/****************************************************************************** Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved. 802.11 status code portion of this file from ethereal-0.10.6: Copyright 2000, Axis Communications AB Ethereal - Network traffic analyzer By Gerald Combs Copyright 1998 Gerald Combs This program is free software; you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public License as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. The full GNU General Public License is included in this distribution in the file called LICENSE. Contact Information: James P. Ketrenos Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 ******************************************************************************/ #include "ipw2200.h" #define IPW2200_VERSION "1.0.0" #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver" #define DRV_COPYRIGHT "Copyright(c) 2003-2004 Intel Corporation" #define DRV_VERSION IPW2200_VERSION MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL"); static int debug = 0; static int channel = 0; static char *ifname; static int mode = 0; static u32 ipw_debug_level; static int associate = 1; static int auto_create = 1; static int disable = 0; static const char ipw_modes[] = { 'a', 'b', 'g', '?' }; static void ipw_rx(struct ipw_priv *priv); static int ipw_queue_tx_reclaim(struct ipw_priv *priv, struct clx2_tx_queue *txq, int qindex); static int ipw_queue_reset(struct ipw_priv *priv); static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, int len, int sync); static void ipw_tx_queue_free(struct ipw_priv *); static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *); static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *); static void ipw_rx_queue_replenish(void *); static int ipw_up(struct ipw_priv *); static void ipw_down(struct ipw_priv *); static int ipw_config(struct ipw_priv *); static int init_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *prates); static u8 band_b_active_channel[MAX_B_CHANNELS] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0 }; static u8 band_a_active_channel[MAX_A_CHANNELS] = { 36, 40, 44, 48, 149, 153, 157, 161, 165, 52, 56, 60, 64, 0 }; static int is_valid_channel(int mode_mask, int channel) { int i; if (!channel) return 0; if (mode_mask & IEEE_A) for (i = 0; i < MAX_A_CHANNELS; i++) if (band_a_active_channel[i] == channel) return IEEE_A; if (mode_mask & (IEEE_B | IEEE_G)) for (i = 0; i < MAX_B_CHANNELS; i++) if (band_b_active_channel[i] == channel) return mode_mask & (IEEE_B | IEEE_G); return 0; } static char *snprint_line(char *buf, size_t count, const u8 *data, u32 len, u32 ofs) { int out, i, j, l; char c; out = snprintf(buf, count, "%08X", ofs); for (l = 0, i = 0; i < 2; i++) { out += snprintf(buf + out, count - out, " "); for (j = 0; j < 8 && l < len; j++, l++) out += snprintf(buf + out, count - out, "%02X ", data[(i * 8 + j)]); for (; j < 8; j++) out += snprintf(buf + out, count - out, " "); } out += snprintf(buf + out, count - out, " "); for (l = 0, i = 0; i < 2; i++) { out += snprintf(buf + out, count - out, " "); for (j = 0; j < 8 && l < len; j++, l++) { c = data[(i * 8 + j)]; if (!isascii(c) || !isprint(c)) c = '.'; out += snprintf(buf + out, count - out, "%c", c); } for (; j < 8; j++) out += snprintf(buf + out, count - out, " "); } return buf; } static void printk_buf(int level, const u8 *data, u32 len) { char line[81]; u32 ofs = 0; if (!(ipw_debug_level & level)) return; while (len) { printk(KERN_DEBUG "%s\n", snprint_line(line, sizeof(line), &data[ofs], min(len, 16U), ofs)); ofs += 16; len -= min(len, 16U); } } static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg); #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b) static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg); #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b) static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value); static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c) { IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); _ipw_write_reg8(a, b, c); } static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value); static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c) { IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); _ipw_write_reg16(a, b, c); } static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value); static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c) { IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(b), (u32)(c)); _ipw_write_reg32(a, b, c); } #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs)) #define ipw_write8(ipw, ofs, val) \ IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \ _ipw_write8(ipw, ofs, val) #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs)) #define ipw_write16(ipw, ofs, val) \ IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \ _ipw_write16(ipw, ofs, val) #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs)) #define ipw_write32(ipw, ofs, val) \ IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \ _ipw_write32(ipw, ofs, val) #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs)) static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) { IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32)(ofs)); return _ipw_read8(ipw, ofs); } #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs) #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs)) static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) { IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32)(ofs)); return _ipw_read16(ipw, ofs); } #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs) #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs)) static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs) { IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32)(ofs)); return _ipw_read32(ipw, ofs); } #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs) static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int); #define ipw_read_indirect(a, b, c, d) \ IPW_DEBUG_IO("%s %d: read_inddirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \ _ipw_read_indirect(a, b, c, d) static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 *data, int num); #define ipw_write_indirect(a, b, c, d) \ IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \ _ipw_write_indirect(a, b, c, d) /* indirect write s */ static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value) { IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value); _ipw_write32(priv, CX2_INDIRECT_ADDR, reg); _ipw_write32(priv, CX2_INDIRECT_DATA, value); } static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value) { IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK); _ipw_write8(priv, CX2_INDIRECT_DATA, value); IPW_DEBUG_IO(" reg = 0x%8lX : value = 0x%8X\n", (unsigned long)(priv->hw_base + CX2_INDIRECT_DATA), value); } static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value) { IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value); _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK); _ipw_write16(priv, CX2_INDIRECT_DATA, value); } /* indirect read s */ static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg) { u32 word; _ipw_write32(priv, CX2_INDIRECT_ADDR, reg & CX2_INDIRECT_ADDR_MASK); IPW_DEBUG_IO(" reg = 0x%8X : \n", reg); word = _ipw_read32(priv, CX2_INDIRECT_DATA); return (word >> ((reg & 0x3)*8)) & 0xff; } static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg) { u32 value; IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg); _ipw_write32(priv, CX2_INDIRECT_ADDR, reg); value = _ipw_read32(priv, CX2_INDIRECT_DATA); IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value); return value; } /* iterative/auto-increment 32 bit reads and writes */ static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf, int num) { u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK; u32 dif_len = addr - aligned_addr; u32 aligned_len; u32 i; IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); /* Read the first nibble byte by byte */ if (unlikely(dif_len)) { /* Start reading at aligned_addr + dif_len */ _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr); for (i = dif_len; i < 4; i++, buf++) *buf = _ipw_read8(priv, CX2_INDIRECT_DATA + i); num -= dif_len; aligned_addr += 4; } /* Read DWs through autoinc register */ _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr); aligned_len = num & CX2_INDIRECT_ADDR_MASK; for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) *(u32*)buf = ipw_read32(priv, CX2_AUTOINC_DATA); /* Copy the last nibble */ dif_len = num - aligned_len; _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr); for (i = 0; i < dif_len; i++, buf++) *buf = ipw_read8(priv, CX2_INDIRECT_DATA + i); } static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 *buf, int num) { u32 aligned_addr = addr & CX2_INDIRECT_ADDR_MASK; u32 dif_len = addr - aligned_addr; u32 aligned_len; u32 i; IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num); /* Write the first nibble byte by byte */ if (unlikely(dif_len)) { /* Start writing at aligned_addr + dif_len */ _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr); for (i = dif_len; i < 4; i++, buf++) _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf); num -= dif_len; aligned_addr += 4; } /* Write DWs through autoinc register */ _ipw_write32(priv, CX2_AUTOINC_ADDR, aligned_addr); aligned_len = num & CX2_INDIRECT_ADDR_MASK; for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4) _ipw_write32(priv, CX2_AUTOINC_DATA, *(u32*)buf); /* Copy the last nibble */ dif_len = num - aligned_len; _ipw_write32(priv, CX2_INDIRECT_ADDR, aligned_addr); for (i = 0; i < dif_len; i++, buf++) _ipw_write8(priv, CX2_INDIRECT_DATA + i, *buf); } static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf, int num) { memcpy_toio((priv->hw_base + addr), buf, num); } static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask) { ipw_write32(priv, reg, ipw_read32(priv, reg) | mask); } static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask) { ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask); } static inline void ipw_enable_interrupts(struct ipw_priv *priv) { if (priv->status & STATUS_INT_ENABLED) return; priv->status |= STATUS_INT_ENABLED; ipw_write32(priv, CX2_INTA_MASK_R, CX2_INTA_MASK_ALL); } static inline void ipw_disable_interrupts(struct ipw_priv *priv) { if (!(priv->status & STATUS_INT_ENABLED)) return; priv->status &= ~STATUS_INT_ENABLED; ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL); } static char *ipw_error_desc(u32 val) { switch (val) { case IPW_FW_ERROR_OK: return "ERROR_OK"; case IPW_FW_ERROR_FAIL: return "ERROR_FAIL"; case IPW_FW_ERROR_MEMORY_UNDERFLOW: return "MEMORY_UNDERFLOW"; case IPW_FW_ERROR_MEMORY_OVERFLOW: return "MEMORY_OVERFLOW"; case IPW_FW_ERROR_BAD_PARAM: return "ERROR_BAD_PARAM"; case IPW_FW_ERROR_BAD_CHECKSUM: return "ERROR_BAD_CHECKSUM"; case IPW_FW_ERROR_NMI_INTERRUPT: return "ERROR_NMI_INTERRUPT"; case IPW_FW_ERROR_BAD_DATABASE: return "ERROR_BAD_DATABASE"; case IPW_FW_ERROR_ALLOC_FAIL: return "ERROR_ALLOC_FAIL"; case IPW_FW_ERROR_DMA_UNDERRUN: return "ERROR_DMA_UNDERRUN"; case IPW_FW_ERROR_DMA_STATUS: return "ERROR_DMA_STATUS"; case IPW_FW_ERROR_DINOSTATUS_ERROR: return "ERROR_DINOSTATUS_ERROR"; case IPW_FW_ERROR_EEPROMSTATUS_ERROR: return "ERROR_EEPROMSTATUS_ERROR"; case IPW_FW_ERROR_SYSASSERT: return "ERROR_SYSASSERT"; case IPW_FW_ERROR_FATAL_ERROR: return "ERROR_FATALSTATUS_ERROR"; default: return "UNKNOWNSTATUS_ERROR"; } } static void ipw_dump_nic_error_log(struct ipw_priv *priv) { u32 desc, time, blink1, blink2, ilink1, ilink2, idata, i, count, base; base = ipw_read32(priv, IPWSTATUS_ERROR_LOG); count = ipw_read_reg32(priv, base); if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) { IPW_ERROR("Start IPW Error Log Dump:\n"); IPW_ERROR("Status: 0x%08X, Config: %08X\n", priv->status, priv->config); } for (i = ERROR_START_OFFSET; i <= count * ERROR_ELEM_SIZE; i += ERROR_ELEM_SIZE) { desc = ipw_read_reg32(priv, base + i); time = ipw_read_reg32(priv, base + i + 1*sizeof(u32)); blink1 = ipw_read_reg32(priv, base + i + 2*sizeof(u32)); blink2 = ipw_read_reg32(priv, base + i + 3*sizeof(u32)); ilink1 = ipw_read_reg32(priv, base + i + 4*sizeof(u32)); ilink2 = ipw_read_reg32(priv, base + i + 5*sizeof(u32)); idata = ipw_read_reg32(priv, base + i + 6*sizeof(u32)); IPW_ERROR( "%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", ipw_error_desc(desc), time, blink1, blink2, ilink1, ilink2, idata); } } static void ipw_dump_nic_event_log(struct ipw_priv *priv) { u32 ev, time, data, i, count, base; base = ipw_read32(priv, IPW_EVENT_LOG); count = ipw_read_reg32(priv, base); if (EVENT_START_OFFSET <= count * EVENT_ELEM_SIZE) IPW_ERROR("Start IPW Event Log Dump:\n"); for (i = EVENT_START_OFFSET; i <= count * EVENT_ELEM_SIZE; i += EVENT_ELEM_SIZE) { ev = ipw_read_reg32(priv, base + i); time = ipw_read_reg32(priv, base + i + 1*sizeof(u32)); data = ipw_read_reg32(priv, base + i + 2*sizeof(u32)); #ifdef CONFIG_IPW_DEBUG IPW_ERROR("%i\t0x%08x\t%i\n", time, data, ev); #endif } } static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 *len) { u32 addr, field_info, field_len, field_count, total_len; IPW_DEBUG_ORD("ordinal = %i\n", ord); if (!priv || !val || !len) { IPW_DEBUG_ORD("Invalid argument\n"); return -EINVAL; } /* verify device ordinal tables have been initialized */ if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) { IPW_DEBUG_ORD("Access ordinals before initialization\n"); return -EINVAL; } switch (IPW_ORD_TABLE_ID_MASK & ord) { case IPW_ORD_TABLE_0_MASK: /* * TABLE 0: Direct access to a table of 32 bit values * * This is a very simple table with the data directly * read from the table */ /* remove the table id from the ordinal */ ord &= IPW_ORD_TABLE_VALUE_MASK; /* boundary check */ if (ord > priv->table0_len) { IPW_DEBUG_ORD("ordinal value (%i) longer then " "max (%i)\n", ord, priv->table0_len); return -EINVAL; } /* verify we have enough room to store the value */ if (*len < sizeof(u32)) { IPW_DEBUG_ORD("ordinal buffer length too small, " "need %zd\n", sizeof(u32)); return -EINVAL; } IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n", ord, priv->table0_addr + (ord << 2)); *len = sizeof(u32); ord <<= 2; *((u32 *)val) = ipw_read32(priv, priv->table0_addr + ord); break; case IPW_ORD_TABLE_1_MASK: /* * TABLE 1: Indirect access to a table of 32 bit values * * This is a fairly large table of u32 values each * representing starting addr for the data (which is * also a u32) */ /* remove the table id from the ordinal */ ord &= IPW_ORD_TABLE_VALUE_MASK; /* boundary check */ if (ord > priv->table1_len) { IPW_DEBUG_ORD("ordinal value too long\n"); return -EINVAL; } /* verify we have enough room to store the value */ if (*len < sizeof(u32)) { IPW_DEBUG_ORD("ordinal buffer length too small, " "need %zd\n", sizeof(u32)); return -EINVAL; } *((u32 *)val) = ipw_read_reg32(priv, (priv->table1_addr + (ord << 2))); *len = sizeof(u32); break; case IPW_ORD_TABLE_2_MASK: /* * TABLE 2: Indirect access to a table of variable sized values * * This table consist of six values, each containing * - dword containing the starting offset of the data * - dword containing the lengh in the first 16bits * and the count in the second 16bits */ /* remove the table id from the ordinal */ ord &= IPW_ORD_TABLE_VALUE_MASK; /* boundary check */ if (ord > priv->table2_len) { IPW_DEBUG_ORD("ordinal value too long\n"); return -EINVAL; } /* get the address of statistic */ addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3)); /* get the second DW of statistics ; * two 16-bit words - first is length, second is count */ field_info = ipw_read_reg32(priv, priv->table2_addr + (ord << 3) + sizeof(u32)); /* get each entry length */ field_len = *((u16 *)&field_info); /* get number of entries */ field_count = *(((u16 *)&field_info) + 1); /* abort if not enought memory */ total_len = field_len * field_count; if (total_len > *len) { *len = total_len; return -EINVAL; } *len = total_len; if (!total_len) return 0; IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, " "field_info = 0x%08x\n", addr, total_len, field_info); ipw_read_indirect(priv, addr, val, total_len); break; default: IPW_DEBUG_ORD("Invalid ordinal!\n"); return -EINVAL; } return 0; } static void ipw_init_ordinals(struct ipw_priv *priv) { priv->table0_addr = IPW_ORDINALS_TABLE_LOWER; priv->table0_len = ipw_read32(priv, priv->table0_addr); IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n", priv->table0_addr, priv->table0_len); priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1); priv->table1_len = ipw_read_reg32(priv, priv->table1_addr); IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n", priv->table1_addr, priv->table1_len); priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2); priv->table2_len = ipw_read_reg32(priv, priv->table2_addr); priv->table2_len &= 0x0000ffff; /* use first two bytes */ IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n", priv->table2_addr, priv->table2_len); } /* * The following adds a new attribute to the sysfs representation * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/) * used for controling the debug level. * * See the level definitions in ipw for details. */ static ssize_t show_debug_level(struct device_driver *d, char *buf) { return sprintf(buf, "0x%08X\n", ipw_debug_level); } static ssize_t store_debug_level(struct device_driver *d, const char *buf, size_t count) { char *p = (char *)buf; u32 val; if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') { p++; if (p[0] == 'x' || p[0] == 'X') p++; val = simple_strtoul(p, &p, 16); } else val = simple_strtoul(p, &p, 10); if (p == buf) printk(KERN_INFO DRV_NAME ": %s is not in hex or decimal form.\n", buf); else ipw_debug_level = val; return strnlen(buf, count); } static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level, store_debug_level); static ssize_t show_status(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *p = d->driver_data; return sprintf(buf, "0x%08x\n", (int)p->status); } static DEVICE_ATTR(status, S_IRUGO, show_status, NULL); static ssize_t show_cfg(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *p = d->driver_data; return sprintf(buf, "0x%08x\n", (int)p->config); } static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL); static ssize_t show_nic_type(struct device *d, struct device_attribute *attr, char *buf) { struct ipw_priv *p = d->driver_data; u8 type = p->eeprom[EEPROM_NIC_TYPE]; switch (type) { case EEPROM_NIC_TYPE_STANDARD: return sprintf(buf, "STANDARD\n"); case EEPROM_NIC_TYPE_DELL: return sprintf(buf, "DELL\n"); case EEPROM_NIC_TYPE_FUJITSU: return sprintf(buf, "FUJITSU\n"); case EEPROM_NIC_TYPE_IBM: return sprintf(buf, "IBM\n"); case EEPROM_NIC_TYPE_HP: return sprintf(buf, "HP\n"); } return sprintf(buf, "UNKNOWN\n"); } static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL); static ssize_t dump_error_log(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { char *p = (char *)buf; if (p[0] == '1') ipw_dump_nic_error_log((struct ipw_priv*)d->driver_data); return strnlen(buf, count); } static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log); static ssize_t dump_event_log(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { char *p = (char *)buf; if (p[0] == '1') ipw_dump_nic_event_log((struct ipw_priv*)d->driver_data); return strnlen(buf, count); } static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log); static ssize_t show_ucode_version(struct device *d, struct device_attribute *attr, char *buf) { u32 len = sizeof(u32), tmp = 0; struct ipw_priv *p = d->driver_data; if(ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len)) return 0; return sprintf(buf, "0x%08x\n", tmp); } static DEVICE_ATTR(ucode_version, S_IWUSR|S_IRUGO, show_ucode_version, NULL); static ssize_t show_rtc(struct device *d, struct device_attribute *attr, char *buf) { u32 len = sizeof(u32), tmp = 0; struct ipw_priv *p = d->driver_data; if(ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len)) return 0; return sprintf(buf, "0x%08x\n", tmp); } static DEVICE_ATTR(rtc, S_IWUSR|S_IRUGO, show_rtc, NULL); /* * Add a device attribute to view/control the delay between eeprom * operations. */ static ssize_t show_eeprom_delay(struct device *d, struct device_attribute *attr, char *buf) { int n = ((struct ipw_priv*)d->driver_data)->eeprom_delay; return sprintf(buf, "%i\n", n); } static ssize_t store_eeprom_delay(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *p = d->driver_data; sscanf(buf, "%i", &p->eeprom_delay); return strnlen(buf, count); } static DEVICE_ATTR(eeprom_delay, S_IWUSR|S_IRUGO, show_eeprom_delay,store_eeprom_delay); static ssize_t show_command_event_reg(struct device *d, struct device_attribute *attr, char *buf) { u32 reg = 0; struct ipw_priv *p = d->driver_data; reg = ipw_read_reg32(p, CX2_INTERNAL_CMD_EVENT); return sprintf(buf, "0x%08x\n", reg); } static ssize_t store_command_event_reg(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { u32 reg; struct ipw_priv *p = d->driver_data; sscanf(buf, "%x", ®); ipw_write_reg32(p, CX2_INTERNAL_CMD_EVENT, reg); return strnlen(buf, count); } static DEVICE_ATTR(command_event_reg, S_IWUSR|S_IRUGO, show_command_event_reg,store_command_event_reg); static ssize_t show_mem_gpio_reg(struct device *d, struct device_attribute *attr, char *buf) { u32 reg = 0; struct ipw_priv *p = d->driver_data; reg = ipw_read_reg32(p, 0x301100); return sprintf(buf, "0x%08x\n", reg); } static ssize_t store_mem_gpio_reg(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { u32 reg; struct ipw_priv *p = d->driver_data; sscanf(buf, "%x", ®); ipw_write_reg32(p, 0x301100, reg); return strnlen(buf, count); } static DEVICE_ATTR(mem_gpio_reg, S_IWUSR|S_IRUGO, show_mem_gpio_reg,store_mem_gpio_reg); static ssize_t show_indirect_dword(struct device *d, struct device_attribute *attr, char *buf) { u32 reg = 0; struct ipw_priv *priv = d->driver_data; if (priv->status & STATUS_INDIRECT_DWORD) reg = ipw_read_reg32(priv, priv->indirect_dword); else reg = 0; return sprintf(buf, "0x%08x\n", reg); } static ssize_t store_indirect_dword(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = d->driver_data; sscanf(buf, "%x", &priv->indirect_dword); priv->status |= STATUS_INDIRECT_DWORD; return strnlen(buf, count); } static DEVICE_ATTR(indirect_dword, S_IWUSR|S_IRUGO, show_indirect_dword,store_indirect_dword); static ssize_t show_indirect_byte(struct device *d, struct device_attribute *attr, char *buf) { u8 reg = 0; struct ipw_priv *priv = d->driver_data; if (priv->status & STATUS_INDIRECT_BYTE) reg = ipw_read_reg8(priv, priv->indirect_byte); else reg = 0; return sprintf(buf, "0x%02x\n", reg); } static ssize_t store_indirect_byte(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = d->driver_data; sscanf(buf, "%x", &priv->indirect_byte); priv->status |= STATUS_INDIRECT_BYTE; return strnlen(buf, count); } static DEVICE_ATTR(indirect_byte, S_IWUSR|S_IRUGO, show_indirect_byte, store_indirect_byte); static ssize_t show_direct_dword(struct device *d, struct device_attribute *attr, char *buf) { u32 reg = 0; struct ipw_priv *priv = d->driver_data; if (priv->status & STATUS_DIRECT_DWORD) reg = ipw_read32(priv, priv->direct_dword); else reg = 0; return sprintf(buf, "0x%08x\n", reg); } static ssize_t store_direct_dword(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = d->driver_data; sscanf(buf, "%x", &priv->direct_dword); priv->status |= STATUS_DIRECT_DWORD; return strnlen(buf, count); } static DEVICE_ATTR(direct_dword, S_IWUSR|S_IRUGO, show_direct_dword,store_direct_dword); static inline int rf_kill_active(struct ipw_priv *priv) { if (0 == (ipw_read32(priv, 0x30) & 0x10000)) priv->status |= STATUS_RF_KILL_HW; else priv->status &= ~STATUS_RF_KILL_HW; return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0; } static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, char *buf) { /* 0 - RF kill not enabled 1 - SW based RF kill active (sysfs) 2 - HW based RF kill active 3 - Both HW and SW baed RF kill active */ struct ipw_priv *priv = d->driver_data; int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) | (rf_kill_active(priv) ? 