/****************************************************************************** * * Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved. * * Portions of this file are derived from the ipw3945 project, as well * as portions of the ieee80211 subsystem header files. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * James P. Ketrenos * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ /* * NOTE: This file (iwl-base.c) is used to build to multiple hardware targets * by defining IWL to either 3945 or 4965. The Makefile used when building * the base targets will create base-3945.o and base-4965.o * * The eventual goal is to move as many of the #if IWL / #endif blocks out of * this file and into the hardware specific implementation files (iwl-XXXX.c) * and leave only the common (non #ifdef sprinkled) code in this file */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IWL 4965 #include "iwlwifi.h" #include "iwl-4965.h" #include "iwl-helpers.h" #ifdef CONFIG_IWLWIFI_DEBUG u32 iwl_debug_level; #endif /****************************************************************************** * * module boiler plate * ******************************************************************************/ /* module parameters */ int iwl_param_disable_hw_scan; int iwl_param_debug; int iwl_param_disable; /* def: enable radio */ int iwl_param_antenna; /* def: 0 = both antennas (use diversity) */ int iwl_param_hwcrypto; /* def: using software encryption */ int iwl_param_qos_enable = 1; int iwl_param_queues_num = IWL_MAX_NUM_QUEUES; /* * module name, copyright, version, etc. * NOTE: DRV_NAME is defined in iwlwifi.h for use by iwl-debug.h and printk */ #define DRV_DESCRIPTION "Intel(R) Wireless WiFi Link 4965AGN driver for Linux" #ifdef CONFIG_IWLWIFI_DEBUG #define VD "d" #else #define VD #endif #ifdef CONFIG_IWLWIFI_SPECTRUM_MEASUREMENT #define VS "s" #else #define VS #endif #define IWLWIFI_VERSION "1.1.17k" VD VS #define DRV_COPYRIGHT "Copyright(c) 2003-2007 Intel Corporation" #define DRV_VERSION IWLWIFI_VERSION /* Change firmware file name, using "-" and incrementing number, * *only* when uCode interface or architecture changes so that it * is not compatible with earlier drivers. * This number will also appear in << 8 position of 1st dword of uCode file */ #define IWL4965_UCODE_API "-1" MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_VERSION(DRV_VERSION); MODULE_AUTHOR(DRV_COPYRIGHT); MODULE_LICENSE("GPL"); __le16 *ieee80211_get_qos_ctrl(struct ieee80211_hdr *hdr) { u16 fc = le16_to_cpu(hdr->frame_control); int hdr_len = ieee80211_get_hdrlen(fc); if ((fc & 0x00cc) == (IEEE80211_STYPE_QOS_DATA | IEEE80211_FTYPE_DATA)) return (__le16 *) ((u8 *) hdr + hdr_len - QOS_CONTROL_LEN); return NULL; } static const struct ieee80211_hw_mode *iwl_get_hw_mode( struct iwl_priv *priv, int mode) { int i; for (i = 0; i < 3; i++) if (priv->modes[i].mode == mode) return &priv->modes[i]; return NULL; } static int iwl_is_empty_essid(const char *essid, int essid_len) { /* Single white space is for Linksys APs */ if (essid_len == 1 && essid[0] == ' ') return 1; /* Otherwise, if the entire essid is 0, we assume it is hidden */ while (essid_len) { essid_len--; if (essid[essid_len] != '\0') return 0; } return 1; } static const char *iwl_escape_essid(const char *essid, u8 essid_len) { static char escaped[IW_ESSID_MAX_SIZE * 2 + 1]; const char *s = essid; char *d = escaped; if (iwl_is_empty_essid(essid, essid_len)) { memcpy(escaped, "", sizeof("")); return escaped; } essid_len = min(essid_len, (u8) IW_ESSID_MAX_SIZE); while (essid_len--) { if (*s == '\0') { *d++ = '\\'; *d++ = '0'; s++; } else *d++ = *s++; } *d = '\0'; return escaped; } static void iwl_print_hex_dump(int level, void *p, u32 len) { #ifdef CONFIG_IWLWIFI_DEBUG if (!(iwl_debug_level & level)) return; print_hex_dump(KERN_DEBUG, "iwl data: ", DUMP_PREFIX_OFFSET, 16, 1, p, len, 1); #endif } /*************** DMA-QUEUE-GENERAL-FUNCTIONS ***** * DMA services * * Theory of operation * * A queue is a circular buffers with 'Read' and 'Write' pointers. * 2 empty entries always kept in the buffer to protect from overflow. * * For Tx queue, there are low mark and high mark limits. If, after queuing * the packet for Tx, free space become < low mark, Tx queue stopped. When * reclaiming packets (on 'tx done IRQ), if free space become > high mark, * Tx queue resumed. * * The IWL operates with six queues, one receive queue in the device's * sram, one transmit queue for sending commands to the device firmware, * and four transmit queues for data. ***************************************************/ static int iwl_queue_space(const struct iwl_queue *q) { int s = q->last_used - q->first_empty; if (q->last_used > q->first_empty) s -= q->n_bd; if (s <= 0) s += q->n_window; /* keep some reserve to not confuse empty and full situations */ s -= 2; if (s < 0) s = 0; return s; } /* XXX: n_bd must be power-of-two size */ static inline int iwl_queue_inc_wrap(int index, int n_bd) { return ++index & (n_bd - 1); } /* XXX: n_bd must be power-of-two size */ static inline int iwl_queue_dec_wrap(int index, int n_bd) { return --index & (n_bd - 1); } static inline int x2_queue_used(const struct iwl_queue *q, int i) { return q->first_empty > q->last_used ? (i >= q->last_used && i < q->first_empty) : !(i < q->last_used && i >= q->first_empty); } static inline u8 get_cmd_index(struct iwl_queue *q, u32 index, int is_huge) { if (is_huge) return q->n_window; return index & (q->n_window - 1); } static int iwl_queue_init(struct iwl_priv *priv, struct iwl_queue *q, int count, int slots_num, u32 id) { q->n_bd = count; q->n_window = slots_num; q->id = id; /* count must be power-of-two size, otherwise iwl_queue_inc_wrap * and iwl_queue_dec_wrap are broken. */ BUG_ON(!is_power_of_2(count)); /* slots_num must be power-of-two size, otherwise * get_cmd_index is broken. */ BUG_ON(!is_power_of_2(slots_num)); q->low_mark = q->n_window / 4; if (q->low_mark < 4) q->low_mark = 4; q->high_mark = q->n_window / 8; if (q->high_mark < 2) q->high_mark = 2; q->first_empty = q->last_used = 0; return 0; } static int iwl_tx_queue_alloc(struct iwl_priv *priv, struct iwl_tx_queue *txq, u32 id) { struct pci_dev *dev = priv->pci_dev; if (id != IWL_CMD_QUEUE_NUM) { txq->txb = kmalloc(sizeof(txq->txb[0]) * TFD_QUEUE_SIZE_MAX, GFP_KERNEL); if (!txq->txb) { IWL_ERROR("kmalloc for auxilary BD " "structures failed\n"); goto error; } } else txq->txb = NULL; txq->bd = pci_alloc_consistent(dev, sizeof(txq->bd[0]) * TFD_QUEUE_SIZE_MAX, &txq->q.dma_addr); if (!txq->bd) { IWL_ERROR("pci_alloc_consistent(%zd) failed\n", sizeof(txq->bd[0]) * TFD_QUEUE_SIZE_MAX); goto error; } txq->q.id = id; return 0; error: if (txq->txb) { kfree(txq->txb); txq->txb = NULL; } return -ENOMEM; } int iwl_tx_queue_init(struct iwl_priv *priv, struct iwl_tx_queue *txq, int slots_num, u32 txq_id) { struct pci_dev *dev = priv->pci_dev; int len; int rc = 0; /* alocate command space + one big command for scan since scan * command is very huge the system will not have two scan at the * same time */ len = sizeof(struct iwl_cmd) * slots_num; if (txq_id == IWL_CMD_QUEUE_NUM) len += IWL_MAX_SCAN_SIZE; txq->cmd = pci_alloc_consistent(dev, len, &txq->dma_addr_cmd); if (!txq->cmd) return -ENOMEM; rc = iwl_tx_queue_alloc(priv, txq, txq_id); if (rc) { pci_free_consistent(dev, len, txq->cmd, txq->dma_addr_cmd); return -ENOMEM; } txq->need_update = 0; /* TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise * iwl_queue_inc_wrap and iwl_queue_dec_wrap are broken. */ BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1)); iwl_queue_init(priv, &txq->q, TFD_QUEUE_SIZE_MAX, slots_num, txq_id); iwl_hw_tx_queue_init(priv, txq); return 0; } /** * iwl_tx_queue_free - Deallocate DMA queue. * @txq: Transmit queue to deallocate. * * Empty queue by removing and destroying all BD's. * Free all buffers. txq itself is not freed. * */ void iwl_tx_queue_free(struct iwl_priv *priv, struct iwl_tx_queue *txq) { struct iwl_queue *q = &txq->q; struct pci_dev *dev = priv->pci_dev; int len; if (q->n_bd == 0) return; /* first, empty all BD's */ for (; q->first_empty != q->last_used; q->last_used = iwl_queue_inc_wrap(q->last_used, q->n_bd)) iwl_hw_txq_free_tfd(priv, txq); len = sizeof(struct iwl_cmd) * q->n_window; if (q->id == IWL_CMD_QUEUE_NUM) len += IWL_MAX_SCAN_SIZE; pci_free_consistent(dev, len, txq->cmd, txq->dma_addr_cmd); /* free buffers belonging to queue itself */ if (txq->q.n_bd) pci_free_consistent(dev, sizeof(struct iwl_tfd_frame) * txq->q.n_bd, txq->bd, txq->q.dma_addr); if (txq->txb) { kfree(txq->txb); txq->txb = NULL; } /* 0 fill whole structure */ memset(txq, 0, sizeof(*txq)); } const u8 BROADCAST_ADDR[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; /*************** STATION TABLE MANAGEMENT **** * * NOTE: This needs to be overhauled to better synchronize between * how the iwl-4965.c is using iwl_hw_find_station vs. iwl-3945.c * * mac80211 should also be examined to determine if sta_info is duplicating * the functionality provided here */ /**************************************************************/ #if 0 /* temparary disable till we add real remove station */ static u8 iwl_remove_station(struct iwl_priv *priv, const u8 *addr, int is_ap) { int index = IWL_INVALID_STATION; int i; unsigned long flags; spin_lock_irqsave(&priv->sta_lock, flags); if (is_ap) index = IWL_AP_ID; else if (is_broadcast_ether_addr(addr)) index = priv->hw_setting.bcast_sta_id; else for (i = IWL_STA_ID; i < priv->hw_setting.max_stations; i++) if (priv->stations[i].used && !compare_ether_addr(priv->stations[i].sta.sta.addr, addr)) { index = i; break; } if (unlikely(index == IWL_INVALID_STATION)) goto out; if (priv->stations[index].used) { priv->stations[index].used = 0; priv->num_stations--; } BUG_ON(priv->num_stations < 0); out: spin_unlock_irqrestore(&priv->sta_lock, flags); return 0; } #endif static void iwl_clear_stations_table(struct iwl_priv *priv) { unsigned long flags; spin_lock_irqsave(&priv->sta_lock, flags); priv->num_stations = 0; memset(priv->stations, 0, sizeof(priv->stations)); spin_unlock_irqrestore(&priv->sta_lock, flags); } u8 iwl_add_station(struct iwl_priv *priv, const u8 *addr, int is_ap, u8 flags) { int i; int index = IWL_INVALID_STATION; struct iwl_station_entry *station; unsigned long flags_spin; DECLARE_MAC_BUF(mac); spin_lock_irqsave(&priv->sta_lock, flags_spin); if (is_ap) index = IWL_AP_ID; else if (is_broadcast_ether_addr(addr)) index = priv->hw_setting.bcast_sta_id; else for (i = IWL_STA_ID; i < priv->hw_setting.max_stations; i++) { if (!compare_ether_addr(priv->stations[i].sta.sta.addr, addr)) { index = i; break; } if (!priv->stations[i].used && index == IWL_INVALID_STATION) index = i; } /* These twh conditions has the same outcome but keep them separate since they have different meaning */ if (unlikely(index == IWL_INVALID_STATION)) { spin_unlock_irqrestore(&priv->sta_lock, flags_spin); return index; } if (priv->stations[index].used && !compare_ether_addr(priv->stations[index].sta.sta.addr, addr)) { spin_unlock_irqrestore(&priv->sta_lock, flags_spin); return index; } IWL_DEBUG_ASSOC("Add STA ID %d: %s\n", index, print_mac(mac, addr)); station = &priv->stations[index]; station->used = 1; priv->num_stations++; memset(&station->sta, 0, sizeof(struct iwl_addsta_cmd)); memcpy(station->sta.sta.addr, addr, ETH_ALEN); station->sta.mode = 0; station->sta.sta.sta_id = index; station->sta.station_flags = 0; #ifdef CONFIG_IWLWIFI_HT /* BCAST station and IBSS stations do not work in HT mode */ if (index != priv->hw_setting.bcast_sta_id && priv->iw_mode != IEEE80211_IF_TYPE_IBSS) iwl4965_set_ht_add_station(priv, index); #endif /*CONFIG_IWLWIFI_HT*/ spin_unlock_irqrestore(&priv->sta_lock, flags_spin); iwl_send_add_station(priv, &station->sta, flags); return index; } /*************** DRIVER STATUS FUNCTIONS *****/ static inline int iwl_is_ready(struct iwl_priv *priv) { /* The adapter is 'ready' if READY and GEO_CONFIGURED bits are * set but EXIT_PENDING is not */ return test_bit(STATUS_READY, &priv->status) && test_bit(STATUS_GEO_CONFIGURED, &priv->status) && !test_bit(STATUS_EXIT_PENDING, &priv->status); } static inline int iwl_is_alive(struct iwl_priv *priv) { return test_bit(STATUS_ALIVE, &priv->status); } static inline int iwl_is_init(struct iwl_priv *priv) { return test_bit(STATUS_INIT, &priv->status); } static inline int iwl_is_rfkill(struct iwl_priv *priv) { return test_bit(STATUS_RF_KILL_HW, &priv->status) || test_bit(STATUS_RF_KILL_SW, &priv->status); } static inline int iwl_is_ready_rf(struct iwl_priv *priv) { if (iwl_is_rfkill(priv)) return 0; return iwl_is_ready(priv); } /*************** HOST COMMAND QUEUE FUNCTIONS *****/ #define IWL_CMD(x) case x : return #x static const char *get_cmd_string(u8 cmd) { switch (cmd) { IWL_CMD(REPLY_ALIVE); IWL_CMD(REPLY_ERROR); IWL_CMD(REPLY_RXON); IWL_CMD(REPLY_RXON_ASSOC); IWL_CMD(REPLY_QOS_PARAM); IWL_CMD(REPLY_RXON_TIMING); IWL_CMD(REPLY_ADD_STA); IWL_CMD(REPLY_REMOVE_STA); IWL_CMD(REPLY_REMOVE_ALL_STA); IWL_CMD(REPLY_TX); IWL_CMD(REPLY_RATE_SCALE); IWL_CMD(REPLY_LEDS_CMD); IWL_CMD(REPLY_TX_LINK_QUALITY_CMD); IWL_CMD(RADAR_NOTIFICATION); IWL_CMD(REPLY_QUIET_CMD); IWL_CMD(REPLY_CHANNEL_SWITCH); IWL_CMD(CHANNEL_SWITCH_NOTIFICATION); IWL_CMD(REPLY_SPECTRUM_MEASUREMENT_CMD); IWL_CMD(SPECTRUM_MEASURE_NOTIFICATION); IWL_CMD(POWER_TABLE_CMD); IWL_CMD(PM_SLEEP_NOTIFICATION); IWL_CMD(PM_DEBUG_STATISTIC_NOTIFIC); IWL_CMD(REPLY_SCAN_CMD); IWL_CMD(REPLY_SCAN_ABORT_CMD); IWL_CMD(SCAN_START_NOTIFICATION); IWL_CMD(SCAN_RESULTS_NOTIFICATION); IWL_CMD(SCAN_COMPLETE_NOTIFICATION); IWL_CMD(BEACON_NOTIFICATION); IWL_CMD(REPLY_TX_BEACON); IWL_CMD(WHO_IS_AWAKE_NOTIFICATION); IWL_CMD(QUIET_NOTIFICATION); IWL_CMD(REPLY_TX_PWR_TABLE_CMD); IWL_CMD(MEASURE_ABORT_NOTIFICATION); IWL_CMD(REPLY_BT_CONFIG); IWL_CMD(REPLY_STATISTICS_CMD); IWL_CMD(STATISTICS_NOTIFICATION); IWL_CMD(REPLY_CARD_STATE_CMD); IWL_CMD(CARD_STATE_NOTIFICATION); IWL_CMD(MISSED_BEACONS_NOTIFICATION); IWL_CMD(REPLY_CT_KILL_CONFIG_CMD); IWL_CMD(SENSITIVITY_CMD); IWL_CMD(REPLY_PHY_CALIBRATION_CMD); IWL_CMD(REPLY_RX_PHY_CMD); IWL_CMD(REPLY_RX_MPDU_CMD); IWL_CMD(REPLY_4965_RX); IWL_CMD(REPLY_COMPRESSED_BA); default: return "UNKNOWN"; } } #define HOST_COMPLETE_TIMEOUT (HZ / 2) /** * iwl_enqueue_hcmd - enqueue a uCode command * @priv: device private data point * @cmd: a point to the ucode command structure * * The function returns < 0 values to indicate the operation is * failed. On success, it turns the index (> 0) of command in the * command queue. */ static int iwl_enqueue_hcmd(struct iwl_priv *priv, struct iwl_host_cmd *cmd) { struct iwl_tx_queue *txq = &priv->txq[IWL_CMD_QUEUE_NUM]; struct iwl_queue *q = &txq->q; struct iwl_tfd_frame *tfd; u32 *control_flags; struct iwl_cmd *out_cmd; u32 idx; u16 fix_size = (u16)(cmd->len + sizeof(out_cmd->hdr)); dma_addr_t phys_addr; int ret; unsigned long flags; /* If any of the command structures end up being larger than * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then * we will need to increase the size of the TFD entries */ BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) && !