREV_9160(ah)) { ah->ah_config.enable_ani = 1; ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL | ATH9K_ANI_FIRSTEP_LEVEL); } else { ahp->ah_ani_function = ATH9K_ANI_ALL; if (AR_SREV_9280_10_OR_LATER(ah)) { ahp->ah_ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; } } DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: This Mac Chip Rev 0x%02x.%x is \n", __func__, ah->ah_macVersion, ah->ah_macRev); if (AR_SREV_9280_20_OR_LATER(ah)) { INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2, ARRAY_SIZE(ar9280Modes_9280_2), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2, ARRAY_SIZE(ar9280Common_9280_2), 2); if (ah->ah_config.pcie_clock_req) { INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes, ar9280PciePhy_clkreq_off_L1_9280, ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2); } else { INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes, ar9280PciePhy_clkreq_always_on_L1_9280, ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2); } INIT_INI_ARRAY(&ahp->ah_iniModesAdditional, ar9280Modes_fast_clock_9280_2, ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3); } else if (AR_SREV_9280_10_OR_LATER(ah)) { INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280, ARRAY_SIZE(ar9280Modes_9280), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280, ARRAY_SIZE(ar9280Common_9280), 2); } else if (AR_SREV_9160_10_OR_LATER(ah)) { INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160, ARRAY_SIZE(ar5416Modes_9160), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160, ARRAY_SIZE(ar5416Common_9160), 2); INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160, ARRAY_SIZE(ar5416Bank0_9160), 2); INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160, ARRAY_SIZE(ar5416BB_RfGain_9160), 3); INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160, ARRAY_SIZE(ar5416Bank1_9160), 2); INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160, ARRAY_SIZE(ar5416Bank2_9160), 2); INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160, ARRAY_SIZE(ar5416Bank3_9160), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160, ARRAY_SIZE(ar5416Bank6_9160), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160, ARRAY_SIZE(ar5416Bank6TPC_9160), 3); INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160, ARRAY_SIZE(ar5416Bank7_9160), 2); if (AR_SREV_9160_11(ah)) { INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_91601_1, ARRAY_SIZE(ar5416Addac_91601_1), 2); } else { INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160, ARRAY_SIZE(ar5416Addac_9160), 2); } } else if (AR_SREV_9100_OR_LATER(ah)) { INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100, ARRAY_SIZE(ar5416Modes_9100), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100, ARRAY_SIZE(ar5416Common_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100, ARRAY_SIZE(ar5416Bank0_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100, ARRAY_SIZE(ar5416BB_RfGain_9100), 3); INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100, ARRAY_SIZE(ar5416Bank1_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100, ARRAY_SIZE(ar5416Bank2_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100, ARRAY_SIZE(ar5416Bank3_9100), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100, ARRAY_SIZE(ar5416Bank6_9100), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100, ARRAY_SIZE(ar5416Bank6TPC_9100), 3); INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100, ARRAY_SIZE(ar5416Bank7_9100), 2); INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100, ARRAY_SIZE(ar5416Addac_9100), 2); } else { INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes, ARRAY_SIZE(ar5416Modes), 6); INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common, ARRAY_SIZE(ar5416Common), 2); INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0, ARRAY_SIZE(ar5416Bank0), 2); INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain, ARRAY_SIZE(ar5416BB_RfGain), 3); INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1, ARRAY_SIZE(ar5416Bank1), 2); INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2, ARRAY_SIZE(ar5416Bank2), 2); INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3, ARRAY_SIZE(ar5416Bank3), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6, ARRAY_SIZE(ar5416Bank6), 3); INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC, ARRAY_SIZE(ar5416Bank6TPC), 3); INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7, ARRAY_SIZE(ar5416Bank7), 2); INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac, ARRAY_SIZE(ar5416Addac), 2); } if (ah->ah_isPciExpress) ath9k_hw_configpcipowersave(ah, 0); else ath9k_hw_disablepcie(ah); ecode = ath9k_hw_post_attach(ah); if (ecode != 0) goto bad; #ifndef CONFIG_SLOW_ANT_DIV if (ah->ah_devid == AR9280_DEVID_PCI) { for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) { u32 reg = INI_RA(&ahp->ah_iniModes, i, 0); for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) { u32 val = INI_RA(&ahp->ah_iniModes, i, j); INI_RA(&ahp->ah_iniModes, i, j) = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg, val); } } } #endif if (!ath9k_hw_fill_cap_info(ah)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s:failed ath9k_hw_fill_cap_info\n", __func__); ecode = -EINVAL; goto bad; } ecode = ath9k_hw_init_macaddr(ah); if (ecode != 0) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: failed initializing mac address\n", __func__); goto bad; } if (AR_SREV_9285(ah)) ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S); else ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S); ath9k_init_nfcal_hist_buffer(ah); return ah; bad: if (ahp) ath9k_hw_detach((struct ath_hal *) ahp); if (status) *status = ecode; return NULL; } static void ath9k_hw_init_bb(struct ath_hal *ah, struct ath9k_channel *chan) { u32 synthDelay; synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_CCK(chan)) synthDelay = (4 * synthDelay) / 22; else synthDelay /= 10; REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); udelay(synthDelay + BASE_ACTIVATE_DELAY); } static void ath9k_hw_init_qos(struct ath_hal *ah) { REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); REG_WRITE(ah, AR_QOS_NO_ACK, SM(2, AR_QOS_NO_ACK_TWO_BIT) | SM(5, AR_QOS_NO_ACK_BIT_OFF) | SM(0, AR_QOS_NO_ACK_BYTE_OFF)); REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); } static void ath9k_hw_init_pll(struct ath_hal *ah, struct ath9k_channel *chan) { u32 pll; if (AR_SREV_9100(ah)) { if (chan && IS_CHAN_5GHZ(chan)) pll = 0x1450; else pll = 0x1458; } else { if (AR_SREV_9280_10_OR_LATER(ah)) { pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) { pll |= SM(0x28, AR_RTC_9160_PLL_DIV); if (AR_SREV_9280_20(ah)) { if (((chan->channel % 20) == 0) || ((chan->channel % 10) == 0)) pll = 0x2850; else pll = 0x142c; } } else { pll |= SM(0x2c, AR_RTC_9160_PLL_DIV); } } else if (AR_SREV_9160_10_OR_LATER(ah)) { pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) pll |= SM(0x50, AR_RTC_9160_PLL_DIV); else pll |= SM(0x58, AR_RTC_9160_PLL_DIV); } else { pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2; if (chan && IS_CHAN_HALF_RATE(chan)) pll |= SM(0x1, AR_RTC_PLL_CLKSEL); else if (chan && IS_CHAN_QUARTER_RATE(chan)) pll |= SM(0x2, AR_RTC_PLL_CLKSEL); if (chan && IS_CHAN_5GHZ(chan)) pll |= SM(0xa, AR_RTC_PLL_DIV); else pll |= SM(0xb, AR_RTC_PLL_DIV); } } REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll); udelay(RTC_PLL_SETTLE_DELAY); REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); } static void ath9k_hw_init_chain_masks(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); int rx_chainmask, tx_chainmask; rx_chainmask = ahp->ah_rxchainmask; tx_chainmask = ahp->ah_txchainmask; switch (rx_chainmask) { case 0x5: REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); case 0x3: if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) { REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7); break; } case 0x1: case 0x2: if (!AR_SREV_9280(ah)) break; case 0x7: REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); break; default: break; } REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); if (tx_chainmask == 0x5) { REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); } if (AR_SREV_9100(ah)) REG_WRITE(ah, AR_PHY_ANALOG_SWAP, REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001); } static void ath9k_hw_init_interrupt_masks(struct ath_hal *ah, enum ath9k_opmode opmode) { struct ath_hal_5416 *ahp = AH5416(ah); ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN | AR_IMR_RXERR | AR_IMR_RXORN | AR_IMR_BCNMISC; if (ahp->ah_intrMitigation) ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; else ahp->ah_maskReg |= AR_IMR_RXOK; ahp->ah_maskReg |= AR_IMR_TXOK; if (opmode == ATH9K_M_HOSTAP) ahp->ah_maskReg |= AR_IMR_MIB; REG_WRITE(ah, AR_IMR, ahp->ah_maskReg); REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); } } static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us) { struct ath_hal_5416 *ahp = AH5416(ah); if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad ack timeout %u\n", __func__, us); ahp->ah_acktimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us)); ahp->ah_acktimeout = us; return true; } } static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us) { struct ath_hal_5416 *ahp = AH5416(ah); if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad cts timeout %u\n", __func__, us); ahp->ah_ctstimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us)); ahp->ah_ctstimeout = us; return true; } } static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah, u32 tu) { struct ath_hal_5416 *ahp = AH5416(ah); if (tu > 0xFFFF) { DPRINTF(ah->ah_sc, ATH_DBG_XMIT, "%s: bad global tx timeout %u\n", __func__, tu); ahp->ah_globaltxtimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); ahp->ah_globaltxtimeout = tu; return true; } } static void ath9k_hw_init_user_settings(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); DPRINTF(ah->ah_sc, ATH_DBG_RESET, "--AP %s ahp->ah_miscMode 0x%x\n", __func__, ahp->ah_miscMode); if (ahp->ah_miscMode != 0) REG_WRITE(ah, AR_PCU_MISC, REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode); if (ahp->ah_slottime != (u32) -1) ath9k_hw_setslottime(ah, ahp->ah_slottime); if (ahp->ah_acktimeout != (u32) -1) ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout); if (ahp->ah_ctstimeout != (u32) -1) ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout); if (ahp->ah_globaltxtimeout != (u32) -1) ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout); } const char *ath9k_hw_probe(u16 vendorid, u16 devid) { return vendorid == ATHEROS_VENDOR_ID ? ath9k_hw_devname(devid) : NULL; } void ath9k_hw_detach(struct ath_hal *ah) { if (!AR_SREV_9100(ah)) ath9k_hw_ani_detach(ah); ath9k_hw_rfdetach(ah); ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); kfree(ah); } struct ath_hal *ath9k_hw_attach(u16 devid, struct ath_softc *sc, void __iomem *mem, int *error) { struct ath_hal *ah = NULL; switch (devid) { case AR5416_DEVID_PCI: case AR5416_DEVID_PCIE: case AR9160_DEVID_PCI: case AR9280_DEVID_PCI: case AR9280_DEVID_PCIE: ah = ath9k_hw_do_attach(devid, sc, mem, error); break; default: DPRINTF(ah->ah_sc, ATH_DBG_ANY, "devid=0x%x not supported.\n", devid); ah = NULL; *error = -ENXIO; break; } return ah; } /*******/ /* INI */ /*******/ static void ath9k_hw_override_ini(struct ath_hal *ah, struct ath9k_channel *chan) { if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_9280_10_OR_LATER(ah)) return; REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); } static u32 ath9k_hw_ini_fixup(struct ath_hal *ah, struct ar5416_eeprom *pEepData, u32 reg, u32 value) { struct base_eep_header *pBase = &(pEepData->baseEepHeader); switch (ah->ah_devid) { case AR9280_DEVID_PCI: if (reg == 0x7894) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "ini VAL: %x EEPROM: %x\n", value, (pBase->version & 0xff)); if ((pBase->version & 0xff) > 0x0a) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "PWDCLKIND: %d\n", pBase->pwdclkind); value &= ~AR_AN_TOP2_PWDCLKIND; value |= AR_AN_TOP2_PWDCLKIND & (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S); } else { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "PWDCLKIND Earlier Rev\n"); } DPRINTF(ah->ah_sc, ATH_DBG_ANY, "final ini VAL: %x\n", value); } break; } return value; } static int ath9k_hw_process_ini(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { int i, regWrites = 0; struct ath_hal_5416 *ahp = AH5416(ah); u32 modesIndex, freqIndex; int status; switch (chan->chanmode) { case CHANNEL_A: case CHANNEL_A_HT20: modesIndex = 1; freqIndex = 1; break; case CHANNEL_A_HT40PLUS: case CHANNEL_A_HT40MINUS: modesIndex = 2; freqIndex = 1; break; case CHANNEL_G: case CHANNEL_G_HT20: case CHANNEL_B: modesIndex = 4; freqIndex = 2; break; case CHANNEL_G_HT40PLUS: case CHANNEL_G_HT40MINUS: modesIndex = 3; freqIndex = 2; break; default: return -EINVAL; } REG_WRITE(ah, AR_PHY(0), 0x00000007); REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO); ath9k_hw_set_addac(ah, chan); if (AR_SREV_5416_V22_OR_LATER(ah)) { REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites); } else { struct ar5416IniArray temp; u32 addacSize = sizeof(u32) * ahp->ah_iniAddac.ia_rows * ahp->ah_iniAddac.ia_columns; memcpy(ahp->ah_addac5416_21, ahp->ah_iniAddac.ia_array, addacSize); (ahp->ah_addac5416_21)[31 * ahp->ah_iniAddac.ia_columns + 1] = 0; temp.ia_array = ahp->ah_addac5416_21; temp.ia_columns = ahp->ah_iniAddac.ia_columns; temp.ia_rows = ahp->ah_iniAddac.ia_rows; REG_WRITE_ARRAY(&temp, 1, regWrites); } REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) { u32 reg = INI_RA(&ahp->ah_iniModes, i, 0); u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex); #ifdef CONFIG_SLOW_ANT_DIV if (ah->ah_devid == AR9280_DEVID_PCI) val = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg, val); #endif REG_WRITE(ah, reg, val); if (reg >= 0x7800 && reg < 0x78a0 && ah->ah_config.analog_shiftreg) { udelay(100); } DO_DELAY(regWrites); } for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) { u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0); u32 val = INI_RA(&ahp->ah_iniCommon, i, 1); REG_WRITE(ah, reg, val); if (reg >= 0x7800 && reg < 0x78a0 && ah->ah_config.analog_shiftreg) { udelay(100); } DO_DELAY(regWrites); } ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites); if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) { REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex, regWrites); } ath9k_hw_override_ini(ah, chan); ath9k_hw_set_regs(ah, chan, macmode); ath9k_hw_init_chain_masks(ah); status = ath9k_hw_set_txpower(ah, chan, ath9k_regd_get_ctl(ah, chan), ath9k_regd_get_antenna_allowed(ah, chan), chan->maxRegTxPower * 2, min((u32) MAX_RATE_POWER, (u32) ah->ah_powerLimit)); if (status != 0) { DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: error init'ing transmit power\n", __func__); return -EIO; } if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) { DPRINTF(ah->ah_sc, ATH_DBG_REG_IO, "%s: ar5416SetRfRegs failed\n", __func__); return -EIO; } return 0; } /****************************************/ /* Reset and Channel Switching Routines */ /****************************************/ static void ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan) { u32 rfMode = 0; if (chan == NULL) return; rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan)) ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; if (!AR_SREV_9280_10_OR_LATER(ah)) rfMode |= (IS_CHAN_5GHZ(chan)) ? AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ; if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); REG_WRITE(ah, AR_PHY_MODE, rfMode); } static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah) { REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); } static inline void ath9k_hw_set_dma(struct ath_hal *ah) { u32 regval; regval = REG_READ(ah, AR_AHB_MODE); REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel); regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); if (AR_SREV_9285(ah)) { REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); } else { REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); } } static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode) { u32 val; val = REG_READ(ah, AR_STA_ID1); val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); switch (opmode) { case ATH9K_M_HOSTAP: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE); REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case ATH9K_M_IBSS: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE); REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; case ATH9K_M_STA: case ATH9K_M_MONITOR: REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); break; } } static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah, u32 coef_scaled, u32 *coef_mantissa, u32 *coef_exponent) { u32 coef_exp, coef_man; for (coef_exp = 31; coef_exp > 0; coef_exp--) if ((coef_scaled >> coef_exp) & 0x1) break; coef_exp = 14 - (coef_exp - COEF_SCALE_S); coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); *coef_exponent = coef_exp - 16; } static void ath9k_hw_set_delta_slope(struct ath_hal *ah, struct ath9k_channel *chan) { u32 coef_scaled, ds_coef_exp, ds_coef_man; u32 clockMhzScaled = 0x64000000; struct chan_centers centers; if (IS_CHAN_HALF_RATE(chan)) clockMhzScaled = clockMhzScaled >> 1; else if (IS_CHAN_QUARTER_RATE(chan)) clockMhzScaled = clockMhzScaled >> 2; ath9k_hw_get_channel_centers(ah, chan, ¢ers); coef_scaled = clockMhzScaled / centers.synth_center; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); coef_scaled = (9 * coef_scaled) / 10; ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); REG_RMW_FIELD(ah, AR_PHY_HALFGI, AR_PHY_HALFGI_DSC_MAN, ds_coef_man); REG_RMW_FIELD(ah, AR_PHY_HALFGI, AR_PHY_HALFGI_DSC_EXP, ds_coef_exp); } static bool ath9k_hw_set_reset(struct ath_hal *ah, int type) { u32 rst_flags; u32 tmpReg; REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (AR_SREV_9100(ah)) { rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; } else { tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); } else { REG_WRITE(ah, AR_RC, AR_RC_AHB); } rst_flags = AR_RTC_RC_MAC_WARM; if (type == ATH9K_RESET_COLD) rst_flags |= AR_RTC_RC_MAC_COLD; } REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags); udelay(50); REG_WRITE(ah, (u16) (AR_RTC_RC), 0); if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC stuck in MAC reset\n", __func__); return false; } if (!AR_SREV_9100(ah)) REG_WRITE(ah, AR_RC, 0); ath9k_hw_init_pll(ah, NULL); if (AR_SREV_9100(ah)) udelay(50); return true; } static bool ath9k_hw_set_reset_power_on(struct ath_hal *ah) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); REG_WRITE(ah, (u16) (AR_RTC_RESET), 0); REG_WRITE(ah, (u16) (AR_RTC_RESET), 1); if (!ath9k_hw_wait(ah, AR_RTC_STATUS, AR_RTC_STATUS_M, AR_RTC_STATUS_ON)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: RTC not waking up\n", __func__); return false; } ath9k_hw_read_revisions(ah); return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); } static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); switch (type) { case ATH9K_RESET_POWER_ON: return ath9k_hw_set_reset_power_on(ah); break; case ATH9K_RESET_WARM: case ATH9K_RESET_COLD: return ath9k_hw_set_reset(ah, type); break; default: return false; } } static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { u32 phymode; struct ath_hal_5416 *ahp = AH5416(ah); phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH; if (IS_CHAN_HT40(chan)) { phymode |= AR_PHY_FC_DYN2040_EN; if ((chan->chanmode == CHANNEL_A_HT40PLUS) || (chan->chanmode == CHANNEL_G_HT40PLUS)) phymode |= AR_PHY_FC_DYN2040_PRI_CH; if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25) phymode |= AR_PHY_FC_DYN2040_EXT_CH; } REG_WRITE(ah, AR_PHY_TURBO, phymode); ath9k_hw_set11nmac2040(ah, macmode); REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); } static bool ath9k_hw_chip_reset(struct ath_hal *ah, struct ath9k_channel *chan) { struct ath_hal_5416 *ahp = AH5416(ah); if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) return false; if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; ahp->ah_chipFullSleep = false; ath9k_hw_init_pll(ah, chan); ath9k_hw_set_rfmode(ah, chan); return true; } static struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah, struct ath9k_channel *chan) { if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid channel %u/0x%x; not marked as " "2GHz or 5GHz\n", __func__, chan->channel, chan->channelFlags); return NULL; } if (!IS_CHAN_OFDM(chan) && !IS_CHAN_CCK(chan) && !IS_CHAN_HT20(chan) && !IS_CHAN_HT40(chan)) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid channel %u/0x%x; not marked as " "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n", __func__, chan->channel, chan->channelFlags); return NULL; } return ath9k_regd_check_channel(ah, chan); } static bool ath9k_hw_channel_change(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode) { u32 synthDelay, qnum; for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { if (ath9k_hw_numtxpending(ah, qnum)) { DPRINTF(ah->ah_sc, ATH_DBG_QUEUE, "%s: Transmit frames pending on queue %d\n", __func__, qnum); return false; } } REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) { DPRINTF(ah->ah_sc, ATH_DBG_PHY_IO, "%s: Could not kill baseband RX\n", __func__); return false; } ath9k_hw_set_regs(ah, chan, macmode); if (AR_SREV_9280_10_OR_LATER(ah)) { if (!(ath9k_hw_ar9280_set_channel(ah, chan))) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: failed to set channel\n", __func__); return false; } } else { if (!(ath9k_hw_set_channel(ah, chan))) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: failed to set channel\n", __func__); return false; } } if (ath9k_hw_set_txpower(ah, chan, ath9k_regd_get_ctl(ah, chan), ath9k_regd_get_antenna_allowed(ah, chan), chan->maxRegTxPower * 2, min((u32) MAX_RATE_POWER, (u32) ah->ah_powerLimit)) != 0) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: error init'ing transmit power\n", __func__); return false; } synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; if (IS_CHAN_CCK(chan)) synthDelay = (4 * synthDelay) / 22; else synthDelay /= 10; udelay(synthDelay + BASE_ACTIVATE_DELAY); REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) ath9k_hw_set_delta_slope(ah, chan); if (AR_SREV_9280_10_OR_LATER(ah)) ath9k_hw_9280_spur_mitigate(ah, chan); else ath9k_hw_spur_mitigate(ah, chan); if (!chan->oneTimeCalsDone) chan->oneTimeCalsDone = true; return true; } static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan) { int bb_spur = AR_NO_SPUR; int freq; int bin, cur_bin; int bb_spur_off, spur_subchannel_sd; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, newVal; int i; int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; int inc[4] = { 0, 100, 0, 0 }; struct chan_centers centers; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; bool is2GHz = IS_CHAN_2GHZ(chan); memset(&mask_m, 0, sizeof(int8_t) * 123); memset(&mask_p, 0, sizeof(int8_t) * 123); ath9k_hw_get_channel_centers(ah, chan, ¢ers); freq = centers.synth_center; ah->ah_config.spurmode = SPUR_ENABLE_EEPROM; for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz); if (is2GHz) cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; else cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; if (AR_NO_SPUR == cur_bb_spur) break; cur_bb_spur = cur_bb_spur - freq; if (IS_CHAN_HT40(chan)) { if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { bb_spur = cur_bb_spur; break; } } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) { REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); return; } else { REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); } bin = bb_spur * 320; tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); if (IS_CHAN_HT40(chan)) { if (bb_spur < 0) { spur_subchannel_sd = 1; bb_spur_off = bb_spur + 10; } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur - 10; } } else { spur_subchannel_sd = 0; bb_spur_off = bb_spur; } if (IS_CHAN_HT40(chan)) spur_delta_phase = ((bb_spur * 262144) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; else spur_delta_phase = ((bb_spur * 524288) / 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); REG_WRITE(ah, AR_PHY_TIMING11, newVal); newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); REG_WRITE(ah, chan_mask_reg[i], chan_mask); } cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { /* workaround for gcc bug #37014 */ volatile int tmp = abs(cur_vit_mask - bin); if (tmp < 75) mask_amt = 1; else mask_amt = 0; if (cur_vit_mask < 0) mask_m[abs(cur_vit_mask / 100)] = mask_amt; else mask_p[cur_vit_mask / 100] = mask_amt; } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) | (mask_m[2] << 26) | (mask_m[3] << 24) | (mask_m[4] << 22) | (mask_m[5] << 20) | (mask_m[6] << 18) | (mask_m[7] << 16) | (mask_m[8] << 14) | (mask_m[9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[9] << 16) | (mask_p[8] << 14) | (mask_p[7] << 12) | (mask_p[6] << 10) | (mask_p[5] << 8) | (mask_p[4] << 6) | (mask_p[3] << 4) | (mask_p[2] << 2) | (mask_p[1] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); } static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan) { int bb_spur = AR_NO_SPUR; int bin, cur_bin; int spur_freq_sd; int spur_delta_phase; int denominator; int upper, lower, cur_vit_mask; int tmp, new; int i; int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 }; int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 }; int inc[4] = { 0, 100, 0, 0 }; int8_t mask_m[123]; int8_t mask_p[123]; int8_t mask_amt; int tmp_mask; int cur_bb_spur; bool is2GHz = IS_CHAN_2GHZ(chan); memset(&mask_m, 0, sizeof(int8_t) * 123); memset(&mask_p, 0, sizeof(int8_t) * 123); for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz); if (AR_NO_SPUR == cur_bb_spur) break; cur_bb_spur = cur_bb_spur - (chan->channel * 10); if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) { bb_spur = cur_bb_spur; break; } } if (AR_NO_SPUR == bb_spur) return; bin = bb_spur * 32; tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new); new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | AR_PHY_SPUR_REG_ENABLE_MASK_PPM | AR_PHY_SPUR_REG_MASK_RATE_SELECT | AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); REG_WRITE(ah, AR_PHY_SPUR_REG, new); spur_delta_phase = ((bb_spur * 524288) / 100) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; denominator = IS_CHAN_2GHZ(chan) ? 