0x2 : 0x0); return sprintf(buf, "%i\n", val); } static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio) { if ((disable_radio ? 1 : 0) == (priv->status & STATUS_RF_KILL_SW ? 1 : 0)) return 0 ; IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n", disable_radio ? "OFF" : "ON"); if (disable_radio) { priv->status |= STATUS_RF_KILL_SW; if (priv->workqueue) { cancel_delayed_work(&priv->request_scan); } wake_up_interruptible(&priv->wait_command_queue); queue_work(priv->workqueue, &priv->down); } else { priv->status &= ~STATUS_RF_KILL_SW; if (rf_kill_active(priv)) { IPW_DEBUG_RF_KILL("Can not turn radio back on - " "disabled by HW switch\n"); /* Make sure the RF_KILL check timer is running */ cancel_delayed_work(&priv->rf_kill); queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ); } else queue_work(priv->workqueue, &priv->up); } return 1; } static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct ipw_priv *priv = d->driver_data; ipw_radio_kill_sw(priv, buf[0] == '1'); return count; } static DEVICE_ATTR(rf_kill, S_IWUSR|S_IRUGO, show_rf_kill, store_rf_kill); static void ipw_irq_tasklet(struct ipw_priv *priv) { u32 inta, inta_mask, handled = 0; unsigned long flags; int rc = 0; spin_lock_irqsave(&priv->lock, flags); inta = ipw_read32(priv, CX2_INTA_RW); inta_mask = ipw_read32(priv, CX2_INTA_MASK_R); inta &= (CX2_INTA_MASK_ALL & inta_mask); /* Add any cached INTA values that need to be handled */ inta |= priv->isr_inta; /* handle all the justifications for the interrupt */ if (inta & CX2_INTA_BIT_RX_TRANSFER) { ipw_rx(priv); handled |= CX2_INTA_BIT_RX_TRANSFER; } if (inta & CX2_INTA_BIT_TX_CMD_QUEUE) { IPW_DEBUG_HC("Command completed.\n"); rc = ipw_queue_tx_reclaim( priv, &priv->txq_cmd, -1); priv->status &= ~STATUS_HCMD_ACTIVE; wake_up_interruptible(&priv->wait_command_queue); handled |= CX2_INTA_BIT_TX_CMD_QUEUE; } if (inta & CX2_INTA_BIT_TX_QUEUE_1) { IPW_DEBUG_TX("TX_QUEUE_1\n"); rc = ipw_queue_tx_reclaim( priv, &priv->txq[0], 0); handled |= CX2_INTA_BIT_TX_QUEUE_1; } if (inta & CX2_INTA_BIT_TX_QUEUE_2) { IPW_DEBUG_TX("TX_QUEUE_2\n"); rc = ipw_queue_tx_reclaim( priv, &priv->txq[1], 1); handled |= CX2_INTA_BIT_TX_QUEUE_2; } if (inta & CX2_INTA_BIT_TX_QUEUE_3) { IPW_DEBUG_TX("TX_QUEUE_3\n"); rc = ipw_queue_tx_reclaim( priv, &priv->txq[2], 2); handled |= CX2_INTA_BIT_TX_QUEUE_3; } if (inta & CX2_INTA_BIT_TX_QUEUE_4) { IPW_DEBUG_TX("TX_QUEUE_4\n"); rc = ipw_queue_tx_reclaim( priv, &priv->txq[3], 3); handled |= CX2_INTA_BIT_TX_QUEUE_4; } if (inta & CX2_INTA_BIT_STATUS_CHANGE) { IPW_WARNING("STATUS_CHANGE\n"); handled |= CX2_INTA_BIT_STATUS_CHANGE; } if (inta & CX2_INTA_BIT_BEACON_PERIOD_EXPIRED) { IPW_WARNING("TX_PERIOD_EXPIRED\n"); handled |= CX2_INTA_BIT_BEACON_PERIOD_EXPIRED; } if (inta & CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) { IPW_WARNING("HOST_CMD_DONE\n"); handled |= CX2_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE; } if (inta & CX2_INTA_BIT_FW_INITIALIZATION_DONE) { IPW_WARNING("FW_INITIALIZATION_DONE\n"); handled |= CX2_INTA_BIT_FW_INITIALIZATION_DONE; } if (inta & CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) { IPW_WARNING("PHY_OFF_DONE\n"); handled |= CX2_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE; } if (inta & CX2_INTA_BIT_RF_KILL_DONE) { IPW_DEBUG_RF_KILL("RF_KILL_DONE\n"); priv->status |= STATUS_RF_KILL_HW; wake_up_interruptible(&priv->wait_command_queue); netif_carrier_off(priv->net_dev); netif_stop_queue(priv->net_dev); cancel_delayed_work(&priv->request_scan); queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ); handled |= CX2_INTA_BIT_RF_KILL_DONE; } if (inta & CX2_INTA_BIT_FATAL_ERROR) { IPW_ERROR("Firmware error detected. Restarting.\n"); #ifdef CONFIG_IPW_DEBUG if (ipw_debug_level & IPW_DL_FW_ERRORS) { ipw_dump_nic_error_log(priv); ipw_dump_nic_event_log(priv); } #endif queue_work(priv->workqueue, &priv->adapter_restart); handled |= CX2_INTA_BIT_FATAL_ERROR; } if (inta & CX2_INTA_BIT_PARITY_ERROR) { IPW_ERROR("Parity error\n"); handled |= CX2_INTA_BIT_PARITY_ERROR; } if (handled != inta) { IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); } /* enable all interrupts */ ipw_enable_interrupts(priv); spin_unlock_irqrestore(&priv->lock, flags); } #ifdef CONFIG_IPW_DEBUG #define IPW_CMD(x) case IPW_CMD_ ## x : return #x static char *get_cmd_string(u8 cmd) { switch (cmd) { IPW_CMD(HOST_COMPLETE); IPW_CMD(POWER_DOWN); IPW_CMD(SYSTEM_CONFIG); IPW_CMD(MULTICAST_ADDRESS); IPW_CMD(SSID); IPW_CMD(ADAPTER_ADDRESS); IPW_CMD(PORT_TYPE); IPW_CMD(RTS_THRESHOLD); IPW_CMD(FRAG_THRESHOLD); IPW_CMD(POWER_MODE); IPW_CMD(WEP_KEY); IPW_CMD(TGI_TX_KEY); IPW_CMD(SCAN_REQUEST); IPW_CMD(SCAN_REQUEST_EXT); IPW_CMD(ASSOCIATE); IPW_CMD(SUPPORTED_RATES); IPW_CMD(SCAN_ABORT); IPW_CMD(TX_FLUSH); IPW_CMD(QOS_PARAMETERS); IPW_CMD(DINO_CONFIG); IPW_CMD(RSN_CAPABILITIES); IPW_CMD(RX_KEY); IPW_CMD(CARD_DISABLE); IPW_CMD(SEED_NUMBER); IPW_CMD(TX_POWER); IPW_CMD(COUNTRY_INFO); IPW_CMD(AIRONET_INFO); IPW_CMD(AP_TX_POWER); IPW_CMD(CCKM_INFO); IPW_CMD(CCX_VER_INFO); IPW_CMD(SET_CALIBRATION); IPW_CMD(SENSITIVITY_CALIB); IPW_CMD(RETRY_LIMIT); IPW_CMD(IPW_PRE_POWER_DOWN); IPW_CMD(VAP_BEACON_TEMPLATE); IPW_CMD(VAP_DTIM_PERIOD); IPW_CMD(EXT_SUPPORTED_RATES); IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT); IPW_CMD(VAP_QUIET_INTERVALS); IPW_CMD(VAP_CHANNEL_SWITCH); IPW_CMD(VAP_MANDATORY_CHANNELS); IPW_CMD(VAP_CELL_PWR_LIMIT); IPW_CMD(VAP_CF_PARAM_SET); IPW_CMD(VAP_SET_BEACONING_STATE); IPW_CMD(MEASUREMENT); IPW_CMD(POWER_CAPABILITY); IPW_CMD(SUPPORTED_CHANNELS); IPW_CMD(TPC_REPORT); IPW_CMD(WME_INFO); IPW_CMD(PRODUCTION_COMMAND); default: return "UNKNOWN"; } } #endif /* CONFIG_IPW_DEBUG */ #define HOST_COMPLETE_TIMEOUT HZ static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd) { int rc = 0; if (priv->status & STATUS_HCMD_ACTIVE) { IPW_ERROR("Already sending a command\n"); return -1; } priv->status |= STATUS_HCMD_ACTIVE; IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n", get_cmd_string(cmd->cmd), cmd->cmd, cmd->len); printk_buf(IPW_DL_HOST_COMMAND, (u8*)cmd->param, cmd->len); rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0); if (rc) return rc; rc = wait_event_interruptible_timeout( priv->wait_command_queue, !(priv->status & STATUS_HCMD_ACTIVE), HOST_COMPLETE_TIMEOUT); if (rc == 0) { IPW_DEBUG_INFO("Command completion failed out after %dms.\n", jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); priv->status &= ~STATUS_HCMD_ACTIVE; return -EIO; } if (priv->status & STATUS_RF_KILL_MASK) { IPW_DEBUG_INFO("Command aborted due to RF Kill Switch\n"); return -EIO; } return 0; } static int ipw_send_host_complete(struct ipw_priv *priv) { struct host_cmd cmd = { .cmd = IPW_CMD_HOST_COMPLETE, .len = 0 }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send HOST_COMPLETE command\n"); return -1; } return 0; } static int ipw_send_system_config(struct ipw_priv *priv, struct ipw_sys_config *config) { struct host_cmd cmd = { .cmd = IPW_CMD_SYSTEM_CONFIG, .len = sizeof(*config) }; if (!priv || !config) { IPW_ERROR("Invalid args\n"); return -1; } memcpy(&cmd.param,config,sizeof(*config)); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send SYSTEM_CONFIG command\n"); return -1; } return 0; } static int ipw_send_ssid(struct ipw_priv *priv, u8 *ssid, int len) { struct host_cmd cmd = { .cmd = IPW_CMD_SSID, .len = min(len, IW_ESSID_MAX_SIZE) }; if (!priv || !ssid) { IPW_ERROR("Invalid args\n"); return -1; } memcpy(&cmd.param, ssid, cmd.len); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send SSID command\n"); return -1; } return 0; } static int ipw_send_adapter_address(struct ipw_priv *priv, u8 *mac) { struct host_cmd cmd = { .cmd = IPW_CMD_ADAPTER_ADDRESS, .len = ETH_ALEN }; if (!priv || !mac) { IPW_ERROR("Invalid args\n"); return -1; } IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n", priv->net_dev->name, MAC_ARG(mac)); memcpy(&cmd.param, mac, ETH_ALEN); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send ADAPTER_ADDRESS command\n"); return -1; } return 0; } static void ipw_adapter_restart(void *adapter) { struct ipw_priv *priv = adapter; if (priv->status & STATUS_RF_KILL_MASK) return; ipw_down(priv); if (ipw_up(priv)) { IPW_ERROR("Failed to up device\n"); return; } } #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ) static void ipw_scan_check(void *data) { struct ipw_priv *priv = data; if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) { IPW_DEBUG_SCAN("Scan completion watchdog resetting " "adapter (%dms).\n", IPW_SCAN_CHECK_WATCHDOG / 100); ipw_adapter_restart(priv); } } static int ipw_send_scan_request_ext(struct ipw_priv *priv, struct ipw_scan_request_ext *request) { struct host_cmd cmd = { .cmd = IPW_CMD_SCAN_REQUEST_EXT, .len = sizeof(*request) }; if (!priv || !request) { IPW_ERROR("Invalid args\n"); return -1; } memcpy(&cmd.param,request,sizeof(*request)); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send SCAN_REQUEST_EXT command\n"); return -1; } queue_delayed_work(priv->workqueue, &priv->scan_check, IPW_SCAN_CHECK_WATCHDOG); return 0; } static int ipw_send_scan_abort(struct ipw_priv *priv) { struct host_cmd cmd = { .cmd = IPW_CMD_SCAN_ABORT, .len = 0 }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send SCAN_ABORT command\n"); return -1; } return 0; } static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens) { struct host_cmd cmd = { .cmd = IPW_CMD_SENSITIVITY_CALIB, .len = sizeof(struct ipw_sensitivity_calib) }; struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *) &cmd.param; calib->beacon_rssi_raw = sens; if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send SENSITIVITY CALIB command\n"); return -1; } return 0; } static int ipw_send_associate(struct ipw_priv *priv, struct ipw_associate *associate) { struct host_cmd cmd = { .cmd = IPW_CMD_ASSOCIATE, .len = sizeof(*associate) }; if (!priv || !associate) { IPW_ERROR("Invalid args\n"); return -1; } memcpy(&cmd.param,associate,sizeof(*associate)); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send ASSOCIATE command\n"); return -1; } return 0; } static int ipw_send_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *rates) { struct host_cmd cmd = { .cmd = IPW_CMD_SUPPORTED_RATES, .len = sizeof(*rates) }; if (!priv || !rates) { IPW_ERROR("Invalid args\n"); return -1; } memcpy(&cmd.param,rates,sizeof(*rates)); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send SUPPORTED_RATES command\n"); return -1; } return 0; } static int ipw_set_random_seed(struct ipw_priv *priv) { struct host_cmd cmd = { .cmd = IPW_CMD_SEED_NUMBER, .len = sizeof(u32) }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } get_random_bytes(&cmd.param, sizeof(u32)); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send SEED_NUMBER command\n"); return -1; } return 0; } #if 0 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off) { struct host_cmd cmd = { .cmd = IPW_CMD_CARD_DISABLE, .len = sizeof(u32) }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } *((u32*)&cmd.param) = phy_off; if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send CARD_DISABLE command\n"); return -1; } return 0; } #endif static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power) { struct host_cmd cmd = { .cmd = IPW_CMD_TX_POWER, .len = sizeof(*power) }; if (!priv || !power) { IPW_ERROR("Invalid args\n"); return -1; } memcpy(&cmd.param,power,sizeof(*power)); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send TX_POWER command\n"); return -1; } return 0; } static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts) { struct ipw_rts_threshold rts_threshold = { .rts_threshold = rts, }; struct host_cmd cmd = { .cmd = IPW_CMD_RTS_THRESHOLD, .len = sizeof(rts_threshold) }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } memcpy(&cmd.param, &rts_threshold, sizeof(rts_threshold)); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send RTS_THRESHOLD command\n"); return -1; } return 0; } static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag) { struct ipw_frag_threshold frag_threshold = { .frag_threshold = frag, }; struct host_cmd cmd = { .cmd = IPW_CMD_FRAG_THRESHOLD, .len = sizeof(frag_threshold) }; if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } memcpy(&cmd.param, &frag_threshold, sizeof(frag_threshold)); if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send FRAG_THRESHOLD command\n"); return -1; } return 0; } static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode) { struct host_cmd cmd = { .cmd = IPW_CMD_POWER_MODE, .len = sizeof(u32) }; u32 *param = (u32*)(&cmd.param); if (!priv) { IPW_ERROR("Invalid args\n"); return -1; } /* If on battery, set to 3, if AC set to CAM, else user * level */ switch (mode) { case IPW_POWER_BATTERY: *param = IPW_POWER_INDEX_3; break; case IPW_POWER_AC: *param = IPW_POWER_MODE_CAM; break; default: *param = mode; break; } if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send POWER_MODE command\n"); return -1; } return 0; } /* * The IPW device contains a Microwire compatible EEPROM that stores * various data like the MAC address. Usually the firmware has exclusive * access to the eeprom, but during device initialization (before the * device driver has sent the HostComplete command to the firmware) the * device driver has read access to the EEPROM by way of indirect addressing * through a couple of memory mapped registers. * * The following is a simplified implementation for pulling data out of the * the eeprom, along with some helper functions to find information in * the per device private data's copy of the eeprom. * * NOTE: To better understand how these functions work (i.e what is a chip * select and why do have to keep driving the eeprom clock?), read * just about any data sheet for a Microwire compatible EEPROM. */ /* write a 32 bit value into the indirect accessor register */ static inline void eeprom_write_reg(struct ipw_priv *p, u32 data) { ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data); /* the eeprom requires some time to complete the operation */ udelay(p->eeprom_delay); return; } /* perform a chip select operation */ static inline void eeprom_cs(struct ipw_priv* priv) { eeprom_write_reg(priv,0); eeprom_write_reg(priv,EEPROM_BIT_CS); eeprom_write_reg(priv,EEPROM_BIT_CS|EEPROM_BIT_SK); eeprom_write_reg(priv,EEPROM_BIT_CS); } /* perform a chip select operation */ static inline void eeprom_disable_cs(struct ipw_priv* priv) { eeprom_write_reg(priv,EEPROM_BIT_CS); eeprom_write_reg(priv,0); eeprom_write_reg(priv,EEPROM_BIT_SK); } /* push a single bit down to the eeprom */ static inline void eeprom_write_bit(struct ipw_priv *p,u8 bit) { int d = ( bit ? EEPROM_BIT_DI : 0); eeprom_write_reg(p,EEPROM_BIT_CS|d); eeprom_write_reg(p,EEPROM_BIT_CS|d|EEPROM_BIT_SK); } /* push an opcode followed by an address down to the eeprom */ static void eeprom_op(struct ipw_priv* priv, u8 op, u8 addr) { int i; eeprom_cs(priv); eeprom_write_bit(priv,1); eeprom_write_bit(priv,op&2); eeprom_write_bit(priv,op&1); for ( i=7; i>=0; i-- ) { eeprom_write_bit(priv,addr&(1<eeprom; memcpy(mac, &ee[EEPROM_MAC_ADDRESS], 6); } /* * Either the device driver (i.e. the host) or the firmware can * load eeprom data into the designated region in SRAM. If neither * happens then the FW will shutdown with a fatal error. * * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE * bit needs region of shared SRAM needs to be non-zero. */ static void ipw_eeprom_init_sram(struct ipw_priv *priv) { int i; u16 *eeprom = (u16 *)priv->eeprom; IPW_DEBUG_TRACE(">>\n"); /* read entire contents of eeprom into private buffer */ for ( i=0; i<128; i++ ) eeprom[i] = eeprom_read_u16(priv,(u8)i); /* If the data looks correct, then copy it to our private copy. Otherwise let the firmware know to perform the operation on it's own */ if ((priv->eeprom + EEPROM_VERSION) != 0) { IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n"); /* write the eeprom data to sram */ for( i=0; ieeprom[i]); /* Do not load eeprom data on fatal error or suspend */ ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); } else { IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n"); /* Load eeprom data on fatal error or suspend */ ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1); } IPW_DEBUG_TRACE("<<\n"); } static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count) { count >>= 2; if (!count) return; _ipw_write32(priv, CX2_AUTOINC_ADDR, start); while (count--) _ipw_write32(priv, CX2_AUTOINC_DATA, 0); } static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv) { ipw_zero_memory(priv, CX2_SHARED_SRAM_DMA_CONTROL, CB_NUMBER_OF_ELEMENTS_SMALL * sizeof(struct command_block)); } static int ipw_fw_dma_enable(struct ipw_priv *priv) { /* start dma engine but no transfers yet*/ IPW_DEBUG_FW(">> : \n"); /* Start the dma */ ipw_fw_dma_reset_command_blocks(priv); /* Write CB base address */ ipw_write_reg32(priv, CX2_DMA_I_CB_BASE, CX2_SHARED_SRAM_DMA_CONTROL); IPW_DEBUG_FW("<< : \n"); return 0; } static void ipw_fw_dma_abort(struct ipw_priv *priv) { u32 control = 0; IPW_DEBUG_FW(">> :\n"); //set the Stop and Abort bit control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT; ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control); priv->sram_desc.last_cb_index = 0; IPW_DEBUG_FW("<< \n"); } static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index, struct command_block *cb) { u32 address = CX2_SHARED_SRAM_DMA_CONTROL + (sizeof(struct command_block) * index); IPW_DEBUG_FW(">> :\n"); ipw_write_indirect(priv, address, (u8*)cb, (int)sizeof(struct command_block)); IPW_DEBUG_FW("<< :\n"); return 0; } static int ipw_fw_dma_kick(struct ipw_priv *priv) { u32 control = 0; u32 index=0; IPW_DEBUG_FW(">> :\n"); for (index = 0; index < priv->sram_desc.last_cb_index; index++) ipw_fw_dma_write_command_block(priv, index, &priv->sram_desc.cb_list[index]); /* Enable the DMA in the CSR register */ ipw_clear_bit(priv, CX2_RESET_REG,CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER); /* Set the Start bit. */ control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START; ipw_write_reg32(priv, CX2_DMA_I_DMA_CONTROL, control); IPW_DEBUG_FW("<< :\n"); return 0; } static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv) { u32 address; u32 register_value=0; u32 cb_fields_address=0; IPW_DEBUG_FW(">> :\n"); address = ipw_read_reg32(priv,CX2_DMA_I_CURRENT_CB); IPW_DEBUG_FW_INFO("Current CB is 0x%x \n",address); /* Read the DMA Controlor register */ register_value = ipw_read_reg32(priv, CX2_DMA_I_DMA_CONTROL); IPW_DEBUG_FW_INFO("CX2_DMA_I_DMA_CONTROL is 0x%x \n",register_value); /* Print the CB values*/ cb_fields_address = address; register_value = ipw_read_reg32(priv, cb_fields_address); IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n",register_value); cb_fields_address += sizeof(u32); register_value = ipw_read_reg32(priv, cb_fields_address); IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n",register_value); cb_fields_address += sizeof(u32); register_value = ipw_read_reg32(priv, cb_fields_address); IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n", register_value); cb_fields_address += sizeof(u32); register_value = ipw_read_reg32(priv, cb_fields_address); IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n",register_value); IPW_DEBUG_FW(">> :\n"); } static int ipw_fw_dma_command_block_index(struct ipw_priv *priv) { u32 current_cb_address = 0; u32 current_cb_index = 0; IPW_DEBUG_FW("<< :\n"); current_cb_address= ipw_read_reg32(priv, CX2_DMA_I_CURRENT_CB); current_cb_index = (current_cb_address - CX2_SHARED_SRAM_DMA_CONTROL )/ sizeof (struct command_block); IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n", current_cb_index, current_cb_address ); IPW_DEBUG_FW(">> :\n"); return current_cb_index; } static int ipw_fw_dma_add_command_block(struct ipw_priv *priv, u32 src_address, u32 dest_address, u32 length, int interrupt_enabled, int is_last) { u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC | CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG | CB_DEST_SIZE_LONG; struct command_block *cb; u32 last_cb_element=0; IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n", src_address, dest_address, length); if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL) return -1; last_cb_element = priv->sram_desc.last_cb_index; cb = &priv->sram_desc.cb_list[last_cb_element]; priv->sram_desc.last_cb_index++; /* Calculate the new CB control word */ if (interrupt_enabled ) control |= CB_INT_ENABLED; if (is_last) control |= CB_LAST_VALID; control |= length; /* Calculate the CB Element's checksum value */ cb->status = control ^src_address ^dest_address; /* Copy the Source and Destination addresses */ cb->dest_addr = dest_address; cb->source_addr = src_address; /* Copy the Control Word last */ cb->control = control; return 0; } static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, u32 