(cmd->meta.flags & CMD_SIZE_HUGE)); if (iwl_queue_space(q) < ((cmd->meta.flags & CMD_ASYNC) ? 2 : 1)) { IWL_ERROR("No space for Tx\n"); return -ENOSPC; } spin_lock_irqsave(&priv->hcmd_lock, flags); tfd = &txq->bd[q->first_empty]; memset(tfd, 0, sizeof(*tfd)); control_flags = (u32 *) tfd; idx = get_cmd_index(q, q->first_empty, cmd->meta.flags & CMD_SIZE_HUGE); out_cmd = &txq->cmd[idx]; out_cmd->hdr.cmd = cmd->id; memcpy(&out_cmd->meta, &cmd->meta, sizeof(cmd->meta)); memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len); /* At this point, the out_cmd now has all of the incoming cmd * information */ out_cmd->hdr.flags = 0; out_cmd->hdr.sequence = cpu_to_le16(QUEUE_TO_SEQ(IWL_CMD_QUEUE_NUM) | INDEX_TO_SEQ(q->first_empty)); if (out_cmd->meta.flags & CMD_SIZE_HUGE) out_cmd->hdr.sequence |= cpu_to_le16(SEQ_HUGE_FRAME); phys_addr = txq->dma_addr_cmd + sizeof(txq->cmd[0]) * idx + offsetof(struct iwl_cmd, hdr); iwl_hw_txq_attach_buf_to_tfd(priv, tfd, phys_addr, fix_size); IWL_DEBUG_HC("Sending command %s (#%x), seq: 0x%04X, " "%d bytes at %d[%d]:%d\n", get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->first_empty, idx, IWL_CMD_QUEUE_NUM); txq->need_update = 1; ret = iwl4965_tx_queue_update_wr_ptr(priv, txq, 0); q->first_empty = iwl_queue_inc_wrap(q->first_empty, q->n_bd); iwl_tx_queue_update_write_ptr(priv, txq); spin_unlock_irqrestore(&priv->hcmd_lock, flags); return ret ? ret : idx; } int iwl_send_cmd_async(struct iwl_priv *priv, struct iwl_host_cmd *cmd) { int ret; BUG_ON(!(cmd->meta.flags & CMD_ASYNC)); /* An asynchronous command can not expect an SKB to be set. */ BUG_ON(cmd->meta.flags & CMD_WANT_SKB); /* An asynchronous command MUST have a callback. */ BUG_ON(!cmd->meta.u.callback); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return -EBUSY; ret = iwl_enqueue_hcmd(priv, cmd); if (ret < 0) { IWL_ERROR("Error sending %s: iwl_enqueue_hcmd failed: %d\n", get_cmd_string(cmd->id), ret); return ret; } return 0; } int iwl_send_cmd_sync(struct iwl_priv *priv, struct iwl_host_cmd *cmd) { int cmd_idx; int ret; static atomic_t entry = ATOMIC_INIT(0); /* reentrance protection */ BUG_ON(cmd->meta.flags & CMD_ASYNC); /* A synchronous command can not have a callback set. */ BUG_ON(cmd->meta.u.callback != NULL); if (atomic_xchg(&entry, 1)) { IWL_ERROR("Error sending %s: Already sending a host command\n", get_cmd_string(cmd->id)); return -EBUSY; } set_bit(STATUS_HCMD_ACTIVE, &priv->status); if (cmd->meta.flags & CMD_WANT_SKB) cmd->meta.source = &cmd->meta; cmd_idx = iwl_enqueue_hcmd(priv, cmd); if (cmd_idx < 0) { ret = cmd_idx; IWL_ERROR("Error sending %s: iwl_enqueue_hcmd failed: %d\n", get_cmd_string(cmd->id), ret); goto out; } ret = wait_event_interruptible_timeout(priv->wait_command_queue, !test_bit(STATUS_HCMD_ACTIVE, &priv->status), HOST_COMPLETE_TIMEOUT); if (!ret) { if (test_bit(STATUS_HCMD_ACTIVE, &priv->status)) { IWL_ERROR("Error sending %s: time out after %dms.\n", get_cmd_string(cmd->id), jiffies_to_msecs(HOST_COMPLETE_TIMEOUT)); clear_bit(STATUS_HCMD_ACTIVE, &priv->status); ret = -ETIMEDOUT; goto cancel; } } if (test_bit(STATUS_RF_KILL_HW, &priv->status)) { IWL_DEBUG_INFO("Command %s aborted: RF KILL Switch\n", get_cmd_string(cmd->id)); ret = -ECANCELED; goto fail; } if (test_bit(STATUS_FW_ERROR, &priv->status)) { IWL_DEBUG_INFO("Command %s failed: FW Error\n", get_cmd_string(cmd->id)); ret = -EIO; goto fail; } if ((cmd->meta.flags & CMD_WANT_SKB) && !cmd->meta.u.skb) { IWL_ERROR("Error: Response NULL in '%s'\n", get_cmd_string(cmd->id)); ret = -EIO; goto out; } ret = 0; goto out; cancel: if (cmd->meta.flags & CMD_WANT_SKB) { struct iwl_cmd *qcmd; /* Cancel the CMD_WANT_SKB flag for the cmd in the * TX cmd queue. Otherwise in case the cmd comes * in later, it will possibly set an invalid * address (cmd->meta.source). */ qcmd = &priv->txq[IWL_CMD_QUEUE_NUM].cmd[cmd_idx]; qcmd->meta.flags &= ~CMD_WANT_SKB; } fail: if (cmd->meta.u.skb) { dev_kfree_skb_any(cmd->meta.u.skb); cmd->meta.u.skb = NULL; } out: atomic_set(&entry, 0); return ret; } int iwl_send_cmd(struct iwl_priv *priv, struct iwl_host_cmd *cmd) { /* A command can not be asynchronous AND expect an SKB to be set. */ BUG_ON((cmd->meta.flags & CMD_ASYNC) && (cmd->meta.flags & CMD_WANT_SKB)); if (cmd->meta.flags & CMD_ASYNC) return iwl_send_cmd_async(priv, cmd); return iwl_send_cmd_sync(priv, cmd); } int iwl_send_cmd_pdu(struct iwl_priv *priv, u8 id, u16 len, const void *data) { struct iwl_host_cmd cmd = { .id = id, .len = len, .data = data, }; return iwl_send_cmd_sync(priv, &cmd); } static int __must_check iwl_send_cmd_u32(struct iwl_priv *priv, u8 id, u32 val) { struct iwl_host_cmd cmd = { .id = id, .len = sizeof(val), .data = &val, }; return iwl_send_cmd_sync(priv, &cmd); } int iwl_send_statistics_request(struct iwl_priv *priv) { return iwl_send_cmd_u32(priv, REPLY_STATISTICS_CMD, 0); } /** * iwl_rxon_add_station - add station into station table. * * there is only one AP station with id= IWL_AP_ID * NOTE: mutex must be held before calling the this fnction */ static int iwl_rxon_add_station(struct iwl_priv *priv, const u8 *addr, int is_ap) { u8 sta_id; sta_id = iwl_add_station(priv, addr, is_ap, 0); iwl4965_add_station(priv, addr, is_ap); return sta_id; } /** * iwl_set_rxon_channel - Set the phymode and channel values in staging RXON * @phymode: MODE_IEEE80211A sets to 5.2GHz; all else set to 2.4GHz * @channel: Any channel valid for the requested phymode * In addition to setting the staging RXON, priv->phymode is also set. * * NOTE: Does not commit to the hardware; it sets appropriate bit fields * in the staging RXON flag structure based on the phymode */ static int iwl_set_rxon_channel(struct iwl_priv *priv, u8 phymode, u16 channel) { if (!iwl_get_channel_info(priv, phymode, channel)) { IWL_DEBUG_INFO("Could not set channel to %d [%d]\n", channel, phymode); return -EINVAL; } if ((le16_to_cpu(priv->staging_rxon.channel) == channel) && (priv->phymode == phymode)) return 0; priv->staging_rxon.channel = cpu_to_le16(channel); if (phymode == MODE_IEEE80211A) priv->staging_rxon.flags &= ~RXON_FLG_BAND_24G_MSK; else priv->staging_rxon.flags |= RXON_FLG_BAND_24G_MSK; priv->phymode = phymode; IWL_DEBUG_INFO("Staging channel set to %d [%d]\n", channel, phymode); return 0; } /** * iwl_check_rxon_cmd - validate RXON structure is valid * * NOTE: This is really only useful during development and can eventually * be #ifdef'd out once the driver is stable and folks aren't actively * making changes */ static int iwl_check_rxon_cmd(struct iwl_rxon_cmd *rxon) { int error = 0; int counter = 1; if (rxon->flags & RXON_FLG_BAND_24G_MSK) { error |= le32_to_cpu(rxon->flags & (RXON_FLG_TGJ_NARROW_BAND_MSK | RXON_FLG_RADAR_DETECT_MSK)); if (error) IWL_WARNING("check 24G fields %d | %d\n", counter++, error); } else { error |= (rxon->flags & RXON_FLG_SHORT_SLOT_MSK) ? 0 : le32_to_cpu(RXON_FLG_SHORT_SLOT_MSK); if (error) IWL_WARNING("check 52 fields %d | %d\n", counter++, error); error |= le32_to_cpu(rxon->flags & RXON_FLG_CCK_MSK); if (error) IWL_WARNING("check 52 CCK %d | %d\n", counter++, error); } error |= (rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1; if (error) IWL_WARNING("check mac addr %d | %d\n", counter++, error); /* make sure basic rates 6Mbps and 1Mbps are supported */ error |= (((rxon->ofdm_basic_rates & IWL_RATE_6M_MASK) == 0) && ((rxon->cck_basic_rates & IWL_RATE_1M_MASK) == 0)); if (error) IWL_WARNING("check basic rate %d | %d\n", counter++, error); error |= (le16_to_cpu(rxon->assoc_id) > 2007); if (error) IWL_WARNING("check assoc id %d | %d\n", counter++, error); error |= ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) == (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)); if (error) IWL_WARNING("check CCK and short slot %d | %d\n", counter++, error); error |= ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) == (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)); if (error) IWL_WARNING("check CCK & auto detect %d | %d\n", counter++, error); error |= ((rxon->flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) == RXON_FLG_TGG_PROTECT_MSK); if (error) IWL_WARNING("check TGG and auto detect %d | %d\n", counter++, error); if (error) IWL_WARNING("Tuning to channel %d\n", le16_to_cpu(rxon->channel)); if (error) { IWL_ERROR("Not a valid iwl_rxon_assoc_cmd field values\n"); return -1; } return 0; } /** * iwl_full_rxon_required - determine if RXON_ASSOC can be used in RXON commit * @priv: staging_rxon is comapred to active_rxon * * If the RXON structure is changing sufficient to require a new * tune or to clear and reset the RXON_FILTER_ASSOC_MSK then return 1 * to indicate a new tune is required. */ static int iwl_full_rxon_required(struct iwl_priv *priv) { /* These items are only settable from the full RXON command */ if (!(priv->active_rxon.filter_flags & RXON_FILTER_ASSOC_MSK) || compare_ether_addr(priv->staging_rxon.bssid_addr, priv->active_rxon.bssid_addr) || compare_ether_addr(priv->staging_rxon.node_addr, priv->active_rxon.node_addr) || compare_ether_addr(priv->staging_rxon.wlap_bssid_addr, priv->active_rxon.wlap_bssid_addr) || (priv->staging_rxon.dev_type != priv->active_rxon.dev_type) || (priv->staging_rxon.channel != priv->active_rxon.channel) || (priv->staging_rxon.air_propagation != priv->active_rxon.air_propagation) || (priv->staging_rxon.ofdm_ht_single_stream_basic_rates != priv->active_rxon.ofdm_ht_single_stream_basic_rates) || (priv->staging_rxon.ofdm_ht_dual_stream_basic_rates != priv->active_rxon.ofdm_ht_dual_stream_basic_rates) || (priv->staging_rxon.rx_chain != priv->active_rxon.rx_chain) || (priv->staging_rxon.assoc_id != priv->active_rxon.assoc_id)) return 1; /* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can * be updated with the RXON_ASSOC command -- however only some * flag transitions are allowed using RXON_ASSOC */ /* Check if we are not switching bands */ if ((priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK) != (priv->active_rxon.flags & RXON_FLG_BAND_24G_MSK)) return 1; /* Check if we are switching association toggle */ if ((priv->staging_rxon.filter_flags & RXON_FILTER_ASSOC_MSK) != (priv->active_rxon.filter_flags & RXON_FILTER_ASSOC_MSK)) return 1; return 0; } static int iwl_send_rxon_assoc(struct iwl_priv *priv) { int rc = 0; struct iwl_rx_packet *res = NULL; struct iwl_rxon_assoc_cmd rxon_assoc; struct iwl_host_cmd cmd = { .id = REPLY_RXON_ASSOC, .len = sizeof(rxon_assoc), .meta.flags = CMD_WANT_SKB, .data = &rxon_assoc, }; const struct iwl_rxon_cmd *rxon1 = &priv->staging_rxon; const struct iwl_rxon_cmd *rxon2 = &priv->active_rxon; if ((rxon1->flags == rxon2->flags) && (rxon1->filter_flags == rxon2->filter_flags) && (rxon1->cck_basic_rates == rxon2->cck_basic_rates) && (rxon1->ofdm_ht_single_stream_basic_rates == rxon2->ofdm_ht_single_stream_basic_rates) && (rxon1->ofdm_ht_dual_stream_basic_rates == rxon2->ofdm_ht_dual_stream_basic_rates) && (rxon1->rx_chain == rxon2->rx_chain) && (rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates)) { IWL_DEBUG_INFO("Using current RXON_ASSOC. Not resending.\n"); return 0; } rxon_assoc.flags = priv->staging_rxon.flags; rxon_assoc.filter_flags = priv->staging_rxon.filter_flags; rxon_assoc.ofdm_basic_rates = priv->staging_rxon.ofdm_basic_rates; rxon_assoc.cck_basic_rates = priv->staging_rxon.cck_basic_rates; rxon_assoc.reserved = 0; rxon_assoc.ofdm_ht_single_stream_basic_rates = priv->staging_rxon.ofdm_ht_single_stream_basic_rates; rxon_assoc.ofdm_ht_dual_stream_basic_rates = priv->staging_rxon.ofdm_ht_dual_stream_basic_rates; rxon_assoc.rx_chain_select_flags = priv->staging_rxon.rx_chain; rc = iwl_send_cmd_sync(priv, &cmd); if (rc) return rc; res = (struct iwl_rx_packet *)cmd.meta.u.skb->data; if (res->hdr.flags & IWL_CMD_FAILED_MSK) { IWL_ERROR("Bad return from REPLY_RXON_ASSOC command\n"); rc = -EIO; } priv->alloc_rxb_skb--; dev_kfree_skb_any(cmd.meta.u.skb); return rc; } /** * iwl_commit_rxon - commit staging_rxon to hardware * * The RXON command in staging_rxon is commited to the hardware and * the active_rxon structure is updated with the new data. This * function correctly transitions out of the RXON_ASSOC_MSK state if * a HW tune is required based on the RXON structure changes. */ static int iwl_commit_rxon(struct iwl_priv *priv) { /* cast away the const for active_rxon in this function */ struct iwl_rxon_cmd *active_rxon = (void *)&priv->active_rxon; DECLARE_MAC_BUF(mac); int rc = 0; if (!iwl_is_alive(priv)) return -1; /* always get timestamp with Rx frame */ priv->staging_rxon.flags |= RXON_FLG_TSF2HOST_MSK; rc = iwl_check_rxon_cmd(&priv->staging_rxon); if (rc) { IWL_ERROR("Invalid RXON configuration. Not committing.\n"); return -EINVAL; } /* If we don't need to send a full RXON, we can use * iwl_rxon_assoc_cmd which is used to reconfigure filter * and other flags for the current radio configuration. */ if (!iwl_full_rxon_required(priv)) { rc = iwl_send_rxon_assoc(priv); if (rc) { IWL_ERROR("Error setting RXON_ASSOC " "configuration (%d).\n", rc); return rc; } memcpy(active_rxon, &priv->staging_rxon, sizeof(*active_rxon)); return 0; } /* station table will be cleared */ priv->assoc_station_added = 0; #ifdef CONFIG_IWLWIFI_SENSITIVITY priv->sensitivity_data.state = IWL_SENS_CALIB_NEED_REINIT; if (!priv->error_recovering) priv->start_calib = 0; iwl4965_init_sensitivity(priv, CMD_ASYNC, 1); #endif /* CONFIG_IWLWIFI_SENSITIVITY */ /* If we are currently associated and the new config requires * an RXON_ASSOC and the new config wants the associated mask enabled, * we must clear the associated from the active configuration * before we apply the new config */ if (iwl_is_associated(priv) && (priv->staging_rxon.filter_flags & RXON_FILTER_ASSOC_MSK)) { IWL_DEBUG_INFO("Toggling associated bit on current RXON\n"); active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK; rc = iwl_send_cmd_pdu(priv, REPLY_RXON, sizeof(struct iwl_rxon_cmd), &priv->active_rxon); /* If the mask clearing failed then we set * active_rxon back to what it was previously */ if (rc) { active_rxon->filter_flags |= RXON_FILTER_ASSOC_MSK; IWL_ERROR("Error clearing ASSOC_MSK on current " "configuration (%d).\n", rc); return rc; } } IWL_DEBUG_INFO("Sending RXON\n" "* with%s RXON_FILTER_ASSOC_MSK\n" "* channel = %d\n" "* bssid = %s\n", ((priv->staging_rxon.filter_flags & RXON_FILTER_ASSOC_MSK) ? "" : "out"), le16_to_cpu(priv->staging_rxon.channel), print_mac(mac, priv->staging_rxon.bssid_addr)); /* Apply the new configuration */ rc = iwl_send_cmd_pdu(priv, REPLY_RXON, sizeof(struct iwl_rxon_cmd), &priv->staging_rxon); if (rc) { IWL_ERROR("Error setting new configuration (%d).\n", rc); return rc; } iwl_clear_stations_table(priv); #ifdef CONFIG_IWLWIFI_SENSITIVITY if (!priv->error_recovering) priv->start_calib = 0; priv->sensitivity_data.state = IWL_SENS_CALIB_NEED_REINIT; iwl4965_init_sensitivity(priv, CMD_ASYNC, 1); #endif /* CONFIG_IWLWIFI_SENSITIVITY */ memcpy(active_rxon, &priv->staging_rxon, sizeof(*active_rxon)); /* If we issue a new RXON command which required a tune then we must * send a new TXPOWER command or we won't be able to Tx any frames */ rc = iwl_hw_reg_send_txpower(priv); if (rc) { IWL_ERROR("Error setting Tx power (%d).