440 : 400; spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff; new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); REG_WRITE(ah, AR_PHY_TIMING11, new); cur_bin = -6000; upper = bin + 100; lower = bin - 100; for (i = 0; i < 4; i++) { int pilot_mask = 0; int chan_mask = 0; int bp = 0; for (bp = 0; bp < 30; bp++) { if ((cur_bin > lower) && (cur_bin < upper)) { pilot_mask = pilot_mask | 0x1 << bp; chan_mask = chan_mask | 0x1 << bp; } cur_bin += 100; } cur_bin += inc[i]; REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); REG_WRITE(ah, chan_mask_reg[i], chan_mask); } cur_vit_mask = 6100; upper = bin + 120; lower = bin - 120; for (i = 0; i < 123; i++) { if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { /* workaround for gcc bug #37014 */ volatile int tmp = abs(cur_vit_mask - bin); if (tmp < 75) mask_amt = 1; else mask_amt = 0; if (cur_vit_mask < 0) mask_m[abs(cur_vit_mask / 100)] = mask_amt; else mask_p[cur_vit_mask / 100] = mask_amt; } cur_vit_mask -= 100; } tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) | (mask_m[48] << 26) | (mask_m[49] << 24) | (mask_m[50] << 22) | (mask_m[51] << 20) | (mask_m[52] << 18) | (mask_m[53] << 16) | (mask_m[54] << 14) | (mask_m[55] << 12) | (mask_m[56] << 10) | (mask_m[57] << 8) | (mask_m[58] << 6) | (mask_m[59] << 4) | (mask_m[60] << 2) | (mask_m[61] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); tmp_mask = (mask_m[31] << 28) | (mask_m[32] << 26) | (mask_m[33] << 24) | (mask_m[34] << 22) | (mask_m[35] << 20) | (mask_m[36] << 18) | (mask_m[37] << 16) | (mask_m[48] << 14) | (mask_m[39] << 12) | (mask_m[40] << 10) | (mask_m[41] << 8) | (mask_m[42] << 6) | (mask_m[43] << 4) | (mask_m[44] << 2) | (mask_m[45] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) | (mask_m[18] << 26) | (mask_m[18] << 24) | (mask_m[20] << 22) | (mask_m[20] << 20) | (mask_m[22] << 18) | (mask_m[22] << 16) | (mask_m[24] << 14) | (mask_m[24] << 12) | (mask_m[25] << 10) | (mask_m[26] << 8) | (mask_m[27] << 6) | (mask_m[28] << 4) | (mask_m[29] << 2) | (mask_m[30] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) | (mask_m[2] << 26) | (mask_m[3] << 24) | (mask_m[4] << 22) | (mask_m[5] << 20) | (mask_m[6] << 18) | (mask_m[7] << 16) | (mask_m[8] << 14) | (mask_m[9] << 12) | (mask_m[10] << 10) | (mask_m[11] << 8) | (mask_m[12] << 6) | (mask_m[13] << 4) | (mask_m[14] << 2) | (mask_m[15] << 0); REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); tmp_mask = (mask_p[15] << 28) | (mask_p[14] << 26) | (mask_p[13] << 24) | (mask_p[12] << 22) | (mask_p[11] << 20) | (mask_p[10] << 18) | (mask_p[9] << 16) | (mask_p[8] << 14) | (mask_p[7] << 12) | (mask_p[6] << 10) | (mask_p[5] << 8) | (mask_p[4] << 6) | (mask_p[3] << 4) | (mask_p[2] << 2) | (mask_p[1] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); tmp_mask = (mask_p[30] << 28) | (mask_p[29] << 26) | (mask_p[28] << 24) | (mask_p[27] << 22) | (mask_p[26] << 20) | (mask_p[25] << 18) | (mask_p[24] << 16) | (mask_p[23] << 14) | (mask_p[22] << 12) | (mask_p[21] << 10) | (mask_p[20] << 8) | (mask_p[19] << 6) | (mask_p[18] << 4) | (mask_p[17] << 2) | (mask_p[16] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); tmp_mask = (mask_p[45] << 28) | (mask_p[44] << 26) | (mask_p[43] << 24) | (mask_p[42] << 22) | (mask_p[41] << 20) | (mask_p[40] << 18) | (mask_p[39] << 16) | (mask_p[38] << 14) | (mask_p[37] << 12) | (mask_p[36] << 10) | (mask_p[35] << 8) | (mask_p[34] << 6) | (mask_p[33] << 4) | (mask_p[32] << 2) | (mask_p[31] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) | (mask_p[59] << 26) | (mask_p[58] << 24) | (mask_p[57] << 22) | (mask_p[56] << 20) | (mask_p[55] << 18) | (mask_p[54] << 16) | (mask_p[53] << 14) | (mask_p[52] << 12) | (mask_p[51] << 10) | (mask_p[50] << 8) | (mask_p[49] << 6) | (mask_p[48] << 4) | (mask_p[47] << 2) | (mask_p[46] << 0); REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); } bool ath9k_hw_reset(struct ath_hal *ah, struct ath9k_channel *chan, enum ath9k_ht_macmode macmode, u8 txchainmask, u8 rxchainmask, enum ath9k_ht_extprotspacing extprotspacing, bool bChannelChange, int *status) { u32 saveLedState; struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_channel *curchan = ah->ah_curchan; u32 saveDefAntenna; u32 macStaId1; int ecode; int i, rx_chainmask; ahp->ah_extprotspacing = extprotspacing; ahp->ah_txchainmask = txchainmask; ahp->ah_rxchainmask = rxchainmask; if (AR_SREV_9280(ah)) { ahp->ah_txchainmask &= 0x3; ahp->ah_rxchainmask &= 0x3; } if (ath9k_hw_check_chan(ah, chan) == NULL) { DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid channel %u/0x%x; no mapping\n", __func__, chan->channel, chan->channelFlags); ecode = -EINVAL; goto bad; } if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { ecode = -EIO; goto bad; } if (curchan) ath9k_hw_getnf(ah, curchan); if (bChannelChange && (ahp->ah_chipFullSleep != true) && (ah->ah_curchan != NULL) && (chan->channel != ah->ah_curchan->channel) && ((chan->channelFlags & CHANNEL_ALL) == (ah->ah_curchan->channelFlags & CHANNEL_ALL)) && (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) && !IS_CHAN_A_5MHZ_SPACED(ah-> ah_curchan)))) { if (ath9k_hw_channel_change(ah, chan, macmode)) { ath9k_hw_loadnf(ah, ah->ah_curchan); ath9k_hw_start_nfcal(ah); return true; } } saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); if (saveDefAntenna == 0) saveDefAntenna = 1; macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; saveLedState = REG_READ(ah, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); ath9k_hw_mark_phy_inactive(ah); if (!ath9k_hw_chip_reset(ah, chan)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: chip reset failed\n", __func__); ecode = -EINVAL; goto bad; } if (AR_SREV_9280(ah)) { REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) { if (IS_CHAN_5GHZ(chan)) ath9k_hw_set_gpio(ah, 9, 0); else ath9k_hw_set_gpio(ah, 9, 1); } ath9k_hw_cfg_output(ah, 9, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); } ecode = ath9k_hw_process_ini(ah, chan, macmode); if (ecode != 0) { ecode = -EINVAL; goto bad; } if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) ath9k_hw_set_delta_slope(ah, chan); if (AR_SREV_9280_10_OR_LATER(ah)) ath9k_hw_9280_spur_mitigate(ah, chan); else ath9k_hw_spur_mitigate(ah, chan); if (!ath9k_hw_eeprom_set_board_values(ah, chan)) { DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "%s: error setting board options\n", __func__); ecode = -EIO; goto bad; } ath9k_hw_decrease_chain_power(ah, chan); REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr)); REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4) | macStaId1 | AR_STA_ID1_RTS_USE_DEF | (ah->ah_config. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) | ahp->ah_staId1Defaults); ath9k_hw_set_operating_mode(ah, ah->ah_opmode); REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask)); REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4)); REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid)); REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) | ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S)); REG_WRITE(ah, AR_ISR, ~0); REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); if (AR_SREV_9280_10_OR_LATER(ah)) { if (!(ath9k_hw_ar9280_set_channel(ah, chan))) { ecode = -EIO; goto bad; } } else { if (!(ath9k_hw_set_channel(ah, chan))) { ecode = -EIO; goto bad; } } for (i = 0; i < AR_NUM_DCU; i++) REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); ahp->ah_intrTxqs = 0; for (i = 0; i < ah->ah_caps.total_queues; i++) ath9k_hw_resettxqueue(ah, i); ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode); ath9k_hw_init_qos(ah); #ifdef CONFIG_RFKILL if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) ath9k_enable_rfkill(ah); #endif ath9k_hw_init_user_settings(ah); REG_WRITE(ah, AR_STA_ID1, REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); ath9k_hw_set_dma(ah); REG_WRITE(ah, AR_OBS, 8); if (ahp->ah_intrMitigation) { REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); } ath9k_hw_init_bb(ah, chan); if (!ath9k_hw_init_cal(ah, chan)){ ecode = -EIO;; goto bad; } rx_chainmask = ahp->ah_rxchainmask; if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) { REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); } REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); if (AR_SREV_9100(ah)) { u32 mask; mask = REG_READ(ah, AR_CFG); if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s CFG Byte Swap Set 0x%x\n", __func__, mask); } else { mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; REG_WRITE(ah, AR_CFG, mask); DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s Setting CFG 0x%x\n", __func__, REG_READ(ah, AR_CFG)); } } else { #ifdef __BIG_ENDIAN REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); #endif } return true; bad: if (status) *status = ecode; return false; } /************************/ /* Key Cache Management */ /************************/ bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry) { u32 keyType; if (entry >= ah->ah_caps.keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: entry %u out of range\n", __func__, entry); return false; } keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry)); REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR); REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0); REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0); if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { u16 micentry = entry + 64; REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); } if (ah->ah_curchan == NULL) return true; return true; } bool ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry, const u8 *mac) { u32 macHi, macLo; if (entry >= ah->ah_caps.keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: entry %u out of range\n", __func__, entry); return false; } if (mac != NULL) { macHi = (mac[5] << 8) | mac[4]; macLo = (mac[3] << 24) | (mac[2] << 16) | (mac[1] << 8) | mac[0]; macLo >>= 1; macLo |= (macHi & 1) << 31; macHi >>= 1; } else { macLo = macHi = 0; } REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo); REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID); return true; } bool ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry, const struct ath9k_keyval *k, const u8 *mac, int xorKey) { const struct ath9k_hw_capabilities *pCap = &ah->ah_caps; u32 key0, key1, key2, key3, key4; u32 keyType; u32 xorMask = xorKey ? (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8 | ATH9K_KEY_XOR) : 0; struct ath_hal_5416 *ahp = AH5416(ah); if (entry >= pCap->keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: entry %u out of range\n", __func__, entry); return