src_phys, u32 dest_address, u32 length) { u32 bytes_left = length; u32 src_offset=0; u32 dest_offset=0; int status = 0; IPW_DEBUG_FW(">> \n"); IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n", src_phys, dest_address, length); while (bytes_left > CB_MAX_LENGTH) { status = ipw_fw_dma_add_command_block( priv, src_phys + src_offset, dest_address + dest_offset, CB_MAX_LENGTH, 0, 0); if (status) { IPW_DEBUG_FW_INFO(": Failed\n"); return -1; } else IPW_DEBUG_FW_INFO(": Added new cb\n"); src_offset += CB_MAX_LENGTH; dest_offset += CB_MAX_LENGTH; bytes_left -= CB_MAX_LENGTH; } /* add the buffer tail */ if (bytes_left > 0) { status = ipw_fw_dma_add_command_block( priv, src_phys + src_offset, dest_address + dest_offset, bytes_left, 0, 0); if (status) { IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n"); return -1; } else IPW_DEBUG_FW_INFO(": Adding new cb - the buffer tail\n"); } IPW_DEBUG_FW("<< \n"); return 0; } static int ipw_fw_dma_wait(struct ipw_priv *priv) { u32 current_index = 0; u32 watchdog = 0; IPW_DEBUG_FW(">> : \n"); current_index = ipw_fw_dma_command_block_index(priv); IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n", (int) priv->sram_desc.last_cb_index); while (current_index < priv->sram_desc.last_cb_index) { udelay(50); current_index = ipw_fw_dma_command_block_index(priv); watchdog++; if (watchdog > 400) { IPW_DEBUG_FW_INFO("Timeout\n"); ipw_fw_dma_dump_command_block(priv); ipw_fw_dma_abort(priv); return -1; } } ipw_fw_dma_abort(priv); /*Disable the DMA in the CSR register*/ ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER); IPW_DEBUG_FW("<< dmaWaitSync \n"); return 0; } static void ipw_remove_current_network(struct ipw_priv *priv) { struct list_head *element, *safe; struct ieee80211_network *network = NULL; list_for_each_safe(element, safe, &priv->ieee->network_list) { network = list_entry(element, struct ieee80211_network, list); if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) { list_del(element); list_add_tail(&network->list, &priv->ieee->network_free_list); } } } /** * Check that card is still alive. * Reads debug register from domain0. * If card is present, pre-defined value should * be found there. * * @param priv * @return 1 if card is present, 0 otherwise */ static inline int ipw_alive(struct ipw_priv *priv) { return ipw_read32(priv, 0x90) == 0xd55555d5; } static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask, int timeout) { int i = 0; do { if ((ipw_read32(priv, addr) & mask) == mask) return i; mdelay(10); i += 10; } while (i < timeout); return -ETIME; } /* These functions load the firmware and micro code for the operation of * the ipw hardware. It assumes the buffer has all the bits for the * image and the caller is handling the memory allocation and clean up. */ static int ipw_stop_master(struct ipw_priv * priv) { int rc; IPW_DEBUG_TRACE(">> \n"); /* stop master. typical delay - 0 */ ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER); rc = ipw_poll_bit(priv, CX2_RESET_REG, CX2_RESET_REG_MASTER_DISABLED, 100); if (rc < 0) { IPW_ERROR("stop master failed in 10ms\n"); return -1; } IPW_DEBUG_INFO("stop master %dms\n", rc); return rc; } static void ipw_arc_release(struct ipw_priv *priv) { IPW_DEBUG_TRACE(">> \n"); mdelay(5); ipw_clear_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); /* no one knows timing, for safety add some delay */ mdelay(5); } struct fw_header { u32 version; u32 mode; }; struct fw_chunk { u32 address; u32 length; }; #define IPW_FW_MAJOR_VERSION 2 #define IPW_FW_MINOR_VERSION 2 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8) #define IPW_FW_MAJOR(x) (x & 0xff) #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | \ IPW_FW_MAJOR_VERSION) #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \ "." __stringify(IPW_FW_MINOR_VERSION) "-" #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw" #else #define IPW_FW_NAME(x) "ipw2200_" x ".fw" #endif static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len) { int rc = 0, i, addr; u8 cr = 0; u16 *image; image = (u16 *)data; IPW_DEBUG_TRACE(">> \n"); rc = ipw_stop_master(priv); if (rc < 0) return rc; // spin_lock_irqsave(&priv->lock, flags); for (addr = CX2_SHARED_LOWER_BOUND; addr < CX2_REGISTER_DOMAIN1_END; addr += 4) { ipw_write32(priv, addr, 0); } /* no ucode (yet) */ memset(&priv->dino_alive, 0, sizeof(priv->dino_alive)); /* destroy DMA queues */ /* reset sequence */ ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET ,CX2_BIT_HALT_RESET_ON); ipw_arc_release(priv); ipw_write_reg32(priv, CX2_MEM_HALT_AND_RESET, CX2_BIT_HALT_RESET_OFF); mdelay(1); /* reset PHY */ ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, CX2_BASEBAND_POWER_DOWN); mdelay(1); ipw_write_reg32(priv, CX2_INTERNAL_CMD_EVENT, 0); mdelay(1); /* enable ucode store */ ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0); ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS); mdelay(1); /* write ucode */ /** * @bug * Do NOT set indirect address register once and then * store data to indirect data register in the loop. * It seems very reasonable, but in this case DINO do not * accept ucode. It is essential to set address each time. */ /* load new ipw uCode */ for (i = 0; i < len / 2; i++) ipw_write_reg16(priv, CX2_BASEBAND_CONTROL_STORE, image[i]); /* enable DINO */ ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0); ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM ); /* this is where the igx / win driver deveates from the VAP driver.*/ /* wait for alive response */ for (i = 0; i < 100; i++) { /* poll for incoming data */ cr = ipw_read_reg8(priv, CX2_BASEBAND_CONTROL_STATUS); if (cr & DINO_RXFIFO_DATA) break; mdelay(1); } if (cr & DINO_RXFIFO_DATA) { /* alive_command_responce size is NOT multiple of 4 */ u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4]; for (i = 0; i < ARRAY_SIZE(response_buffer); i++) response_buffer[i] = ipw_read_reg32(priv, CX2_BASEBAND_RX_FIFO_READ); memcpy(&priv->dino_alive, response_buffer, sizeof(priv->dino_alive)); if (priv->dino_alive.alive_command == 1 && priv->dino_alive.ucode_valid == 1) { rc = 0; IPW_DEBUG_INFO( "Microcode OK, rev. %d (0x%x) dev. %d (0x%x) " "of %02d/%02d/%02d %02d:%02d\n", priv->dino_alive.software_revision, priv->dino_alive.software_revision, priv->dino_alive.device_identifier, priv->dino_alive.device_identifier, priv->dino_alive.time_stamp[0], priv->dino_alive.time_stamp[1], priv->dino_alive.time_stamp[2], priv->dino_alive.time_stamp[3], priv->dino_alive.time_stamp[4]); } else { IPW_DEBUG_INFO("Microcode is not alive\n"); rc = -EINVAL; } } else { IPW_DEBUG_INFO("No alive response from DINO\n"); rc = -ETIME; } /* disable DINO, otherwise for some reason firmware have problem getting alive resp. */ ipw_write_reg8(priv, CX2_BASEBAND_CONTROL_STATUS, 0); // spin_unlock_irqrestore(&priv->lock, flags); return rc; } static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len) { int rc = -1; int offset = 0; struct fw_chunk *chunk; dma_addr_t shared_phys; u8 *shared_virt; IPW_DEBUG_TRACE("<< : \n"); shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys); if (!shared_virt) return -ENOMEM; memmove(shared_virt, data, len); /* Start the Dma */ rc = ipw_fw_dma_enable(priv); if (priv->sram_desc.last_cb_index > 0) { /* the DMA is already ready this would be a bug. */ BUG(); goto out; } do { chunk = (struct fw_chunk *)(data + offset); offset += sizeof(struct fw_chunk); /* build DMA packet and queue up for sending */ /* dma to chunk->address, the chunk->length bytes from data + * offeset*/ /* Dma loading */ rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset, chunk->address, chunk->length); if (rc) { IPW_DEBUG_INFO("dmaAddBuffer Failed\n"); goto out; } offset += chunk->length; } while (offset < len); /* Run the DMA and wait for the answer*/ rc = ipw_fw_dma_kick(priv); if (rc) { IPW_ERROR("dmaKick Failed\n"); goto out; } rc = ipw_fw_dma_wait(priv); if (rc) { IPW_ERROR("dmaWaitSync Failed\n"); goto out; } out: pci_free_consistent( priv->pci_dev, len, shared_virt, shared_phys); return rc; } /* stop nic */ static int ipw_stop_nic(struct ipw_priv *priv) { int rc = 0; /* stop*/ ipw_write32(priv, CX2_RESET_REG, CX2_RESET_REG_STOP_MASTER); rc = ipw_poll_bit(priv, CX2_RESET_REG, CX2_RESET_REG_MASTER_DISABLED, 500); if (rc < 0) { IPW_ERROR("wait for reg master disabled failed\n"); return rc; } ipw_set_bit(priv, CX2_RESET_REG, CBD_RESET_REG_PRINCETON_RESET); return rc; } static void ipw_start_nic(struct ipw_priv *priv) { IPW_DEBUG_TRACE(">>\n"); /* prvHwStartNic release ARC*/ ipw_clear_bit(priv, CX2_RESET_REG, CX2_RESET_REG_MASTER_DISABLED | CX2_RESET_REG_STOP_MASTER | CBD_RESET_REG_PRINCETON_RESET); /* enable power management */ ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY); IPW_DEBUG_TRACE("<<\n"); } static int ipw_init_nic(struct ipw_priv *priv) { int rc; IPW_DEBUG_TRACE(">>\n"); /* reset */ /*prvHwInitNic */ /* set "initialization complete" bit to move adapter to D0 state */ ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE); /* low-level PLL activation */ ipw_write32(priv, CX2_READ_INT_REGISTER, CX2_BIT_INT_HOST_SRAM_READ_INT_REGISTER); /* wait for clock stabilization */ rc = ipw_poll_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_CLOCK_READY, 250); if (rc < 0 ) IPW_DEBUG_INFO("FAILED wait for clock stablization\n"); /* assert SW reset */ ipw_set_bit(priv, CX2_RESET_REG, CX2_RESET_REG_SW_RESET); udelay(10); /* set "initialization complete" bit to move adapter to D0 state */ ipw_set_bit(priv, CX2_GP_CNTRL_RW, CX2_GP_CNTRL_BIT_INIT_DONE); IPW_DEBUG_TRACE(">>\n"); return 0; } /* Call this function from process context, it will sleep in request_firmware. * Probe is an ok place to call this from. */ static int ipw_reset_nic(struct ipw_priv *priv) { int rc = 0; IPW_DEBUG_TRACE(">>\n"); rc = ipw_init_nic(priv); /* Clear the 'host command active' bit... */ priv->status &= ~STATUS_HCMD_ACTIVE; wake_up_interruptible(&priv->wait_command_queue); IPW_DEBUG_TRACE("<<\n"); return rc; } static int ipw_get_fw(struct ipw_priv *priv, const struct firmware **fw, const char *name) { struct fw_header *header; int rc; /* ask firmware_class module to get the boot firmware off disk */ rc = request_firmware(fw, name, &priv->pci_dev->dev); if (rc < 0) { IPW_ERROR("%s load failed: Reason %d\n", name, rc); return rc; } header = (struct fw_header *)(*fw)->data; if (IPW_FW_MAJOR(header->version) != IPW_FW_MAJOR_VERSION) { IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n", name, IPW_FW_MAJOR(header->version), IPW_FW_MAJOR_VERSION); return -EINVAL; } IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n", name, IPW_FW_MAJOR(header->version), IPW_FW_MINOR(header->version), (*fw)->size - sizeof(struct fw_header)); return 0; } #define CX2_RX_BUF_SIZE (3000) static inline void ipw_rx_queue_reset(struct ipw_priv *priv, struct ipw_rx_queue *rxq) { unsigned long flags; int i; spin_lock_irqsave(&rxq->lock, flags); INIT_LIST_HEAD(&rxq->rx_free); INIT_LIST_HEAD(&rxq->rx_used); /* Fill the rx_used queue with _all_ of the Rx buffers */ for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { /* In the reset function, these buffers may have been allocated * to an SKB, so we need to unmap and free potential storage */ if (rxq->pool[i].skb != NULL) { pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb(rxq->pool[i].skb); } list_add_tail(&rxq->pool[i].list, &rxq->rx_used); } /* Set us so that we have processed and used all buffers, but have * not restocked the Rx queue with fresh buffers */ rxq->read = rxq->write = 0; rxq->processed = RX_QUEUE_SIZE - 1; rxq->free_count = 0; spin_unlock_irqrestore(&rxq->lock, flags); } #ifdef CONFIG_PM static int fw_loaded = 0; static const struct firmware *bootfw = NULL; static const struct firmware *firmware = NULL; static const struct firmware *ucode = NULL; #endif static int ipw_load(struct ipw_priv *priv) { #ifndef CONFIG_PM const struct firmware *bootfw = NULL; const struct firmware *firmware = NULL; const struct firmware *ucode = NULL; #endif int rc = 0, retries = 3; #ifdef CONFIG_PM if (!fw_loaded) { #endif rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot")); if (rc) goto error; switch (priv->ieee->iw_mode) { case IW_MODE_ADHOC: rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("ibss_ucode")); if (rc) goto error; rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss")); break; #ifdef CONFIG_IPW_PROMISC case IW_MODE_MONITOR: rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("ibss_ucode")); if (rc) goto error; rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("sniffer")); break; #endif case IW_MODE_INFRA: rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode")); if (rc) goto error; rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss")); break; default: rc = -EINVAL; } if (rc) goto error; #ifdef CONFIG_PM fw_loaded = 1; } #endif if (!priv->rxq) priv->rxq = ipw_rx_queue_alloc(priv); else ipw_rx_queue_reset(priv, priv->rxq); if (!priv->rxq) { IPW_ERROR("Unable to initialize Rx queue\n"); goto error; } retry: /* Ensure interrupts are disabled */ ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL); priv->status &= ~STATUS_INT_ENABLED; /* ack pending interrupts */ ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL); ipw_stop_nic(priv); rc = ipw_reset_nic(priv); if (rc) { IPW_ERROR("Unable to reset NIC\n"); goto error; } ipw_zero_memory(priv, CX2_NIC_SRAM_LOWER_BOUND, CX2_NIC_SRAM_UPPER_BOUND - CX2_NIC_SRAM_LOWER_BOUND); /* DMA the initial boot firmware into the device */ rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header), bootfw->size - sizeof(struct fw_header)); if (rc < 0) { IPW_ERROR("Unable to load boot firmware\n"); goto error; } /* kick start the device */ ipw_start_nic(priv); /* wait for the device to finish it's initial startup sequence */ rc = ipw_poll_bit(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500); if (rc < 0) { IPW_ERROR("device failed to boot initial fw image\n"); goto error; } IPW_DEBUG_INFO("initial device response after %dms\n", rc); /* ack fw init done interrupt */ ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE); /* DMA the ucode into the device */ rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header), ucode->size - sizeof(struct fw_header)); if (rc < 0) { IPW_ERROR("Unable to load ucode\n"); goto error; } /* stop nic */ ipw_stop_nic(priv); /* DMA bss firmware into the device */ rc = ipw_load_firmware(priv, firmware->data + sizeof(struct fw_header), firmware->size - sizeof(struct fw_header)); if (rc < 0 ) { IPW_ERROR("Unable to load firmware\n"); goto error; } ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0); rc = ipw_queue_reset(priv); if (rc) { IPW_ERROR("Unable to initialize queues\n"); goto error; } /* Ensure interrupts are disabled */ ipw_write32(priv, CX2_INTA_MASK_R, ~CX2_INTA_MASK_ALL); /* kick start the device */ ipw_start_nic(priv); if (ipw_read32(priv, CX2_INTA_RW) & CX2_INTA_BIT_PARITY_ERROR) { if (retries > 0) { IPW_WARNING("Parity error. Retrying init.\n"); retries--; goto retry; } IPW_ERROR("TODO: Handle parity error -- schedule restart?\n"); rc = -EIO; goto error; } /* wait for the device */ rc = ipw_poll_bit(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE, 500); if (rc < 0) { IPW_ERROR("device failed to start after 500ms\n"); goto error; } IPW_DEBUG_INFO("device response after %dms\n", rc); /* ack fw init done interrupt */ ipw_write32(priv, CX2_INTA_RW, CX2_INTA_BIT_FW_INITIALIZATION_DONE); /* read eeprom data and initialize the eeprom region of sram */ priv->eeprom_delay = 1; ipw_eeprom_init_sram(priv); /* enable interrupts */ ipw_enable_interrupts(priv); /* Ensure our queue has valid packets */ ipw_rx_queue_replenish(priv); ipw_write32(priv, CX2_RX_READ_INDEX, priv->rxq->read); /* ack pending interrupts */ ipw_write32(priv, CX2_INTA_RW, CX2_INTA_MASK_ALL); #ifndef CONFIG_PM release_firmware(bootfw); release_firmware(ucode); release_firmware(firmware); #endif return 0; error: if (priv->rxq) { ipw_rx_queue_free(priv, priv->rxq); priv->rxq = NULL; } ipw_tx_queue_free(priv); if (bootfw) release_firmware(bootfw); if (ucode) release_firmware(ucode); if (firmware) release_firmware(firmware); #ifdef CONFIG_PM fw_loaded = 0; bootfw = ucode = firmware = NULL; #endif return rc; } /** * DMA services * * Theory of operation * * A queue is a circular buffers with 'Read' and 'Write' pointers. * 2 empty entries always kept in the buffer to protect from overflow. * * For Tx queue, there are low mark and high mark limits. If, after queuing * the packet for Tx, free space become < low mark, Tx queue stopped. When * reclaiming packets (on 'tx done IRQ), if free space become > high mark, * Tx queue resumed. * * The IPW operates with six queues, one receive queue in the device's * sram, one transmit queue for sending commands to the device firmware, * and four transmit queues for data. * * The four transmit queues allow for performing quality of service (qos) * transmissions as per the 802.11 protocol. Currently Linux does not * provide a mechanism to the user for utilizing prioritized queues, so * we only utilize the first data transmit queue (queue1). */ /** * Driver allocates buffers of this size for Rx */ static inline int ipw_queue_space(const struct clx2_queue *q) { int s = q->last_used - q->first_empty; if (s <= 0) s += q->n_bd; s -= 2; /* keep some reserve to not confuse empty and full situations */ if (s < 0) s = 0; return s; } static inline int ipw_queue_inc_wrap(int index, int n_bd) { return (++index == n_bd) ? 0 : index; } /** * Initialize common DMA queue structure * * @param q queue to init * @param count Number of BD's to allocate. Should be power of 2 * @param read_register Address for 'read' register * (not offset within BAR, full address) * @param write_register Address for 'write' register * (not offset within BAR, full address) * @param base_register Address for 'base' register * (not offset within BAR, full address) * @param size Address for 'size' register * (not offset within BAR, full address) */ static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q, int count, u32 read, u32 write, u32 base, u32 size) { q->n_bd = count; q->low_mark = q->n_bd / 4; if (q->low_mark < 4) q->low_mark = 4; q->high_mark = q->n_bd / 8; if (q->high_mark < 2) q->high_mark = 2; q->first_empty = q->last_used = 0; q->reg_r = read; q->reg_w = write; ipw_write32(priv, base, q->dma_addr); ipw_write32(priv, size, count); ipw_write32(priv, read, 0); ipw_write32(priv, write, 0); _ipw_read32(priv, 0x90); } static int ipw_queue_tx_init(struct ipw_priv *priv, struct clx2_tx_queue *q, int count, u32 read, u32 write, u32 base, u32 size) { struct pci_dev *dev = priv->pci_dev; q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL); if (!q->txb) { IPW_ERROR("vmalloc for auxilary BD structures failed\n"); return -ENOMEM; } q->bd = pci_alloc_consistent(dev,sizeof(q->bd[0])*count, &q->q.dma_addr); if (!q->bd) { IPW_ERROR("pci_alloc_consistent(%zd) failed\n", sizeof(q->bd[0]) * count); kfree(q->txb); q->txb = NULL; return -ENOMEM; } ipw_queue_init(priv, &q->q, count, read, write, base, size); return 0; } /** * Free one TFD, those at index [txq->q.last_used]. * Do NOT advance any indexes * * @param dev * @param txq */ static void ipw_queue_tx_free_tfd(struct ipw_priv *priv, struct clx2_tx_queue *txq) { struct tfd_frame *bd = &txq->bd[txq->q.last_used]; struct pci_dev *dev = priv->pci_dev; int i; /* classify bd */ if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE) /* nothing to cleanup after for host commands */ return; /* sanity check */ if (bd->u.data.num_chunks > NUM_TFD_CHUNKS) { IPW_ERROR("Too many chunks: %i\n", bd->u.data.num_chunks); /** @todo issue fatal error, it is quite serious situation */ return; } /* unmap chunks if any */ for (i = 0; i < bd->u.data.num_chunks; i++) { pci_unmap_single(dev, bd->u.data.chunk_ptr[i], bd->u.data.chunk_len[i], PCI_DMA_TODEVICE); if (txq->txb[txq->q.last_used]) { ieee80211_txb_free(txq->txb[txq->q.last_used]); txq->txb[txq->q.last_used] = NULL; } } } /** * Deallocate DMA queue. * * Empty queue by removing and destroying all BD's. * Free all buffers. * * @param dev * @param q */ static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq) { struct clx2_queue *q = &txq->q; struct pci_dev *dev = priv->pci_dev; if (q->n_bd == 0) return; /* first, empty all BD's */ for (; q->first_empty != q->last_used; q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { ipw_queue_tx_free_tfd(priv, txq); } /* free buffers belonging to queue itself */ pci_free_consistent(dev, sizeof(txq->bd[0])*q->n_bd, txq->bd, q->dma_addr); kfree(txq->txb); /* 0 fill whole structure */ memset(txq, 0, sizeof(*txq)); } /** * Destroy all DMA queues and structures * * @param priv */ static void ipw_tx_queue_free(struct ipw_priv *priv) { /* Tx CMD queue */ ipw_queue_tx_free(priv, &priv->txq_cmd); /* Tx queues */ ipw_queue_tx_free(priv, &priv->txq[0]); ipw_queue_tx_free(priv, &priv->txq[1]); ipw_queue_tx_free(priv, &priv->txq[2]); ipw_queue_tx_free(priv, &priv->txq[3]); } static void inline __maybe_wake_tx(struct ipw_priv *priv) { if (netif_running(priv->net_dev)) { switch (priv->port_type) { case DCR_TYPE_MU_BSS: case DCR_TYPE_MU_IBSS: if (!(priv->status & STATUS_ASSOCIATED)) { return; } } netif_wake_queue(priv->net_dev); } } static inline void ipw_create_bssid(struct ipw_priv *priv, u8 *bssid) { /* First 3 bytes are manufacturer */ bssid[0] = priv->mac_addr[0]; bssid[1] = priv->mac_addr[1]; bssid[2] = priv->mac_addr[2]; /* Last bytes are random */ get_random_bytes(&bssid[3], ETH_ALEN-3); bssid[0] &= 0xfe; /* clear multicast bit */ bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */ } static inline u8 ipw_add_station(struct ipw_priv *priv, u8 *bssid) { struct ipw_station_entry entry; int i; for (i = 0; i < priv->num_stations; i++) { if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) { /* Another node is active in network */ priv->missed_adhoc_beacons = 0; if (!(priv->config & CFG_STATIC_CHANNEL)) /* when other nodes drop out, we drop out */ priv->config &= ~CFG_ADHOC_PERSIST; return i; } } if (i == MAX_STATIONS) return IPW_INVALID_STATION; IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid)); entry.reserved = 0; entry.support_mode = 0; memcpy(entry.mac_addr, bssid, ETH_ALEN); memcpy(priv->stations[i], bssid, ETH_ALEN); ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry), &entry, sizeof(entry)); priv->num_stations++; return i; } static inline u8 ipw_find_station(struct ipw_priv *priv, u8 *bssid) { int i; for (i = 0; i < priv->num_stations; i++) if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) return i; return IPW_INVALID_STATION; } static void ipw_send_disassociate(struct ipw_priv *priv, int quiet) { int err; if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))) { IPW_DEBUG_ASSOC("Disassociating while not associated.