\n", rc); return rc; } /* Add the broadcast address so we can send broadcast frames */ if (iwl_rxon_add_station(priv, BROADCAST_ADDR, 0) == IWL_INVALID_STATION) { IWL_ERROR("Error adding BROADCAST address for transmit.\n"); return -EIO; } /* If we have set the ASSOC_MSK and we are in BSS mode then * add the IWL_AP_ID to the station rate table */ if (iwl_is_associated(priv) && (priv->iw_mode == IEEE80211_IF_TYPE_STA)) { if (iwl_rxon_add_station(priv, priv->active_rxon.bssid_addr, 1) == IWL_INVALID_STATION) { IWL_ERROR("Error adding AP address for transmit.\n"); return -EIO; } priv->assoc_station_added = 1; } return 0; } static int iwl_send_bt_config(struct iwl_priv *priv) { struct iwl_bt_cmd bt_cmd = { .flags = 3, .lead_time = 0xAA, .max_kill = 1, .kill_ack_mask = 0, .kill_cts_mask = 0, }; return iwl_send_cmd_pdu(priv, REPLY_BT_CONFIG, sizeof(struct iwl_bt_cmd), &bt_cmd); } static int iwl_send_scan_abort(struct iwl_priv *priv) { int rc = 0; struct iwl_rx_packet *res; struct iwl_host_cmd cmd = { .id = REPLY_SCAN_ABORT_CMD, .meta.flags = CMD_WANT_SKB, }; /* If there isn't a scan actively going on in the hardware * then we are in between scan bands and not actually * actively scanning, so don't send the abort command */ if (!test_bit(STATUS_SCAN_HW, &priv->status)) { clear_bit(STATUS_SCAN_ABORTING, &priv->status); return 0; } rc = iwl_send_cmd_sync(priv, &cmd); if (rc) { clear_bit(STATUS_SCAN_ABORTING, &priv->status); return rc; } res = (struct iwl_rx_packet *)cmd.meta.u.skb->data; if (res->u.status != CAN_ABORT_STATUS) { /* The scan abort will return 1 for success or * 2 for "failure". A failure condition can be * due to simply not being in an active scan which * can occur if we send the scan abort before we * the microcode has notified us that a scan is * completed. */ IWL_DEBUG_INFO("SCAN_ABORT returned %d.\n", res->u.status); clear_bit(STATUS_SCAN_ABORTING, &priv->status); clear_bit(STATUS_SCAN_HW, &priv->status); } dev_kfree_skb_any(cmd.meta.u.skb); return rc; } static int iwl_card_state_sync_callback(struct iwl_priv *priv, struct iwl_cmd *cmd, struct sk_buff *skb) { return 1; } /* * CARD_STATE_CMD * * Use: Sets the internal card state to enable, disable, or halt * * When in the 'enable' state the card operates as normal. * When in the 'disable' state, the card enters into a low power mode. * When in the 'halt' state, the card is shut down and must be fully * restarted to come back on. */ static int iwl_send_card_state(struct iwl_priv *priv, u32 flags, u8 meta_flag) { struct iwl_host_cmd cmd = { .id = REPLY_CARD_STATE_CMD, .len = sizeof(u32), .data = &flags, .meta.flags = meta_flag, }; if (meta_flag & CMD_ASYNC) cmd.meta.u.callback = iwl_card_state_sync_callback; return iwl_send_cmd(priv, &cmd); } static int iwl_add_sta_sync_callback(struct iwl_priv *priv, struct iwl_cmd *cmd, struct sk_buff *skb) { struct iwl_rx_packet *res = NULL; if (!skb) { IWL_ERROR("Error: Response NULL in REPLY_ADD_STA.\n"); return 1; } res = (struct iwl_rx_packet *)skb->data; if (res->hdr.flags & IWL_CMD_FAILED_MSK) { IWL_ERROR("Bad return from REPLY_ADD_STA (0x%08X)\n", res->hdr.flags); return 1; } switch (res->u.add_sta.status) { case ADD_STA_SUCCESS_MSK: break; default: break; } /* We didn't cache the SKB; let the caller free it */ return 1; } int iwl_send_add_station(struct iwl_priv *priv, struct iwl_addsta_cmd *sta, u8 flags) { struct iwl_rx_packet *res = NULL; int rc = 0; struct iwl_host_cmd cmd = { .id = REPLY_ADD_STA, .len = sizeof(struct iwl_addsta_cmd), .meta.flags = flags, .data = sta, }; if (flags & CMD_ASYNC) cmd.meta.u.callback = iwl_add_sta_sync_callback; else cmd.meta.flags |= CMD_WANT_SKB; rc = iwl_send_cmd(priv, &cmd); if (rc || (flags & CMD_ASYNC)) return rc; res = (struct iwl_rx_packet *)cmd.meta.u.skb->data; if (res->hdr.flags & IWL_CMD_FAILED_MSK) { IWL_ERROR("Bad return from REPLY_ADD_STA (0x%08X)\n", res->hdr.flags); rc = -EIO; } if (rc == 0) { switch (res->u.add_sta.status) { case ADD_STA_SUCCESS_MSK: IWL_DEBUG_INFO("REPLY_ADD_STA PASSED\n"); break; default: rc = -EIO; IWL_WARNING("REPLY_ADD_STA failed\n"); break; } } priv->alloc_rxb_skb--; dev_kfree_skb_any(cmd.meta.u.skb); return rc; } static int iwl_update_sta_key_info(struct iwl_priv *priv, struct ieee80211_key_conf *keyconf, u8 sta_id) { unsigned long flags; __le16 key_flags = 0; switch (keyconf->alg) { case ALG_CCMP: key_flags |= STA_KEY_FLG_CCMP; key_flags |= cpu_to_le16( keyconf->keyidx << STA_KEY_FLG_KEYID_POS); key_flags &= ~STA_KEY_FLG_INVALID; break; case ALG_TKIP: case ALG_WEP: return -EINVAL; default: return -EINVAL; } spin_lock_irqsave(&priv->sta_lock, flags); priv->stations[sta_id].keyinfo.alg = keyconf->alg; priv->stations[sta_id].keyinfo.keylen = keyconf->keylen; memcpy(priv->stations[sta_id].keyinfo.key, keyconf->key, keyconf->keylen); memcpy(priv->stations[sta_id].sta.key.key, keyconf->key, keyconf->keylen); priv->stations[sta_id].sta.key.key_flags = key_flags; priv->stations[sta_id].sta.sta.modify_mask = STA_MODIFY_KEY_MASK; priv->stations[sta_id].sta.mode = STA_CONTROL_MODIFY_MSK; spin_unlock_irqrestore(&priv->sta_lock, flags); IWL_DEBUG_INFO("hwcrypto: modify ucode station key info\n"); iwl_send_add_station(priv, &priv->stations[sta_id].sta, 0); return 0; } static int iwl_clear_sta_key_info(struct iwl_priv *priv, u8 sta_id) { unsigned long flags; spin_lock_irqsave(&priv->sta_lock, flags); memset(&priv->stations[sta_id].keyinfo, 0, sizeof(struct iwl_hw_key)); memset(&priv->stations[sta_id].sta.key, 0, sizeof(struct iwl_keyinfo)); priv->stations[sta_id].sta.key.key_flags = STA_KEY_FLG_NO_ENC; priv->stations[sta_id].sta.sta.modify_mask = STA_MODIFY_KEY_MASK; priv->stations[sta_id].sta.mode = STA_CONTROL_MODIFY_MSK; spin_unlock_irqrestore(&priv->sta_lock, flags); IWL_DEBUG_INFO("hwcrypto: clear ucode station key info\n"); iwl_send_add_station(priv, &priv->stations[sta_id].sta, 0); return 0; } static void iwl_clear_free_frames(struct iwl_priv *priv) { struct list_head *element; IWL_DEBUG_INFO("%d frames on pre-allocated heap on clear.\n", priv->frames_count); while (!list_empty(&priv->free_frames)) { element = priv->free_frames.next; list_del(element); kfree(list_entry(element, struct iwl_frame, list)); priv->frames_count--; } if (priv->frames_count) { IWL_WARNING("%d frames still in use. Did we lose one?\n", priv->frames_count); priv->frames_count = 0; } } static struct iwl_frame *iwl_get_free_frame(struct iwl_priv *priv) { struct iwl_frame *frame; struct list_head *element; if (list_empty(&priv->free_frames)) { frame = kzalloc(sizeof(*frame), GFP_KERNEL); if (!frame) { IWL_ERROR("Could not allocate frame!\n"); return NULL; } priv->frames_count++; return frame; } element = priv->free_frames.next; list_del(element); return list_entry(element, struct iwl_frame, list); } static void iwl_free_frame(struct iwl_priv *priv, struct iwl_frame *frame) { memset(frame, 0, sizeof(*frame)); list_add(&frame->list, &priv->free_frames); } unsigned int iwl_fill_beacon_frame(struct iwl_priv *priv, struct ieee80211_hdr *hdr, const u8 *dest, int left) { if (!iwl_is_associated(priv) || !priv->ibss_beacon || ((priv->iw_mode != IEEE80211_IF_TYPE_IBSS) && (priv->iw_mode != IEEE80211_IF_TYPE_AP))) return 0; if (priv->ibss_beacon->len > left) return 0; memcpy(hdr, priv->ibss_beacon->data, priv->ibss_beacon->len); return priv->ibss_beacon->len; } int iwl_rate_index_from_plcp(int plcp) { int i = 0; if (plcp & RATE_MCS_HT_MSK) { i = (plcp & 0xff); if (i >= IWL_RATE_MIMO_6M_PLCP) i = i - IWL_RATE_MIMO_6M_PLCP; i += IWL_FIRST_OFDM_RATE; /* skip 9M not supported in ht*/ if (i >= IWL_RATE_9M_INDEX) i += 1; if ((i >= IWL_FIRST_OFDM_RATE) && (i <= IWL_LAST_OFDM_RATE)) return i; } else { for (i = 0; i < ARRAY_SIZE(iwl_rates); i++) if (iwl_rates[i].plcp == (plcp &0xFF)) return i; } return -1; } static u8 iwl_rate_get_lowest_plcp(int rate_mask) { u8 i; for (i = IWL_RATE_1M_INDEX; i != IWL_RATE_INVALID; i = iwl_rates[i].next_ieee) { if (rate_mask & (1 << i)) return iwl_rates[i].plcp; } return IWL_RATE_INVALID; } static int iwl_send_beacon_cmd(struct iwl_priv *priv) { struct iwl_frame *frame; unsigned int frame_size; int rc; u8 rate; frame = iwl_get_free_frame(priv); if (!frame) { IWL_ERROR("Could not obtain free frame buffer for beacon " "command.\n"); return -ENOMEM; } if (!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK)) { rate = iwl_rate_get_lowest_plcp(priv->active_rate_basic & 0xFF0); if (rate == IWL_INVALID_RATE) rate = IWL_RATE_6M_PLCP; } else { rate = iwl_rate_get_lowest_plcp(priv->active_rate_basic & 0xF); if (rate == IWL_INVALID_RATE) rate = IWL_RATE_1M_PLCP; } frame_size = iwl_hw_get_beacon_cmd(priv, frame, rate); rc = iwl_send_cmd_pdu(priv, REPLY_TX_BEACON, frame_size, &frame->u.cmd[0]); iwl_free_frame(priv, frame); return rc; } /****************************************************************************** * * EEPROM related functions * ******************************************************************************/ static void get_eeprom_mac(struct iwl_priv *priv, u8 *mac) { memcpy(mac, priv->eeprom.mac_address, 6); } /** * iwl_eeprom_init - read EEPROM contents * * Load the EEPROM from adapter into priv->eeprom * * NOTE: This routine uses the non-debug IO access functions. */ int iwl_eeprom_init(struct iwl_priv *priv) { u16 *e = (u16 *)&priv->eeprom; u32 gp = iwl_read32(priv, CSR_EEPROM_GP); u32 r; int sz = sizeof(priv->eeprom); int rc; int i; u16 addr; /* The EEPROM structure has several padding buffers within it * and when adding new EEPROM maps is subject to programmer errors * which may be very difficult to identify without explicitly * checking the resulting size of the eeprom map. */ BUILD_BUG_ON(sizeof(priv->eeprom) != IWL_EEPROM_IMAGE_SIZE); if ((gp & CSR_EEPROM_GP_VALID_MSK) == CSR_EEPROM_GP_BAD_SIGNATURE) { IWL_ERROR("EEPROM not found, EEPROM_GP=0x%08x", gp); return -ENOENT; } rc = iwl_eeprom_aqcuire_semaphore(priv); if (rc < 0) { IWL_ERROR("Failed to aqcuire EEPROM semaphore.\n"); return -ENOENT; } /* eeprom is an array of 16bit values */ for (addr = 0; addr < sz; addr += sizeof(u16)) { _iwl_write32(priv, CSR_EEPROM_REG, addr << 1); _iwl_clear_bit(priv, CSR_EEPROM_REG, CSR_EEPROM_REG_BIT_CMD); for (i = 0; i < IWL_EEPROM_ACCESS_TIMEOUT; i += IWL_EEPROM_ACCESS_DELAY) { r = _iwl_read_restricted(priv, CSR_EEPROM_REG); if (r & CSR_EEPROM_REG_READ_VALID_MSK) break; udelay(IWL_EEPROM_ACCESS_DELAY); } if (!(r & CSR_EEPROM_REG_READ_VALID_MSK)) { IWL_ERROR("Time out reading EEPROM[%d]", addr); rc = -ETIMEDOUT; goto done; } e[addr / 2] = le16_to_cpu(r >> 16); } rc = 0; done: iwl_eeprom_release_semaphore(priv); return rc; } /****************************************************************************** * * Misc. internal state and helper functions * ******************************************************************************/ #ifdef CONFIG_IWLWIFI_DEBUG /** * iwl_report_frame - dump frame to syslog during debug sessions * * hack this function to show different aspects of received frames, * including selective frame dumps. * group100 parameter selects whether to show 1 out of 100 good frames. * * TODO: ieee80211_hdr stuff is common to 3945 and 4965, so frame type * info output is okay, but some of this stuff (e.g. iwl_rx_frame_stats) * is 3945-specific and gives bad output for 4965. Need to split the * functionality, keep common stuff here. */ void iwl_report_frame(struct iwl_priv *priv, struct iwl_rx_packet *pkt, struct ieee80211_hdr *header, int group100) { u32 to_us; u32 print_summary = 0; u32 print_dump = 0; /* set to 1 to dump all frames' contents */ u32 hundred = 0; u32 dataframe = 0; u16 fc; u16 seq_ctl; u16 channel; u16 phy_flags; int rate_sym; u16 length; u16 status; u16 bcn_tmr; u32 tsf_low; u64 tsf; u8 rssi; u8 agc; u16 sig_avg; u16 noise_diff; struct iwl_rx_frame_stats *rx_stats = IWL_RX_STATS(pkt); struct iwl_rx_frame_hdr *rx_hdr = IWL_RX_HDR(pkt); struct iwl_rx_frame_end *rx_end = IWL_RX_END(pkt); u8 *data = IWL_RX_DATA(pkt); /* MAC header */ fc = le16_to_cpu(header->frame_control); seq_ctl = le16_to_cpu(header->seq_ctrl); /* metadata */ channel = le16_to_cpu(rx_hdr->channel); phy_flags = le16_to_cpu(rx_hdr->phy_flags); rate_sym = rx_hdr->rate; length = le16_to_cpu(rx_hdr->len); /* end-of-frame status and timestamp */ status = le32_to_cpu(rx_end->status); bcn_tmr = le32_to_cpu(rx_end->beacon_timestamp); tsf_low = le64_to_cpu(rx_end->timestamp) & 0x0ffffffff; tsf = le64_to_cpu(rx_end->timestamp); /* signal statistics */ rssi = rx_stats->rssi; agc = rx_stats->agc; sig_avg = le16_to_cpu(rx_stats->sig_avg); noise_diff = le16_to_cpu(rx_stats->noise_diff); to_us = !compare_ether_addr(header->addr1, priv->mac_addr); /* if data frame is to us and all is good, * (optionally) print summary for only 1 out of every 100 */ if (to_us && (fc & ~IEEE80211_FCTL_PROTECTED) == (IEEE80211_FCTL_FROMDS | IEEE80211_FTYPE_DATA)) { dataframe = 1; if (!group100) print_summary = 1; /* print each frame */ else if (priv->framecnt_to_us < 100) { priv->framecnt_to_us++; print_summary = 0; } else { priv->framecnt_to_us = 0; print_summary = 1; hundred = 1; } } else { /* print summary for all other frames */ print_summary = 1; } if (print_summary) { char *title; u32 rate; if (hundred) title = "100Frames"; else if (fc & IEEE80211_FCTL_RETRY) title = "Retry"; else if (ieee80211_is_assoc_response(fc)) title = "AscRsp"; else if (ieee80211_is_reassoc_response(fc)) title = "RasRsp"; else if (ieee80211_is_probe_response(fc)) { title = "PrbRsp"; print_dump = 1; /* dump frame contents */ } else if (ieee80211_is_beacon(fc)) { title = "Beacon"; print_dump = 1; /* dump frame contents */ } else if (ieee80211_is_atim(fc)) title = "ATIM"; else if (ieee80211_is_auth(fc)) title = "Auth"; else if (ieee80211_is_deauth(fc)) title = "DeAuth"; else if (ieee80211_is_disassoc(fc)) title = "DisAssoc"; else title = "Frame"; rate = iwl_rate_index_from_plcp(rate_sym); if (rate == -1) rate = 0; else rate = iwl_rates[rate].ieee / 2; /* print frame summary. * MAC addresses show just the last byte (for brevity), * but you can hack it to show more, if you'd like to. */ if (dataframe) IWL_DEBUG_RX("%s: mhd=0x%04x, dst=0x%02x, " "len=%u, rssi=%d, chnl=%d, rate=%u, \n", title, fc, header->addr1[5], length, rssi, channel, rate); else { /* src/dst addresses assume managed mode */ IWL_DEBUG_RX("%s: 0x%04x, dst=0x%02x, " "src=0x%02x, rssi=%u, tim=%lu usec, " "phy=0x%02x, chnl=%d\n", title, fc, header->addr1[5], header->addr3[5], rssi, tsf_low - priv->scan_start_tsf, phy_flags, channel); } } if (print_dump) iwl_print_hex_dump(IWL_DL_RX, data, length); } #endif static void iwl_unset_hw_setting(struct iwl_priv *priv) { if (priv->hw_setting.shared_virt) pci_free_consistent(priv->pci_dev, sizeof(struct iwl_shared), priv->hw_setting.shared_virt, priv->hw_setting.shared_phys); } /** * iwl_supported_rate_to_ie - fill in the supported rate in IE field * * return : set the bit for each supported rate insert in ie */ static u16 iwl_supported_rate_to_ie(u8 *ie, u16 supported_rate, u16 basic_rate, int *left) { u16 ret_rates = 0, bit; int i; u8 *cnt = ie; u8 *rates = ie + 1; for (bit = 1, i = 0; i < IWL_RATE_COUNT; i++, bit <<= 1) { if (bit & supported_rate) { ret_rates |= bit; rates[*cnt] = iwl_rates[i].ieee | ((bit & basic_rate) ? 