false; } switch (k->kv_type) { case ATH9K_CIPHER_AES_OCB: keyType = AR_KEYTABLE_TYPE_AES; break; case ATH9K_CIPHER_AES_CCM: if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: AES-CCM not supported by " "mac rev 0x%x\n", __func__, ah->ah_macRev); return false; } keyType = AR_KEYTABLE_TYPE_CCM; break; case ATH9K_CIPHER_TKIP: keyType = AR_KEYTABLE_TYPE_TKIP; if (ATH9K_IS_MIC_ENABLED(ah) && entry + 64 >= pCap->keycache_size) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: entry %u inappropriate for TKIP\n", __func__, entry); return false; } break; case ATH9K_CIPHER_WEP: if (k->kv_len < LEN_WEP40) { DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: WEP key length %u too small\n", __func__, k->kv_len); return false; } if (k->kv_len <= LEN_WEP40) keyType = AR_KEYTABLE_TYPE_40; else if (k->kv_len <= LEN_WEP104) keyType = AR_KEYTABLE_TYPE_104; else keyType = AR_KEYTABLE_TYPE_128; break; case ATH9K_CIPHER_CLR: keyType = AR_KEYTABLE_TYPE_CLR; break; default: DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE, "%s: cipher %u not supported\n", __func__, k->kv_type); return false; } key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask; key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff; key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask; key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff; key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask; if (k->kv_len <= LEN_WEP104) key4 &= 0xff; if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) { u16 micentry = entry + 64; REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1); REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); (void) ath9k_hw_keysetmac(ah, entry, mac); if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) { u32 mic0, mic1, mic2, mic3, mic4; mic0 = get_unaligned_le32(k->kv_mic + 0); mic2 = get_unaligned_le32(k->kv_mic + 4); mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff; mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff; mic4 = get_unaligned_le32(k->kv_txmic + 4); REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1); REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3); REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4); REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); } else { u32 mic0, mic2; mic0 = get_unaligned_le32(k->kv_mic + 0); mic2 = get_unaligned_le32(k->kv_mic + 4); REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0); REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2); REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry), AR_KEYTABLE_TYPE_CLR); } REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0); REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); } else { REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0); REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1); REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2); REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3); REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4); REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType); (void) ath9k_hw_keysetmac(ah, entry, mac); } if (ah->ah_curchan == NULL) return true; return true; } bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry) { if (entry < ah->ah_caps.keycache_size) { u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry)); if (val & AR_KEYTABLE_VALID) return true; } return false; } /******************************/ /* Power Management (Chipset) */ /******************************/ static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (setChip) { REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); if (!AR_SREV_9100(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); REG_CLR_BIT(ah, (u16) (AR_RTC_RESET), AR_RTC_RESET_EN); } } static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (setChip) { struct ath9k_hw_capabilities *pCap = &ah->ah_caps; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_ON_INT); } else { REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } } } static bool ath9k_hw_set_power_awake(struct ath_hal *ah, int setChip) { u32 val; int i; if (setChip) { if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { if (ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON) != true) { return false; } } if (AR_SREV_9100(ah)) REG_SET_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); udelay(50); for (i = POWER_UP_TIME / 50; i > 0; i--) { val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; if (val == AR_RTC_STATUS_ON) break; udelay(50); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } if (i == 0) { DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: Failed to wakeup in %uus\n", __func__, POWER_UP_TIME / 20); return false; } } REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); return true; } bool ath9k_hw_setpower(struct ath_hal *ah, enum ath9k_power_mode mode) { struct ath_hal_5416 *ahp = AH5416(ah); static const char *modes[] = { "AWAKE", "FULL-SLEEP", "NETWORK SLEEP", "UNDEFINED" }; int status = true, setChip = true; DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: %s -> %s (%s)\n", __func__, modes[ahp->ah_powerMode], modes[mode], setChip ? "set chip " : ""); switch (mode) { case ATH9K_PM_AWAKE: status = ath9k_hw_set_power_awake(ah, setChip); break; case ATH9K_PM_FULL_SLEEP: ath9k_set_power_sleep(ah, setChip); ahp->ah_chipFullSleep = true; break; case ATH9K_PM_NETWORK_SLEEP: ath9k_set_power_network_sleep(ah, setChip); break; default: DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s: unknown power mode %u\n", __func__, mode); return false; } ahp->ah_powerMode = mode; return status; } void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore) { struct ath_hal_5416 *ahp = AH5416(ah); u8 i; if (ah->ah_isPciExpress != true) return; if (ah->ah_config.pcie_powersave_enable == 2) return; if (restore) return; if (AR_SREV_9280_20_OR_LATER(ah)) { for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) { REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0), INI_RA(&ahp->ah_iniPcieSerdes, i, 1)); } udelay(1000); } else if (AR_SREV_9280(ah) && (ah->ah_macRev == AR_SREV_REVISION_9280_10)) { REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019); REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820); REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560); if (ah->ah_config.pcie_clock_req) REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc); else REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); udelay(1000); } else { REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039); REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824); REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579); REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); } REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); if (ah->ah_config.pcie_waen) { REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen); } else { if (AR_SREV_9280(ah)) REG_WRITE(ah, AR_WA, 0x0040073f); else REG_WRITE(ah, AR_WA, 0x0000073f); } } /**********************/ /* Interrupt Handling */ /**********************/ bool ath9k_hw_intrpend(struct ath_hal *ah) { u32 host_isr; if (AR_SREV_9100(ah)) return true; host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE); if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS)) return true; host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE); if ((host_isr & AR_INTR_SYNC_DEFAULT) && (host_isr != AR_INTR_SPURIOUS)) return true; return false; } bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked) { u32 isr = 0; u32 mask2 = 0; struct ath9k_hw_capabilities *pCap = &ah->ah_caps; u32 sync_cause = 0; bool fatal_int = false; struct ath_hal_5416 *ahp = AH5416(ah); if (!AR_SREV_9100(ah)) { if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) { if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) { isr = REG_READ(ah, AR_ISR); } } sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) & AR_INTR_SYNC_DEFAULT; *masked = 0; if (!isr && !sync_cause) return false; } else { *masked = 0; isr = REG_READ(ah, AR_ISR); } if (isr) { if (isr & AR_ISR_BCNMISC) { u32 isr2; isr2 = REG_READ(ah, AR_ISR_S2); if (isr2 & AR_ISR_S2_TIM) mask2 |= ATH9K_INT_TIM; if (isr2 & AR_ISR_S2_DTIM) mask2 |= ATH9K_INT_DTIM; if (isr2 & AR_ISR_S2_DTIMSYNC) mask2 |= ATH9K_INT_DTIMSYNC; if (isr2 & (AR_ISR_S2_CABEND)) mask2 |= ATH9K_INT_CABEND; if (isr2 & AR_ISR_S2_GTT) mask2 |= ATH9K_INT_GTT; if (isr2 & AR_ISR_S2_CST) mask2 |= ATH9K_INT_CST; } isr = REG_READ(ah, AR_ISR_RAC); if (isr == 0xffffffff) { *masked = 0; return false; } *masked = isr & ATH9K_INT_COMMON; if (ahp->ah_intrMitigation) { if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) *masked |= ATH9K_INT_RX; } if (isr & (AR_ISR_RXOK | AR_ISR_RXERR)) *masked |= ATH9K_INT_RX; if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | AR_ISR_TXEOL)) { u32 s0_s, s1_s; *masked |= ATH9K_INT_TX; s0_s = REG_READ(ah, AR_ISR_S0_S); ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK); ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC); s1_s = REG_READ(ah, AR_ISR_S1_S); ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR); ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL); } if (isr & AR_ISR_RXORN) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: receive