\n"); return; } IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " " "on channel %d.\n", MAC_ARG(priv->assoc_request.bssid), priv->assoc_request.channel); priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED); priv->status |= STATUS_DISASSOCIATING; if (quiet) priv->assoc_request.assoc_type = HC_DISASSOC_QUIET; else priv->assoc_request.assoc_type = HC_DISASSOCIATE; err = ipw_send_associate(priv, &priv->assoc_request); if (err) { IPW_DEBUG_HC("Attempt to send [dis]associate command " "failed.\n"); return; } } static void ipw_disassociate(void *data) { ipw_send_disassociate(data, 0); } static void notify_wx_assoc_event(struct ipw_priv *priv) { union iwreq_data wrqu; wrqu.ap_addr.sa_family = ARPHRD_ETHER; if (priv->status & STATUS_ASSOCIATED) memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN); else memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN); wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); } struct ipw_status_code { u16 status; const char *reason; }; static const struct ipw_status_code ipw_status_codes[] = { {0x00, "Successful"}, {0x01, "Unspecified failure"}, {0x0A, "Cannot support all requested capabilities in the " "Capability information field"}, {0x0B, "Reassociation denied due to inability to confirm that " "association exists"}, {0x0C, "Association denied due to reason outside the scope of this " "standard"}, {0x0D, "Responding station does not support the specified authentication " "algorithm"}, {0x0E, "Received an Authentication frame with authentication sequence " "transaction sequence number out of expected sequence"}, {0x0F, "Authentication rejected because of challenge failure"}, {0x10, "Authentication rejected due to timeout waiting for next " "frame in sequence"}, {0x11, "Association denied because AP is unable to handle additional " "associated stations"}, {0x12, "Association denied due to requesting station not supporting all " "of the datarates in the BSSBasicServiceSet Parameter"}, {0x13, "Association denied due to requesting station not supporting " "short preamble operation"}, {0x14, "Association denied due to requesting station not supporting " "PBCC encoding"}, {0x15, "Association denied due to requesting station not supporting " "channel agility"}, {0x19, "Association denied due to requesting station not supporting " "short slot operation"}, {0x1A, "Association denied due to requesting station not supporting " "DSSS-OFDM operation"}, {0x28, "Invalid Information Element"}, {0x29, "Group Cipher is not valid"}, {0x2A, "Pairwise Cipher is not valid"}, {0x2B, "AKMP is not valid"}, {0x2C, "Unsupported RSN IE version"}, {0x2D, "Invalid RSN IE Capabilities"}, {0x2E, "Cipher suite is rejected per security policy"}, }; #ifdef CONFIG_IPW_DEBUG static const char *ipw_get_status_code(u16 status) { int i; for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++) if (ipw_status_codes[i].status == status) return ipw_status_codes[i].reason; return "Unknown status value."; } #endif static void inline average_init(struct average *avg) { memset(avg, 0, sizeof(*avg)); } static void inline average_add(struct average *avg, s16 val) { avg->sum -= avg->entries[avg->pos]; avg->sum += val; avg->entries[avg->pos++] = val; if (unlikely(avg->pos == AVG_ENTRIES)) { avg->init = 1; avg->pos = 0; } } static s16 inline average_value(struct average *avg) { if (!unlikely(avg->init)) { if (avg->pos) return avg->sum / avg->pos; return 0; } return avg->sum / AVG_ENTRIES; } static void ipw_reset_stats(struct ipw_priv *priv) { u32 len = sizeof(u32); priv->quality = 0; average_init(&priv->average_missed_beacons); average_init(&priv->average_rssi); average_init(&priv->average_noise); priv->last_rate = 0; priv->last_missed_beacons = 0; priv->last_rx_packets = 0; priv->last_tx_packets = 0; priv->last_tx_failures = 0; /* Firmware managed, reset only when NIC is restarted, so we have to * normalize on the current value */ ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &priv->last_rx_err, &len); ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &priv->last_tx_failures, &len); /* Driver managed, reset with each association */ priv->missed_adhoc_beacons = 0; priv->missed_beacons = 0; priv->tx_packets = 0; priv->rx_packets = 0; } static inline u32 ipw_get_max_rate(struct ipw_priv *priv) { u32 i = 0x80000000; u32 mask = priv->rates_mask; /* If currently associated in B mode, restrict the maximum * rate match to B rates */ if (priv->assoc_request.ieee_mode == IPW_B_MODE) mask &= IEEE80211_CCK_RATES_MASK; /* TODO: Verify that the rate is supported by the current rates * list. */ while (i && !(mask & i)) i >>= 1; switch (i) { case IEEE80211_CCK_RATE_1MB_MASK: return 1000000; case IEEE80211_CCK_RATE_2MB_MASK: return 2000000; case IEEE80211_CCK_RATE_5MB_MASK: return 5500000; case IEEE80211_OFDM_RATE_6MB_MASK: return 6000000; case IEEE80211_OFDM_RATE_9MB_MASK: return 9000000; case IEEE80211_CCK_RATE_11MB_MASK: return 11000000; case IEEE80211_OFDM_RATE_12MB_MASK: return 12000000; case IEEE80211_OFDM_RATE_18MB_MASK: return 18000000; case IEEE80211_OFDM_RATE_24MB_MASK: return 24000000; case IEEE80211_OFDM_RATE_36MB_MASK: return 36000000; case IEEE80211_OFDM_RATE_48MB_MASK: return 48000000; case IEEE80211_OFDM_RATE_54MB_MASK: return 54000000; } if (priv->ieee->mode == IEEE_B) return 11000000; else return 54000000; } static u32 ipw_get_current_rate(struct ipw_priv *priv) { u32 rate, len = sizeof(rate); int err; if (!(priv->status & STATUS_ASSOCIATED)) return 0; if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) { err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate, &len); if (err) { IPW_DEBUG_INFO("failed querying ordinals.\n"); return 0; } } else return ipw_get_max_rate(priv); switch (rate) { case IPW_TX_RATE_1MB: return 1000000; case IPW_TX_RATE_2MB: return 2000000; case IPW_TX_RATE_5MB: return 5500000; case IPW_TX_RATE_6MB: return 6000000; case IPW_TX_RATE_9MB: return 9000000; case IPW_TX_RATE_11MB: return 11000000; case IPW_TX_RATE_12MB: return 12000000; case IPW_TX_RATE_18MB: return 18000000; case IPW_TX_RATE_24MB: return 24000000; case IPW_TX_RATE_36MB: return 36000000; case IPW_TX_RATE_48MB: return 48000000; case IPW_TX_RATE_54MB: return 54000000; } return 0; } #define PERFECT_RSSI (-50) #define WORST_RSSI (-85) #define IPW_STATS_INTERVAL (2 * HZ) static void ipw_gather_stats(struct ipw_priv *priv) { u32 rx_err, rx_err_delta, rx_packets_delta; u32 tx_failures, tx_failures_delta, tx_packets_delta; u32 missed_beacons_percent, missed_beacons_delta; u32 quality = 0; u32 len = sizeof(u32); s16 rssi; u32 beacon_quality, signal_quality, tx_quality, rx_quality, rate_quality; if (!(priv->status & STATUS_ASSOCIATED)) { priv->quality = 0; return; } /* Update the statistics */ ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS, &priv->missed_beacons, &len); missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons; priv->last_missed_beacons = priv->missed_beacons; if (priv->assoc_request.beacon_interval) { missed_beacons_percent = missed_beacons_delta * (HZ * priv->assoc_request.beacon_interval) / (IPW_STATS_INTERVAL * 10); } else { missed_beacons_percent = 0; } average_add(&priv->average_missed_beacons, missed_beacons_percent); ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len); rx_err_delta = rx_err - priv->last_rx_err; priv->last_rx_err = rx_err; ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len); tx_failures_delta = tx_failures - priv->last_tx_failures; priv->last_tx_failures = tx_failures; rx_packets_delta = priv->rx_packets - priv->last_rx_packets; priv->last_rx_packets = priv->rx_packets; tx_packets_delta = priv->tx_packets - priv->last_tx_packets; priv->last_tx_packets = priv->tx_packets; /* Calculate quality based on the following: * * Missed beacon: 100% = 0, 0% = 70% missed * Rate: 60% = 1Mbs, 100% = Max * Rx and Tx errors represent a straight % of total Rx/Tx * RSSI: 100% = > -50, 0% = < -80 * Rx errors: 100% = 0, 0% = 50% missed * * The lowest computed quality is used. * */ #define BEACON_THRESHOLD 5 beacon_quality = 100 - missed_beacons_percent; if (beacon_quality < BEACON_THRESHOLD) beacon_quality = 0; else beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 / (100 - BEACON_THRESHOLD); IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n", beacon_quality, missed_beacons_percent); priv->last_rate = ipw_get_current_rate(priv); rate_quality = priv->last_rate * 40 / priv->last_rate + 60; IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n", rate_quality, priv->last_rate / 1000000); if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta) rx_quality = 100 - (rx_err_delta * 100) / (rx_packets_delta + rx_err_delta); else rx_quality = 100; IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n", rx_quality, rx_err_delta, rx_packets_delta); if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta) tx_quality = 100 - (tx_failures_delta * 100) / (tx_packets_delta + tx_failures_delta); else tx_quality = 100; IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n", tx_quality, tx_failures_delta, tx_packets_delta); rssi = average_value(&priv->average_rssi); if (rssi > PERFECT_RSSI) signal_quality = 100; else if (rssi < WORST_RSSI) signal_quality = 0; else signal_quality = (rssi - WORST_RSSI) * 100 / (PERFECT_RSSI - WORST_RSSI); IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n", signal_quality, rssi); quality = min(beacon_quality, min(rate_quality, min(tx_quality, min(rx_quality, signal_quality)))); if (quality == beacon_quality) IPW_DEBUG_STATS( "Quality (%d%%): Clamped to missed beacons.\n", quality); if (quality == rate_quality) IPW_DEBUG_STATS( "Quality (%d%%): Clamped to rate quality.\n", quality); if (quality == tx_quality) IPW_DEBUG_STATS( "Quality (%d%%): Clamped to Tx quality.\n", quality); if (quality == rx_quality) IPW_DEBUG_STATS( "Quality (%d%%): Clamped to Rx quality.\n", quality); if (quality == signal_quality) IPW_DEBUG_STATS( "Quality (%d%%): Clamped to signal quality.\n", quality); priv->quality = quality; queue_delayed_work(priv->workqueue, &priv->gather_stats, IPW_STATS_INTERVAL); } /** * Handle host notification packet. * Called from interrupt routine */ static inline void ipw_rx_notification(struct ipw_priv* priv, struct ipw_rx_notification *notif) { IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size); switch (notif->subtype) { case HOST_NOTIFICATION_STATUS_ASSOCIATED: { struct notif_association *assoc = ¬if->u.assoc; switch (assoc->state) { case CMAS_ASSOCIATED: { IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "associated: '%s' " MAC_FMT " \n", escape_essid(priv->essid, priv->essid_len), MAC_ARG(priv->bssid)); switch (priv->ieee->iw_mode) { case IW_MODE_INFRA: memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); break; case IW_MODE_ADHOC: memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN); /* clear out the station table */ priv->num_stations = 0; IPW_DEBUG_ASSOC("queueing adhoc check\n"); queue_delayed_work(priv->workqueue, &priv->adhoc_check, priv->assoc_request.beacon_interval); break; } priv->status &= ~STATUS_ASSOCIATING; priv->status |= STATUS_ASSOCIATED; netif_carrier_on(priv->net_dev); if (netif_queue_stopped(priv->net_dev)) { IPW_DEBUG_NOTIF("waking queue\n"); netif_wake_queue(priv->net_dev); } else { IPW_DEBUG_NOTIF("starting queue\n"); netif_start_queue(priv->net_dev); } ipw_reset_stats(priv); /* Ensure the rate is updated immediately */ priv->last_rate = ipw_get_current_rate(priv); schedule_work(&priv->gather_stats); notify_wx_assoc_event(priv); /* queue_delayed_work(priv->workqueue, &priv->request_scan, SCAN_ASSOCIATED_INTERVAL); */ break; } case CMAS_AUTHENTICATED: { if (priv->status & (STATUS_ASSOCIATED | STATUS_AUTH)) { #ifdef CONFIG_IPW_DEBUG struct notif_authenticate *auth = ¬if->u.auth; IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "deauthenticated: '%s' " MAC_FMT ": (0x%04X) - %s \n", escape_essid(priv->essid, priv->essid_len), MAC_ARG(priv->bssid), ntohs(auth->status), ipw_get_status_code(ntohs(auth->status))); #endif priv->status &= ~(STATUS_ASSOCIATING | STATUS_AUTH | STATUS_ASSOCIATED); netif_carrier_off(priv->net_dev); netif_stop_queue(priv->net_dev); queue_work(priv->workqueue, &priv->request_scan); notify_wx_assoc_event(priv); break; } IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "authenticated: '%s' " MAC_FMT "\n", escape_essid(priv->essid, priv->essid_len), MAC_ARG(priv->bssid)); break; } case CMAS_INIT: { IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "disassociated: '%s' " MAC_FMT " \n", escape_essid(priv->essid, priv->essid_len), MAC_ARG(priv->bssid)); priv->status &= ~( STATUS_DISASSOCIATING | STATUS_ASSOCIATING | STATUS_ASSOCIATED | STATUS_AUTH); netif_stop_queue(priv->net_dev); if (!(priv->status & STATUS_ROAMING)) { netif_carrier_off(priv->net_dev); notify_wx_assoc_event(priv); /* Cancel any queued work ... */ cancel_delayed_work(&priv->request_scan); cancel_delayed_work(&priv->adhoc_check); /* Queue up another scan... */ queue_work(priv->workqueue, &priv->request_scan); cancel_delayed_work(&priv->gather_stats); } else { priv->status |= STATUS_ROAMING; queue_work(priv->workqueue, &priv->request_scan); } ipw_reset_stats(priv); break; } default: IPW_ERROR("assoc: unknown (%d)\n", assoc->state); break; } break; } case HOST_NOTIFICATION_STATUS_AUTHENTICATE: { struct notif_authenticate *auth = ¬if->u.auth; switch (auth->state) { case CMAS_AUTHENTICATED: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, "authenticated: '%s' " MAC_FMT " \n", escape_essid(priv->essid, priv->essid_len), MAC_ARG(priv->bssid)); priv->status |= STATUS_AUTH; break; case CMAS_INIT: if (priv->status & STATUS_AUTH) { IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "authentication failed (0x%04X): %s\n", ntohs(auth->status), ipw_get_status_code(ntohs(auth->status))); } IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "deauthenticated: '%s' " MAC_FMT "\n", escape_essid(priv->essid, priv->essid_len), MAC_ARG(priv->bssid)); priv->status &= ~(STATUS_ASSOCIATING | STATUS_AUTH | STATUS_ASSOCIATED); netif_carrier_off(priv->net_dev); netif_stop_queue(priv->net_dev); queue_work(priv->workqueue, &priv->request_scan); notify_wx_assoc_event(priv); break; case CMAS_TX_AUTH_SEQ_1: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_1\n"); break; case CMAS_RX_AUTH_SEQ_2: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_2\n"); break; case CMAS_AUTH_SEQ_1_PASS: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n"); break; case CMAS_AUTH_SEQ_1_FAIL: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n"); break; case CMAS_TX_AUTH_SEQ_3: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_3\n"); break; case CMAS_RX_AUTH_SEQ_4: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n"); break; case CMAS_AUTH_SEQ_2_PASS: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n"); break; case CMAS_AUTH_SEQ_2_FAIL: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n"); break; case CMAS_TX_ASSOC: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "TX_ASSOC\n"); break; case CMAS_RX_ASSOC_RESP: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "RX_ASSOC_RESP\n"); break; case CMAS_ASSOCIATED: IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC, "ASSOCIATED\n"); break; default: IPW_DEBUG_NOTIF("auth: failure - %d\n", auth->state); break; } break; } case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT: { struct notif_channel_result *x = ¬if->u.channel_result; if (notif->size == sizeof(*x)) { IPW_DEBUG_SCAN("Scan result for channel %d\n", x->channel_num); } else { IPW_DEBUG_SCAN("Scan result of wrong size %d " "(should be %zd)\n", notif->size, sizeof(*x)); } break; } case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED: { struct notif_scan_complete* x = ¬if->u.scan_complete; if (notif->size == sizeof(*x)) { IPW_DEBUG_SCAN("Scan completed: type %d, %d channels, " "%d status\n", x->scan_type, x->num_channels, x->status); } else { IPW_ERROR("Scan completed of wrong size %d " "(should be %zd)\n", notif->size, sizeof(*x)); } priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING); cancel_delayed_work(&priv->scan_check); if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING | STATUS_ROAMING | STATUS_DISASSOCIATING))) queue_work(priv->workqueue, &priv->associate); else if (priv->status & STATUS_ROAMING) { /* If a scan completed and we are in roam mode, then * the scan that completed was the one requested as a * result of entering roam... so, schedule the * roam work */ queue_work(priv->workqueue, &priv->roam); } else if (priv->status & STATUS_SCAN_PENDING) queue_work(priv->workqueue, &priv->request_scan); priv->ieee->scans++; break; } case HOST_NOTIFICATION_STATUS_FRAG_LENGTH: { struct notif_frag_length *x = ¬if->u.frag_len; if (notif->size == sizeof(*x)) { IPW_ERROR("Frag length: %d\n", x->frag_length); } else { IPW_ERROR("Frag length of wrong size %d " "(should be %zd)\n", notif->size, sizeof(*x)); } break; } case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION: { struct notif_link_deterioration *x = ¬if->u.link_deterioration; if (notif->size==sizeof(*x)) { IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, "link deterioration: '%s' " MAC_FMT " \n", escape_essid(priv->essid, priv->essid_len), MAC_ARG(priv->bssid)); memcpy(&priv->last_link_deterioration, x, sizeof(*x)); } else { IPW_ERROR("Link Deterioration of wrong size %d " "(should be %zd)\n", notif->size, sizeof(*x)); } break; } case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE: { IPW_ERROR("Dino config\n"); if (priv->hcmd && priv->hcmd->cmd == HOST_CMD_DINO_CONFIG) { /* TODO: Do anything special? */ } else { IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n"); } break; } case HOST_NOTIFICATION_STATUS_BEACON_STATE: { struct notif_beacon_state *x = ¬if->u.beacon_state; if (notif->size != sizeof(*x)) { IPW_ERROR("Beacon state of wrong size %d (should " "be %zd)\n", notif->size, sizeof(*x)); break; } if (x->state == HOST_NOTIFICATION_STATUS_BEACON_MISSING) { if (priv->status & STATUS_SCANNING) { /* Stop scan to keep fw from getting * stuck... */ queue_work(priv->workqueue, &priv->abort_scan); } if (x->number > priv->missed_beacon_threshold && priv->status & STATUS_ASSOCIATED) { IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE, "Missed beacon: %d - disassociate\n", x->number); queue_work(priv->workqueue, &priv->disassociate); } else if (x->number > priv->roaming_threshold) { IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE, "Missed beacon: %d - initiate " "roaming\n", x->number); queue_work(priv->workqueue, &priv->roam); } else { IPW_DEBUG_NOTIF("Missed beacon: %d\n", x->number); } priv->notif_missed_beacons = x->number; } break; } case HOST_NOTIFICATION_STATUS_TGI_TX_KEY: { struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key; if (notif->size==sizeof(*x)) { IPW_ERROR("TGi Tx Key: state 0x%02x sec type " "0x%02x station %d\n", x->key_state,x->security_type, x->station_index); break; } IPW_ERROR("TGi Tx Key of wrong size %d (should be %zd)\n", notif->size, sizeof(*x)); break; } case HOST_NOTIFICATION_CALIB_KEEP_RESULTS: { struct notif_calibration *x = ¬if->u.calibration; if (notif->size == sizeof(*x)) { memcpy(&priv->calib, x, sizeof(*x)); IPW_DEBUG_INFO("TODO: Calibration\n"); break; } IPW_ERROR("Calibration of wrong size %d (should be %zd)\n", notif->size, sizeof(*x)); break; } case HOST_NOTIFICATION_NOISE_STATS: { if (notif->size == sizeof(u32)) { priv->last_noise = (u8)(notif->u.noise.value & 0xff); average_add(&priv->average_noise, priv->last_noise); break; } IPW_ERROR("Noise stat is wrong size %d (should be %zd)\n", notif->size, sizeof(u32)); break; } default: IPW_ERROR("Unknown notification: " "subtype=%d,flags=0x%2x,size=%d\n", notif->subtype, notif->flags, notif->size); } } /** * Destroys all DMA structures and initialise them again * * @param priv * @return error code */ static int ipw_queue_reset(struct ipw_priv *priv) { int rc = 0; /** @todo customize queue sizes */ int nTx = 64, nTxCmd = 8; ipw_tx_queue_free(priv); /* Tx CMD queue */ rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd, CX2_TX_CMD_QUEUE_READ_INDEX, CX2_TX_CMD_QUEUE_WRITE_INDEX, CX2_TX_CMD_QUEUE_BD_BASE, CX2_TX_CMD_QUEUE_BD_SIZE); if (rc) { IPW_ERROR("Tx Cmd queue init failed\n"); goto error; } /* Tx queue(s) */ rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx, CX2_TX_QUEUE_0_READ_INDEX, CX2_TX_QUEUE_0_WRITE_INDEX, CX2_TX_QUEUE_0_BD_BASE, CX2_TX_QUEUE_0_BD_SIZE); if (rc) { IPW_ERROR("Tx 0 queue init failed\n"); goto error; } rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx, CX2_TX_QUEUE_1_READ_INDEX, CX2_TX_QUEUE_1_WRITE_INDEX, CX2_TX_QUEUE_1_BD_BASE, CX2_TX_QUEUE_1_BD_SIZE); if (rc) { IPW_ERROR("Tx 1 queue init failed\n"); goto error; } rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx, CX2_TX_QUEUE_2_READ_INDEX, CX2_TX_QUEUE_2_WRITE_INDEX, CX2_TX_QUEUE_2_BD_BASE, CX2_TX_QUEUE_2_BD_SIZE); if (rc) { IPW_ERROR("Tx 2 queue init failed\n"); goto error; } rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx, CX2_TX_QUEUE_3_READ_INDEX, CX2_TX_QUEUE_3_WRITE_INDEX, CX2_TX_QUEUE_3_BD_BASE, CX2_TX_QUEUE_3_BD_SIZE); if (rc) { IPW_ERROR("Tx 3 queue init failed\n"); goto error; } /* statistics */ priv->rx_bufs_min = 0; priv->rx_pend_max = 0; return rc; error: ipw_tx_queue_free(priv); return rc; } /** * Reclaim Tx queue entries no more used by NIC. * * When FW adwances 'R' index, all entries between old and * new 'R' index need to be reclaimed. As result, some free space * forms. If there is enough free space (> low mark), wake Tx queue. * * @note Need to protect against garbage in 'R' index * @param priv * @param txq * @param qindex * @return Number of used entries remains in the queue */ static int ipw_queue_tx_reclaim(struct ipw_priv *priv, struct clx2_tx_queue *txq, int qindex) { u32 hw_tail; int used; struct clx2_queue *q = &txq->q; hw_tail = ipw_read32(priv, q->reg_r); if (hw_tail >= q->n_bd) { IPW_ERROR ("Read index for DMA queue (%d) is out of range [0-%d)\n", hw_tail, q->n_bd); goto done; } for (; q->last_used != hw_tail; q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) { ipw_queue_tx_free_tfd(priv, txq); priv->tx_packets++; } done: if (ipw_queue_space(q) > q->low_mark && qindex >= 0) { __maybe_wake_tx(priv); } used = q->first_empty - q->last_used; if (used < 0) used += q->n_bd; return used; } static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf, int len, int sync) { struct clx2_tx_queue *txq = &priv->txq_cmd; struct clx2_queue *q = &txq->q; struct tfd_frame *tfd; if (ipw_queue_space(q) < (sync ? 