0x80 : 0x00); (*cnt)++; (*left)--; if ((*left <= 0) || (*cnt >= IWL_SUPPORTED_RATES_IE_LEN)) break; } } return ret_rates; } #ifdef CONFIG_IWLWIFI_HT void static iwl_set_ht_capab(struct ieee80211_hw *hw, struct ieee80211_ht_capability *ht_cap, u8 use_wide_chan); #endif /** * iwl_fill_probe_req - fill in all required fields and IE for probe request */ static u16 iwl_fill_probe_req(struct iwl_priv *priv, struct ieee80211_mgmt *frame, int left, int is_direct) { int len = 0; u8 *pos = NULL; u16 active_rates, ret_rates, cck_rates; /* Make sure there is enough space for the probe request, * two mandatory IEs and the data */ left -= 24; if (left < 0) return 0; len += 24; frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ); memcpy(frame->da, BROADCAST_ADDR, ETH_ALEN); memcpy(frame->sa, priv->mac_addr, ETH_ALEN); memcpy(frame->bssid, BROADCAST_ADDR, ETH_ALEN); frame->seq_ctrl = 0; /* fill in our indirect SSID IE */ /* ...next IE... */ left -= 2; if (left < 0) return 0; len += 2; pos = &(frame->u.probe_req.variable[0]); *pos++ = WLAN_EID_SSID; *pos++ = 0; /* fill in our direct SSID IE... */ if (is_direct) { /* ...next IE... */ left -= 2 + priv->essid_len; if (left < 0) return 0; /* ... fill it in... */ *pos++ = WLAN_EID_SSID; *pos++ = priv->essid_len; memcpy(pos, priv->essid, priv->essid_len); pos += priv->essid_len; len += 2 + priv->essid_len; } /* fill in supported rate */ /* ...next IE... */ left -= 2; if (left < 0) return 0; /* ... fill it in... */ *pos++ = WLAN_EID_SUPP_RATES; *pos = 0; priv->active_rate = priv->rates_mask; active_rates = priv->active_rate; priv->active_rate_basic = priv->rates_mask & IWL_BASIC_RATES_MASK; cck_rates = IWL_CCK_RATES_MASK & active_rates; ret_rates = iwl_supported_rate_to_ie(pos, cck_rates, priv->active_rate_basic, &left); active_rates &= ~ret_rates; ret_rates = iwl_supported_rate_to_ie(pos, active_rates, priv->active_rate_basic, &left); active_rates &= ~ret_rates; len += 2 + *pos; pos += (*pos) + 1; if (active_rates == 0) goto fill_end; /* fill in supported extended rate */ /* ...next IE... */ left -= 2; if (left < 0) return 0; /* ... fill it in... */ *pos++ = WLAN_EID_EXT_SUPP_RATES; *pos = 0; iwl_supported_rate_to_ie(pos, active_rates, priv->active_rate_basic, &left); if (*pos > 0) len += 2 + *pos; #ifdef CONFIG_IWLWIFI_HT if (is_direct && priv->is_ht_enabled) { u8 use_wide_chan = 1; if (priv->channel_width != IWL_CHANNEL_WIDTH_40MHZ) use_wide_chan = 0; pos += (*pos) + 1; *pos++ = WLAN_EID_HT_CAPABILITY; *pos++ = sizeof(struct ieee80211_ht_capability); iwl_set_ht_capab(NULL, (struct ieee80211_ht_capability *)pos, use_wide_chan); len += 2 + sizeof(struct ieee80211_ht_capability); } #endif /*CONFIG_IWLWIFI_HT */ fill_end: return (u16)len; } /* * QoS support */ #ifdef CONFIG_IWLWIFI_QOS static int iwl_send_qos_params_command(struct iwl_priv *priv, struct iwl_qosparam_cmd *qos) { return iwl_send_cmd_pdu(priv, REPLY_QOS_PARAM, sizeof(struct iwl_qosparam_cmd), qos); } static void iwl_reset_qos(struct iwl_priv *priv) { u16 cw_min = 15; u16 cw_max = 1023; u8 aifs = 2; u8 is_legacy = 0; unsigned long flags; int i; spin_lock_irqsave(&priv->lock, flags); priv->qos_data.qos_active = 0; if (priv->iw_mode == IEEE80211_IF_TYPE_IBSS) { if (priv->qos_data.qos_enable) priv->qos_data.qos_active = 1; if (!(priv->active_rate & 0xfff0)) { cw_min = 31; is_legacy = 1; } } else if (priv->iw_mode == IEEE80211_IF_TYPE_AP) { if (priv->qos_data.qos_enable) priv->qos_data.qos_active = 1; } else if (!(priv->staging_rxon.flags & RXON_FLG_SHORT_SLOT_MSK)) { cw_min = 31; is_legacy = 1; } if (priv->qos_data.qos_active) aifs = 3; priv->qos_data.def_qos_parm.ac[0].cw_min = cpu_to_le16(cw_min); priv->qos_data.def_qos_parm.ac[0].cw_max = cpu_to_le16(cw_max); priv->qos_data.def_qos_parm.ac[0].aifsn = aifs; priv->qos_data.def_qos_parm.ac[0].edca_txop = 0; priv->qos_data.def_qos_parm.ac[0].reserved1 = 0; if (priv->qos_data.qos_active) { i = 1; priv->qos_data.def_qos_parm.ac[i].cw_min = cpu_to_le16(cw_min); priv->qos_data.def_qos_parm.ac[i].cw_max = cpu_to_le16(cw_max); priv->qos_data.def_qos_parm.ac[i].aifsn = 7; priv->qos_data.def_qos_parm.ac[i].edca_txop = 0; priv->qos_data.def_qos_parm.ac[i].reserved1 = 0; i = 2; priv->qos_data.def_qos_parm.ac[i].cw_min = cpu_to_le16((cw_min + 1) / 2 - 1); priv->qos_data.def_qos_parm.ac[i].cw_max = cpu_to_le16(cw_max); priv->qos_data.def_qos_parm.ac[i].aifsn = 2; if (is_legacy) priv->qos_data.def_qos_parm.ac[i].edca_txop = cpu_to_le16(6016); else priv->qos_data.def_qos_parm.ac[i].edca_txop = cpu_to_le16(3008); priv->qos_data.def_qos_parm.ac[i].reserved1 = 0; i = 3; priv->qos_data.def_qos_parm.ac[i].cw_min = cpu_to_le16((cw_min + 1) / 4 - 1); priv->qos_data.def_qos_parm.ac[i].cw_max = cpu_to_le16((cw_max + 1) / 2 - 1); priv->qos_data.def_qos_parm.ac[i].aifsn = 2; priv->qos_data.def_qos_parm.ac[i].reserved1 = 0; if (is_legacy) priv->qos_data.def_qos_parm.ac[i].edca_txop = cpu_to_le16(3264); else priv->qos_data.def_qos_parm.ac[i].edca_txop = cpu_to_le16(1504); } else { for (i = 1; i < 4; i++) { priv->qos_data.def_qos_parm.ac[i].cw_min = cpu_to_le16(cw_min); priv->qos_data.def_qos_parm.ac[i].cw_max = cpu_to_le16(cw_max); priv->qos_data.def_qos_parm.ac[i].aifsn = aifs; priv->qos_data.def_qos_parm.ac[i].edca_txop = 0; priv->qos_data.def_qos_parm.ac[i].reserved1 = 0; } } IWL_DEBUG_QOS("set QoS to default \n"); spin_unlock_irqrestore(&priv->lock, flags); } static void iwl_activate_qos(struct iwl_priv *priv, u8 force) { unsigned long flags; if (priv == NULL) return; if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; if (!priv->qos_data.qos_enable) return; spin_lock_irqsave(&priv->lock, flags); priv->qos_data.def_qos_parm.qos_flags = 0; if (priv->qos_data.qos_cap.q_AP.queue_request && !priv->qos_data.qos_cap.q_AP.txop_request) priv->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TXOP_TYPE_MSK; if (priv->qos_data.qos_active) priv->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_UPDATE_EDCA_MSK; spin_unlock_irqrestore(&priv->lock, flags); if (force || iwl_is_associated(priv)) { IWL_DEBUG_QOS("send QoS cmd with Qos active %d \n", priv->qos_data.qos_active); iwl_send_qos_params_command(priv, &(priv->qos_data.def_qos_parm)); } } #endif /* CONFIG_IWLWIFI_QOS */ /* * Power management (not Tx power!) functions */ #define MSEC_TO_USEC 1024 #define NOSLP __constant_cpu_to_le16(0), 0, 0 #define SLP IWL_POWER_DRIVER_ALLOW_SLEEP_MSK, 0, 0 #define SLP_TIMEOUT(T) __constant_cpu_to_le32((T) * MSEC_TO_USEC) #define SLP_VEC(X0, X1, X2, X3, X4) {__constant_cpu_to_le32(X0), \ __constant_cpu_to_le32(X1), \ __constant_cpu_to_le32(X2), \ __constant_cpu_to_le32(X3), \ __constant_cpu_to_le32(X4)} /* default power management (not Tx power) table values */ /* for tim 0-10 */ static struct iwl_power_vec_entry range_0[IWL_POWER_AC] = { {{NOSLP, SLP_TIMEOUT(0), SLP_TIMEOUT(0), SLP_VEC(0, 0, 0, 0, 0)}, 0}, {{SLP, SLP_TIMEOUT(200), SLP_TIMEOUT(500), SLP_VEC(1, 2, 3, 4, 4)}, 0}, {{SLP, SLP_TIMEOUT(200), SLP_TIMEOUT(300), SLP_VEC(2, 4, 6, 7, 7)}, 0}, {{SLP, SLP_TIMEOUT(50), SLP_TIMEOUT(100), SLP_VEC(2, 6, 9, 9, 10)}, 0}, {{SLP, SLP_TIMEOUT(50), SLP_TIMEOUT(25), SLP_VEC(2, 7, 9, 9, 10)}, 1}, {{SLP, SLP_TIMEOUT(25), SLP_TIMEOUT(25), SLP_VEC(4, 7, 10, 10, 10)}, 1} }; /* for tim > 10 */ static struct iwl_power_vec_entry range_1[IWL_POWER_AC] = { {{NOSLP, SLP_TIMEOUT(0), SLP_TIMEOUT(0), SLP_VEC(0, 0, 0, 0, 0)}, 0}, {{SLP, SLP_TIMEOUT(200), SLP_TIMEOUT(500), SLP_VEC(1, 2, 3, 4, 0xFF)}, 0}, {{SLP, SLP_TIMEOUT(200), SLP_TIMEOUT(300), SLP_VEC(2, 4, 6, 7, 0xFF)}, 0}, {{SLP, SLP_TIMEOUT(50), SLP_TIMEOUT(100), SLP_VEC(2, 6, 9, 9, 0xFF)}, 0}, {{SLP, SLP_TIMEOUT(50), SLP_TIMEOUT(25), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0}, {{SLP, SLP_TIMEOUT(25), SLP_TIMEOUT(25), SLP_VEC(4, 7, 10, 10, 0xFF)}, 0} }; int iwl_power_init_handle(struct iwl_priv *priv) { int rc = 0, i; struct iwl_power_mgr *pow_data; int size = sizeof(struct iwl_power_vec_entry) * IWL_POWER_AC; u16 pci_pm; IWL_DEBUG_POWER("Initialize power \n"); pow_data = &(priv->power_data); memset(pow_data, 0, sizeof(*pow_data)); pow_data->active_index = IWL_POWER_RANGE_0; pow_data->dtim_val = 0xffff; memcpy(&pow_data->pwr_range_0[0], &range_0[0], size); memcpy(&pow_data->pwr_range_1[0], &range_1[0], size); rc = pci_read_config_word(priv->pci_dev, PCI_LINK_CTRL, &pci_pm); if (rc != 0) return 0; else { struct iwl_powertable_cmd *cmd; IWL_DEBUG_POWER("adjust power command flags\n"); for (i = 0; i < IWL_POWER_AC; i++) { cmd = &pow_data->pwr_range_0[i].cmd; if (pci_pm & 0x1) cmd->flags &= ~IWL_POWER_PCI_PM_MSK; else cmd->flags |= IWL_POWER_PCI_PM_MSK; } } return rc; } static int iwl_update_power_cmd(struct iwl_priv *priv, struct iwl_powertable_cmd *cmd, u32 mode) { int rc = 0, i; u8 skip; u32 max_sleep = 0; struct iwl_power_vec_entry *range; u8 period = 0; struct iwl_power_mgr *pow_data; if (mode > IWL_POWER_INDEX_5) { IWL_DEBUG_POWER("Error invalid power mode \n"); return -1; } pow_data = &(priv->power_data); if (pow_data->active_index == IWL_POWER_RANGE_0) range = &pow_data->pwr_range_0[0]; else range = &pow_data->pwr_range_1[1]; memcpy(cmd, &range[mode].cmd, sizeof(struct iwl_powertable_cmd)); #ifdef IWL_MAC80211_DISABLE if (priv->assoc_network != NULL) { unsigned long flags; period = priv->assoc_network->tim.tim_period; } #endif /*IWL_MAC80211_DISABLE */ skip = range[mode].no_dtim; if (period == 0) { period = 1; skip = 0; } if (skip == 0) { max_sleep = period; cmd->flags &= ~IWL_POWER_SLEEP_OVER_DTIM_MSK; } else { __le32 slp_itrvl = cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]; max_sleep = (le32_to_cpu(slp_itrvl) / period) * period; cmd->flags |= IWL_POWER_SLEEP_OVER_DTIM_MSK; } for (i = 0; i < IWL_POWER_VEC_SIZE; i++) { if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep) cmd->sleep_interval[i] = cpu_to_le32(max_sleep); } IWL_DEBUG_POWER("Flags value = 0x%08X\n", cmd->flags); IWL_DEBUG_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout)); IWL_DEBUG_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout)); IWL_DEBUG_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n", le32_to_cpu(cmd->sleep_interval[0]), le32_to_cpu(cmd->sleep_interval[1]), le32_to_cpu(cmd->sleep_interval[2]), le32_to_cpu(cmd->sleep_interval[3]), le32_to_cpu(cmd->sleep_interval[4])); return rc; } static int iwl_send_power_mode(struct iwl_priv *priv, u32 mode) { u32 final_mode = mode; int rc; struct iwl_powertable_cmd cmd; /* If on battery, set to 3, * if plugged into AC power, set to CAM ("continuosly aware mode"), * else user level */ switch (mode) { case IWL_POWER_BATTERY: final_mode = IWL_POWER_INDEX_3; break; case IWL_POWER_AC: final_mode = IWL_POWER_MODE_CAM; break; default: final_mode = mode; break; } cmd.keep_alive_beacons = 0; iwl_update_power_cmd(priv, &cmd, final_mode); rc = iwl_send_cmd_pdu(priv, POWER_TABLE_CMD, sizeof(cmd), &cmd); if (final_mode == IWL_POWER_MODE_CAM) clear_bit(STATUS_POWER_PMI, &priv->status); else set_bit(STATUS_POWER_PMI, &priv->status); return rc; } int iwl_is_network_packet(struct iwl_priv *priv, struct ieee80211_hdr *header) { /* Filter incoming packets to determine if they are targeted toward * this network, discarding packets coming from ourselves */ switch (priv->iw_mode) { case IEEE80211_IF_TYPE_IBSS: /* Header: Dest. | Source | BSSID */ /* packets from our adapter are dropped (echo) */ if (!compare_ether_addr(header->addr2, priv->mac_addr)) return 0; /* {broad,multi}cast packets to our IBSS go through */ if (is_multicast_ether_addr(header->addr1)) return !compare_ether_addr(header->addr3, priv->bssid); /* packets to our adapter go through */ return !compare_ether_addr(header->addr1, priv->mac_addr); case IEEE80211_IF_TYPE_STA: /* Header: Dest. | AP{BSSID} | Source */ /* packets from our adapter are dropped (echo) */ if (!compare_ether_addr(header->addr3, priv->mac_addr)) return 0; /* {broad,multi}cast packets to our BSS go through */ if (is_multicast_ether_addr(header->addr1)) return !compare_ether_addr(header->addr2, priv->bssid); /* packets to our adapter go through */ return !compare_ether_addr(header->addr1, priv->mac_addr); } return 1; } #define TX_STATUS_ENTRY(x) case TX_STATUS_FAIL_ ## x: return #x const char *iwl_get_tx_fail_reason(u32 status) { switch (status & TX_STATUS_MSK) { case TX_STATUS_SUCCESS: return "SUCCESS"; TX_STATUS_ENTRY(SHORT_LIMIT); TX_STATUS_ENTRY(LONG_LIMIT); TX_STATUS_ENTRY(FIFO_UNDERRUN); TX_STATUS_ENTRY(MGMNT_ABORT); TX_STATUS_ENTRY(NEXT_FRAG); TX_STATUS_ENTRY(LIFE_EXPIRE); TX_STATUS_ENTRY(DEST_PS); TX_STATUS_ENTRY(ABORTED); TX_STATUS_ENTRY(BT_RETRY); TX_STATUS_ENTRY(STA_INVALID); TX_STATUS_ENTRY(FRAG_DROPPED); TX_STATUS_ENTRY(TID_DISABLE); TX_STATUS_ENTRY(FRAME_FLUSHED); TX_STATUS_ENTRY(INSUFFICIENT_CF_POLL); TX_STATUS_ENTRY(TX_LOCKED); TX_STATUS_ENTRY(NO_BEACON_ON_RADAR); } return "UNKNOWN"; } /** * iwl_scan_cancel - Cancel any currently executing HW scan * * NOTE: priv->mutex is not required before calling this function */ static int iwl_scan_cancel(struct iwl_priv *priv) { if (!test_bit(STATUS_SCAN_HW, &priv->status)) { clear_bit(STATUS_SCANNING, &priv->status); return 0; } if (test_bit(STATUS_SCANNING, &priv->status)) { if (!test_bit(STATUS_SCAN_ABORTING, &priv->status)) { IWL_DEBUG_SCAN("Queuing scan abort.\n"); set_bit(STATUS_SCAN_ABORTING, &priv->status); queue_work(priv->workqueue, &priv->abort_scan); } else IWL_DEBUG_SCAN("Scan abort already in progress.