FIFO overrun interrupt\n", __func__); } if (!AR_SREV_9100(ah)) { if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { u32 isr5 = REG_READ(ah, AR_ISR_S5_S); if (isr5 & AR_ISR_S5_TIM_TIMER) *masked |= ATH9K_INT_TIM_TIMER; } } *masked |= mask2; } if (AR_SREV_9100(ah)) return true; if (sync_cause) { fatal_int = (sync_cause & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) ? true : false; if (fatal_int) { if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "%s: received PCI FATAL interrupt\n", __func__); } if (sync_cause & AR_INTR_SYNC_HOST1_PERR) { DPRINTF(ah->ah_sc, ATH_DBG_ANY, "%s: received PCI PERR interrupt\n", __func__); } } if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: AR_INTR_SYNC_RADM_CPL_TIMEOUT\n", __func__); REG_WRITE(ah, AR_RC, AR_RC_HOSTIF); REG_WRITE(ah, AR_RC, 0); *masked |= ATH9K_INT_FATAL; } if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: AR_INTR_SYNC_LOCAL_TIMEOUT\n", __func__); } REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause); (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR); } return true; } enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah) { return AH5416(ah)->ah_maskReg; } enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints) { struct ath_hal_5416 *ahp = AH5416(ah); u32 omask = ahp->ah_maskReg; u32 mask, mask2; struct ath9k_hw_capabilities *pCap = &ah->ah_caps; DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: 0x%x => 0x%x\n", __func__, omask, ints); if (omask & ATH9K_INT_GLOBAL) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: disable IER\n", __func__); REG_WRITE(ah, AR_IER, AR_IER_DISABLE); (void) REG_READ(ah, AR_IER); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_SYNC_ENABLE); } } mask = ints & ATH9K_INT_COMMON; mask2 = 0; if (ints & ATH9K_INT_TX) { if (ahp->ah_txOkInterruptMask) mask |= AR_IMR_TXOK; if (ahp->ah_txDescInterruptMask) mask |= AR_IMR_TXDESC; if (ahp->ah_txErrInterruptMask) mask |= AR_IMR_TXERR; if (ahp->ah_txEolInterruptMask) mask |= AR_IMR_TXEOL; } if (ints & ATH9K_INT_RX) { mask |= AR_IMR_RXERR; if (ahp->ah_intrMitigation) mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; else mask |= AR_IMR_RXOK | AR_IMR_RXDESC; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) mask |= AR_IMR_GENTMR; } if (ints & (ATH9K_INT_BMISC)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_TIM) mask2 |= AR_IMR_S2_TIM; if (ints & ATH9K_INT_DTIM) mask2 |= AR_IMR_S2_DTIM; if (ints & ATH9K_INT_DTIMSYNC) mask2 |= AR_IMR_S2_DTIMSYNC; if (ints & ATH9K_INT_CABEND) mask2 |= (AR_IMR_S2_CABEND); } if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_GTT) mask2 |= AR_IMR_S2_GTT; if (ints & ATH9K_INT_CST) mask2 |= AR_IMR_S2_CST; } DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: new IMR 0x%x\n", __func__, mask); REG_WRITE(ah, AR_IMR, mask); mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST); REG_WRITE(ah, AR_IMR_S2, mask | mask2); ahp->ah_maskReg = ints; if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { if (ints & ATH9K_INT_TIM_TIMER) REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); else REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); } if (ints & ATH9K_INT_GLOBAL) { DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "%s: enable IER\n", __func__); REG_WRITE(ah, AR_IER, AR_IER_ENABLE); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ); REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); REG_WRITE(ah, AR_INTR_SYNC_MASK, AR_INTR_SYNC_DEFAULT); } DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n", REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER)); } return omask; } /*******************/ /* Beacon Handling */ /*******************/ void ath9k_hw_beaconinit(struct ath_hal *ah, u32 next_beacon, u32 beacon_period) { struct ath_hal_5416 *ahp = AH5416(ah); int flags = 0; ahp->ah_beaconInterval = beacon_period; switch (ah->ah_opmode) { case ATH9K_M_STA: case ATH9K_M_MONITOR: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff); REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff); flags |= AR_TBTT_TIMER_EN; break; case ATH9K_M_IBSS: REG_SET_BIT(ah, AR_TXCFG, AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); REG_WRITE(ah, AR_NEXT_NDP_TIMER, TU_TO_USEC(next_beacon + (ahp->ah_atimWindow ? ahp-> ah_atimWindow : 1))); flags |= AR_NDP_TIMER_EN; case ATH9K_M_HOSTAP: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon)); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, TU_TO_USEC(next_beacon - ah->ah_config. dma_beacon_response_time)); REG_WRITE(ah, AR_NEXT_SWBA, TU_TO_USEC(next_beacon - ah->ah_config. sw_beacon_response_time)); flags |= AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; break; } REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period)); REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period)); beacon_period &= ~ATH9K_BEACON_ENA; if (beacon_period & ATH9K_BEACON_RESET_TSF) { beacon_period &= ~ATH9K_BEACON_RESET_TSF; ath9k_hw_reset_tsf(ah); } REG_SET_BIT(ah, AR_TIMER_MODE, flags); } void ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah, const struct ath9k_beacon_state *bs) { u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; struct ath9k_hw_capabilities *pCap = &ah->ah_caps; REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD)); REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD; if (bs->bs_sleepduration > beaconintval) beaconintval = bs->bs_sleepduration; dtimperiod = bs->bs_dtimperiod; if (bs->bs_sleepduration > dtimperiod) dtimperiod = bs->bs_sleepduration; if (beaconintval == dtimperiod) nextTbtt = bs->bs_nextdtim; else nextTbtt = bs->bs_nexttbtt; DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next DTIM %d\n", __func__, bs->bs_nextdtim); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: next beacon %d\n", __func__, nextTbtt); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: beacon period %d\n", __func__, beaconintval); DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "%s: DTIM period %d\n", __func__, dtimperiod); REG_WRITE(ah, AR_NEXT_DTIM, TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); REG_WRITE(ah, AR_SLEEP1, SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) | AR_SLEEP1_ASSUME_DTIM); if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) beacontimeout = (BEACON_TIMEOUT_VAL << 3); else beacontimeout = MIN_BEACON_TIMEOUT_VAL; REG_WRITE(ah, AR_SLEEP2, SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); REG_SET_BIT(ah, AR_TIMER_MODE, AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN); } /***************/ /* Rate tables */ /***************/ static struct ath9k_rate_table ar5416_11a_table = { 8, {0}, { {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0}, {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0}, {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2}, {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2}, {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4}, {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4}, {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4}, {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4} }, }; static struct ath9k_rate_table ar5416_11b_table = { 4, {0}, { {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0}, {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1}, {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 1}, {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 1} }, }; static struct ath9k_rate_table ar5416_11g_table = { 12, {0}, { {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0}, {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1}, {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2}, {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3}, {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4}, {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4}, {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6}, {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6}, {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8}, {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8}, {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8}, {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8} }, }; static struct ath9k_rate_table ar5416_11ng_table = { 28, {0}, { {true, PHY_CCK, 1000, 0x1b, 0x00, (0x80 | 2), 0}, {true, PHY_CCK, 2000, 0x1a, 0x04, (0x80 | 4), 1}, {true, PHY_CCK, 5500, 0x19, 0x04, (0x80 | 11), 2}, {true, PHY_CCK, 11000, 0x18, 0x04, (0x80 | 22), 3}, {false, PHY_OFDM, 6000, 0x0b, 0x00, 12, 4}, {false, PHY_OFDM, 9000, 0x0f, 0x00, 18, 4}, {true, PHY_OFDM, 12000, 0x0a, 0x00, 24, 6}, {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 6}, {true, PHY_OFDM, 24000, 0x09, 0x00, 48, 8}, {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 8}, {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 8}, {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 8}, {true, PHY_HT, 6500, 0x80, 0x00, 0, 4}, {true, PHY_HT, 13000, 0x81, 0x00, 1, 6}, {true, PHY_HT, 19500, 0x82, 0x00, 2, 6}, {true, PHY_HT, 26000, 0x83, 0x00, 3, 8}, {true, PHY_HT, 39000, 0x84, 0x00, 4, 8}, {true, PHY_HT, 52000, 0x85, 0x00, 5, 8}, {true, PHY_HT, 58500, 0x86, 0x00, 6, 8}, {true, PHY_HT, 65000, 0x87, 0x00, 7, 8}, {true, PHY_HT, 13000, 0x88, 0x00, 8, 4}, {true, PHY_HT, 26000, 0x89, 0x00, 9, 