1 : 2)) { IPW_ERROR("No space for Tx\n"); return -EBUSY; } tfd = &txq->bd[q->first_empty]; txq->txb[q->first_empty] = NULL; memset(tfd, 0, sizeof(*tfd)); tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE; tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; priv->hcmd_seq++; tfd->u.cmd.index = hcmd; tfd->u.cmd.length = len; memcpy(tfd->u.cmd.payload, buf, len); q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); ipw_write32(priv, q->reg_w, q->first_empty); _ipw_read32(priv, 0x90); return 0; } /* * Rx theory of operation * * The host allocates 32 DMA target addresses and passes the host address * to the firmware at register CX2_RFDS_TABLE_LOWER + N * RFD_SIZE where N is * 0 to 31 * * Rx Queue Indexes * The host/firmware share two index registers for managing the Rx buffers. * * The READ index maps to the first position that the firmware may be writing * to -- the driver can read up to (but not including) this position and get * good data. * The READ index is managed by the firmware once the card is enabled. * * The WRITE index maps to the last position the driver has read from -- the * position preceding WRITE is the last slot the firmware can place a packet. * * The queue is empty (no good data) if WRITE = READ - 1, and is full if * WRITE = READ. * * During initialization the host sets up the READ queue position to the first * INDEX position, and WRITE to the last (READ - 1 wrapped) * * When the firmware places a packet in a buffer it will advance the READ index * and fire the RX interrupt. The driver can then query the READ index and * process as many packets as possible, moving the WRITE index forward as it * resets the Rx queue buffers with new memory. * * The management in the driver is as follows: * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled * to replensish the ipw->rxq->rx_free. * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the * ipw->rxq is replenished and the READ INDEX is updated (updating the * 'processed' and 'read' driver indexes as well) * + A received packet is processed and handed to the kernel network stack, * detached from the ipw->rxq. The driver 'processed' index is updated. * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there * were enough free buffers and RX_STALLED is set it is cleared. * * * Driver sequence: * * ipw_rx_queue_alloc() Allocates rx_free * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls * ipw_rx_queue_restock * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx * queue, updates firmware pointers, and updates * the WRITE index. If insufficient rx_free buffers * are available, schedules ipw_rx_queue_replenish * * -- enable interrupts -- * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the * READ INDEX, detaching the SKB from the pool. * Moves the packet buffer from queue to rx_used. * Calls ipw_rx_queue_restock to refill any empty * slots. * ... * */ /* * If there are slots in the RX queue that need to be restocked, * and we have free pre-allocated buffers, fill the ranks as much * as we can pulling from rx_free. * * This moves the 'write' index forward to catch up with 'processed', and * also updates the memory address in the firmware to reference the new * target buffer. */ static void ipw_rx_queue_restock(struct ipw_priv *priv) { struct ipw_rx_queue *rxq = priv->rxq; struct list_head *element; struct ipw_rx_mem_buffer *rxb; unsigned long flags; int write; spin_lock_irqsave(&rxq->lock, flags); write = rxq->write; while ((rxq->write != rxq->processed) && (rxq->free_count)) { element = rxq->rx_free.next; rxb = list_entry(element, struct ipw_rx_mem_buffer, list); list_del(element); ipw_write32(priv, CX2_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE, rxb->dma_addr); rxq->queue[rxq->write] = rxb; rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE; rxq->free_count--; } spin_unlock_irqrestore(&rxq->lock, flags); /* If the pre-allocated buffer pool is dropping low, schedule to * refill it */ if (rxq->free_count <= RX_LOW_WATERMARK) queue_work(priv->workqueue, &priv->rx_replenish); /* If we've added more space for the firmware to place data, tell it */ if (write != rxq->write) ipw_write32(priv, CX2_RX_WRITE_INDEX, rxq->write); } /* * Move all used packet from rx_used to rx_free, allocating a new SKB for each. * Also restock the Rx queue via ipw_rx_queue_restock. * * This is called as a scheduled work item (except for during intialization) */ static void ipw_rx_queue_replenish(void *data) { struct ipw_priv *priv = data; struct ipw_rx_queue *rxq = priv->rxq; struct list_head *element; struct ipw_rx_mem_buffer *rxb; unsigned long flags; spin_lock_irqsave(&rxq->lock, flags); while (!list_empty(&rxq->rx_used)) { element = rxq->rx_used.next; rxb = list_entry(element, struct ipw_rx_mem_buffer, list); rxb->skb = alloc_skb(CX2_RX_BUF_SIZE, GFP_ATOMIC); if (!rxb->skb) { printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n", priv->net_dev->name); /* We don't reschedule replenish work here -- we will * call the restock method and if it still needs * more buffers it will schedule replenish */ break; } list_del(element); rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data; rxb->dma_addr = pci_map_single( priv->pci_dev, rxb->skb->data, CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); list_add_tail(&rxb->list, &rxq->rx_free); rxq->free_count++; } spin_unlock_irqrestore(&rxq->lock, flags); ipw_rx_queue_restock(priv); } /* Assumes that the skb field of the buffers in 'pool' is kept accurate. * If an SKB has been detached, the POOL needs to have it's SKB set to NULL * This free routine walks the list of POOL entries and if SKB is set to * non NULL it is unmapped and freed */ static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq) { int i; if (!rxq) return; for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { if (rxq->pool[i].skb != NULL) { pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb(rxq->pool[i].skb); } } kfree(rxq); } static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv) { struct ipw_rx_queue *rxq; int i; rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL); memset(rxq, 0, sizeof(*rxq)); spin_lock_init(&rxq->lock); INIT_LIST_HEAD(&rxq->rx_free); INIT_LIST_HEAD(&rxq->rx_used); /* Fill the rx_used queue with _all_ of the Rx buffers */ for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) list_add_tail(&rxq->pool[i].list, &rxq->rx_used); /* Set us so that we have processed and used all buffers, but have * not restocked the Rx queue with fresh buffers */ rxq->read = rxq->write = 0; rxq->processed = RX_QUEUE_SIZE - 1; rxq->free_count = 0; return rxq; } static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate) { rate &= ~IEEE80211_BASIC_RATE_MASK; if (ieee_mode == IEEE_A) { switch (rate) { case IEEE80211_OFDM_RATE_6MB: return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_9MB: return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_12MB: return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_18MB: return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_24MB: return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_36MB: return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_48MB: return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_54MB: return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0; default: return 0; } } /* B and G mixed */ switch (rate) { case IEEE80211_CCK_RATE_1MB: return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0; case IEEE80211_CCK_RATE_2MB: return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0; case IEEE80211_CCK_RATE_5MB: return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0; case IEEE80211_CCK_RATE_11MB: return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0; } /* If we are limited to B modulations, bail at this point */ if (ieee_mode == IEEE_B) return 0; /* G */ switch (rate) { case IEEE80211_OFDM_RATE_6MB: return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_9MB: return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_12MB: return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_18MB: return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_24MB: return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_36MB: return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_48MB: return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0; case IEEE80211_OFDM_RATE_54MB: return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0; } return 0; } static int ipw_compatible_rates(struct ipw_priv *priv, const struct ieee80211_network *network, struct ipw_supported_rates *rates) { int num_rates, i; memset(rates, 0, sizeof(*rates)); num_rates = min(network->rates_len, (u8)IPW_MAX_RATES); rates->num_rates = 0; for (i = 0; i < num_rates; i++) { if (!ipw_is_rate_in_mask(priv, network->mode, network->rates[i])) { IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", network->rates[i], priv->rates_mask); continue; } rates->supported_rates[rates->num_rates++] = network->rates[i]; } num_rates = min(network->rates_ex_len, (u8)(IPW_MAX_RATES - num_rates)); for (i = 0; i < num_rates; i++) { if (!ipw_is_rate_in_mask(priv, network->mode, network->rates_ex[i])) { IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n", network->rates_ex[i], priv->rates_mask); continue; } rates->supported_rates[rates->num_rates++] = network->rates_ex[i]; } return rates->num_rates; } static inline void ipw_copy_rates(struct ipw_supported_rates *dest, const struct ipw_supported_rates *src) { u8 i; for (i = 0; i < src->num_rates; i++) dest->supported_rates[i] = src->supported_rates[i]; dest->num_rates = src->num_rates; } /* TODO: Look at sniffed packets in the air to determine if the basic rate * mask should ever be used -- right now all callers to add the scan rates are * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */ static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates, u8 modulation, u32 rate_mask) { u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ? IEEE80211_BASIC_RATE_MASK : 0; if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK) rates->supported_rates[rates->num_rates++] = IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB; if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK) rates->supported_rates[rates->num_rates++] = IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB; if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | IEEE80211_CCK_RATE_5MB; if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | IEEE80211_CCK_RATE_11MB; } static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates, u8 modulation, u32 rate_mask) { u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ? IEEE80211_BASIC_RATE_MASK : 0; if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | IEEE80211_OFDM_RATE_6MB; if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK) rates->supported_rates[rates->num_rates++] = IEEE80211_OFDM_RATE_9MB; if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | IEEE80211_OFDM_RATE_12MB; if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK) rates->supported_rates[rates->num_rates++] = IEEE80211_OFDM_RATE_18MB; if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK) rates->supported_rates[rates->num_rates++] = basic_mask | IEEE80211_OFDM_RATE_24MB; if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK) rates->supported_rates[rates->num_rates++] = IEEE80211_OFDM_RATE_36MB; if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK) rates->supported_rates[rates->num_rates++] = IEEE80211_OFDM_RATE_48MB; if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK) rates->supported_rates[rates->num_rates++] = IEEE80211_OFDM_RATE_54MB; } struct ipw_network_match { struct ieee80211_network *network; struct ipw_supported_rates rates; }; static int ipw_best_network( struct ipw_priv *priv, struct ipw_network_match *match, struct ieee80211_network *network, int roaming) { struct ipw_supported_rates rates; /* Verify that this network's capability is compatible with the * current mode (AdHoc or Infrastructure) */ if ((priv->ieee->iw_mode == IW_MODE_INFRA && !(network->capability & WLAN_CAPABILITY_ESS)) || (priv->ieee->iw_mode == IW_MODE_ADHOC && !(network->capability & WLAN_CAPABILITY_IBSS))) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to " "capability mismatch.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid)); return 0; } /* If we do not have an ESSID for this AP, we can not associate with * it */ if (network->flags & NETWORK_EMPTY_ESSID) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of hidden ESSID.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid)); return 0; } if (unlikely(roaming)) { /* If we are roaming, then ensure check if this is a valid * network to try and roam to */ if ((network->ssid_len != match->network->ssid_len) || memcmp(network->ssid, match->network->ssid, network->ssid_len)) { IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded " "because of non-network ESSID.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid)); return 0; } } else { /* If an ESSID has been configured then compare the broadcast * ESSID to ours */ if ((priv->config & CFG_STATIC_ESSID) && ((network->ssid_len != priv->essid_len) || memcmp(network->ssid, priv->essid, min(network->ssid_len, priv->essid_len)))) { char escaped[IW_ESSID_MAX_SIZE * 2 + 1]; strncpy(escaped, escape_essid( network->ssid, network->ssid_len), sizeof(escaped)); IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of ESSID mismatch: '%s'.\n", escaped, MAC_ARG(network->bssid), escape_essid(priv->essid, priv->essid_len)); return 0; } } /* If the old network rate is better than this one, don't bother * testing everything else. */ if (match->network && match->network->stats.rssi > network->stats.rssi) { char escaped[IW_ESSID_MAX_SIZE * 2 + 1]; strncpy(escaped, escape_essid(network->ssid, network->ssid_len), sizeof(escaped)); IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because " "'%s (" MAC_FMT ")' has a stronger signal.\n", escaped, MAC_ARG(network->bssid), escape_essid(match->network->ssid, match->network->ssid_len), MAC_ARG(match->network->bssid)); return 0; } /* If this network has already had an association attempt within the * last 3 seconds, do not try and associate again... */ if (network->last_associate && time_after(network->last_associate + (HZ * 5UL), jiffies)) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of storming (%lu since last " "assoc attempt).\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid), (jiffies - network->last_associate) / HZ); return 0; } /* Now go through and see if the requested network is valid... */ if (priv->ieee->scan_age != 0 && jiffies - network->last_scanned > priv->ieee->scan_age) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of age: %lums.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid), (jiffies - network->last_scanned) / (HZ / 100)); return 0; } if ((priv->config & CFG_STATIC_CHANNEL) && (network->channel != priv->channel)) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of channel mismatch: %d != %d.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid), network->channel, priv->channel); return 0; } /* Verify privacy compatability */ if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) != ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of privacy mismatch: %s != %s.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid), priv->capability & CAP_PRIVACY_ON ? "on" : "off", network->capability & WLAN_CAPABILITY_PRIVACY ?"on" : "off"); return 0; } if ((priv->config & CFG_STATIC_BSSID) && memcmp(network->bssid, priv->bssid, ETH_ALEN)) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of BSSID mismatch: " MAC_FMT ".\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid), MAC_ARG(priv->bssid)); return 0; } /* Filter out any incompatible freq / mode combinations */ if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of invalid frequency/mode " "combination.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid)); return 0; } ipw_compatible_rates(priv, network, &rates); if (rates.num_rates == 0) { IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded " "because of no compatible rates.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid)); return 0; } /* TODO: Perform any further minimal comparititive tests. We do not * want to put too much policy logic here; intelligent scan selection * should occur within a generic IEEE 802.11 user space tool. */ /* Set up 'new' AP to this network */ ipw_copy_rates(&match->rates, &rates); match->network = network; IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n", escape_essid(network->ssid, network->ssid_len), MAC_ARG(network->bssid)); return 1; } static void ipw_adhoc_create(struct ipw_priv *priv, struct ieee80211_network *network) { /* * For the purposes of scanning, we can set our wireless mode * to trigger scans across combinations of bands, but when it * comes to creating a new ad-hoc network, we have tell the FW * exactly which band to use. * * We also have the possibility of an invalid channel for the * chossen band. Attempting to create a new ad-hoc network * with an invalid channel for wireless mode will trigger a * FW fatal error. */ network->mode = is_valid_channel(priv->ieee->mode, priv->channel); if (network->mode) { network->channel = priv->channel; } else { IPW_WARNING("Overriding invalid channel\n"); if (priv->ieee->mode & IEEE_A) { network->mode = IEEE_A; priv->channel = band_a_active_channel[0]; } else if (priv->ieee->mode & IEEE_G) { network->mode = IEEE_G; priv->channel = band_b_active_channel[0]; } else { network->mode = IEEE_B; priv->channel = band_b_active_channel[0]; } } network->channel = priv->channel; priv->config |= CFG_ADHOC_PERSIST; ipw_create_bssid(priv, network->bssid); network->ssid_len = priv->essid_len; memcpy(network->ssid, priv->essid, priv->essid_len); memset(&network->stats, 0, sizeof(network->stats)); network->capability = WLAN_CAPABILITY_IBSS; if (priv->capability & CAP_PRIVACY_ON) network->capability |= WLAN_CAPABILITY_PRIVACY; network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH); memcpy(network->rates, priv->rates.supported_rates, network->rates_len); network->rates_ex_len = priv->rates.num_rates - network->rates_len; memcpy(network->rates_ex, &priv->rates.supported_rates[network->rates_len], network->rates_ex_len); network->last_scanned = 0; network->flags = 0; network->last_associate = 0; network->time_stamp[0] = 0; network->time_stamp[1] = 0; network->beacon_interval = 100; /* Default */ network->listen_interval = 10; /* Default */ network->atim_window = 0; /* Default */ #ifdef CONFIG_IEEE80211_WPA network->wpa_ie_len = 0; network->rsn_ie_len = 0; #endif /* CONFIG_IEEE80211_WPA */ } static void ipw_send_wep_keys(struct ipw_priv *priv) { struct ipw_wep_key *key; int i; struct host_cmd cmd = { .cmd = IPW_CMD_WEP_KEY, .len = sizeof(*key) }; key = (struct ipw_wep_key *)&cmd.param; key->cmd_id = DINO_CMD_WEP_KEY; key->seq_num = 0; for (i = 0; i < 4; i++) { key->key_index = i; if (!(priv->sec.flags & (1 << i))) { key->key_size = 0; } else { key->key_size = priv->sec.key_sizes[i]; memcpy(key->key, priv->sec.keys[i], key->key_size); } if (ipw_send_cmd(priv, &cmd)) { IPW_ERROR("failed to send WEP_KEY command\n"); return; } } } static void ipw_adhoc_check(void *data) { struct ipw_priv *priv = data; if (priv->missed_adhoc_beacons++ > priv->missed_beacon_threshold && !(priv->config & CFG_ADHOC_PERSIST)) { IPW_DEBUG_SCAN("Disassociating due to missed beacons\n"); ipw_remove_current_network(priv); ipw_disassociate(priv); return; } queue_delayed_work(priv->workqueue, &priv->adhoc_check, priv->assoc_request.beacon_interval); } #ifdef CONFIG_IPW_DEBUG static void ipw_debug_config(struct ipw_priv *priv) { IPW_DEBUG_INFO("Scan completed, no valid APs matched " "[CFG 0x%08X]\n", priv->config); if (priv->config & CFG_STATIC_CHANNEL) IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel); else IPW_DEBUG_INFO("Channel unlocked.\n"); if (priv->config & CFG_STATIC_ESSID) IPW_DEBUG_INFO("ESSID locked to '%s'\n", escape_essid(priv->essid, priv->essid_len)); else IPW_DEBUG_INFO("ESSID unlocked.\n"); if (priv->config & CFG_STATIC_BSSID) IPW_DEBUG_INFO("BSSID locked to %d\n", priv->channel); else IPW_DEBUG_INFO("BSSID unlocked.\n"); if (priv->capability & CAP_PRIVACY_ON) IPW_DEBUG_INFO("PRIVACY on\n"); else IPW_DEBUG_INFO("PRIVACY off\n"); IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask); } #else #define ipw_debug_config(x) do {} while (0); #endif static inline void ipw_set_fixed_rate(struct ipw_priv *priv, struct ieee80211_network *network) { /* TODO: Verify that this works... */ struct ipw_fixed_rate fr = { .tx_rates = priv->rates_mask }; u32 reg; u16 mask = 0; /* Identify 'current FW band' and match it with the fixed * Tx rates */ switch (priv->ieee->freq_band) { case IEEE80211_52GHZ_BAND: /* A only */ /* IEEE_A */ if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) { /* Invalid fixed rate mask */ fr.tx_rates = 0; break; } fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A; break; default: /* 2.4Ghz or Mixed */ /* IEEE_B */ if (network->mode == IEEE_B) { if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) { /* Invalid fixed rate mask */ fr.tx_rates = 0; } break; } /* IEEE_G */ if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK | IEEE80211_OFDM_RATES_MASK)) { /* Invalid fixed rate mask */ fr.tx_rates = 0; break; } if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) { mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1); fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK; } if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) { mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1); fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK; } if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) { mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1); fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK; } fr.tx_rates |= mask; break; } reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE); ipw_write_reg32(priv, reg, *(u32*)&fr); } static int ipw_associate_network(struct ipw_priv *priv, struct ieee80211_network *network, struct ipw_supported_rates *rates, int roaming) { int err; if (priv->config & CFG_FIXED_RATE) ipw_set_fixed_rate(priv, network); if (!