\n"); return test_bit(STATUS_SCANNING, &priv->status); } return 0; } /** * iwl_scan_cancel_timeout - Cancel any currently executing HW scan * @ms: amount of time to wait (in milliseconds) for scan to abort * * NOTE: priv->mutex must be held before calling this function */ static int iwl_scan_cancel_timeout(struct iwl_priv *priv, unsigned long ms) { unsigned long now = jiffies; int ret; ret = iwl_scan_cancel(priv); if (ret && ms) { mutex_unlock(&priv->mutex); while (!time_after(jiffies, now + msecs_to_jiffies(ms)) && test_bit(STATUS_SCANNING, &priv->status)) msleep(1); mutex_lock(&priv->mutex); return test_bit(STATUS_SCANNING, &priv->status); } return ret; } static void iwl_sequence_reset(struct iwl_priv *priv) { /* Reset ieee stats */ /* We don't reset the net_device_stats (ieee->stats) on * re-association */ priv->last_seq_num = -1; priv->last_frag_num = -1; priv->last_packet_time = 0; iwl_scan_cancel(priv); } #define MAX_UCODE_BEACON_INTERVAL 4096 #define INTEL_CONN_LISTEN_INTERVAL __constant_cpu_to_le16(0xA) static __le16 iwl_adjust_beacon_interval(u16 beacon_val) { u16 new_val = 0; u16 beacon_factor = 0; beacon_factor = (beacon_val + MAX_UCODE_BEACON_INTERVAL) / MAX_UCODE_BEACON_INTERVAL; new_val = beacon_val / beacon_factor; return cpu_to_le16(new_val); } static void iwl_setup_rxon_timing(struct iwl_priv *priv) { u64 interval_tm_unit; u64 tsf, result; unsigned long flags; struct ieee80211_conf *conf = NULL; u16 beacon_int = 0; conf = ieee80211_get_hw_conf(priv->hw); spin_lock_irqsave(&priv->lock, flags); priv->rxon_timing.timestamp.dw[1] = cpu_to_le32(priv->timestamp1); priv->rxon_timing.timestamp.dw[0] = cpu_to_le32(priv->timestamp0); priv->rxon_timing.listen_interval = INTEL_CONN_LISTEN_INTERVAL; tsf = priv->timestamp1; tsf = ((tsf << 32) | priv->timestamp0); beacon_int = priv->beacon_int; spin_unlock_irqrestore(&priv->lock, flags); if (priv->iw_mode == IEEE80211_IF_TYPE_STA) { if (beacon_int == 0) { priv->rxon_timing.beacon_interval = cpu_to_le16(100); priv->rxon_timing.beacon_init_val = cpu_to_le32(102400); } else { priv->rxon_timing.beacon_interval = cpu_to_le16(beacon_int); priv->rxon_timing.beacon_interval = iwl_adjust_beacon_interval( le16_to_cpu(priv->rxon_timing.beacon_interval)); } priv->rxon_timing.atim_window = 0; } else { priv->rxon_timing.beacon_interval = iwl_adjust_beacon_interval(conf->beacon_int); /* TODO: we need to get atim_window from upper stack * for now we set to 0 */ priv->rxon_timing.atim_window = 0; } interval_tm_unit = (le16_to_cpu(priv->rxon_timing.beacon_interval) * 1024); result = do_div(tsf, interval_tm_unit); priv->rxon_timing.beacon_init_val = cpu_to_le32((u32) ((u64) interval_tm_unit - result)); IWL_DEBUG_ASSOC ("beacon interval %d beacon timer %d beacon tim %d\n", le16_to_cpu(priv->rxon_timing.beacon_interval), le32_to_cpu(priv->rxon_timing.beacon_init_val), le16_to_cpu(priv->rxon_timing.atim_window)); } static int iwl_scan_initiate(struct iwl_priv *priv) { if (priv->iw_mode == IEEE80211_IF_TYPE_AP) { IWL_ERROR("APs don't scan.\n"); return 0; } if (!iwl_is_ready_rf(priv)) { IWL_DEBUG_SCAN("Aborting scan due to not ready.\n"); return -EIO; } if (test_bit(STATUS_SCANNING, &priv->status)) { IWL_DEBUG_SCAN("Scan already in progress.\n"); return -EAGAIN; } if (test_bit(STATUS_SCAN_ABORTING, &priv->status)) { IWL_DEBUG_SCAN("Scan request while abort pending. " "Queuing.\n"); return -EAGAIN; } IWL_DEBUG_INFO("Starting scan...\n"); priv->scan_bands = 2; set_bit(STATUS_SCANNING, &priv->status); priv->scan_start = jiffies; priv->scan_pass_start = priv->scan_start; queue_work(priv->workqueue, &priv->request_scan); return 0; } static int iwl_set_rxon_hwcrypto(struct iwl_priv *priv, int hw_decrypt) { struct iwl_rxon_cmd *rxon = &priv->staging_rxon; if (hw_decrypt) rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK; else rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK; return 0; } static void iwl_set_flags_for_phymode(struct iwl_priv *priv, u8 phymode) { if (phymode == MODE_IEEE80211A) { priv->staging_rxon.flags &= ~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_CCK_MSK); priv->staging_rxon.flags |= RXON_FLG_SHORT_SLOT_MSK; } else { /* Copied from iwl_bg_post_associate() */ if (priv->assoc_capability & WLAN_CAPABILITY_SHORT_SLOT_TIME) priv->staging_rxon.flags |= RXON_FLG_SHORT_SLOT_MSK; else priv->staging_rxon.flags &= ~RXON_FLG_SHORT_SLOT_MSK; if (priv->iw_mode == IEEE80211_IF_TYPE_IBSS) priv->staging_rxon.flags &= ~RXON_FLG_SHORT_SLOT_MSK; priv->staging_rxon.flags |= RXON_FLG_BAND_24G_MSK; priv->staging_rxon.flags |= RXON_FLG_AUTO_DETECT_MSK; priv->staging_rxon.flags &= ~RXON_FLG_CCK_MSK; } } /* * initilize rxon structure with default values fromm eeprom */ static void iwl_connection_init_rx_config(struct iwl_priv *priv) { const struct iwl_channel_info *ch_info; memset(&priv->staging_rxon, 0, sizeof(priv->staging_rxon)); switch (priv->iw_mode) { case IEEE80211_IF_TYPE_AP: priv->staging_rxon.dev_type = RXON_DEV_TYPE_AP; break; case IEEE80211_IF_TYPE_STA: priv->staging_rxon.dev_type = RXON_DEV_TYPE_ESS; priv->staging_rxon.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK; break; case IEEE80211_IF_TYPE_IBSS: priv->staging_rxon.dev_type = RXON_DEV_TYPE_IBSS; priv->staging_rxon.flags = RXON_FLG_SHORT_PREAMBLE_MSK; priv->staging_rxon.filter_flags = RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK; break; case IEEE80211_IF_TYPE_MNTR: priv->staging_rxon.dev_type = RXON_DEV_TYPE_SNIFFER; priv->staging_rxon.filter_flags = RXON_FILTER_PROMISC_MSK | RXON_FILTER_CTL2HOST_MSK | RXON_FILTER_ACCEPT_GRP_MSK; break; } #if 0 /* TODO: Figure out when short_preamble would be set and cache from * that */ if (!hw_to_local(priv->hw)->short_preamble) priv->staging_rxon.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; else priv->staging_rxon.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; #endif ch_info = iwl_get_channel_info(priv, priv->phymode, le16_to_cpu(priv->staging_rxon.channel)); if (!ch_info) ch_info = &priv->channel_info[0]; /* * in some case A channels are all non IBSS * in this case force B/G channel */ if ((priv->iw_mode == IEEE80211_IF_TYPE_IBSS) && !(is_channel_ibss(ch_info))) ch_info = &priv->channel_info[0]; priv->staging_rxon.channel = cpu_to_le16(ch_info->channel); if (is_channel_a_band(ch_info)) priv->phymode = MODE_IEEE80211A; else priv->phymode = MODE_IEEE80211G; iwl_set_flags_for_phymode(priv, priv->phymode); priv->staging_rxon.ofdm_basic_rates = (IWL_OFDM_RATES_MASK >> IWL_FIRST_OFDM_RATE) & 0xFF; priv->staging_rxon.cck_basic_rates = (IWL_CCK_RATES_MASK >> IWL_FIRST_CCK_RATE) & 0xF; priv->staging_rxon.flags &= ~(RXON_FLG_CHANNEL_MODE_MIXED_MSK | RXON_FLG_CHANNEL_MODE_PURE_40_MSK); memcpy(priv->staging_rxon.node_addr, priv->mac_addr, ETH_ALEN); memcpy(priv->staging_rxon.wlap_bssid_addr, priv->mac_addr, ETH_ALEN); priv->staging_rxon.ofdm_ht_single_stream_basic_rates = 0xff; priv->staging_rxon.ofdm_ht_dual_stream_basic_rates = 0xff; iwl4965_set_rxon_chain(priv); } static int iwl_set_mode(struct iwl_priv *priv, int mode) { if (!iwl_is_ready_rf(priv)) return -EAGAIN; if (mode == IEEE80211_IF_TYPE_IBSS) { const struct iwl_channel_info *ch_info; ch_info = iwl_get_channel_info(priv, priv->phymode, le16_to_cpu(priv->staging_rxon.channel)); if (!ch_info || !is_channel_ibss(ch_info)) { IWL_ERROR("channel %d not IBSS channel\n", le16_to_cpu(priv->staging_rxon.channel)); return -EINVAL; } } cancel_delayed_work(&priv->scan_check); if (iwl_scan_cancel_timeout(priv, 100)) { IWL_WARNING("Aborted scan still in progress after 100ms\n"); IWL_DEBUG_MAC80211("leaving - scan abort failed.\n"); return -EAGAIN; } priv->iw_mode = mode; iwl_connection_init_rx_config(priv); memcpy(priv->staging_rxon.node_addr, priv->mac_addr, ETH_ALEN); iwl_clear_stations_table(priv); iwl_commit_rxon(priv); return 0; } static void iwl_build_tx_cmd_hwcrypto(struct iwl_priv *priv, struct ieee80211_tx_control *ctl, struct iwl_cmd *cmd, struct sk_buff *skb_frag, int last_frag) { struct iwl_hw_key *keyinfo = &priv->stations[ctl->key_idx].keyinfo; switch (keyinfo->alg) { case ALG_CCMP: cmd->cmd.tx.sec_ctl = TX_CMD_SEC_CCM; memcpy(cmd->cmd.tx.key, keyinfo->key, keyinfo->keylen); IWL_DEBUG_TX("tx_cmd with aes hwcrypto\n"); break; case ALG_TKIP: #if 0 cmd->cmd.tx.sec_ctl = TX_CMD_SEC_TKIP; if (last_frag) memcpy(cmd->cmd.tx.tkip_mic.byte, skb_frag->tail - 8, 8); else memset(cmd->cmd.tx.tkip_mic.byte, 0, 8); #endif break; case ALG_WEP: cmd->cmd.tx.sec_ctl = TX_CMD_SEC_WEP | (ctl->key_idx & TX_CMD_SEC_MSK) << TX_CMD_SEC_SHIFT; if (keyinfo->keylen == 13) cmd->cmd.tx.sec_ctl |= TX_CMD_SEC_KEY128; memcpy(&cmd->cmd.tx.key[3], keyinfo->key, keyinfo->keylen); IWL_DEBUG_TX("Configuring packet for WEP encryption " "with key %d\n", ctl->key_idx); break; default: printk(KERN_ERR "Unknown encode alg %d\n", keyinfo->alg); break; } } /* * handle build REPLY_TX command notification. */ static void iwl_build_tx_cmd_basic(struct iwl_priv *priv, struct iwl_cmd *cmd, struct ieee80211_tx_control *ctrl, struct ieee80211_hdr *hdr, int is_unicast, u8 std_id) { __le16 *qc; u16 fc = le16_to_cpu(hdr->frame_control); __le32 tx_flags = cmd->cmd.tx.tx_flags; cmd->cmd.tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE; if (!(ctrl->flags & IEEE80211_TXCTL_NO_ACK)) { tx_flags |= TX_CMD_FLG_ACK_MSK; if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) tx_flags |= TX_CMD_FLG_SEQ_CTL_MSK; if (ieee80211_is_probe_response(fc) && !(le16_to_cpu(hdr->seq_ctrl) & 0xf)) tx_flags |= TX_CMD_FLG_TSF_MSK; } else { tx_flags &= (~TX_CMD_FLG_ACK_MSK); tx_flags |= TX_CMD_FLG_SEQ_CTL_MSK; } cmd->cmd.tx.sta_id = std_id; if (ieee80211_get_morefrag(hdr)) tx_flags |= TX_CMD_FLG_MORE_FRAG_MSK; qc = ieee80211_get_qos_ctrl(hdr); if (qc) { cmd->cmd.tx.tid_tspec = (u8) (le16_to_cpu(*qc) & 0xf); tx_flags &= ~TX_CMD_FLG_SEQ_CTL_MSK; } else tx_flags |= TX_CMD_FLG_SEQ_CTL_MSK; if (ctrl->flags & IEEE80211_TXCTL_USE_RTS_CTS) { tx_flags |= TX_CMD_FLG_RTS_MSK; tx_flags &= ~TX_CMD_FLG_CTS_MSK; } else if (ctrl->flags & IEEE80211_TXCTL_USE_CTS_PROTECT) { tx_flags &= ~TX_CMD_FLG_RTS_MSK; tx_flags |= TX_CMD_FLG_CTS_MSK; } if ((tx_flags & TX_CMD_FLG_RTS_MSK) || (tx_flags & TX_CMD_FLG_CTS_MSK)) tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK; tx_flags &= ~(TX_CMD_FLG_ANT_SEL_MSK); if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) { if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ || (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ) cmd->cmd.tx.timeout.pm_frame_timeout = cpu_to_le16(3); else cmd->cmd.tx.timeout.pm_frame_timeout = cpu_to_le16(2); } else cmd->cmd.tx.timeout.pm_frame_timeout = 0; cmd->cmd.tx.driver_txop = 0; cmd->cmd.tx.tx_flags = tx_flags; cmd->cmd.tx.next_frame_len = 0; } static int iwl_get_sta_id(struct iwl_priv *priv, struct ieee80211_hdr *hdr) { int sta_id; u16 fc = le16_to_cpu(hdr->frame_control); DECLARE_MAC_BUF(mac); /* If this frame is broadcast or not data then use the broadcast * station id */ if (((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA) || is_multicast_ether_addr(hdr->addr1)) return priv->hw_setting.bcast_sta_id; switch (priv->iw_mode) { /* If this frame is part of a BSS network (we're a station), then * we use the AP's station id */ case IEEE80211_IF_TYPE_STA: return IWL_AP_ID; /* If we are an AP, then find the station, or use BCAST */ case IEEE80211_IF_TYPE_AP: sta_id = iwl_hw_find_station(priv, hdr->addr1); if (sta_id != IWL_INVALID_STATION) return sta_id; return priv->hw_setting.bcast_sta_id; /* If this frame is part of a IBSS network, then we use the * target specific station id */ case IEEE80211_IF_TYPE_IBSS: sta_id = iwl_hw_find_station(priv, hdr->addr1); if (sta_id != IWL_INVALID_STATION) return sta_id; sta_id = iwl_add_station(priv, hdr->addr1, 0, CMD_ASYNC); if (sta_id != IWL_INVALID_STATION) return sta_id; IWL_DEBUG_DROP("Station %s not in station map. " "Defaulting to broadcast...\n", print_mac(mac, hdr->addr1)); iwl_print_hex_dump(IWL_DL_DROP, (u8 *) hdr, sizeof(*hdr)); return priv->hw_setting.bcast_sta_id; default: IWL_WARNING("Unkown mode of operation: %d", priv->iw_mode); return priv->hw_setting.bcast_sta_id; } } /* * start REPLY_TX command process */ static int iwl_tx_skb(struct iwl_priv *priv, struct sk_buff *skb, struct ieee80211_tx_control *ctl) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct iwl_tfd_frame *tfd; u32 *control_flags; int txq_id = ctl->queue; struct iwl_tx_queue *txq = NULL; struct iwl_queue *q = NULL; dma_addr_t phys_addr; dma_addr_t txcmd_phys; struct iwl_cmd *out_cmd = NULL; u16 len, idx, len_org; u8 id, hdr_len, unicast; u8 sta_id; u16 seq_number = 0; u16 fc; __le16 *qc; u8 wait_write_ptr = 0; unsigned long flags; int rc; spin_lock_irqsave(&priv->lock, flags); if (iwl_is_rfkill(priv)) { IWL_DEBUG_DROP("Dropping - RF KILL\n"); goto drop_unlock; } if (!priv->interface_id) { IWL_DEBUG_DROP("Dropping - !priv->interface_id\n"); goto drop_unlock; } if ((ctl->tx_rate & 0xFF) == IWL_INVALID_RATE) { IWL_ERROR("ERROR: No TX rate available.\n"); goto drop_unlock; } unicast = !is_multicast_ether_addr(hdr->addr1); id = 0; fc = le16_to_cpu(hdr->frame_control); #ifdef CONFIG_IWLWIFI_DEBUG if (ieee80211_is_auth(fc)) IWL_DEBUG_TX("Sending AUTH frame\n"); else if (ieee80211_is_assoc_request(fc)) IWL_DEBUG_TX("Sending ASSOC frame\n"); else if (ieee80211_is_reassoc_request(fc)) IWL_DEBUG_TX("Sending REASSOC frame\n"); #endif if (!iwl_is_associated(priv) && ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)) { IWL_DEBUG_DROP("Dropping - !iwl_is_associated\n"); goto drop_unlock; } spin_unlock_irqrestore(&priv->lock, flags); hdr_len = ieee80211_get_hdrlen(fc); sta_id = iwl_get_sta_id(priv, hdr); if (sta_id == IWL_INVALID_STATION) { DECLARE_MAC_BUF(mac); IWL_DEBUG_DROP("Dropping - INVALID STATION: %s\n", print_mac(mac, hdr->addr1)); goto drop; } IWL_DEBUG_RATE("station Id %d\n", sta_id); qc = ieee80211_get_qos_ctrl(hdr); if (qc) { u8 tid = (u8)(le16_to_cpu(*qc) & 0xf); seq_number = priv->stations[sta_id].tid[tid].seq_number & IEEE80211_SCTL_SEQ; hdr->seq_ctrl = cpu_to_le16(seq_number) | (hdr->seq_ctrl & __constant_cpu_to_le16(IEEE80211_SCTL_FRAG)); seq_number += 0x10; #ifdef CONFIG_IWLWIFI_HT #ifdef CONFIG_IWLWIFI_HT_AGG /* aggregation is on for this */ if (ctl->flags & IEEE80211_TXCTL_HT_MPDU_AGG) txq_id = priv->stations[sta_id].tid[tid].agg.txq_id; #endif /* CONFIG_IWLWIFI_HT_AGG */ #endif /* CONFIG_IWLWIFI_HT */ } txq = &priv->txq[txq_id]; q = &txq->q; spin_lock_irqsave(&priv->lock, flags); tfd = &txq->bd[q->first_empty]; memset(tfd, 0, sizeof(*tfd)); control_flags = (u32 *) tfd; idx = get_cmd_index(q, q->first_empty, 0); memset(&(txq->txb[q->first_empty]), 0, sizeof(struct iwl_tx_info)); txq->txb[q->first_empty].skb[0] = skb; memcpy(&(txq->txb[q->first_empty].status.control), ctl, sizeof(struct ieee80211_tx_control)); out_cmd = &txq->cmd[idx]; memset(&out_cmd->hdr, 0, sizeof(out_cmd->hdr)); memset(&out_cmd->cmd.tx, 0, sizeof(out_cmd->cmd.tx)); out_cmd->hdr.cmd = REPLY_TX; out_cmd->hdr.sequence = cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) | INDEX_TO_SEQ(q->first_empty))); /* copy frags header */ memcpy(out_cmd->cmd.tx.hdr, hdr, hdr_len); /* hdr = (struct ieee80211_hdr *)out_cmd->cmd.tx.hdr; */ len = priv->hw_setting.tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len; len_org = len; len = (len + 3) & ~3; if (len_org != len) len_org = 1; else len_org = 0; txcmd_phys = txq->dma_addr_cmd + sizeof(struct iwl_cmd) * idx + offsetof(struct iwl_cmd, hdr); iwl_hw_txq_attach_buf_to_tfd(priv, tfd, txcmd_phys, len); if (!(ctl->flags & IEEE80211_TXCTL_DO_NOT_ENCRYPT)) iwl_build_tx_cmd_hwcrypto(priv, ctl, out_cmd, skb, 0); /* 802.11 null functions have no payload... */ len = skb->len - hdr_len; if (len) { phys_addr = pci_map_single(priv->pci_dev, skb->data + hdr_len, len, PCI_DMA_TODEVICE); iwl_hw_txq_attach_buf_to_tfd(priv, tfd, phys_addr, len); } if (len_org) out_cmd->cmd.tx.tx_flags |= TX_CMD_FLG_MH_PAD_MSK; len = (u16)skb->len; out_cmd->cmd.tx.len = cpu_to_le16(len); /* TODO need this for burst mode later on */ iwl_build_tx_cmd_basic(priv, out_cmd, ctl, hdr, unicast, sta_id); /* set is_hcca to 0; it probably will never be implemented */ iwl_hw_build_tx_cmd_rate(priv, out_cmd, ctl, hdr, sta_id, 0); iwl4965_tx_cmd(priv, out_cmd, sta_id, txcmd_phys, hdr, hdr_len, ctl, NULL); if (!ieee80211_get_morefrag(hdr)) { txq->need_update = 1; if (qc) { u8 tid = (u8)(le16_to_cpu(*qc) & 0xf); priv->stations[sta_id].tid[tid].seq_number = seq_number; } } else { wait_write_ptr = 1; txq->need_update = 0; } iwl_print_hex_dump(IWL_DL_TX, out_cmd->cmd.payload, sizeof(out_cmd->cmd.tx)); iwl_print_hex_dump(IWL_DL_TX, (u8 *)out_cmd->cmd.tx.hdr, ieee80211_get_hdrlen(fc)); iwl4965_tx_queue_update_wr_ptr(priv, txq, len); q->first_empty = iwl_queue_inc_wrap(q->first_empty, q->n_bd); rc = iwl_tx_queue_update_write_ptr(priv, txq); spin_unlock_irqrestore(&priv->lock, flags); if (rc) return rc; if ((iwl_queue_space(q) < q->high_mark) && priv->mac80211_registered) { if (wait_write_ptr) { spin_lock_irqsave(&priv->lock, flags); txq->need_update = 1; iwl_tx_queue_update_write_ptr(priv, txq); spin_unlock_irqrestore(&priv->lock, flags); } ieee80211_stop_queue(priv->hw, ctl->queue); } return 0; drop_unlock: spin_unlock_irqrestore(&priv->lock, flags); drop: return -1; } static void iwl_set_rate(struct iwl_priv *priv) { const struct ieee80211_hw_mode *hw = NULL; struct ieee80211_rate *rate; int i; hw = iwl_get_hw_mode(priv, priv->phymode); priv->active_rate = 0; priv->active_rate_basic = 0; IWL_DEBUG_RATE("Setting rates for 802.11%c\n", hw->mode == MODE_IEEE80211A ? 