6}, {true, PHY_HT, 39000, 0x8a, 0x00, 10, 6}, {true, PHY_HT, 52000, 0x8b, 0x00, 11, 8}, {true, PHY_HT, 78000, 0x8c, 0x00, 12, 8}, {true, PHY_HT, 104000, 0x8d, 0x00, 13, 8}, {true, PHY_HT, 117000, 0x8e, 0x00, 14, 8}, {true, PHY_HT, 130000, 0x8f, 0x00, 15, 8}, }, }; static struct ath9k_rate_table ar5416_11na_table = { 24, {0}, { {true, PHY_OFDM, 6000, 0x0b, 0x00, (0x80 | 12), 0}, {true, PHY_OFDM, 9000, 0x0f, 0x00, 18, 0}, {true, PHY_OFDM, 12000, 0x0a, 0x00, (0x80 | 24), 2}, {true, PHY_OFDM, 18000, 0x0e, 0x00, 36, 2}, {true, PHY_OFDM, 24000, 0x09, 0x00, (0x80 | 48), 4}, {true, PHY_OFDM, 36000, 0x0d, 0x00, 72, 4}, {true, PHY_OFDM, 48000, 0x08, 0x00, 96, 4}, {true, PHY_OFDM, 54000, 0x0c, 0x00, 108, 4}, {true, PHY_HT, 6500, 0x80, 0x00, 0, 0}, {true, PHY_HT, 13000, 0x81, 0x00, 1, 2}, {true, PHY_HT, 19500, 0x82, 0x00, 2, 2}, {true, PHY_HT, 26000, 0x83, 0x00, 3, 4}, {true, PHY_HT, 39000, 0x84, 0x00, 4, 4}, {true, PHY_HT, 52000, 0x85, 0x00, 5, 4}, {true, PHY_HT, 58500, 0x86, 0x00, 6, 4}, {true, PHY_HT, 65000, 0x87, 0x00, 7, 4}, {true, PHY_HT, 13000, 0x88, 0x00, 8, 0}, {true, PHY_HT, 26000, 0x89, 0x00, 9, 2}, {true, PHY_HT, 39000, 0x8a, 0x00, 10, 2}, {true, PHY_HT, 52000, 0x8b, 0x00, 11, 4}, {true, PHY_HT, 78000, 0x8c, 0x00, 12, 4}, {true, PHY_HT, 104000, 0x8d, 0x00, 13, 4}, {true, PHY_HT, 117000, 0x8e, 0x00, 14, 4}, {true, PHY_HT, 130000, 0x8f, 0x00, 15, 4}, }, }; static void ath9k_hw_setup_rate_table(struct ath_hal *ah, struct ath9k_rate_table *rt) { int i; if (rt->rateCodeToIndex[0] != 0) return; for (i = 0; i < 256; i++) rt->rateCodeToIndex[i] = (u8) -1; for (i = 0; i < rt->rateCount; i++) { u8 code = rt->info[i].rateCode; u8 cix = rt->info[i].controlRate; rt->rateCodeToIndex[code] = i; rt->rateCodeToIndex[code | rt->info[i].shortPreamble] = i; rt->info[i].lpAckDuration = ath9k_hw_computetxtime(ah, rt, WLAN_CTRL_FRAME_SIZE, cix, false); rt->info[i].spAckDuration = ath9k_hw_computetxtime(ah, rt, WLAN_CTRL_FRAME_SIZE, cix, true); } } const struct ath9k_rate_table *ath9k_hw_getratetable(struct ath_hal *ah, u32 mode) { struct ath9k_rate_table *rt; switch (mode) { case ATH9K_MODE_11A: rt = &ar5416_11a_table; break; case ATH9K_MODE_11B: rt = &ar5416_11b_table; break; case ATH9K_MODE_11G: rt = &ar5416_11g_table; break; case ATH9K_MODE_11NG_HT20: case ATH9K_MODE_11NG_HT40PLUS: case ATH9K_MODE_11NG_HT40MINUS: rt = &ar5416_11ng_table; break; case ATH9K_MODE_11NA_HT20: case ATH9K_MODE_11NA_HT40PLUS: case ATH9K_MODE_11NA_HT40MINUS: rt = &ar5416_11na_table; break; default: DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL, "%s: invalid mode 0x%x\n", __func__, mode); return NULL; } ath9k_hw_setup_rate_table(ah, rt); return rt; } /*******************/ /* HW Capabilities */ /*******************/ bool ath9k_hw_fill_cap_info(struct ath_hal *ah) { struct ath_hal_5416 *ahp = AH5416(ah); struct ath9k_hw_capabilities *pCap = &ah->ah_caps; u16 capField = 0, eeval; eeval = ath9k_hw_get_eeprom(ah, EEP_REG_0); ah->ah_currentRD = eeval; eeval = ath9k_hw_get_eeprom(ah, EEP_REG_1); ah->ah_currentRDExt = eeval; capField = ath9k_hw_get_eeprom(ah, EEP_OP_CAP); if (ah->ah_opmode != ATH9K_M_HOSTAP && ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) { if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65) ah->ah_currentRD += 5; else if (ah->ah_currentRD == 0x41) ah->ah_currentRD = 0x43; DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY, "%s: regdomain mapped to 0x%x\n", __func__, ah->ah_currentRD); } eeval = ath9k_hw_get_eeprom(ah, EEP_OP_MODE); bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX); if (eeval & AR5416_OPFLAGS_11A) { set_bit(ATH9K_MODE_11A, pCap->wireless_modes); if (ah->ah_config.ht_enable) { if (!(eeval & AR5416_OPFLAGS_N_5G_HT20)) set_bit(ATH9K_MODE_11NA_HT20, pCap->wireless_modes); if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) { set_bit(ATH9K_MODE_11NA_HT40PLUS, pCap->wireless_modes); set_bit(ATH9K_MODE_11NA_HT40MINUS, pCap->wireless_modes); } } } if (eeval & AR5416_OPFLAGS_11G) { set_bit(ATH9K_MODE_11B, pCap->wireless_modes); set_bit(ATH9K_MODE_11G, pCap->wireless_modes); if (ah->ah_config.ht_enable) { if (!(eeval & AR5416_OPFLAGS_N_2G_HT20)) set_bit(ATH9K_MODE_11NG_HT20, pCap->wireless_modes); if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) { set_bit(ATH9K_MODE_11NG_HT40PLUS, pCap->wireless_modes); set_bit(ATH9K_MODE_11NG_HT40MINUS, pCap->wireless_modes); } } } pCap->tx_chainmask = ath9k_hw_get_eeprom(ah, EEP_TX_MASK); if ((ah->ah_isPciExpress) || (eeval & AR5416_OPFLAGS_11A)) { pCap->rx_chainmask = ath9k_hw_get_eeprom(ah, EEP_RX_MASK); } else { pCap->rx_chainmask = (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7; } if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0))) ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA; pCap->low_2ghz_chan = 2312; pCap->high_2ghz_chan = 2732; pCap->low_5ghz_chan = 4920; pCap->high_5ghz_chan = 6100; pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP; pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP; pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM; pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP; pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP; pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM; pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD; if (ah->ah_config.ht_enable) pCap->hw_caps |= ATH9K_HW_CAP_HT; else pCap->hw_caps &= ~ATH9K_HW_CAP_HT; pCap->hw_caps |= ATH9K_HW_CAP_GTT; pCap->hw_caps |= ATH9K_HW_CAP_VEOL; pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK; pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH; if (capField & AR_EEPROM_EEPCAP_MAXQCU) pCap->total_queues = MS(capField, AR_EEPROM_EEPCAP_MAXQCU); else pCap->total_queues = ATH9K_NUM_TX_QUEUES; if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES) pCap->keycache_size = 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES); else pCap->keycache_size = AR_KEYTABLE_SIZE; pCap->hw_caps |= ATH9K_HW_CAP_FASTCC; pCap->num_mr_retries = 4; pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD; if (AR_SREV_9280_10_OR_LATER(ah)) pCap->num_gpio_pins = AR928X_NUM_GPIO; else pCap->num_gpio_pins = AR_NUM_GPIO; if (AR_SREV_9280_10_OR_LATER(ah)) { pCap->hw_caps |= ATH9K_HW_CAP_WOW; pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT; } else { pCap->hw_caps &= ~ATH9K_HW_CAP_WOW; pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT; } if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) { pCap->hw_caps |= ATH9K_HW_CAP_CST; pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; } else { pCap->rts_aggr_limit = (8 * 1024); } pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM; #ifdef CONFIG_RFKILL ah->ah_rfsilent = ath9k_hw_get_eeprom(ah, EEP_RF_SILENT); if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) { ah->ah_rfkill_gpio = MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL); ah->ah_rfkill_polarity = MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY); pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; } #endif if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) || (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) || (ah->ah_macVersion == AR_SREV_VERSION_9160) || (ah->ah_macVersion == AR_SREV_VERSION_9100) || (ah->ah_macVersion == AR_SREV_VERSION_9280)) pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; else pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; if (AR_SREV_9280(ah)) pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; else pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) { pCap->reg_cap = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN | AR_EEPROM_EEREGCAP_EN_KK_U2 | AR_EEPROM_EEREGCAP_EN_KK_MIDBAND; } else { pCap->reg_cap = AR_EEPROM_EEREGCAP_EN_KK_NEW_11A | AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN; } pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND; pCap->num_antcfg_5ghz = ath9k_hw_get_num_ant_config(ah, IEEE80211_BAND_5GHZ); pCap->num_antcfg_2ghz = ath9k_hw_get_num_ant_config(ah, IEEE80211_BAND_2GHZ); return true; } bool ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type, u32 capability, u32 *result) { struct ath_hal_5416 *ahp = AH5416(ah); const struct ath9k_hw_capabilities *pCap = &ah->ah_caps; switch (type) { case ATH9K_CAP_CIPHER: switch (capability) { case ATH9K_CIPHER_AES_CCM: case ATH9K_CIPHER_AES_OCB: case ATH9K_CIPHER_TKIP: case ATH9K_CIPHER_WEP: case ATH9K_CIPHER_MIC: case ATH9K_CIPHER_CLR: return true; default: return false; } case ATH9K_CAP_TKIP_MIC: switch (capability) { case 0: return true; case 1: return (ahp->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE) ? true : false; } case ATH9K_CAP_TKIP_SPLIT: return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ? false : true; case ATH9K_CAP_WME_TKIPMIC: return 0; case ATH9K_CAP_PHYCOUNTERS: return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO; case ATH9K_CAP_DIVERSITY: return (REG_READ(ah, AR_PHY_CCK_DETECT) & AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ? true : false; case ATH9K_CAP_PHYDIAG: return true; case ATH9K_CAP_MCAST_KEYSRCH: switch (capability) { case 0: return true; case 1: if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) { return false; } else { return (ahp->ah_staId1Defaults & AR_STA_ID1_MCAST_KSRCH) ? true : false; } } return false; case