(priv->config & CFG_STATIC_ESSID)) { priv->essid_len = min(network->ssid_len, (u8)IW_ESSID_MAX_SIZE); memcpy(priv->essid, network->ssid, priv->essid_len); } network->last_associate = jiffies; memset(&priv->assoc_request, 0, sizeof(priv->assoc_request)); priv->assoc_request.channel = network->channel; if ((priv->capability & CAP_PRIVACY_ON) && (priv->capability & CAP_SHARED_KEY)) { priv->assoc_request.auth_type = AUTH_SHARED_KEY; priv->assoc_request.auth_key = priv->sec.active_key; } else { priv->assoc_request.auth_type = AUTH_OPEN; priv->assoc_request.auth_key = 0; } if (priv->capability & CAP_PRIVACY_ON) ipw_send_wep_keys(priv); /* * It is valid for our ieee device to support multiple modes, but * when it comes to associating to a given network we have to choose * just one mode. */ if (network->mode & priv->ieee->mode & IEEE_A) priv->assoc_request.ieee_mode = IPW_A_MODE; else if (network->mode & priv->ieee->mode & IEEE_G) priv->assoc_request.ieee_mode = IPW_G_MODE; else if (network->mode & priv->ieee->mode & IEEE_B) priv->assoc_request.ieee_mode = IPW_B_MODE; IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, " "802.11%c [%d], enc=%s%s%s%c%c\n", roaming ? "Rea" : "A", escape_essid(priv->essid, priv->essid_len), network->channel, ipw_modes[priv->assoc_request.ieee_mode], rates->num_rates, priv->capability & CAP_PRIVACY_ON ? "on " : "off", priv->capability & CAP_PRIVACY_ON ? (priv->capability & CAP_SHARED_KEY ? "(shared)" : "(open)") : "", priv->capability & CAP_PRIVACY_ON ? " key=" : "", priv->capability & CAP_PRIVACY_ON ? '1' + priv->sec.active_key : '.', priv->capability & CAP_PRIVACY_ON ? '.' : ' '); priv->assoc_request.beacon_interval = network->beacon_interval; if ((priv->ieee->iw_mode == IW_MODE_ADHOC) && (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) { priv->assoc_request.assoc_type = HC_IBSS_START; priv->assoc_request.assoc_tsf_msw = 0; priv->assoc_request.assoc_tsf_lsw = 0; } else { if (unlikely(roaming)) priv->assoc_request.assoc_type = HC_REASSOCIATE; else priv->assoc_request.assoc_type = HC_ASSOCIATE; priv->assoc_request.assoc_tsf_msw = network->time_stamp[1]; priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0]; } memcpy(&priv->assoc_request.bssid, network->bssid, ETH_ALEN); if (priv->ieee->iw_mode == IW_MODE_ADHOC) { memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN); priv->assoc_request.atim_window = network->atim_window; } else { memcpy(&priv->assoc_request.dest, network->bssid, ETH_ALEN); priv->assoc_request.atim_window = 0; } priv->assoc_request.capability = network->capability; priv->assoc_request.listen_interval = network->listen_interval; err = ipw_send_ssid(priv, priv->essid, priv->essid_len); if (err) { IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); return err; } rates->ieee_mode = priv->assoc_request.ieee_mode; rates->purpose = IPW_RATE_CONNECT; ipw_send_supported_rates(priv, rates); if (priv->assoc_request.ieee_mode == IPW_G_MODE) priv->sys_config.dot11g_auto_detection = 1; else priv->sys_config.dot11g_auto_detection = 0; err = ipw_send_system_config(priv, &priv->sys_config); if (err) { IPW_DEBUG_HC("Attempt to send sys config command failed.\n"); return err; } IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi); err = ipw_set_sensitivity(priv, network->stats.rssi); if (err) { IPW_DEBUG_HC("Attempt to send associate command failed.\n"); return err; } /* * If preemption is enabled, it is possible for the association * to complete before we return from ipw_send_associate. Therefore * we have to be sure and update our priviate data first. */ priv->channel = network->channel; memcpy(priv->bssid, network->bssid, ETH_ALEN); priv->status |= STATUS_ASSOCIATING; priv->status &= ~STATUS_SECURITY_UPDATED; priv->assoc_network = network; err = ipw_send_associate(priv, &priv->assoc_request); if (err) { IPW_DEBUG_HC("Attempt to send associate command failed.\n"); return err; } IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n", escape_essid(priv->essid, priv->essid_len), MAC_ARG(priv->bssid)); return 0; } static void ipw_roam(void *data) { struct ipw_priv *priv = data; struct ieee80211_network *network = NULL; struct ipw_network_match match = { .network = priv->assoc_network }; /* The roaming process is as follows: * * 1. Missed beacon threshold triggers the roaming process by * setting the status ROAM bit and requesting a scan. * 2. When the scan completes, it schedules the ROAM work * 3. The ROAM work looks at all of the known networks for one that * is a better network than the currently associated. If none * found, the ROAM process is over (ROAM bit cleared) * 4. If a better network is found, a disassociation request is * sent. * 5. When the disassociation completes, the roam work is again * scheduled. The second time through, the driver is no longer * associated, and the newly selected network is sent an * association request. * 6. At this point ,the roaming process is complete and the ROAM * status bit is cleared. */ /* If we are no longer associated, and the roaming bit is no longer * set, then we are not actively roaming, so just return */ if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING))) return; if (priv->status & STATUS_ASSOCIATED) { /* First pass through ROAM process -- look for a better * network */ u8 rssi = priv->assoc_network->stats.rssi; priv->assoc_network->stats.rssi = -128; list_for_each_entry(network, &priv->ieee->network_list, list) { if (network != priv->assoc_network) ipw_best_network(priv, &match, network, 1); } priv->assoc_network->stats.rssi = rssi; if (match.network == priv->assoc_network) { IPW_DEBUG_ASSOC("No better APs in this network to " "roam to.\n"); priv->status &= ~STATUS_ROAMING; ipw_debug_config(priv); return; } ipw_send_disassociate(priv, 1); priv->assoc_network = match.network; return; } /* Second pass through ROAM process -- request association */ ipw_compatible_rates(priv, priv->assoc_network, &match.rates); ipw_associate_network(priv, priv->assoc_network, &match.rates, 1); priv->status &= ~STATUS_ROAMING; } static void ipw_associate(void *data) { struct ipw_priv *priv = data; struct ieee80211_network *network = NULL; struct ipw_network_match match = { .network = NULL }; struct ipw_supported_rates *rates; struct list_head *element; if (!(priv->config & CFG_ASSOCIATE) && !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) { IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n"); return; } list_for_each_entry(network, &priv->ieee->network_list, list) ipw_best_network(priv, &match, network, 0); network = match.network; rates = &match.rates; if (network == NULL && priv->ieee->iw_mode == IW_MODE_ADHOC && priv->config & CFG_ADHOC_CREATE && priv->config & CFG_STATIC_ESSID && !list_empty(&priv->ieee->network_free_list)) { element = priv->ieee->network_free_list.next; network = list_entry(element, struct ieee80211_network, list); ipw_adhoc_create(priv, network); rates = &priv->rates; list_del(element); list_add_tail(&network->list, &priv->ieee->network_list); } /* If we reached the end of the list, then we don't have any valid * matching APs */ if (!network) { ipw_debug_config(priv); queue_delayed_work(priv->workqueue, &priv->request_scan, SCAN_INTERVAL); return; } ipw_associate_network(priv, network, rates, 0); } static inline void ipw_handle_data_packet(struct ipw_priv *priv, struct ipw_rx_mem_buffer *rxb, struct ieee80211_rx_stats *stats) { struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data; /* We received data from the HW, so stop the watchdog */ priv->net_dev->trans_start = jiffies; /* We only process data packets if the * interface is open */ if (unlikely((pkt->u.frame.length + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) { priv->ieee->stats.rx_errors++; priv->wstats.discard.misc++; IPW_DEBUG_DROP("Corruption detected! Oh no!\n"); return; } else if (unlikely(!netif_running(priv->net_dev))) { priv->ieee->stats.rx_dropped++; priv->wstats.discard.misc++; IPW_DEBUG_DROP("Dropping packet while interface is not up.\n"); return; } /* Advance skb->data to the start of the actual payload */ skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data)); /* Set the size of the skb to the size of the frame */ skb_put(rxb->skb, pkt->u.frame.length); IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); if (!ieee80211_rx(priv->ieee, rxb->skb, stats)) priv->ieee->stats.rx_errors++; else /* ieee80211_rx succeeded, so it now owns the SKB */ rxb->skb = NULL; } /* * Main entry function for recieving a packet with 80211 headers. This * should be called when ever the FW has notified us that there is a new * skb in the recieve queue. */ static void ipw_rx(struct ipw_priv *priv) { struct ipw_rx_mem_buffer *rxb; struct ipw_rx_packet *pkt; struct ieee80211_hdr *header; u32 r, w, i; u8 network_packet; r = ipw_read32(priv, CX2_RX_READ_INDEX); w = ipw_read32(priv, CX2_RX_WRITE_INDEX); i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE; while (i != r) { rxb = priv->rxq->queue[i]; #ifdef CONFIG_IPW_DEBUG if (unlikely(rxb == NULL)) { printk(KERN_CRIT "Queue not allocated!\n"); break; } #endif priv->rxq->queue[i] = NULL; pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); pkt = (struct ipw_rx_packet *)rxb->skb->data; IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n", pkt->header.message_type, pkt->header.rx_seq_num, pkt->header.control_bits); switch (pkt->header.message_type) { case RX_FRAME_TYPE: /* 802.11 frame */ { struct ieee80211_rx_stats stats = { .rssi = pkt->u.frame.rssi_dbm - IPW_RSSI_TO_DBM, .signal = pkt->u.frame.signal, .rate = pkt->u.frame.rate, .mac_time = jiffies, .received_channel = pkt->u.frame.received_channel, .freq = (pkt->u.frame.control & (1<<0)) ? IEEE80211_24GHZ_BAND : IEEE80211_52GHZ_BAND, .len = pkt->u.frame.length, }; if (stats.rssi != 0) stats.mask |= IEEE80211_STATMASK_RSSI; if (stats.signal != 0) stats.mask |= IEEE80211_STATMASK_SIGNAL; if (stats.rate != 0) stats.mask |= IEEE80211_STATMASK_RATE; priv->rx_packets++; #ifdef CONFIG_IPW_PROMISC if (priv->ieee->iw_mode == IW_MODE_MONITOR) { ipw_handle_data_packet(priv, rxb, &stats); break; } #endif header = (struct ieee80211_hdr *)(rxb->skb->data + IPW_RX_FRAME_SIZE); /* TODO: Check Ad-Hoc dest/source and make sure * that we are actually parsing these packets * correctly -- we should probably use the * frame control of the packet and disregard * the current iw_mode */ switch (priv->ieee->iw_mode) { case IW_MODE_ADHOC: network_packet = !memcmp(header->addr1, priv->net_dev->dev_addr, ETH_ALEN) || !memcmp(header->addr3, priv->bssid, ETH_ALEN) || is_broadcast_ether_addr(header->addr1) || is_multicast_ether_addr(header->addr1); break; case IW_MODE_INFRA: default: network_packet = !memcmp(header->addr3, priv->bssid, ETH_ALEN) || !memcmp(header->addr1, priv->net_dev->dev_addr, ETH_ALEN) || is_broadcast_ether_addr(header->addr1) || is_multicast_ether_addr(header->addr1); break; } if (network_packet && priv->assoc_network) { priv->assoc_network->stats.rssi = stats.rssi; average_add(&priv->average_rssi, stats.rssi); priv->last_rx_rssi = stats.rssi; } IPW_DEBUG_RX("Frame: len=%u\n", pkt->u.frame.length); if (pkt->u.frame.length < frame_hdr_len(header)) { IPW_DEBUG_DROP("Received packet is too small. " "Dropping.\n"); priv->ieee->stats.rx_errors++; priv->wstats.discard.misc++; break; } switch (WLAN_FC_GET_TYPE(header->frame_ctl)) { case IEEE80211_FTYPE_MGMT: ieee80211_rx_mgt(priv->ieee, header, &stats); if (priv->ieee->iw_mode == IW_MODE_ADHOC && ((WLAN_FC_GET_STYPE(header->frame_ctl) == IEEE80211_STYPE_PROBE_RESP) || (WLAN_FC_GET_STYPE(header->frame_ctl) == IEEE80211_STYPE_BEACON)) && !memcmp(header->addr3, priv->bssid, ETH_ALEN)) ipw_add_station(priv, header->addr2); break; case IEEE80211_FTYPE_CTL: break; case IEEE80211_FTYPE_DATA: if (network_packet) ipw_handle_data_packet(priv, rxb, &stats); else IPW_DEBUG_DROP("Dropping: " MAC_FMT ", " MAC_FMT ", " MAC_FMT "\n", MAC_ARG(header->addr1), MAC_ARG(header->addr2), MAC_ARG(header->addr3)); break; } break; } case RX_HOST_NOTIFICATION_TYPE: { IPW_DEBUG_RX("Notification: subtype=%02X flags=%02X size=%d\n", pkt->u.notification.subtype, pkt->u.notification.flags, pkt->u.notification.size); ipw_rx_notification(priv, &pkt->u.notification); break; } default: IPW_DEBUG_RX("Bad Rx packet of type %d\n", pkt->header.message_type); break; } /* For now we just don't re-use anything. We can tweak this * later to try and re-use notification packets and SKBs that * fail to Rx correctly */ if (rxb->skb != NULL) { dev_kfree_skb_any(rxb->skb); rxb->skb = NULL; } pci_unmap_single(priv->pci_dev, rxb->dma_addr, CX2_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); list_add_tail(&rxb->list, &priv->rxq->rx_used); i = (i + 1) % RX_QUEUE_SIZE; } /* Backtrack one entry */ priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1; ipw_rx_queue_restock(priv); } static void ipw_abort_scan(struct ipw_priv *priv) { int err; if (priv->status & STATUS_SCAN_ABORTING) { IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n"); return; } priv->status |= STATUS_SCAN_ABORTING; err = ipw_send_scan_abort(priv); if (err) IPW_DEBUG_HC("Request to abort scan failed.\n"); } static int ipw_request_scan(struct ipw_priv *priv) { struct ipw_scan_request_ext scan; int channel_index = 0; int i, err, scan_type; if (priv->status & STATUS_EXIT_PENDING) { IPW_DEBUG_SCAN("Aborting scan due to device shutdown\n"); priv->status |= STATUS_SCAN_PENDING; return 0; } if (priv->status & STATUS_SCANNING) { IPW_DEBUG_HC("Concurrent scan requested. Aborting first.\n"); priv->status |= STATUS_SCAN_PENDING; ipw_abort_scan(priv); return 0; } if (priv->status & STATUS_SCAN_ABORTING) { IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n"); priv->status |= STATUS_SCAN_PENDING; return 0; } if (priv->status & STATUS_RF_KILL_MASK) { IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n"); priv->status |= STATUS_SCAN_PENDING; return 0; } memset(&scan, 0, sizeof(scan)); scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] = 20; scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] = 20; scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = 20; scan.full_scan_index = ieee80211_get_scans(priv->ieee); /* If we are roaming, then make this a directed scan for the current * network. Otherwise, ensure that every other scan is a fast * channel hop scan */ if ((priv->status & STATUS_ROAMING) || ( !(priv->status & STATUS_ASSOCIATED) && (priv->config & CFG_STATIC_ESSID) && (scan.full_scan_index % 2))) { err = ipw_send_ssid(priv, priv->essid, priv->essid_len); if (err) { IPW_DEBUG_HC("Attempt to send SSID command failed.\n"); return err; } scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN; } else { scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN; } if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) { int start = channel_index; for (i = 0; i < MAX_A_CHANNELS; i++) { if (band_a_active_channel[i] == 0) break; if ((priv->status & STATUS_ASSOCIATED) && band_a_active_channel[i] == priv->channel) continue; channel_index++; scan.channels_list[channel_index] = band_a_active_channel[i]; ipw_set_scan_type(&scan, channel_index, scan_type); } if (start != channel_index) { scan.channels_list[start] = (u8)(IPW_A_MODE << 6) | (channel_index - start); channel_index++; } } if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) { int start = channel_index; for (i = 0; i < MAX_B_CHANNELS; i++) { if (band_b_active_channel[i] == 0) break; if ((priv->status & STATUS_ASSOCIATED) && band_b_active_channel[i] == priv->channel) continue; channel_index++; scan.channels_list[channel_index] = band_b_active_channel[i]; ipw_set_scan_type(&scan, channel_index, scan_type); } if (start != channel_index) { scan.channels_list[start] = (u8)(IPW_B_MODE << 6) | (channel_index - start); } } err = ipw_send_scan_request_ext(priv, &scan); if (err) { IPW_DEBUG_HC("Sending scan command failed: %08X\n", err); return -EIO; } priv->status |= STATUS_SCANNING; priv->status &= ~STATUS_SCAN_PENDING; return 0; } /* * This file defines the Wireless Extension handlers. It does not * define any methods of hardware manipulation and relies on the * functions defined in ipw_main to provide the HW interaction. * * The exception to this is the use of the ipw_get_ordinal() * function used to poll the hardware vs. making unecessary calls. * */ static int ipw_wx_get_name(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); if (!(priv->status & STATUS_ASSOCIATED)) strcpy(wrqu->name, "unassociated"); else snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c", ipw_modes[priv->assoc_request.ieee_mode]); IPW_DEBUG_WX("Name: %s\n", wrqu->name); return 0; } static int ipw_set_channel(struct ipw_priv *priv, u8 channel) { if (channel == 0) { IPW_DEBUG_INFO("Setting channel to ANY (0)\n"); priv->config &= ~CFG_STATIC_CHANNEL; if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { IPW_DEBUG_ASSOC("Attempting to associate with new " "parameters.\n"); ipw_associate(priv); } return 0; } priv->config |= CFG_STATIC_CHANNEL; if (priv->channel == channel) { IPW_DEBUG_INFO( "Request to set channel to current value (%d)\n", channel); return 0; } IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel); priv->channel = channel; /* If we are currently associated, or trying to associate * then see if this is a new channel (causing us to disassociate) */ if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { IPW_DEBUG_ASSOC("Disassociating due to channel change.\n"); ipw_disassociate(priv); } else { ipw_associate(priv); } return 0; } static int ipw_wx_set_freq(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); struct iw_freq *fwrq = &wrqu->freq; /* if setting by freq convert to channel */ if (fwrq->e == 1) { if ((fwrq->m >= (int) 2.412e8 && fwrq->m <= (int) 2.487e8)) { int f = fwrq->m / 100000; int c = 0; while ((c < REG_MAX_CHANNEL) && (f != ipw_frequencies[c])) c++; /* hack to fall through */ fwrq->e = 0; fwrq->m = c + 1; } } if (fwrq->e > 0 || fwrq->m > 1000) return -EOPNOTSUPP; IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m); return ipw_set_channel(priv, (u8)fwrq->m); return 0; } static int ipw_wx_get_freq(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); wrqu->freq.e = 0; /* If we are associated, trying to associate, or have a statically * configured CHANNEL then return that; otherwise return ANY */ if (priv->config & CFG_STATIC_CHANNEL || priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) wrqu->freq.m = priv->channel; else wrqu->freq.m = 0; IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel); return 0; } static int ipw_wx_set_mode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); int err = 0; IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode); if (wrqu->mode == priv->ieee->iw_mode) return 0; switch (wrqu->mode) { #ifdef CONFIG_IPW_PROMISC case IW_MODE_MONITOR: #endif case IW_MODE_ADHOC: case IW_MODE_INFRA: break; case IW_MODE_AUTO: wrqu->mode = IW_MODE_INFRA; break; default: return -EINVAL; } #ifdef CONFIG_IPW_PROMISC if (priv->ieee->iw_mode == IW_MODE_MONITOR) priv->net_dev->type = ARPHRD_ETHER; if (wrqu->mode == IW_MODE_MONITOR) priv->net_dev->type = ARPHRD_IEEE80211; #endif /* CONFIG_IPW_PROMISC */ #ifdef CONFIG_PM /* Free the existing firmware and reset the fw_loaded * flag so ipw_load() will bring in the new firmawre */ if (fw_loaded) { fw_loaded = 0; } release_firmware(bootfw); release_firmware(ucode); release_firmware(firmware); bootfw = ucode = firmware = NULL; #endif priv->ieee->iw_mode = wrqu->mode; ipw_adapter_restart(priv); return err; } static int ipw_wx_get_mode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); wrqu->mode = priv->ieee->iw_mode; IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode); return 0; } #define DEFAULT_RTS_THRESHOLD 2304U #define MIN_RTS_THRESHOLD 1U #define MAX_RTS_THRESHOLD 2304U #define DEFAULT_BEACON_INTERVAL 100U #define DEFAULT_SHORT_RETRY_LIMIT 7U #define DEFAULT_LONG_RETRY_LIMIT 4U /* Values are in microsecond */ static const s32 timeout_duration[] = { 350000, 250000, 75000, 37000, 25000, }; static const s32 period_duration[] = { 400000, 700000, 1000000, 1000000, 1000000 }; static int ipw_wx_get_range(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); struct iw_range *range = (struct iw_range *)extra; u16 val; int i; wrqu->data.length = sizeof(*range); memset(range, 0, sizeof(*range)); /* 54Mbs == ~27 Mb/s real (802.11g) */ range->throughput = 27 * 1000 * 1000; range->max_qual.qual = 100; /* TODO: Find real max RSSI and stick here */ range->max_qual.level = 0; range->max_qual.noise = 0; range->max_qual.updated = 7; /* Updated all three */ range->avg_qual.qual = 70; /* TODO: Find real 'good' to 'bad' threshol value for RSSI */ range->avg_qual.level = 0; /* FIXME to real average level */ range->avg_qual.noise = 0; range->avg_qual.updated = 7; /* Updated all three */ range->num_bitrates = min(priv->rates.num_rates, (u8)IW_MAX_BITRATES); for (i = 0; i < range->num_bitrates; i++) range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) * 500000; range->max_rts = DEFAULT_RTS_THRESHOLD; range->min_frag = MIN_FRAG_THRESHOLD; range->max_frag = MAX_FRAG_THRESHOLD; range->encoding_size[0] = 5; range->encoding_size[1] = 13; range->num_encoding_sizes = 2; range->max_encoding_tokens = WEP_KEYS; /* Set the Wireless Extension versions */ range->we_version_compiled = WIRELESS_EXT; range->we_version_source = 16; range->num_channels = FREQ_COUNT; val = 0; for (i = 0; i < FREQ_COUNT; i++) { range->freq[val].i = i + 1; range->freq[val].m = ipw_frequencies[i] * 100000; range->freq[val].e = 1; val++; if (val == IW_MAX_FREQUENCIES) break; } range->num_frequency = val; IPW_DEBUG_WX("GET Range\n"); return 0; } static int ipw_wx_set_wap(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); static const unsigned char any[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static const unsigned char off[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; if (wrqu->ap_addr.sa_family != ARPHRD_ETHER) return -EINVAL; if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) || !