'a' : ((hw->mode == MODE_IEEE80211B) ? 'b' : 'g')); for (i = 0; i < hw->num_rates; i++) { rate = &(hw->rates[i]); if ((rate->val < IWL_RATE_COUNT) && (rate->flags & IEEE80211_RATE_SUPPORTED)) { IWL_DEBUG_RATE("Adding rate index %d (plcp %d)%s\n", rate->val, iwl_rates[rate->val].plcp, (rate->flags & IEEE80211_RATE_BASIC) ? "*" : ""); priv->active_rate |= (1 << rate->val); if (rate->flags & IEEE80211_RATE_BASIC) priv->active_rate_basic |= (1 << rate->val); } else IWL_DEBUG_RATE("Not adding rate %d (plcp %d)\n", rate->val, iwl_rates[rate->val].plcp); } IWL_DEBUG_RATE("Set active_rate = %0x, active_rate_basic = %0x\n", priv->active_rate, priv->active_rate_basic); /* * If a basic rate is configured, then use it (adding IWL_RATE_1M_MASK) * otherwise set it to the default of all CCK rates and 6, 12, 24 for * OFDM */ if (priv->active_rate_basic & IWL_CCK_BASIC_RATES_MASK) priv->staging_rxon.cck_basic_rates = ((priv->active_rate_basic & IWL_CCK_RATES_MASK) >> IWL_FIRST_CCK_RATE) & 0xF; else priv->staging_rxon.cck_basic_rates = (IWL_CCK_BASIC_RATES_MASK >> IWL_FIRST_CCK_RATE) & 0xF; if (priv->active_rate_basic & IWL_OFDM_BASIC_RATES_MASK) priv->staging_rxon.ofdm_basic_rates = ((priv->active_rate_basic & (IWL_OFDM_BASIC_RATES_MASK | IWL_RATE_6M_MASK)) >> IWL_FIRST_OFDM_RATE) & 0xFF; else priv->staging_rxon.ofdm_basic_rates = (IWL_OFDM_BASIC_RATES_MASK >> IWL_FIRST_OFDM_RATE) & 0xFF; } static void iwl_radio_kill_sw(struct iwl_priv *priv, int disable_radio) { unsigned long flags; if (!!disable_radio == test_bit(STATUS_RF_KILL_SW, &priv->status)) return; IWL_DEBUG_RF_KILL("Manual SW RF KILL set to: RADIO %s\n", disable_radio ? "OFF" : "ON"); if (disable_radio) { iwl_scan_cancel(priv); /* FIXME: This is a workaround for AP */ if (priv->iw_mode != IEEE80211_IF_TYPE_AP) { spin_lock_irqsave(&priv->lock, flags); iwl_write32(priv, CSR_UCODE_DRV_GP1_SET, CSR_UCODE_SW_BIT_RFKILL); spin_unlock_irqrestore(&priv->lock, flags); iwl_send_card_state(priv, CARD_STATE_CMD_DISABLE, 0); set_bit(STATUS_RF_KILL_SW, &priv->status); } return; } spin_lock_irqsave(&priv->lock, flags); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); clear_bit(STATUS_RF_KILL_SW, &priv->status); spin_unlock_irqrestore(&priv->lock, flags); /* wake up ucode */ msleep(10); spin_lock_irqsave(&priv->lock, flags); iwl_read32(priv, CSR_UCODE_DRV_GP1); if (!iwl_grab_restricted_access(priv)) iwl_release_restricted_access(priv); spin_unlock_irqrestore(&priv->lock, flags); if (test_bit(STATUS_RF_KILL_HW, &priv->status)) { IWL_DEBUG_RF_KILL("Can not turn radio back on - " "disabled by HW switch\n"); return; } queue_work(priv->workqueue, &priv->restart); return; } void iwl_set_decrypted_flag(struct iwl_priv *priv, struct sk_buff *skb, u32 decrypt_res, struct ieee80211_rx_status *stats) { u16 fc = le16_to_cpu(((struct ieee80211_hdr *)skb->data)->frame_control); if (priv->active_rxon.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK) return; if (!(fc & IEEE80211_FCTL_PROTECTED)) return; IWL_DEBUG_RX("decrypt_res:0x%x\n", decrypt_res); switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) { case RX_RES_STATUS_SEC_TYPE_TKIP: if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) == RX_RES_STATUS_BAD_ICV_MIC) stats->flag |= RX_FLAG_MMIC_ERROR; case RX_RES_STATUS_SEC_TYPE_WEP: case RX_RES_STATUS_SEC_TYPE_CCMP: if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) == RX_RES_STATUS_DECRYPT_OK) { IWL_DEBUG_RX("hw decrypt successfully!!!\n"); stats->flag |= RX_FLAG_DECRYPTED; } break; default: break; } } void iwl_handle_data_packet_monitor(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb, void *data, short len, struct ieee80211_rx_status *stats, u16 phy_flags) { struct iwl_rt_rx_hdr *iwl_rt; /* First cache any information we need before we overwrite * the information provided in the skb from the hardware */ s8 signal = stats->ssi; s8 noise = 0; int rate = stats->rate; u64 tsf = stats->mactime; __le16 phy_flags_hw = cpu_to_le16(phy_flags); /* We received data from the HW, so stop the watchdog */ if (len > IWL_RX_BUF_SIZE - sizeof(*iwl_rt)) { IWL_DEBUG_DROP("Dropping too large packet in monitor\n"); return; } /* copy the frame data to write after where the radiotap header goes */ iwl_rt = (void *)rxb->skb->data; memmove(iwl_rt->payload, data, len); iwl_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION; iwl_rt->rt_hdr.it_pad = 0; /* always good to zero */ /* total header + data */ iwl_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*iwl_rt)); /* Set the size of the skb to the size of the frame */ skb_put(rxb->skb, sizeof(*iwl_rt) + len); /* Big bitfield of all the fields we provide in radiotap */ iwl_rt->rt_hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_TSFT) | (1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_RATE) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) | (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) | (1 << IEEE80211_RADIOTAP_ANTENNA)); /* Zero the flags, we'll add to them as we go */ iwl_rt->rt_flags = 0; iwl_rt->rt_tsf = cpu_to_le64(tsf); /* Convert to dBm */ iwl_rt->rt_dbmsignal = signal; iwl_rt->rt_dbmnoise = noise; /* Convert the channel frequency and set the flags */ iwl_rt->rt_channelMHz = cpu_to_le16(stats->freq); if (!(phy_flags_hw & RX_RES_PHY_FLAGS_BAND_24_MSK)) iwl_rt->rt_chbitmask = cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ)); else if (phy_flags_hw & RX_RES_PHY_FLAGS_MOD_CCK_MSK) iwl_rt->rt_chbitmask = cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ)); else /* 802.11g */ iwl_rt->rt_chbitmask = cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ)); rate = iwl_rate_index_from_plcp(rate); if (rate == -1) iwl_rt->rt_rate = 0; else iwl_rt->rt_rate = iwl_rates[rate].ieee; /* antenna number */ iwl_rt->rt_antenna = le16_to_cpu(phy_flags_hw & RX_RES_PHY_FLAGS_ANTENNA_MSK) >> 4; /* set the preamble flag if we have it */ if (phy_flags_hw & RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK) iwl_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; IWL_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len); stats->flag |= RX_FLAG_RADIOTAP; ieee80211_rx_irqsafe(priv->hw, rxb->skb, stats); rxb->skb = NULL; } #define IWL_PACKET_RETRY_TIME HZ int is_duplicate_packet(struct iwl_priv *priv, struct ieee80211_hdr *header) { u16 sc = le16_to_cpu(header->seq_ctrl); u16 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; u16 frag = sc & IEEE80211_SCTL_FRAG; u16 *last_seq, *last_frag; unsigned long *last_time; switch (priv->iw_mode) { case IEEE80211_IF_TYPE_IBSS:{ struct list_head *p; struct iwl_ibss_seq *entry = NULL; u8 *mac = header->addr2; int index = mac[5] & (IWL_IBSS_MAC_HASH_SIZE - 1); __list_for_each(p, &priv->ibss_mac_hash[index]) { entry = list_entry(p, struct iwl_ibss_seq, list); if (!compare_ether_addr(entry->mac, mac)) break; } if (p == &priv->ibss_mac_hash[index]) { entry = kzalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) { IWL_ERROR ("Cannot malloc new mac entry\n"); return 0; } memcpy(entry->mac, mac, ETH_ALEN); entry->seq_num = seq; entry->frag_num = frag; entry->packet_time = jiffies; list_add(&entry->list, &priv->ibss_mac_hash[index]); return 0; } last_seq = &entry->seq_num; last_frag = &entry->frag_num; last_time = &entry->packet_time; break; } case IEEE80211_IF_TYPE_STA: last_seq = &priv->last_seq_num; last_frag = &priv->last_frag_num; last_time = &priv->last_packet_time; break; default: return 0; } if ((*last_seq == seq) && time_after(*last_time + IWL_PACKET_RETRY_TIME, jiffies)) { if (*last_frag == frag) goto drop; if (*last_frag + 1 != frag) /* out-of-order fragment */ goto drop; } else *last_seq = seq; *last_frag = frag; *last_time = jiffies; return 0; drop: return 1; } #ifdef CONFIG_IWLWIFI_SPECTRUM_MEASUREMENT #include "iwl-spectrum.h" #define BEACON_TIME_MASK_LOW 0x00FFFFFF #define BEACON_TIME_MASK_HIGH 0xFF000000 #define TIME_UNIT 1024 /* * extended beacon time format * time in usec will be changed into a 32-bit value in 8:24 format * the high 1 byte is the beacon counts * the lower 3 bytes is the time in usec within one beacon interval */ static u32 iwl_usecs_to_beacons(u32 usec, u32 beacon_interval) { u32 quot; u32 rem; u32 interval = beacon_interval * 1024; if (!interval || !usec) return 0; quot = (usec / interval) & (BEACON_TIME_MASK_HIGH >> 24); rem = (usec % interval) & BEACON_TIME_MASK_LOW; return (quot << 24) + rem; } /* base is usually what we get from ucode with each received frame, * the same as HW timer counter counting down */ static __le32 iwl_add_beacon_time(u32 base, u32 addon, u32 beacon_interval) { u32 base_low = base & BEACON_TIME_MASK_LOW; u32 addon_low = addon & BEACON_TIME_MASK_LOW; u32 interval = beacon_interval * TIME_UNIT; u32 res = (base & BEACON_TIME_MASK_HIGH) + (addon & BEACON_TIME_MASK_HIGH); if (base_low > addon_low) res += base_low - addon_low; else if (base_low < addon_low) { res += interval + base_low - addon_low; res += (1 << 24); } else res += (1 << 24); return cpu_to_le32(res); } static int iwl_get_measurement(struct iwl_priv *priv, struct ieee80211_measurement_params *params, u8 type) { struct iwl_spectrum_cmd spectrum; struct iwl_rx_packet *res; struct iwl_host_cmd cmd = { .id = REPLY_SPECTRUM_MEASUREMENT_CMD, .data = (void *)&spectrum, .meta.flags = CMD_WANT_SKB, }; u32 add_time = le64_to_cpu(params->start_time); int rc; int spectrum_resp_status; int duration = le16_to_cpu(params->duration); if (iwl_is_associated(priv)) add_time = iwl_usecs_to_beacons( le64_to_cpu(params->start_time) - priv->last_tsf, le16_to_cpu(priv->rxon_timing.beacon_interval)); memset(&spectrum, 0, sizeof(spectrum)); spectrum.channel_count = cpu_to_le16(1); spectrum.flags = RXON_FLG_TSF2HOST_MSK | RXON_FLG_ANT_A_MSK | RXON_FLG_DIS_DIV_MSK; spectrum.filter_flags = MEASUREMENT_FILTER_FLAG; cmd.len = sizeof(spectrum); spectrum.len = cpu_to_le16(cmd.len - sizeof(spectrum.len)); if (iwl_is_associated(priv)) spectrum.start_time = iwl_add_beacon_time(priv->last_beacon_time, add_time, le16_to_cpu(priv->rxon_timing.beacon_interval)); else spectrum.start_time = 0; spectrum.channels[0].duration = cpu_to_le32(duration * TIME_UNIT); spectrum.channels[0].channel = params->channel; spectrum.channels[0].type = type; if (priv->active_rxon.flags & RXON_FLG_BAND_24G_MSK) spectrum.flags |= RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK; rc = iwl_send_cmd_sync(priv, &cmd); if (rc) return rc; res = (struct iwl_rx_packet *)cmd.meta.u.skb->data; if (res->hdr.flags & IWL_CMD_FAILED_MSK) { IWL_ERROR("Bad return from REPLY_RX_ON_ASSOC command\n"); rc = -EIO; } spectrum_resp_status = le16_to_cpu(res->u.spectrum.status); switch (spectrum_resp_status) { case 0: /* Command will be handled */ if (res->u.spectrum.id != 0xff) { IWL_DEBUG_INFO ("Replaced existing measurement: %d\n", res->u.spectrum.id); priv->measurement_status &= ~MEASUREMENT_READY; } priv->measurement_status |= MEASUREMENT_ACTIVE; rc = 0; break; case 1: /* Command will not be handled */ rc = -EAGAIN; break; } dev_kfree_skb_any(cmd.meta.u.skb); return rc; } #endif static void iwl_txstatus_to_ieee(struct iwl_priv *priv, struct iwl_tx_info *tx_sta) { tx_sta->status.ack_signal = 0; tx_sta->status.excessive_retries = 0; tx_sta->status.queue_length = 0; tx_sta->status.queue_number = 0; if (in_interrupt()) ieee80211_tx_status_irqsafe(priv->hw, tx_sta->skb[0], &(tx_sta->status)); else ieee80211_tx_status(priv->hw, tx_sta->skb[0], &(tx_sta->status)); tx_sta->skb[0] = NULL; } /** * iwl_tx_queue_reclaim - Reclaim Tx queue entries no more used by NIC. * * When FW advances 'R' index, all entries between old and * new 'R' index need to be reclaimed. As result, some free space * forms. If there is enough free space (> low mark), wake Tx queue. */ int iwl_tx_queue_reclaim(struct iwl_priv *priv, int txq_id, int index) { struct iwl_tx_queue *txq = &priv->txq[txq_id]; struct iwl_queue *q = &txq->q; int nfreed = 0; if ((index >= q->n_bd) || (x2_queue_used(q, index) == 0)) { IWL_ERROR("Read index for DMA queue txq id (%d), index %d, " "is out of range [0-%d] %d %d.