ATH9K_CAP_TSF_ADJUST: return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ? true : false; case ATH9K_CAP_RFSILENT: if (capability == 3) return false; case ATH9K_CAP_ANT_CFG_2GHZ: *result = pCap->num_antcfg_2ghz; return true; case ATH9K_CAP_ANT_CFG_5GHZ: *result = pCap->num_antcfg_5ghz; return true; case ATH9K_CAP_TXPOW: switch (capability) { case 0: return 0; case 1: *result = ah->ah_powerLimit; return 0; case 2: *result = ah->ah_maxPowerLevel; return 0; case 3: *result = ah->ah_tpScale; return 0; } return false; default: return false; } } bool ath9k_hw_setcapability(struct ath_hal *ah, enum ath9k_capability_type type, u32 capability, u32 setting, int *status) { struct ath_hal_5416 *ahp = AH5416(ah); u32 v; switch (type) { case ATH9K_CAP_TKIP_MIC: if (setting) ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE; else ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE; return true; case ATH9K_CAP_DIVERSITY: v = REG_READ(ah, AR_PHY_CCK_DETECT); if (setting) v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; else v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; REG_WRITE(ah, AR_PHY_CCK_DETECT, v); return true; case ATH9K_CAP_MCAST_KEYSRCH: if (setting) ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH; else ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH; return true; case ATH9K_CAP_TSF_ADJUST: if (setting) ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF; else ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF; return true; default: return false; } } /****************************/ /* GPIO / RFKILL / Antennae */ /****************************/ static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah, u32 gpio, u32 type) { int addr; u32 gpio_shift, tmp; if (gpio > 11) addr = AR_GPIO_OUTPUT_MUX3; else if (gpio > 5) addr = AR_GPIO_OUTPUT_MUX2; else addr = AR_GPIO_OUTPUT_MUX1; gpio_shift = (gpio % 6) * 5; if (AR_SREV_9280_20_OR_LATER(ah) || (addr != AR_GPIO_OUTPUT_MUX1)) { REG_RMW(ah, addr, (type << gpio_shift), (0x1f << gpio_shift)); } else { tmp = REG_READ(ah, addr); tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); tmp &= ~(0x1f << gpio_shift); tmp |= (type << gpio_shift); REG_WRITE(ah, addr, tmp); } } void ath9k_hw_cfg_gpio_input(struct ath_hal *ah, u32 gpio) { u32 gpio_shift; ASSERT(gpio < ah->ah_caps.num_gpio_pins); gpio_shift = gpio << 1; REG_RMW(ah, AR_GPIO_OE_OUT, (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), (AR_GPIO_OE_OUT_DRV << gpio_shift)); } u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio) { if (gpio >= ah->ah_caps.num_gpio_pins) return 0xffffffff; if (AR_SREV_9280_10_OR_LATER(ah)) { return (MS (REG_READ(ah, AR_GPIO_IN_OUT), AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0; } else { return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0; } } void ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio, u32 ah_signal_type) { u32 gpio_shift; ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); gpio_shift = 2 * gpio; REG_RMW(ah, AR_GPIO_OE_OUT, (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), (AR_GPIO_OE_OUT_DRV << gpio_shift)); } void ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio, u32 val) { REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), AR_GPIO_BIT(gpio)); } #ifdef CONFIG_RFKILL void ath9k_enable_rfkill(struct ath_hal *ah) { REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB); REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2, AR_GPIO_INPUT_MUX2_RFSILENT); ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio); REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB); } #endif int ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg) { struct ath9k_channel *chan = ah->ah_curchan; const struct ath9k_hw_capabilities *pCap = &ah->ah_caps; u16 ant_config; u32 halNumAntConfig; halNumAntConfig = IS_CHAN_2GHZ(chan) ? pCap->num_antcfg_2ghz : pCap->num_antcfg_5ghz; if (cfg < halNumAntConfig) { if (!ath9k_hw_get_eeprom_antenna_cfg(ah, chan, cfg, &ant_config)) { REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config); return 0; } } return -EINVAL; } u32 ath9k_hw_getdefantenna(struct ath_hal *ah) { return REG_READ(ah, AR_DEF_ANTENNA) & 0x7; } void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna) { REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); } bool ath9k_hw_setantennaswitch(struct ath_hal *ah, enum ath9k_ant_setting settings, struct ath9k_channel *chan, u8 *tx_chainmask, u8 *rx_chainmask, u8 *antenna_cfgd) { struct ath_hal_5416 *ahp = AH5416(ah); static u8 tx_chainmask_cfg, rx_chainmask_cfg; if (AR_SREV_9280(ah)) { if (!tx_chainmask_cfg) { tx_chainmask_cfg = *tx_chainmask; rx_chainmask_cfg = *rx_chainmask; } switch (settings) { case ATH9K_ANT_FIXED_A: *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK; *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK; *antenna_cfgd = true; break; case ATH9K_ANT_FIXED_B: if (ah->ah_caps.tx_chainmask > ATH9K_ANTENNA1_CHAINMASK) { *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK; } *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK; *antenna_cfgd = true; break; case ATH9K_ANT_VARIABLE: *tx_chainmask = tx_chainmask_cfg; *rx_chainmask = rx_chainmask_cfg; *antenna_cfgd = true; break; default: break; } } else { ahp->ah_diversityControl = settings; } return true; } /*********************/ /* General Operation */ /*********************/ u32 ath9k_hw_getrxfilter(struct ath_hal *ah) { u32 bits = REG_READ(ah, AR_RX_FILTER); u32 phybits = REG_READ(ah, AR_PHY_ERR); if (phybits & AR_PHY_ERR_RADAR) bits |= ATH9K_RX_FILTER_PHYRADAR; if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) bits |= ATH9K_RX_FILTER_PHYERR; return bits; } void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits) { u32 phybits; REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR); phybits = 0; if (bits & ATH9K_RX_FILTER_PHYRADAR) phybits |= AR_PHY_ERR_RADAR; if (bits & ATH9K_RX_FILTER_PHYERR) phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; REG_WRITE(ah, AR_PHY_ERR, phybits); if (phybits) REG_WRITE(ah, AR_RXCFG, REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA); else REG_WRITE(ah, AR_RXCFG, REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA); } bool ath9k_hw_phy_disable(struct ath_hal *ah) { return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM); } bool ath9k_hw_disable(struct ath_hal *ah) { if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD); } bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit) { struct ath9k_channel *chan = ah->ah_curchan; ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER); if (ath9k_hw_set_txpower(ah, chan, ath9k_regd_get_ctl(ah, chan), ath9k_regd_get_antenna_allowed(ah, chan), chan->maxRegTxPower * 2, min((u32) MAX_RATE_POWER, (u32) ah->ah_powerLimit)) != 0) return false; return true; } void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(mac, ahp->ah_macaddr, ETH_ALEN); } bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(ahp->ah_macaddr, mac, ETH_ALEN); return true; } void ath9k_hw_setopmode(struct ath_hal *ah) { ath9k_hw_set_operating_mode(ah, ah->ah_opmode); } void ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0, u32 filter1) { REG_WRITE(ah, AR_MCAST_FIL0, filter0); REG_WRITE(ah, AR_MCAST_FIL1, filter1); } void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(mask, ahp->ah_bssidmask, ETH_ALEN); } bool ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(ahp->ah_bssidmask, mask, ETH_ALEN); REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask)); REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4)); return true; } void ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid, u16 assocId) { struct ath_hal_5416 *ahp = AH5416(ah); memcpy(ahp->ah_bssid, bssid, ETH_ALEN); ahp->ah_assocId = assocId; REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid)); REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) | ((assocId & 0x3fff) << AR_BSS_ID1_AID_S)); } u64 ath9k_hw_gettsf64(struct ath_hal *ah) { u64 tsf; tsf = REG_READ(ah, AR_TSF_U32); tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32); return tsf; } void ath9k_hw_reset_tsf(struct ath_hal *ah) { int count; count = 0; while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) { count++; if (count > 10) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__); break; } udelay(10); } REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); } bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting) { struct ath_hal_5416 *ahp = AH5416(ah); if (setting) ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF; else ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF; return true; } bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us) { struct ath_hal_5416 *ahp = AH5416(ah); if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) { DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s: bad slot time %u\n", __func__, us); ahp->ah_slottime = (u32) -1; return false; } else { REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us)); ahp->ah_slottime = us; return true; } } void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode) { u32 macmode; if (mode == ATH9K_HT_MACMODE_2040 && !ah->ah_config.cwm_ignore_extcca) macmode = AR_2040_JOINED_RX_CLEAR; else macmode = 0; REG_WRITE(ah, AR_2040_MODE, macmode); }