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) { /* we disable mandatory BSSID association */ IPW_DEBUG_WX("Setting AP BSSID to ANY\n"); priv->config &= ~CFG_STATIC_BSSID; if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { IPW_DEBUG_ASSOC("Attempting to associate with new " "parameters.\n"); ipw_associate(priv); } return 0; } priv->config |= CFG_STATIC_BSSID; if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) { IPW_DEBUG_WX("BSSID set to current BSSID.\n"); return 0; } IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n", MAC_ARG(wrqu->ap_addr.sa_data)); memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN); /* If we are currently associated, or trying to associate * then see if this is a new BSSID (causing us to disassociate) */ if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { IPW_DEBUG_ASSOC("Disassociating due to BSSID change.\n"); ipw_disassociate(priv); } else { ipw_associate(priv); } return 0; } static int ipw_wx_get_wap(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); /* If we are associated, trying to associate, or have a statically * configured BSSID then return that; otherwise return ANY */ if (priv->config & CFG_STATIC_BSSID || priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { wrqu->ap_addr.sa_family = ARPHRD_ETHER; memcpy(wrqu->ap_addr.sa_data, &priv->bssid, ETH_ALEN); } else memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN); IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n", MAC_ARG(wrqu->ap_addr.sa_data)); return 0; } static int ipw_wx_set_essid(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); char *essid = ""; /* ANY */ int length = 0; if (wrqu->essid.flags && wrqu->essid.length) { length = wrqu->essid.length - 1; essid = extra; } if (length == 0) { IPW_DEBUG_WX("Setting ESSID to ANY\n"); priv->config &= ~CFG_STATIC_ESSID; if (!(priv->status & (STATUS_SCANNING | STATUS_ASSOCIATED | STATUS_ASSOCIATING))) { IPW_DEBUG_ASSOC("Attempting to associate with new " "parameters.\n"); ipw_associate(priv); } return 0; } length = min(length, IW_ESSID_MAX_SIZE); priv->config |= CFG_STATIC_ESSID; if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) { IPW_DEBUG_WX("ESSID set to current ESSID.\n"); return 0; } IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length), length); priv->essid_len = length; memcpy(priv->essid, essid, priv->essid_len); /* If we are currently associated, or trying to associate * then see if this is a new ESSID (causing us to disassociate) */ if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { IPW_DEBUG_ASSOC("Disassociating due to ESSID change.\n"); ipw_disassociate(priv); } else { ipw_associate(priv); } return 0; } static int ipw_wx_get_essid(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); /* If we are associated, trying to associate, or have a statically * configured ESSID then return that; otherwise return ANY */ if (priv->config & CFG_STATIC_ESSID || priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { IPW_DEBUG_WX("Getting essid: '%s'\n", escape_essid(priv->essid, priv->essid_len)); memcpy(extra, priv->essid, priv->essid_len); wrqu->essid.length = priv->essid_len; wrqu->essid.flags = 1; /* active */ } else { IPW_DEBUG_WX("Getting essid: ANY\n"); wrqu->essid.length = 0; wrqu->essid.flags = 0; /* active */ } return 0; } static int ipw_wx_set_nick(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); IPW_DEBUG_WX("Setting nick to '%s'\n", extra); if (wrqu->data.length > IW_ESSID_MAX_SIZE) return -E2BIG; wrqu->data.length = min((size_t)wrqu->data.length, sizeof(priv->nick)); memset(priv->nick, 0, sizeof(priv->nick)); memcpy(priv->nick, extra, wrqu->data.length); IPW_DEBUG_TRACE("<<\n"); return 0; } static int ipw_wx_get_nick(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); IPW_DEBUG_WX("Getting nick\n"); wrqu->data.length = strlen(priv->nick) + 1; memcpy(extra, priv->nick, wrqu->data.length); wrqu->data.flags = 1; /* active */ return 0; } static int ipw_wx_set_rate(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu); return -EOPNOTSUPP; } static int ipw_wx_get_rate(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv * priv = ieee80211_priv(dev); wrqu->bitrate.value = priv->last_rate; IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value); return 0; } static int ipw_wx_set_rts(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); if (wrqu->rts.disabled) priv->rts_threshold = DEFAULT_RTS_THRESHOLD; else { if (wrqu->rts.value < MIN_RTS_THRESHOLD || wrqu->rts.value > MAX_RTS_THRESHOLD) return -EINVAL; priv->rts_threshold = wrqu->rts.value; } ipw_send_rts_threshold(priv, priv->rts_threshold); IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold); return 0; } static int ipw_wx_get_rts(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); wrqu->rts.value = priv->rts_threshold; wrqu->rts.fixed = 0; /* no auto select */ wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD); IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value); return 0; } static int ipw_wx_set_txpow(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); struct ipw_tx_power tx_power; int i; if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) return -EINPROGRESS; if (wrqu->power.flags != IW_TXPOW_DBM) return -EINVAL; if ((wrqu->power.value > 20) || (wrqu->power.value < -12)) return -EINVAL; priv->tx_power = wrqu->power.value; memset(&tx_power, 0, sizeof(tx_power)); /* configure device for 'G' band */ tx_power.ieee_mode = IPW_G_MODE; tx_power.num_channels = 11; for (i = 0; i < 11; i++) { tx_power.channels_tx_power[i].channel_number = i + 1; tx_power.channels_tx_power[i].tx_power = priv->tx_power; } if (ipw_send_tx_power(priv, &tx_power)) goto error; /* configure device to also handle 'B' band */ tx_power.ieee_mode = IPW_B_MODE; if (ipw_send_tx_power(priv, &tx_power)) goto error; return 0; error: return -EIO; } static int ipw_wx_get_txpow(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); wrqu->power.value = priv->tx_power; wrqu->power.fixed = 1; wrqu->power.flags = IW_TXPOW_DBM; wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0; IPW_DEBUG_WX("GET TX Power -> %s %d \n", wrqu->power.disabled ? "ON" : "OFF", wrqu->power.value); return 0; } static int ipw_wx_set_frag(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); if (wrqu->frag.disabled) priv->ieee->fts = DEFAULT_FTS; else { if (wrqu->frag.value < MIN_FRAG_THRESHOLD || wrqu->frag.value > MAX_FRAG_THRESHOLD) return -EINVAL; priv->ieee->fts = wrqu->frag.value & ~0x1; } ipw_send_frag_threshold(priv, wrqu->frag.value); IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value); return 0; } static int ipw_wx_get_frag(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); wrqu->frag.value = priv->ieee->fts; wrqu->frag.fixed = 0; /* no auto select */ wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS); IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value); return 0; } static int ipw_wx_set_retry(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu); return -EOPNOTSUPP; } static int ipw_wx_get_retry(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { IPW_DEBUG_WX("0x%p, 0x%p, 0x%p\n", dev, info, wrqu); return -EOPNOTSUPP; } static int ipw_wx_set_scan(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); IPW_DEBUG_WX("Start scan\n"); if (ipw_request_scan(priv)) return -EIO; return 0; } static int ipw_wx_get_scan(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra); } static int ipw_wx_set_encode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *key) { struct ipw_priv *priv = ieee80211_priv(dev); return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key); } static int ipw_wx_get_encode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *key) { struct ipw_priv *priv = ieee80211_priv(dev); return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key); } static int ipw_wx_set_power(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); int err; if (wrqu->power.disabled) { priv->power_mode = IPW_POWER_LEVEL(priv->power_mode); err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM); if (err) { IPW_DEBUG_WX("failed setting power mode.\n"); return err; } IPW_DEBUG_WX("SET Power Management Mode -> off\n"); return 0; } switch (wrqu->power.flags & IW_POWER_MODE) { case IW_POWER_ON: /* If not specified */ case IW_POWER_MODE: /* If set all mask */ case IW_POWER_ALL_R: /* If explicitely state all */ break; default: /* Otherwise we don't support it */ IPW_DEBUG_WX("SET PM Mode: %X not supported.\n", wrqu->power.flags); return -EOPNOTSUPP; } /* If the user hasn't specified a power management mode yet, default * to BATTERY */ if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC) priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY; else priv->power_mode = IPW_POWER_ENABLED | priv->power_mode; err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode)); if (err) { IPW_DEBUG_WX("failed setting power mode.\n"); return err; } IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode); return 0; } static int ipw_wx_get_power(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); if (!(priv->power_mode & IPW_POWER_ENABLED)) { wrqu->power.disabled = 1; } else { wrqu->power.disabled = 0; } IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode); return 0; } static int ipw_wx_set_powermode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); int mode = *(int *)extra; int err; if ((mode < 1) || (mode > IPW_POWER_LIMIT)) { mode = IPW_POWER_AC; priv->power_mode = mode; } else { priv->power_mode = IPW_POWER_ENABLED | mode; } if (priv->power_mode != mode) { err = ipw_send_power_mode(priv, mode); if (err) { IPW_DEBUG_WX("failed setting power mode.\n"); return err; } } return 0; } #define MAX_WX_STRING 80 static int ipw_wx_get_powermode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); int level = IPW_POWER_LEVEL(priv->power_mode); char *p = extra; p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level); switch (level) { case IPW_POWER_AC: p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)"); break; case IPW_POWER_BATTERY: p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)"); break; default: p += snprintf(p, MAX_WX_STRING - (p - extra), "(Timeout %dms, Period %dms)", timeout_duration[level - 1] / 1000, period_duration[level - 1] / 1000); } if (!(priv->power_mode & IPW_POWER_ENABLED)) p += snprintf(p, MAX_WX_STRING - (p - extra)," OFF"); wrqu->data.length = p - extra + 1; return 0; } static int ipw_wx_set_wireless_mode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); int mode = *(int *)extra; u8 band = 0, modulation = 0; if (mode == 0 || mode & ~IEEE_MODE_MASK) { IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode); return -EINVAL; } if (priv->adapter == IPW_2915ABG) { priv->ieee->abg_ture = 1; if (mode & IEEE_A) { band |= IEEE80211_52GHZ_BAND; modulation |= IEEE80211_OFDM_MODULATION; } else priv->ieee->abg_ture = 0; } else { if (mode & IEEE_A) { IPW_WARNING("Attempt to set 2200BG into " "802.11a mode\n"); return -EINVAL; } priv->ieee->abg_ture = 0; } if (mode & IEEE_B) { band |= IEEE80211_24GHZ_BAND; modulation |= IEEE80211_CCK_MODULATION; } else priv->ieee->abg_ture = 0; if (mode & IEEE_G) { band |= IEEE80211_24GHZ_BAND; modulation |= IEEE80211_OFDM_MODULATION; } else priv->ieee->abg_ture = 0; priv->ieee->mode = mode; priv->ieee->freq_band = band; priv->ieee->modulation = modulation; init_supported_rates(priv, &priv->rates); /* If we are currently associated, or trying to associate * then see if this is a new configuration (causing us to * disassociate) */ if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) { /* The resulting association will trigger * the new rates to be sent to the device */ IPW_DEBUG_ASSOC("Disassociating due to mode change.\n"); ipw_disassociate(priv); } else ipw_send_supported_rates(priv, &priv->rates); IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n", mode & IEEE_A ? 'a' : '.', mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.'); return 0; } static int ipw_wx_get_wireless_mode(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); switch (priv->ieee->freq_band) { case IEEE80211_24GHZ_BAND: switch (priv->ieee->modulation) { case IEEE80211_CCK_MODULATION: strncpy(extra, "802.11b (2)", MAX_WX_STRING); break; case IEEE80211_OFDM_MODULATION: strncpy(extra, "802.11g (4)", MAX_WX_STRING); break; default: strncpy(extra, "802.11bg (6)", MAX_WX_STRING); break; } break; case IEEE80211_52GHZ_BAND: strncpy(extra, "802.11a (1)", MAX_WX_STRING); break; default: /* Mixed Band */ switch (priv->ieee->modulation) { case IEEE80211_CCK_MODULATION: strncpy(extra, "802.11ab (3)", MAX_WX_STRING); break; case IEEE80211_OFDM_MODULATION: strncpy(extra, "802.11ag (5)", MAX_WX_STRING); break; default: strncpy(extra, "802.11abg (7)", MAX_WX_STRING); break; } break; } IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra); wrqu->data.length = strlen(extra) + 1; return 0; } #ifdef CONFIG_IPW_PROMISC static int ipw_wx_set_promisc(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); int *parms = (int *)extra; int enable = (parms[0] > 0); IPW_DEBUG_WX("SET PROMISC: %d %d\n", enable, parms[1]); if (enable) { if (priv->ieee->iw_mode != IW_MODE_MONITOR) { priv->net_dev->type = ARPHRD_IEEE80211; ipw_adapter_restart(priv); } ipw_set_channel(priv, parms[1]); } else { if (priv->ieee->iw_mode != IW_MODE_MONITOR) return 0; priv->net_dev->type = ARPHRD_ETHER; ipw_adapter_restart(priv); } return 0; } static int ipw_wx_reset(struct net_device *dev, struct iw_request_info *info, union iwreq_data *wrqu, char *extra) { struct ipw_priv *priv = ieee80211_priv(dev); IPW_DEBUG_WX("RESET\n"); ipw_adapter_restart(priv); return 0; } #endif // CONFIG_IPW_PROMISC /* Rebase the WE IOCTLs to zero for the handler array */ #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT] static iw_handler ipw_wx_handlers[] = { IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name, IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq, IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq, IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode, IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode, IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range, IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap, IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap, IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan, IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan, IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid, IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid, IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick, IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick, IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate, IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate, IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts, IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts, IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag, IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag, IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow, IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow, IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry, IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry, IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode, IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode, IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power, IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power, }; #define IPW_PRIV_SET_POWER SIOCIWFIRSTPRIV #define IPW_PRIV_GET_POWER SIOCIWFIRSTPRIV+1 #define IPW_PRIV_SET_MODE SIOCIWFIRSTPRIV+2 #define IPW_PRIV_GET_MODE SIOCIWFIRSTPRIV+3 #define IPW_PRIV_SET_PROMISC SIOCIWFIRSTPRIV+4 #define IPW_PRIV_RESET SIOCIWFIRSTPRIV+5 static struct iw_priv_args ipw_priv_args[] = { { .cmd = IPW_PRIV_SET_POWER, .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, .name = "set_power" }, { .cmd = IPW_PRIV_GET_POWER, .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, .name = "get_power" }, { .cmd = IPW_PRIV_SET_MODE, .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, .name = "set_mode" }, { .cmd = IPW_PRIV_GET_MODE, .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING, .name = "get_mode" }, #ifdef CONFIG_IPW_PROMISC { IPW_PRIV_SET_PROMISC, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor" }, { IPW_PRIV_RESET, IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset" }, #endif /* CONFIG_IPW_PROMISC */ }; static iw_handler ipw_priv_handler[] = { ipw_wx_set_powermode, ipw_wx_get_powermode, ipw_wx_set_wireless_mode, ipw_wx_get_wireless_mode, #ifdef CONFIG_IPW_PROMISC ipw_wx_set_promisc, ipw_wx_reset, #endif }; static struct iw_handler_def ipw_wx_handler_def = { .standard = ipw_wx_handlers, .num_standard = ARRAY_SIZE(ipw_wx_handlers), .num_private = ARRAY_SIZE(ipw_priv_handler), .num_private_args = ARRAY_SIZE(ipw_priv_args), .private = ipw_priv_handler, .private_args = ipw_priv_args, }; /* * Get wireless statistics. * Called by /proc/net/wireless * Also called by SIOCGIWSTATS */ static struct iw_statistics *ipw_get_wireless_stats(struct net_device * dev) { struct ipw_priv *priv = ieee80211_priv(dev); struct iw_statistics *wstats; wstats = &priv->wstats; /* if hw is disabled, then ipw2100_get_ordinal() can't be called. * ipw2100_wx_wireless_stats seems to be called before fw is * initialized. STATUS_ASSOCIATED will only be set if the hw is up * and associated; if not associcated, the values are all meaningless * anyway, so set them all to NULL and INVALID */ if (!(priv->status & STATUS_ASSOCIATED)) { wstats->miss.beacon = 0; wstats->discard.retries = 0; wstats->qual.qual = 0; wstats->qual.level = 0; wstats->qual.noise = 0; wstats->qual.updated = 7; wstats->qual.updated |= IW_QUAL_NOISE_INVALID | IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID; return wstats; } wstats->qual.qual = priv->quality; wstats->qual.level = average_value(&priv->average_rssi); wstats->qual.noise = average_value(&priv->average_noise); wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED | IW_QUAL_NOISE_UPDATED; wstats->miss.beacon = average_value(&priv->average_missed_beacons); wstats->discard.retries = priv->last_tx_failures; wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable; /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len)) goto fail_get_ordinal; wstats->discard.retries += tx_retry; */ return wstats; } /* net device stuff */ static inline void init_sys_config(struct ipw_sys_config *sys_config) { memset(sys_config, 0, sizeof(struct ipw_sys_config)); sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */ sys_config->answer_broadcast_ssid_probe = 0; sys_config->accept_all_data_frames = 0; sys_config->accept_non_directed_frames = 1; sys_config->exclude_unicast_unencrypted = 0; sys_config->disable_unicast_decryption = 1; sys_config->exclude_multicast_unencrypted = 0; sys_config->disable_multicast_decryption = 1; sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH; sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */ sys_config->dot11g_auto_detection = 0; sys_config->enable_cts_to_self = 0; sys_config->bt_coexist_collision_thr = 0; sys_config->pass_noise_stats_to_host = 1; } static int ipw_net_open(struct net_device *dev) { struct ipw_priv *priv = ieee80211_priv(dev); IPW_DEBUG_INFO("dev->open\n"); /* we should be verifying the device is ready to be opened */ if (!(priv->status & STATUS_RF_KILL_MASK) && (priv->status & STATUS_ASSOCIATED)) netif_start_queue(dev); return 0; } static int ipw_net_stop(struct net_device *dev) { IPW_DEBUG_INFO("dev->close\n"); netif_stop_queue(dev); return 0; } /* todo: modify to send one tfd per fragment instead of using chunking. otherwise we need to heavily modify the ieee80211_skb_to_txb. */ static inline void ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) txb->fragments[0]->data; int i = 0; struct tfd_frame *tfd; struct clx2_tx_queue *txq = &priv->txq[0]; struct clx2_queue *q = &txq->q; u8 id, hdr_len, unicast; u16 remaining_bytes; switch (priv->ieee->iw_mode) { case IW_MODE_ADHOC: hdr_len = IEEE80211_3ADDR_LEN; unicast = !is_broadcast_ether_addr(hdr->addr1) && !is_multicast_ether_addr(hdr->addr1); id = ipw_find_station(priv, hdr->addr1); if (id == IPW_INVALID_STATION) { id = ipw_add_station(priv, hdr->addr1); if (id == IPW_INVALID_STATION) { IPW_WARNING("Attempt to send data to " "invalid cell: " MAC_FMT "\n", MAC_ARG(hdr->addr1)); goto drop; } } break; case IW_MODE_INFRA: default: unicast = !is_broadcast_ether_addr(hdr->addr3) && !is_multicast_ether_addr(hdr->addr3); hdr_len = IEEE80211_3ADDR_LEN; id = 0; break; } tfd = &txq->bd[q->first_empty]; txq->txb[q->first_empty] = txb; memset(tfd, 0, sizeof(*tfd)); tfd->u.data.station_number = id; tfd->control_flags.message_type = TX_FRAME_TYPE; tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK; tfd->u.data.cmd_id = DINO_CMD_TX; tfd->u.data.len = txb->payload_size; remaining_bytes = txb->payload_size; if (unlikely(!unicast)) tfd->u.data.tx_flags = DCT_FLAG_NO_WEP; else tfd->u.data.tx_flags = DCT_FLAG_NO_WEP | DCT_FLAG_ACK_REQD; if (priv->assoc_request.ieee_mode == IPW_B_MODE) tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_CCK; else tfd->u.data.tx_flags_ext = DCT_FLAG_EXT_MODE_OFDM; if (priv->config & CFG_PREAMBLE) tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREMBL; memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len); /* payload */ tfd->u.data.num_chunks = min((u8)(NUM_TFD_CHUNKS - 2), txb->nr_frags); for (i = 0; i < tfd->u.data.num_chunks; i++) { IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n", i, tfd->u.data.num_chunks, txb->fragments[i]->len - hdr_len); printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len, txb->fragments[i]->len - hdr_len); tfd->u.data.chunk_ptr[i] = pci_map_single( priv->pci_dev, txb->fragments[i]->data + hdr_len, txb->fragments[i]->len - hdr_len, PCI_DMA_TODEVICE); tfd->u.data.chunk_len[i] = txb->fragments[i]->len - hdr_len; } if (i != txb->nr_frags) { struct sk_buff *skb; u16 remaining_bytes = 0; int j; for (j = i; j < txb->nr_frags; j++) remaining_bytes += txb->fragments[j]->len - hdr_len; printk(KERN_INFO "Trying to reallocate for %d bytes\n", remaining_bytes); skb = alloc_skb(remaining_bytes, GFP_ATOMIC); if (skb != NULL) { tfd->u.data.chunk_len[i] = remaining_bytes; for (j = i; j < txb->nr_frags; j++) { int size = txb->fragments[j]->len - hdr_len; printk(KERN_INFO "Adding frag %d %d...