\n", txq_id, index, q->n_bd, q->first_empty, q->last_used); return 0; } for (index = iwl_queue_inc_wrap(index, q->n_bd); q->last_used != index; q->last_used = iwl_queue_inc_wrap(q->last_used, q->n_bd)) { if (txq_id != IWL_CMD_QUEUE_NUM) { iwl_txstatus_to_ieee(priv, &(txq->txb[txq->q.last_used])); iwl_hw_txq_free_tfd(priv, txq); } else if (nfreed > 1) { IWL_ERROR("HCMD skipped: index (%d) %d %d\n", index, q->first_empty, q->last_used); queue_work(priv->workqueue, &priv->restart); } nfreed++; } if (iwl_queue_space(q) > q->low_mark && (txq_id >= 0) && (txq_id != IWL_CMD_QUEUE_NUM) && priv->mac80211_registered) ieee80211_wake_queue(priv->hw, txq_id); return nfreed; } static int iwl_is_tx_success(u32 status) { status &= TX_STATUS_MSK; return (status == TX_STATUS_SUCCESS) || (status == TX_STATUS_DIRECT_DONE); } /****************************************************************************** * * Generic RX handler implementations * ******************************************************************************/ #ifdef CONFIG_IWLWIFI_HT #ifdef CONFIG_IWLWIFI_HT_AGG static inline int iwl_get_ra_sta_id(struct iwl_priv *priv, struct ieee80211_hdr *hdr) { if (priv->iw_mode == IEEE80211_IF_TYPE_STA) return IWL_AP_ID; else { u8 *da = ieee80211_get_DA(hdr); return iwl_hw_find_station(priv, da); } } static struct ieee80211_hdr *iwl_tx_queue_get_hdr( struct iwl_priv *priv, int txq_id, int idx) { if (priv->txq[txq_id].txb[idx].skb[0]) return (struct ieee80211_hdr *)priv->txq[txq_id]. txb[idx].skb[0]->data; return NULL; } static inline u32 iwl_get_scd_ssn(struct iwl_tx_resp *tx_resp) { __le32 *scd_ssn = (__le32 *)((u32 *)&tx_resp->status + tx_resp->frame_count); return le32_to_cpu(*scd_ssn) & MAX_SN; } static int iwl4965_tx_status_reply_tx(struct iwl_priv *priv, struct iwl_ht_agg *agg, struct iwl_tx_resp *tx_resp, u16 start_idx) { u32 status; __le32 *frame_status = &tx_resp->status; struct ieee80211_tx_status *tx_status = NULL; struct ieee80211_hdr *hdr = NULL; int i, sh; int txq_id, idx; u16 seq; if (agg->wait_for_ba) IWL_DEBUG_TX_REPLY("got tx repsons w/o back\n"); agg->frame_count = tx_resp->frame_count; agg->start_idx = start_idx; agg->rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags); agg->bitmap0 = agg->bitmap1 = 0; if (agg->frame_count == 1) { struct iwl_tx_queue *txq ; status = le32_to_cpu(frame_status[0]); txq_id = agg->txq_id; txq = &priv->txq[txq_id]; /* FIXME: code repetition */ IWL_DEBUG_TX_REPLY("FrameCnt = %d, StartIdx=%d \n", agg->frame_count, agg->start_idx); tx_status = &(priv->txq[txq_id].txb[txq->q.last_used].status); tx_status->retry_count = tx_resp->failure_frame; tx_status->queue_number = status & 0xff; tx_status->queue_length = tx_resp->bt_kill_count; tx_status->queue_length |= tx_resp->failure_rts; tx_status->flags = iwl_is_tx_success(status)? IEEE80211_TX_STATUS_ACK : 0; tx_status->control.tx_rate = iwl_hw_get_rate_n_flags(tx_resp->rate_n_flags); /* FIXME: code repetition end */ IWL_DEBUG_TX_REPLY("1 Frame 0x%x failure :%d\n", status & 0xff, tx_resp->failure_frame); IWL_DEBUG_TX_REPLY("Rate Info rate_n_flags=%x\n", iwl_hw_get_rate_n_flags(tx_resp->rate_n_flags)); agg->wait_for_ba = 0; } else { u64 bitmap = 0; int start = agg->start_idx; for (i = 0; i < agg->frame_count; i++) { u16 sc; status = le32_to_cpu(frame_status[i]); seq = status >> 16; idx = SEQ_TO_INDEX(seq); txq_id = SEQ_TO_QUEUE(seq); if (status & (AGG_TX_STATE_FEW_BYTES_MSK | AGG_TX_STATE_ABORT_MSK)) continue; IWL_DEBUG_TX_REPLY("FrameCnt = %d, txq_id=%d idx=%d\n", agg->frame_count, txq_id, idx); hdr = iwl_tx_queue_get_hdr(priv, txq_id, idx); sc = le16_to_cpu(hdr->seq_ctrl); if (idx != (SEQ_TO_SN(sc) & 0xff)) { IWL_ERROR("BUG_ON idx doesn't match seq control" " idx=%d, seq_idx=%d, seq=%d\n", idx, SEQ_TO_SN(sc), hdr->seq_ctrl); return -1; } IWL_DEBUG_TX_REPLY("AGG Frame i=%d idx %d seq=%d\n", i, idx, SEQ_TO_SN(sc)); sh = idx - start; if (sh > 64) { sh = (start - idx) + 0xff; bitmap = bitmap << sh; sh = 0; start = idx; } else if (sh < -64) sh = 0xff - (start - idx); else if (sh < 0) { sh = start - idx; start = idx; bitmap = bitmap << sh; sh = 0; } bitmap |= (1 << sh); IWL_DEBUG_TX_REPLY("start=%d bitmap=0x%x\n", start, (u32)(bitmap & 0xFFFFFFFF)); } agg->bitmap0 = bitmap & 0xFFFFFFFF; agg->bitmap1 = bitmap >> 32; agg->start_idx = start; agg->rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags); IWL_DEBUG_TX_REPLY("Frames %d start_idx=%d bitmap=0x%x\n", agg->frame_count, agg->start_idx, agg->bitmap0); if (bitmap) agg->wait_for_ba = 1; } return 0; } #endif #endif static void iwl_rx_reply_tx(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; u16 sequence = le16_to_cpu(pkt->hdr.sequence); int txq_id = SEQ_TO_QUEUE(sequence); int index = SEQ_TO_INDEX(sequence); struct iwl_tx_queue *txq = &priv->txq[txq_id]; struct ieee80211_tx_status *tx_status; struct iwl_tx_resp *tx_resp = (void *)&pkt->u.raw[0]; u32 status = le32_to_cpu(tx_resp->status); #ifdef CONFIG_IWLWIFI_HT #ifdef CONFIG_IWLWIFI_HT_AGG int tid, sta_id; #endif #endif if ((index >= txq->q.n_bd) || (x2_queue_used(&txq->q, index) == 0)) { IWL_ERROR("Read index for DMA queue txq_id (%d) index %d " "is out of range [0-%d] %d %d\n", txq_id, index, txq->q.n_bd, txq->q.first_empty, txq->q.last_used); return; } #ifdef CONFIG_IWLWIFI_HT #ifdef CONFIG_IWLWIFI_HT_AGG if (txq->sched_retry) { const u32 scd_ssn = iwl_get_scd_ssn(tx_resp); struct ieee80211_hdr *hdr = iwl_tx_queue_get_hdr(priv, txq_id, index); struct iwl_ht_agg *agg = NULL; __le16 *qc = ieee80211_get_qos_ctrl(hdr); if (qc == NULL) { IWL_ERROR("BUG_ON qc is null!!!!\n"); return; } tid = le16_to_cpu(*qc) & 0xf; sta_id = iwl_get_ra_sta_id(priv, hdr); if (unlikely(sta_id == IWL_INVALID_STATION)) { IWL_ERROR("Station not known for\n"); return; } agg = &priv->stations[sta_id].tid[tid].agg; iwl4965_tx_status_reply_tx(priv, agg, tx_resp, index); if ((tx_resp->frame_count == 1) && !iwl_is_tx_success(status)) { /* TODO: send BAR */ } if ((txq->q.last_used != (scd_ssn & 0xff))) { index = iwl_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd); IWL_DEBUG_TX_REPLY("Retry scheduler reclaim scd_ssn " "%d index %d\n", scd_ssn , index); iwl_tx_queue_reclaim(priv, txq_id, index); } } else { #endif /* CONFIG_IWLWIFI_HT_AGG */ #endif /* CONFIG_IWLWIFI_HT */ tx_status = &(txq->txb[txq->q.last_used].status); tx_status->retry_count = tx_resp->failure_frame; tx_status->queue_number = status; tx_status->queue_length = tx_resp->bt_kill_count; tx_status->queue_length |= tx_resp->failure_rts; tx_status->flags = iwl_is_tx_success(status) ? IEEE80211_TX_STATUS_ACK : 0; tx_status->control.tx_rate = iwl_hw_get_rate_n_flags(tx_resp->rate_n_flags); IWL_DEBUG_TX("Tx queue %d Status %s (0x%08x) rate_n_flags 0x%x " "retries %d\n", txq_id, iwl_get_tx_fail_reason(status), status, le32_to_cpu(tx_resp->rate_n_flags), tx_resp->failure_frame); IWL_DEBUG_TX_REPLY("Tx queue reclaim %d\n", index); if (index != -1) iwl_tx_queue_reclaim(priv, txq_id, index); #ifdef CONFIG_IWLWIFI_HT #ifdef CONFIG_IWLWIFI_HT_AGG } #endif /* CONFIG_IWLWIFI_HT_AGG */ #endif /* CONFIG_IWLWIFI_HT */ if (iwl_check_bits(status, TX_ABORT_REQUIRED_MSK)) IWL_ERROR("TODO: Implement Tx ABORT REQUIRED!!!\n"); } static void iwl_rx_reply_alive(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_alive_resp *palive; struct delayed_work *pwork; palive = &pkt->u.alive_frame; IWL_DEBUG_INFO("Alive ucode status 0x%08X revision " "0x%01X 0x%01X\n", palive->is_valid, palive->ver_type, palive->ver_subtype); if (palive->ver_subtype == INITIALIZE_SUBTYPE) { IWL_DEBUG_INFO("Initialization Alive received.\n"); memcpy(&priv->card_alive_init, &pkt->u.alive_frame, sizeof(struct iwl_init_alive_resp)); pwork = &priv->init_alive_start; } else { IWL_DEBUG_INFO("Runtime Alive received.\n"); memcpy(&priv->card_alive, &pkt->u.alive_frame, sizeof(struct iwl_alive_resp)); pwork = &priv->alive_start; } /* We delay the ALIVE response by 5ms to * give the HW RF Kill time to activate... */ if (palive->is_valid == UCODE_VALID_OK) queue_delayed_work(priv->workqueue, pwork, msecs_to_jiffies(5)); else IWL_WARNING("uCode did not respond OK.\n"); } static void iwl_rx_reply_add_sta(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; IWL_DEBUG_RX("Received REPLY_ADD_STA: 0x%02X\n", pkt->u.status); return; } static void iwl_rx_reply_error(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; IWL_ERROR("Error Reply type 0x%08X cmd %s (0x%02X) " "seq 0x%04X ser 0x%08X\n", le32_to_cpu(pkt->u.err_resp.error_type), get_cmd_string(pkt->u.err_resp.cmd_id), pkt->u.err_resp.cmd_id, le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num), le32_to_cpu(pkt->u.err_resp.error_info)); } #define TX_STATUS_ENTRY(x) case TX_STATUS_FAIL_ ## x: return #x static void iwl_rx_csa(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_rxon_cmd *rxon = (void *)&priv->active_rxon; struct iwl_csa_notification *csa = &(pkt->u.csa_notif); IWL_DEBUG_11H("CSA notif: channel %d, status %d\n", le16_to_cpu(csa->channel), le32_to_cpu(csa->status)); rxon->channel = csa->channel; priv->staging_rxon.channel = csa->channel; } static void iwl_rx_spectrum_measure_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { #ifdef CONFIG_IWLWIFI_SPECTRUM_MEASUREMENT struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_spectrum_notification *report = &(pkt->u.spectrum_notif); if (!report->state) { IWL_DEBUG(IWL_DL_11H | IWL_DL_INFO, "Spectrum Measure Notification: Start\n"); return; } memcpy(&priv->measure_report, report, sizeof(*report)); priv->measurement_status |= MEASUREMENT_READY; #endif } static void iwl_rx_pm_sleep_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { #ifdef CONFIG_IWLWIFI_DEBUG struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_sleep_notification *sleep = &(pkt->u.sleep_notif); IWL_DEBUG_RX("sleep mode: %d, src: %d\n", sleep->pm_sleep_mode, sleep->pm_wakeup_src); #endif } static void iwl_rx_pm_debug_statistics_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; IWL_DEBUG_RADIO("Dumping %d bytes of unhandled " "notification for %s:\n", le32_to_cpu(pkt->len), get_cmd_string(pkt->hdr.cmd)); iwl_print_hex_dump(IWL_DL_RADIO, pkt->u.raw, le32_to_cpu(pkt->len)); } static void iwl_bg_beacon_update(struct work_struct *work) { struct iwl_priv *priv = container_of(work, struct iwl_priv, beacon_update); struct sk_buff *beacon; /* Pull updated AP beacon from mac80211. will fail if not in AP mode */ beacon = ieee80211_beacon_get(priv->hw, priv->interface_id, NULL); if (!beacon) { IWL_ERROR("update beacon failed\n"); return; } mutex_lock(&priv->mutex); /* new beacon skb is allocated every time; dispose previous.*/ if (priv->ibss_beacon) dev_kfree_skb(priv->ibss_beacon); priv->ibss_beacon = beacon; mutex_unlock(&priv->mutex); iwl_send_beacon_cmd(priv); } static void iwl_rx_beacon_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { #ifdef CONFIG_IWLWIFI_DEBUG struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_beacon_notif *beacon = &(pkt->u.beacon_status); u8 rate = iwl_hw_get_rate(beacon->beacon_notify_hdr.rate_n_flags); IWL_DEBUG_RX("beacon status %x retries %d iss %d " "tsf %d %d rate %d\n", le32_to_cpu(beacon->beacon_notify_hdr.status) & TX_STATUS_MSK, beacon->beacon_notify_hdr.failure_frame, le32_to_cpu(beacon->ibss_mgr_status), le32_to_cpu(beacon->high_tsf), le32_to_cpu(beacon->low_tsf), rate); #endif if ((priv->iw_mode == IEEE80211_IF_TYPE_AP) && (!test_bit(STATUS_EXIT_PENDING, &priv->status))) queue_work(priv->workqueue, &priv->beacon_update); } /* Service response to REPLY_SCAN_CMD (0x80) */ static void iwl_rx_reply_scan(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { #ifdef CONFIG_IWLWIFI_DEBUG struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_scanreq_notification *notif = (struct iwl_scanreq_notification *)pkt->u.raw; IWL_DEBUG_RX("Scan request status = 0x%x\n", notif->status); #endif } /* Service SCAN_START_NOTIFICATION (0x82) */ static void iwl_rx_scan_start_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_scanstart_notification *notif = (struct iwl_scanstart_notification *)pkt->u.raw; priv->scan_start_tsf = le32_to_cpu(notif->tsf_low); IWL_DEBUG_SCAN("Scan start: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel, notif->band ? "bg" : "a", notif->tsf_high, notif->tsf_low, notif->status, notif->beacon_timer); } /* Service SCAN_RESULTS_NOTIFICATION (0x83) */ static void iwl_rx_scan_results_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_scanresults_notification *notif = (struct iwl_scanresults_notification *)pkt->u.raw; IWL_DEBUG_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d " "elapsed=%lu usec (%dms since last)\n", notif->channel, notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low), le32_to_cpu(notif->statistics[0]), le32_to_cpu(notif->tsf_low) - priv->scan_start_tsf, jiffies_to_msecs(elapsed_jiffies (priv->last_scan_jiffies, jiffies))); priv->last_scan_jiffies = jiffies; } /* Service SCAN_COMPLETE_NOTIFICATION (0x84) */ static void iwl_rx_scan_complete_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_scancomplete_notification *scan_notif = (void *)pkt->u.raw; IWL_DEBUG_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n", scan_notif->scanned_channels, scan_notif->tsf_low, scan_notif->tsf_high, scan_notif->status); /* The HW is no longer scanning */ clear_bit(STATUS_SCAN_HW, &priv->status); /* The scan completion notification came in, so kill that timer... */ cancel_delayed_work(&priv->scan_check); IWL_DEBUG_INFO("Scan pass on %sGHz took %dms\n", (priv->scan_bands == 2) ? "2.4" : "5.2", jiffies_to_msecs(elapsed_jiffies (priv->scan_pass_start, jiffies))); /* Remove this scanned band from the list * of pending bands to scan */ priv->scan_bands--; /* If a request to abort was given, or the scan did not succeed * then we reset the scan state machine and terminate, * re-queuing another scan if one has been requested */ if (test_bit(STATUS_SCAN_ABORTING, &priv->status)) { IWL_DEBUG_INFO("Aborted scan completed.\n"); clear_bit(STATUS_SCAN_ABORTING, &priv->status); } else { /* If there are more bands on this scan pass reschedule */ if (priv->scan_bands > 0) goto reschedule; } priv->last_scan_jiffies = jiffies; IWL_DEBUG_INFO("Setting scan to off\n"); clear_bit(STATUS_SCANNING, &priv->status); IWL_DEBUG_INFO("Scan took %dms\n", jiffies_to_msecs(elapsed_jiffies(priv->scan_start, jiffies))); queue_work(priv->workqueue, &priv->scan_completed); return; reschedule: priv->scan_pass_start = jiffies; queue_work(priv->workqueue, &priv->request_scan); } /* Handle notification from uCode that card's power state is changing * due to software, hardware, or critical temperature RFKILL */ static void iwl_rx_card_state_notif(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; u32 flags = le32_to_cpu(pkt->u.card_state_notif.flags); unsigned long status = priv->status; IWL_DEBUG_RF_KILL("Card state received: HW:%s SW:%s\n", (flags & HW_CARD_DISABLED) ? "Kill" : "On", (flags & SW_CARD_DISABLED) ? "Kill" : "On"); if (flags & (SW_CARD_DISABLED | HW_CARD_DISABLED | RF_CARD_DISABLED)) { iwl_write32(priv, CSR_UCODE_DRV_GP1_SET, CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); if (!iwl_grab_restricted_access(priv)) { iwl_write_restricted( priv, HBUS_TARG_MBX_C, HBUS_TARG_MBX_C_REG_BIT_CMD_BLOCKED); iwl_release_restricted_access(priv); } if (!(flags & RXON_CARD_DISABLED)) { iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); if (!iwl_grab_restricted_access(priv)) { iwl_write_restricted( priv, HBUS_TARG_MBX_C, HBUS_TARG_MBX_C_REG_BIT_CMD_BLOCKED); iwl_release_restricted_access(priv); } } if (flags & RF_CARD_DISABLED) { iwl_write32(priv, CSR_UCODE_DRV_GP1_SET, CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT); iwl_read32(priv, CSR_UCODE_DRV_GP1); if (!iwl_grab_restricted_access(priv)) iwl_release_restricted_access(priv); } } if (flags & HW_CARD_DISABLED) set_bit(STATUS_RF_KILL_HW, &priv->status); else clear_bit(STATUS_RF_KILL_HW, &priv->status); if (flags & SW_CARD_DISABLED) set_bit(STATUS_RF_KILL_SW, &priv->status); else clear_bit(STATUS_RF_KILL_SW, &priv->status); if (!