\n", j, size); memcpy(skb_put(skb, size), txb->fragments[j]->data + hdr_len, size); } dev_kfree_skb_any(txb->fragments[i]); txb->fragments[i] = skb; tfd->u.data.chunk_ptr[i] = pci_map_single( priv->pci_dev, skb->data, tfd->u.data.chunk_len[i], PCI_DMA_TODEVICE); tfd->u.data.num_chunks++; } } /* kick DMA */ q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd); ipw_write32(priv, q->reg_w, q->first_empty); if (ipw_queue_space(q) < q->high_mark) netif_stop_queue(priv->net_dev); return; drop: IPW_DEBUG_DROP("Silently dropping Tx packet.\n"); ieee80211_txb_free(txb); } static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb, struct net_device *dev) { struct ipw_priv *priv = ieee80211_priv(dev); unsigned long flags; IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size); spin_lock_irqsave(&priv->lock, flags); if (!(priv->status & STATUS_ASSOCIATED)) { IPW_DEBUG_INFO("Tx attempt while not associated.\n"); priv->ieee->stats.tx_carrier_errors++; netif_stop_queue(dev); goto fail_unlock; } ipw_tx_skb(priv, txb); spin_unlock_irqrestore(&priv->lock, flags); return 0; fail_unlock: spin_unlock_irqrestore(&priv->lock, flags); return 1; } static struct net_device_stats *ipw_net_get_stats(struct net_device *dev) { struct ipw_priv *priv = ieee80211_priv(dev); priv->ieee->stats.tx_packets = priv->tx_packets; priv->ieee->stats.rx_packets = priv->rx_packets; return &priv->ieee->stats; } static void ipw_net_set_multicast_list(struct net_device *dev) { } static int ipw_net_set_mac_address(struct net_device *dev, void *p) { struct ipw_priv *priv = ieee80211_priv(dev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; priv->config |= CFG_CUSTOM_MAC; memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN); printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n", priv->net_dev->name, MAC_ARG(priv->mac_addr)); ipw_adapter_restart(priv); return 0; } static void ipw_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct ipw_priv *p = ieee80211_priv(dev); char vers[64]; char date[32]; u32 len; strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); len = sizeof(vers); ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len); len = sizeof(date); ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len); snprintf(info->fw_version, sizeof(info->fw_version),"%s (%s)", vers, date); strcpy(info->bus_info, pci_name(p->pci_dev)); info->eedump_len = CX2_EEPROM_IMAGE_SIZE; } static u32 ipw_ethtool_get_link(struct net_device *dev) { struct ipw_priv *priv = ieee80211_priv(dev); return (priv->status & STATUS_ASSOCIATED) != 0; } static int ipw_ethtool_get_eeprom_len(struct net_device *dev) { return CX2_EEPROM_IMAGE_SIZE; } static int ipw_ethtool_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct ipw_priv *p = ieee80211_priv(dev); if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE) return -EINVAL; memcpy(bytes, &((u8 *)p->eeprom)[eeprom->offset], eeprom->len); return 0; } static int ipw_ethtool_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct ipw_priv *p = ieee80211_priv(dev); int i; if (eeprom->offset + eeprom->len > CX2_EEPROM_IMAGE_SIZE) return -EINVAL; memcpy(&((u8 *)p->eeprom)[eeprom->offset], bytes, eeprom->len); for (i = IPW_EEPROM_DATA; i < IPW_EEPROM_DATA + CX2_EEPROM_IMAGE_SIZE; i++) ipw_write8(p, i, p->eeprom[i]); return 0; } static struct ethtool_ops ipw_ethtool_ops = { .get_link = ipw_ethtool_get_link, .get_drvinfo = ipw_ethtool_get_drvinfo, .get_eeprom_len = ipw_ethtool_get_eeprom_len, .get_eeprom = ipw_ethtool_get_eeprom, .set_eeprom = ipw_ethtool_set_eeprom, }; static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs) { struct ipw_priv *priv = data; u32 inta, inta_mask; if (!priv) return IRQ_NONE; spin_lock(&priv->lock); if (!(priv->status & STATUS_INT_ENABLED)) { /* Shared IRQ */ goto none; } inta = ipw_read32(priv, CX2_INTA_RW); inta_mask = ipw_read32(priv, CX2_INTA_MASK_R); if (inta == 0xFFFFFFFF) { /* Hardware disappeared */ IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n"); goto none; } if (!(inta & (CX2_INTA_MASK_ALL & inta_mask))) { /* Shared interrupt */ goto none; } /* tell the device to stop sending interrupts */ ipw_disable_interrupts(priv); /* ack current interrupts */ inta &= (CX2_INTA_MASK_ALL & inta_mask); ipw_write32(priv, CX2_INTA_RW, inta); /* Cache INTA value for our tasklet */ priv->isr_inta = inta; tasklet_schedule(&priv->irq_tasklet); spin_unlock(&priv->lock); return IRQ_HANDLED; none: spin_unlock(&priv->lock); return IRQ_NONE; } static void ipw_rf_kill(void *adapter) { struct ipw_priv *priv = adapter; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (rf_kill_active(priv)) { IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n"); if (priv->workqueue) queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ); goto exit_unlock; } /* RF Kill is now disabled, so bring the device back up */ if (!(priv->status & STATUS_RF_KILL_MASK)) { IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting " "device\n"); /* we can not do an adapter restart while inside an irq lock */ queue_work(priv->workqueue, &priv->adapter_restart); } else IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still " "enabled\n"); exit_unlock: spin_unlock_irqrestore(&priv->lock, flags); } static int ipw_setup_deferred_work(struct ipw_priv *priv) { int ret = 0; priv->workqueue = create_workqueue(DRV_NAME); init_waitqueue_head(&priv->wait_command_queue); INIT_WORK(&priv->adhoc_check, ipw_adhoc_check, priv); INIT_WORK(&priv->associate, ipw_associate, priv); INIT_WORK(&priv->disassociate, ipw_disassociate, priv); INIT_WORK(&priv->rx_replenish, ipw_rx_queue_replenish, priv); INIT_WORK(&priv->adapter_restart, ipw_adapter_restart, priv); INIT_WORK(&priv->rf_kill, ipw_rf_kill, priv); INIT_WORK(&priv->up, (void (*)(void *))ipw_up, priv); INIT_WORK(&priv->down, (void (*)(void *))ipw_down, priv); INIT_WORK(&priv->request_scan, (void (*)(void *))ipw_request_scan, priv); INIT_WORK(&priv->gather_stats, (void (*)(void *))ipw_gather_stats, priv); INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_abort_scan, priv); INIT_WORK(&priv->roam, ipw_roam, priv); INIT_WORK(&priv->scan_check, ipw_scan_check, priv); tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) ipw_irq_tasklet, (unsigned long)priv); return ret; } static void shim__set_security(struct net_device *dev, struct ieee80211_security *sec) { struct ipw_priv *priv = ieee80211_priv(dev); int i; for (i = 0; i < 4; i++) { if (sec->flags & (1 << i)) { priv->sec.key_sizes[i] = sec->key_sizes[i]; if (sec->key_sizes[i] == 0) priv->sec.flags &= ~(1 << i); else memcpy(priv->sec.keys[i], sec->keys[i], sec->key_sizes[i]); priv->sec.flags |= (1 << i); priv->status |= STATUS_SECURITY_UPDATED; } } if ((sec->flags & SEC_ACTIVE_KEY) && priv->sec.active_key != sec->active_key) { if (sec->active_key <= 3) { priv->sec.active_key = sec->active_key; priv->sec.flags |= SEC_ACTIVE_KEY; } else priv->sec.flags &= ~SEC_ACTIVE_KEY; priv->status |= STATUS_SECURITY_UPDATED; } if ((sec->flags & SEC_AUTH_MODE) && (priv->sec.auth_mode != sec->auth_mode)) { priv->sec.auth_mode = sec->auth_mode; priv->sec.flags |= SEC_AUTH_MODE; if (sec->auth_mode == WLAN_AUTH_SHARED_KEY) priv->capability |= CAP_SHARED_KEY; else priv->capability &= ~CAP_SHARED_KEY; priv->status |= STATUS_SECURITY_UPDATED; } if (sec->flags & SEC_ENABLED && priv->sec.enabled != sec->enabled) { priv->sec.flags |= SEC_ENABLED; priv->sec.enabled = sec->enabled; priv->status |= STATUS_SECURITY_UPDATED; if (sec->enabled) priv->capability |= CAP_PRIVACY_ON; else priv->capability &= ~CAP_PRIVACY_ON; } if (sec->flags & SEC_LEVEL && priv->sec.level != sec->level) { priv->sec.level = sec->level; priv->sec.flags |= SEC_LEVEL; priv->status |= STATUS_SECURITY_UPDATED; } /* To match current functionality of ipw2100 (which works well w/ * various supplicants, we don't force a disassociate if the * privacy capability changes ... */ #if 0 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) && (((priv->assoc_request.capability & WLAN_CAPABILITY_PRIVACY) && !sec->enabled) || (!(priv->assoc_request.capability & WLAN_CAPABILITY_PRIVACY) && sec->enabled))) { IPW_DEBUG_ASSOC("Disassociating due to capability " "change.\n"); ipw_disassociate(priv); } #endif } static int init_supported_rates(struct ipw_priv *priv, struct ipw_supported_rates *rates) { /* TODO: Mask out rates based on priv->rates_mask */ memset(rates, 0, sizeof(*rates)); /* configure supported rates */ switch (priv->ieee->freq_band) { case IEEE80211_52GHZ_BAND: rates->ieee_mode = IPW_A_MODE; rates->purpose = IPW_RATE_CAPABILITIES; ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION, IEEE80211_OFDM_DEFAULT_RATES_MASK); break; default: /* Mixed or 2.4Ghz */ rates->ieee_mode = IPW_G_MODE; rates->purpose = IPW_RATE_CAPABILITIES; ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION, IEEE80211_CCK_DEFAULT_RATES_MASK); if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) { ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION, IEEE80211_OFDM_DEFAULT_RATES_MASK); } break; } return 0; } static int ipw_config(struct ipw_priv *priv) { int i; struct ipw_tx_power tx_power; memset(&priv->sys_config, 0, sizeof(priv->sys_config)); memset(&tx_power, 0, sizeof(tx_power)); /* This is only called from ipw_up, which resets/reloads the firmware so, we don't need to first disable the card before we configure it */ /* configure device for 'G' band */ tx_power.ieee_mode = IPW_G_MODE; tx_power.num_channels = 11; for (i = 0; i < 11; i++) { tx_power.channels_tx_power[i].channel_number = i + 1; tx_power.channels_tx_power[i].tx_power = priv->tx_power; } if (ipw_send_tx_power(priv, &tx_power)) goto error; /* configure device to also handle 'B' band */ tx_power.ieee_mode = IPW_B_MODE; if (ipw_send_tx_power(priv, &tx_power)) goto error; /* initialize adapter address */ if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr)) goto error; /* set basic system config settings */ init_sys_config(&priv->sys_config); if (ipw_send_system_config(priv, &priv->sys_config)) goto error; init_supported_rates(priv, &priv->rates); if (ipw_send_supported_rates(priv, &priv->rates)) goto error; /* Set request-to-send threshold */ if (priv->rts_threshold) { if (ipw_send_rts_threshold(priv, priv->rts_threshold)) goto error; } if (ipw_set_random_seed(priv)) goto error; /* final state transition to the RUN state */ if (ipw_send_host_complete(priv)) goto error; /* If configured to try and auto-associate, kick off a scan */ if ((priv->config & CFG_ASSOCIATE) && ipw_request_scan(priv)) goto error; return 0; error: return -EIO; } #define MAX_HW_RESTARTS 5 static int ipw_up(struct ipw_priv *priv) { int rc, i; if (priv->status & STATUS_EXIT_PENDING) return -EIO; for (i = 0; i < MAX_HW_RESTARTS; i++ ) { /* Load the microcode, firmware, and eeprom. * Also start the clocks. */ rc = ipw_load(priv); if (rc) { IPW_ERROR("Unable to load firmware: 0x%08X\n", rc); return rc; } ipw_init_ordinals(priv); if (!(priv->config & CFG_CUSTOM_MAC)) eeprom_parse_mac(priv, priv->mac_addr); memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN); if (priv->status & STATUS_RF_KILL_MASK) return 0; rc = ipw_config(priv); if (!rc) { IPW_DEBUG_INFO("Configured device on count %i\n", i); priv->notif_missed_beacons = 0; netif_start_queue(priv->net_dev); return 0; } else { IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc); } IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n", i, MAX_HW_RESTARTS); /* We had an error bringing up the hardware, so take it * all the way back down so we can try again */ ipw_down(priv); } /* tried to restart and config the device for as long as our * patience could withstand */ IPW_ERROR("Unable to initialize device after %d attempts.\n", i); return -EIO; } static void ipw_down(struct ipw_priv *priv) { /* Attempt to disable the card */ #if 0 ipw_send_card_disable(priv, 0); #endif /* tell the device to stop sending interrupts */ ipw_disable_interrupts(priv); /* Clear all bits but the RF Kill */ priv->status &= STATUS_RF_KILL_MASK; netif_carrier_off(priv->net_dev); netif_stop_queue(priv->net_dev); ipw_stop_nic(priv); } /* Called by register_netdev() */ static int ipw_net_init(struct net_device *dev) { struct ipw_priv *priv = ieee80211_priv(dev); if (priv->status & STATUS_RF_KILL_SW) { IPW_WARNING("Radio disabled by module parameter.\n"); return 0; } else if (rf_kill_active(priv)) { IPW_WARNING("Radio Frequency Kill Switch is On:\n" "Kill switch must be turned off for " "wireless networking to work.\n"); queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ); return 0; } if (ipw_up(priv)) return -EIO; return 0; } /* PCI driver stuff */ static struct pci_device_id card_ids[] = { {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */ {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* 2225BG */ {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */ {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */ /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, card_ids); static struct attribute *ipw_sysfs_entries[] = { &dev_attr_rf_kill.attr, &dev_attr_direct_dword.attr, &dev_attr_indirect_byte.attr, &dev_attr_indirect_dword.attr, &dev_attr_mem_gpio_reg.attr, &dev_attr_command_event_reg.attr, &dev_attr_nic_type.attr, &dev_attr_status.attr, &dev_attr_cfg.attr, &dev_attr_dump_errors.attr, &dev_attr_dump_events.attr, &dev_attr_eeprom_delay.attr, &dev_attr_ucode_version.attr, &dev_attr_rtc.attr, NULL }; static struct attribute_group ipw_attribute_group = { .name = NULL, /* put in device directory */ .attrs = ipw_sysfs_entries, }; static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err = 0; struct net_device *net_dev; void __iomem *base; u32 length, val; struct ipw_priv *priv; int band, modulation; net_dev = alloc_ieee80211(sizeof(struct ipw_priv)); if (net_dev == NULL) { err = -ENOMEM; goto out; } priv = ieee80211_priv(net_dev); priv->ieee = netdev_priv(net_dev); priv->net_dev = net_dev; priv->pci_dev = pdev; #ifdef CONFIG_IPW_DEBUG ipw_debug_level = debug; #endif spin_lock_init(&priv->lock); if (pci_enable_device(pdev)) { err = -ENODEV; goto out_free_ieee80211; } pci_set_master(pdev); err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); if (err) { printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); goto out_pci_disable_device; } pci_set_drvdata(pdev, priv); err = pci_request_regions(pdev, DRV_NAME); if (err) goto out_pci_disable_device; /* We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); length = pci_resource_len(pdev, 0); priv->hw_len = length; base = ioremap_nocache(pci_resource_start(pdev, 0), length); if (!base) { err = -ENODEV; goto out_pci_release_regions; } priv->hw_base = base; IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length); IPW_DEBUG_INFO("pci_resource_base = %p\n", base); err = ipw_setup_deferred_work(priv); if (err) { IPW_ERROR("Unable to setup deferred work\n"); goto out_iounmap; } /* Initialize module parameter values here */ if (ifname) strncpy(net_dev->name, ifname, IFNAMSIZ); if (associate) priv->config |= CFG_ASSOCIATE; else IPW_DEBUG_INFO("Auto associate disabled.\n"); if (auto_create) priv->config |= CFG_ADHOC_CREATE; else IPW_DEBUG_INFO("Auto adhoc creation disabled.\n"); if (disable) { priv->status |= STATUS_RF_KILL_SW; IPW_DEBUG_INFO("Radio disabled.\n"); } if (channel != 0) { priv->config |= CFG_STATIC_CHANNEL; priv->channel = channel; IPW_DEBUG_INFO("Bind to static channel %d\n", channel); IPW_DEBUG_INFO("Bind to static channel %d\n", channel); /* TODO: Validate that provided channel is in range */ } switch (mode) { case 1: priv->ieee->iw_mode = IW_MODE_ADHOC; break; #ifdef CONFIG_IPW_PROMISC case 2: priv->ieee->iw_mode = IW_MODE_MONITOR; break; #endif default: case 0: priv->ieee->iw_mode = IW_MODE_INFRA; break; } if ((priv->pci_dev->device == 0x4223) || (priv->pci_dev->device == 0x4224)) { printk(KERN_INFO DRV_NAME ": Detected Intel PRO/Wireless 2915ABG Network " "Connection\n"); priv->ieee->abg_ture = 1; band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND; modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION; priv->adapter = IPW_2915ABG; priv->ieee->mode = IEEE_A|IEEE_G|IEEE_B; } else { if (priv->pci_dev->device == 0x4221) printk(KERN_INFO DRV_NAME ": Detected Intel PRO/Wireless 2225BG Network " "Connection\n"); else printk(KERN_INFO DRV_NAME ": Detected Intel PRO/Wireless 2200BG Network " "Connection\n"); priv->ieee->abg_ture = 0; band = IEEE80211_24GHZ_BAND; modulation = IEEE80211_OFDM_MODULATION | IEEE80211_CCK_MODULATION; priv->adapter = IPW_2200BG; priv->ieee->mode = IEEE_G|IEEE_B; } priv->ieee->freq_band = band; priv->ieee->modulation = modulation; priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK; priv->missed_beacon_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT; priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT; priv->rts_threshold = DEFAULT_RTS_THRESHOLD; /* If power management is turned on, default to AC mode */ priv->power_mode = IPW_POWER_AC; priv->tx_power = IPW_DEFAULT_TX_POWER; err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv); if (err) { IPW_ERROR("Error allocating IRQ %d\n", pdev->irq); goto out_destroy_workqueue; } SET_MODULE_OWNER(net_dev); SET_NETDEV_DEV(net_dev, &pdev->dev); priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit; priv->ieee->set_security = shim__set_security; net_dev->open = ipw_net_open; net_dev->stop = ipw_net_stop; net_dev->init = ipw_net_init; net_dev->get_stats = ipw_net_get_stats; net_dev->set_multicast_list = ipw_net_set_multicast_list; net_dev->set_mac_address = ipw_net_set_mac_address; net_dev->get_wireless_stats = ipw_get_wireless_stats; net_dev->wireless_handlers = &ipw_wx_handler_def; net_dev->ethtool_ops = &ipw_ethtool_ops; net_dev->irq = pdev->irq; net_dev->base_addr = (unsigned long )priv->hw_base; net_dev->mem_start = pci_resource_start(pdev, 0); net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1; err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group); if (err) { IPW_ERROR("failed to create sysfs device attributes\n"); goto out_release_irq; } err = register_netdev(net_dev); if (err) { IPW_ERROR("failed to register network device\n"); goto out_remove_group; } return 0; out_remove_group: sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); out_release_irq: free_irq(pdev->irq, priv); out_destroy_workqueue: destroy_workqueue(priv->workqueue); priv->workqueue = NULL; out_iounmap: iounmap(priv->hw_base); out_pci_release_regions: pci_release_regions(pdev); out_pci_disable_device: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); out_free_ieee80211: free_ieee80211(priv->net_dev); out: return err; } static void ipw_pci_remove(struct pci_dev *pdev) { struct ipw_priv *priv = pci_get_drvdata(pdev); if (!priv) return; priv->status |= STATUS_EXIT_PENDING; sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group); ipw_down(priv); unregister_netdev(priv->net_dev); if (priv->rxq) { ipw_rx_queue_free(priv, priv->rxq); priv->rxq = NULL; } ipw_tx_queue_free(priv); /* ipw_down will ensure that there is no more pending work * in the workqueue's, so we can safely remove them now. */ if (priv->workqueue) { cancel_delayed_work(&priv->adhoc_check); cancel_delayed_work(&priv->gather_stats); cancel_delayed_work(&priv->request_scan); cancel_delayed_work(&priv->rf_kill); cancel_delayed_work(&priv->scan_check); destroy_workqueue(priv->workqueue); priv->workqueue = NULL; } free_irq(pdev->irq, priv); iounmap(priv->hw_base); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); free_ieee80211(priv->net_dev); #ifdef CONFIG_PM if (fw_loaded) { release_firmware(bootfw); release_firmware(ucode); release_firmware(firmware); fw_loaded = 0; } #endif } #ifdef CONFIG_PM static int ipw_pci_suspend(struct pci_dev *pdev, u32 state) { struct ipw_priv *priv = pci_get_drvdata(pdev); struct net_device *dev = priv->net_dev; printk(KERN_INFO "%s: Going into suspend...\n", dev->name); /* Take down the device; powers it off, etc. */ ipw_down(priv); /* Remove the PRESENT state of the device */ netif_device_detach(dev); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, state); return 0; } static int ipw_pci_resume(struct pci_dev *pdev) { struct ipw_priv *priv = pci_get_drvdata(pdev); struct net_device *dev = priv->net_dev; u32 val; printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name); pci_set_power_state(pdev, 0); pci_enable_device(pdev); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,10) pci_restore_state(pdev, priv->pm_state); #else pci_restore_state(pdev); #endif /* * Suspend/Resume resets the PCI configuration space, so we have to * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries * from interfering with C3 CPU state. pci_restore_state won't help * here since it only restores the first 64 bytes pci config header. */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); /* Set the device back into the PRESENT state; this will also wake * the queue of needed */ netif_device_attach(dev); /* Bring the device back up */ queue_work(priv->workqueue, &priv->up); return 0; } #endif /* driver initialization stuff */ static struct pci_driver ipw_driver = { .name = DRV_NAME, .id_table = card_ids, .probe = ipw_pci_probe, .remove = __devexit_p(ipw_pci_remove), #ifdef CONFIG_PM .suspend = ipw_pci_suspend, .resume = ipw_pci_resume, #endif }; static int __init ipw_init(void) { int ret; printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); ret = pci_module_init(&ipw_driver); if (ret) { IPW_ERROR("Unable to initialize PCI module\n"); return ret; } ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level); if (ret) { IPW_ERROR("Unable to create driver sysfs file\n"); pci_unregister_driver(&ipw_driver); return ret; } return ret; } static void __exit ipw_exit(void) { driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level); pci_unregister_driver(&ipw_driver); } module_param(disable, int, 0444); MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); module_param(associate, int, 0444); MODULE_PARM_DESC(associate, "auto associate when scanning (default on)"); module_param(auto_create, int, 0444); MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)"); module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "debug output mask"); module_param(channel, int, 0444); MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])"); module_param(ifname, charp, 0444); MODULE_PARM_DESC(ifname, "network device name (default eth%d)"); #ifdef CONFIG_IPW_PROMISC module_param(mode, int, 0444); MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)"); #else module_param(mode, int, 0444); MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)"); #endif module_exit(ipw_exit); module_init(ipw_init);