(flags & RXON_CARD_DISABLED)) iwl_scan_cancel(priv); if ((test_bit(STATUS_RF_KILL_HW, &status) != test_bit(STATUS_RF_KILL_HW, &priv->status)) || (test_bit(STATUS_RF_KILL_SW, &status) != test_bit(STATUS_RF_KILL_SW, &priv->status))) queue_work(priv->workqueue, &priv->rf_kill); else wake_up_interruptible(&priv->wait_command_queue); } /** * iwl_setup_rx_handlers - Initialize Rx handler callbacks * * Setup the RX handlers for each of the reply types sent from the uCode * to the host. * * This function chains into the hardware specific files for them to setup * any hardware specific handlers as well. */ static void iwl_setup_rx_handlers(struct iwl_priv *priv) { priv->rx_handlers[REPLY_ALIVE] = iwl_rx_reply_alive; priv->rx_handlers[REPLY_ADD_STA] = iwl_rx_reply_add_sta; priv->rx_handlers[REPLY_ERROR] = iwl_rx_reply_error; priv->rx_handlers[CHANNEL_SWITCH_NOTIFICATION] = iwl_rx_csa; priv->rx_handlers[SPECTRUM_MEASURE_NOTIFICATION] = iwl_rx_spectrum_measure_notif; priv->rx_handlers[PM_SLEEP_NOTIFICATION] = iwl_rx_pm_sleep_notif; priv->rx_handlers[PM_DEBUG_STATISTIC_NOTIFIC] = iwl_rx_pm_debug_statistics_notif; priv->rx_handlers[BEACON_NOTIFICATION] = iwl_rx_beacon_notif; /* NOTE: iwl_rx_statistics is different based on whether * the build is for the 3945 or the 4965. See the * corresponding implementation in iwl-XXXX.c * * The same handler is used for both the REPLY to a * discrete statistics request from the host as well as * for the periodic statistics notification from the uCode */ priv->rx_handlers[REPLY_STATISTICS_CMD] = iwl_hw_rx_statistics; priv->rx_handlers[STATISTICS_NOTIFICATION] = iwl_hw_rx_statistics; priv->rx_handlers[REPLY_SCAN_CMD] = iwl_rx_reply_scan; priv->rx_handlers[SCAN_START_NOTIFICATION] = iwl_rx_scan_start_notif; priv->rx_handlers[SCAN_RESULTS_NOTIFICATION] = iwl_rx_scan_results_notif; priv->rx_handlers[SCAN_COMPLETE_NOTIFICATION] = iwl_rx_scan_complete_notif; priv->rx_handlers[CARD_STATE_NOTIFICATION] = iwl_rx_card_state_notif; priv->rx_handlers[REPLY_TX] = iwl_rx_reply_tx; /* Setup hardware specific Rx handlers */ iwl_hw_rx_handler_setup(priv); } /** * iwl_tx_cmd_complete - Pull unused buffers off the queue and reclaim them * @rxb: Rx buffer to reclaim * * If an Rx buffer has an async callback associated with it the callback * will be executed. The attached skb (if present) will only be freed * if the callback returns 1 */ static void iwl_tx_cmd_complete(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data; u16 sequence = le16_to_cpu(pkt->hdr.sequence); int txq_id = SEQ_TO_QUEUE(sequence); int index = SEQ_TO_INDEX(sequence); int huge = sequence & SEQ_HUGE_FRAME; int cmd_index; struct iwl_cmd *cmd; /* If a Tx command is being handled and it isn't in the actual * command queue then there a command routing bug has been introduced * in the queue management code. */ if (txq_id != IWL_CMD_QUEUE_NUM) IWL_ERROR("Error wrong command queue %d command id 0x%X\n", txq_id, pkt->hdr.cmd); BUG_ON(txq_id != IWL_CMD_QUEUE_NUM); cmd_index = get_cmd_index(&priv->txq[IWL_CMD_QUEUE_NUM].q, index, huge); cmd = &priv->txq[IWL_CMD_QUEUE_NUM].cmd[cmd_index]; /* Input error checking is done when commands are added to queue. */ if (cmd->meta.flags & CMD_WANT_SKB) { cmd->meta.source->u.skb = rxb->skb; rxb->skb = NULL; } else if (cmd->meta.u.callback && !cmd->meta.u.callback(priv, cmd, rxb->skb)) rxb->skb = NULL; iwl_tx_queue_reclaim(priv, txq_id, index); if (!(cmd->meta.flags & CMD_ASYNC)) { clear_bit(STATUS_HCMD_ACTIVE, &priv->status); wake_up_interruptible(&priv->wait_command_queue); } } /************************** RX-FUNCTIONS ****************************/ /* * Rx theory of operation * * The host allocates 32 DMA target addresses and passes the host address * to the firmware at register IWL_RFDS_TABLE_LOWER + N * RFD_SIZE where N is * 0 to 31 * * Rx Queue Indexes * The host/firmware share two index registers for managing the Rx buffers. * * The READ index maps to the first position that the firmware may be writing * to -- the driver can read up to (but not including) this position and get * good data. * The READ index is managed by the firmware once the card is enabled. * * The WRITE index maps to the last position the driver has read from -- the * position preceding WRITE is the last slot the firmware can place a packet. * * The queue is empty (no good data) if WRITE = READ - 1, and is full if * WRITE = READ. * * During initialization the host sets up the READ queue position to the first * INDEX position, and WRITE to the last (READ - 1 wrapped) * * When the firmware places a packet in a buffer it will advance the READ index * and fire the RX interrupt. The driver can then query the READ index and * process as many packets as possible, moving the WRITE index forward as it * resets the Rx queue buffers with new memory. * * The management in the driver is as follows: * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled * to replensish the iwl->rxq->rx_free. * + In iwl_rx_replenish (scheduled) if 'processed' != 'read' then the * iwl->rxq is replenished and the READ INDEX is updated (updating the * 'processed' and 'read' driver indexes as well) * + A received packet is processed and handed to the kernel network stack, * detached from the iwl->rxq. The driver 'processed' index is updated. * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free * list. If there are no allocated buffers in iwl->rxq->rx_free, the READ * INDEX is not incremented and iwl->status(RX_STALLED) is set. If there * were enough free buffers and RX_STALLED is set it is cleared. * * * Driver sequence: * * iwl_rx_queue_alloc() Allocates rx_free * iwl_rx_replenish() Replenishes rx_free list from rx_used, and calls * iwl_rx_queue_restock * iwl_rx_queue_restock() Moves available buffers from rx_free into Rx * queue, updates firmware pointers, and updates * the WRITE index. If insufficient rx_free buffers * are available, schedules iwl_rx_replenish * * -- enable interrupts -- * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the * READ INDEX, detaching the SKB from the pool. * Moves the packet buffer from queue to rx_used. * Calls iwl_rx_queue_restock to refill any empty * slots. * ... * */ /** * iwl_rx_queue_space - Return number of free slots available in queue. */ static int iwl_rx_queue_space(const struct iwl_rx_queue *q) { int s = q->read - q->write; if (s <= 0) s += RX_QUEUE_SIZE; /* keep some buffer to not confuse full and empty queue */ s -= 2; if (s < 0) s = 0; return s; } /** * iwl_rx_queue_update_write_ptr - Update the write pointer for the RX queue * * NOTE: This function has 3945 and 4965 specific code sections * but is declared in base due to the majority of the * implementation being the same (only a numeric constant is * different) * */ int iwl_rx_queue_update_write_ptr(struct iwl_priv *priv, struct iwl_rx_queue *q) { u32 reg = 0; int rc = 0; unsigned long flags; spin_lock_irqsave(&q->lock, flags); if (q->need_update == 0) goto exit_unlock; if (test_bit(STATUS_POWER_PMI, &priv->status)) { reg = iwl_read32(priv, CSR_UCODE_DRV_GP1); if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); goto exit_unlock; } rc = iwl_grab_restricted_access(priv); if (rc) goto exit_unlock; iwl_write_restricted(priv, FH_RSCSR_CHNL0_WPTR, q->write & ~0x7); iwl_release_restricted_access(priv); } else iwl_write32(priv, FH_RSCSR_CHNL0_WPTR, q->write & ~0x7); q->need_update = 0; exit_unlock: spin_unlock_irqrestore(&q->lock, flags); return rc; } /** * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer pointer. * * NOTE: This function has 3945 and 4965 specific code paths in it. */ static inline __le32 iwl_dma_addr2rbd_ptr(struct iwl_priv *priv, dma_addr_t dma_addr) { return cpu_to_le32((u32)(dma_addr >> 8)); } /** * iwl_rx_queue_restock - refill RX queue from pre-allocated pool * * If there are slots in the RX queue that need to be restocked, * and we have free pre-allocated buffers, fill the ranks as much * as we can pulling from rx_free. * * This moves the 'write' index forward to catch up with 'processed', and * also updates the memory address in the firmware to reference the new * target buffer. */ int iwl_rx_queue_restock(struct iwl_priv *priv) { struct iwl_rx_queue *rxq = &priv->rxq; struct list_head *element; struct iwl_rx_mem_buffer *rxb; unsigned long flags; int write, rc; spin_lock_irqsave(&rxq->lock, flags); write = rxq->write & ~0x7; while ((iwl_rx_queue_space(rxq) > 0) && (rxq->free_count)) { element = rxq->rx_free.next; rxb = list_entry(element, struct iwl_rx_mem_buffer, list); list_del(element); rxq->bd[rxq->write] = iwl_dma_addr2rbd_ptr(priv, rxb->dma_addr); rxq->queue[rxq->write] = rxb; rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; rxq->free_count--; } spin_unlock_irqrestore(&rxq->lock, flags); /* If the pre-allocated buffer pool is dropping low, schedule to * refill it */ if (rxq->free_count <= RX_LOW_WATERMARK) queue_work(priv->workqueue, &priv->rx_replenish); /* If we've added more space for the firmware to place data, tell it */ if ((write != (rxq->write & ~0x7)) || (abs(rxq->write - rxq->read) > 7)) { spin_lock_irqsave(&rxq->lock, flags); rxq->need_update = 1; spin_unlock_irqrestore(&rxq->lock, flags); rc = iwl_rx_queue_update_write_ptr(priv, rxq); if (rc) return rc; } return 0; } /** * iwl_rx_replensih - Move all used packet from rx_used to rx_free * * When moving to rx_free an SKB is allocated for the slot. * * Also restock the Rx queue via iwl_rx_queue_restock. * This is called as a scheduled work item (except for during intialization) */ void iwl_rx_replenish(void *data) { struct iwl_priv *priv = data; struct iwl_rx_queue *rxq = &priv->rxq; struct list_head *element; struct iwl_rx_mem_buffer *rxb; unsigned long flags; spin_lock_irqsave(&rxq->lock, flags); while (!list_empty(&rxq->rx_used)) { element = rxq->rx_used.next; rxb = list_entry(element, struct iwl_rx_mem_buffer, list); rxb->skb = alloc_skb(IWL_RX_BUF_SIZE, __GFP_NOWARN | GFP_ATOMIC); if (!rxb->skb) { if (net_ratelimit()) printk(KERN_CRIT DRV_NAME ": Can not allocate SKB buffers\n"); /* We don't reschedule replenish work here -- we will * call the restock method and if it still needs * more buffers it will schedule replenish */ break; } priv->alloc_rxb_skb++; list_del(element); rxb->dma_addr = pci_map_single(priv->pci_dev, rxb->skb->data, IWL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); list_add_tail(&rxb->list, &rxq->rx_free); rxq->free_count++; } spin_unlock_irqrestore(&rxq->lock, flags); spin_lock_irqsave(&priv->lock, flags); iwl_rx_queue_restock(priv); spin_unlock_irqrestore(&priv->lock, flags); } /* Assumes that the skb field of the buffers in 'pool' is kept accurate. * If an SKB has been detached, the POOL needs to have it's SKB set to NULL * This free routine walks the list of POOL entries and if SKB is set to * non NULL it is unmapped and freed */ void iwl_rx_queue_free(struct iwl_priv *priv, struct iwl_rx_queue *rxq) { int i; for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) { if (rxq->pool[i].skb != NULL) { pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, IWL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb(rxq->pool[i].skb); } } pci_free_consistent(priv->pci_dev, 4 * RX_QUEUE_SIZE, rxq->bd, rxq->dma_addr); rxq->bd = NULL; } int iwl_rx_queue_alloc(struct iwl_priv *priv) { struct iwl_rx_queue *rxq = &priv->rxq; struct pci_dev *dev = priv->pci_dev; int i; spin_lock_init(&rxq->lock); INIT_LIST_HEAD(&rxq->rx_free); INIT_LIST_HEAD(&rxq->rx_used); rxq->bd = pci_alloc_consistent(dev, 4 * RX_QUEUE_SIZE, &rxq->dma_addr); if (!rxq->bd) return -ENOMEM; /* Fill the rx_used queue with _all_ of the Rx buffers */ for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) list_add_tail(&rxq->pool[i].list, &rxq->rx_used); /* Set us so that we have processed and used all buffers, but have * not restocked the Rx queue with fresh buffers */ rxq->read = rxq->write = 0; rxq->free_count = 0; rxq->need_update = 0; return 0; } void iwl_rx_queue_reset(struct iwl_priv *priv, struct iwl_rx_queue *rxq) { unsigned long flags; int i; spin_lock_irqsave(&rxq->lock, flags); INIT_LIST_HEAD(&rxq->rx_free); INIT_LIST_HEAD(&rxq->rx_used); /* Fill the rx_used queue with _all_ of the Rx buffers */ for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) { /* In the reset function, these buffers may have been allocated * to an SKB, so we need to unmap and free potential storage */ if (rxq->pool[i].skb != NULL) { pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr, IWL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); priv->alloc_rxb_skb--; dev_kfree_skb(rxq->pool[i].skb); rxq->pool[i].skb = NULL; } list_add_tail(&rxq->pool[i].list, &rxq->rx_used); } /* Set us so that we have processed and used all buffers, but have * not restocked the Rx queue with fresh buffers */ rxq->read = rxq->write = 0; rxq->free_count = 0; spin_unlock_irqrestore(&rxq->lock, flags); } /* Convert linear signal-to-noise ratio into dB */ static u8 ratio2dB[100] = { /* 0 1 2 3 4 5 6 7 8 9 */ 0, 0, 6, 10, 12, 14, 16, 17, 18, 19, /* 00 - 09 */ 20, 21, 22, 22, 23, 23, 24, 25, 26, 26, /* 10 - 19 */ 26, 26, 26, 27, 27, 28, 28, 28, 29, 29, /* 20 - 29 */ 29, 30, 30, 30, 31, 31, 31, 31, 32, 32, /* 30 - 39 */ 32, 32, 32, 33, 33, 33, 33, 33, 34, 34, /* 40 - 49 */ 34, 34, 34, 34, 35, 35, 35, 35, 35, 35, /* 50 - 59 */ 36, 36, 36, 36, 36, 36, 36, 37, 37, 37, /* 60 - 69 */ 37, 37, 37, 37, 37, 38, 38, 38, 38, 38, /* 70 - 79 */ 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, /* 80 - 89 */ 39, 39, 39, 39, 39, 40, 40, 40, 40, 40 /* 90 - 99 */ }; /* Calculates a relative dB value from a ratio of linear * (i.e. not dB) signal levels. * Conversion assumes that levels are voltages (20*log), not powers (10*log). */ int iwl_calc_db_from_ratio(int sig_ratio) { /* 1000:1 or higher just report as 60 dB */ if (sig_ratio >= 1000) return 60; /* 100:1 or higher, divide by 10 and use table, * add 20 dB to make up for divide by 10 */ if (sig_ratio >= 100) return (20 + (int)ratio2dB[sig_ratio/10]); /* We shouldn't see this */ if (sig_ratio < 1) return 0; /* Use table for ratios 1:1 - 99:1 */ return (int)ratio2dB[sig_ratio]; } #define PERFECT_RSSI (-20) /* dBm */ #define WORST_RSSI (-95) /* dBm */ #define RSSI_RANGE (PERFECT_RSSI - WORST_RSSI) /* Calculate an indication of rx signal quality (a percentage, not dBm!). * See http://www.ces.clemson.edu/linux/signal_quality.shtml for info * about formulas used below. */ int iwl_calc_sig_qual(int rssi_dbm, int noise_dbm) { int sig_qual; int degradation = PERFECT_RSSI - rssi_dbm; /* If we get a noise measurement, use signal-to-noise ratio (SNR) * as indicator; formula is (signal dbm - noise dbm). * SNR at or above 40 is a great signal (100%). * Below that, scale to fit SNR of 0 - 40 dB within 0 - 100% indicator. * Weakest usable signal is usually 10 - 15 dB SNR. */ if (noise_dbm) { if (rssi_dbm - noise_dbm >= 40) return 100; else if (rssi_dbm < noise_dbm) return 0; sig_qual = ((rssi_dbm - noise_dbm) * 5) / 2; /* Else use just the signal level. * This formula is a least squares fit of data points collected and * compared with a reference system that had a percentage (%) display * for signal quality. */ } else sig_qual = (100 * (RSSI_RANGE * RSSI_RANGE) - degradation * (15 * RSSI_RANGE + 62 * degradation)) / (RSSI_RANGE * RSSI_RANGE); if (sig_qual > 100) sig_qual = 100; else if (sig_qual < 1) sig_qual = 0; return sig_qual; } /** * iwl_rx_handle - Main entry function for receiving responses from the uCode * * Uses the priv->rx_handlers callback function array to invoke * the appropriate handlers, including command responses, * frame-received notifications, and other notifications. */ static void iwl_rx_handle(struct iwl_priv *priv) { struct iwl_rx_mem_buffer *rxb; struct iwl_rx_packet *pkt; struct iwl_rx_queue *rxq = &priv->rxq; u32 r, i; int reclaim; unsigned long flags; r = iwl_hw_get_rx_read(priv); i = rxq->read; /* Rx interrupt, but nothing sent from uCode */ if (i == r) IWL_DEBUG(IWL_DL_RX | IWL_DL_ISR, "r = %d, i = %d\n", r, i); while (i != r) { rxb = rxq->queue[i]; /* If an RXB doesn't have a queue slot associated with it * then a bug has been introduced in the queue refilling * routines -- catch it here */ BUG_ON(rxb == NULL); rxq->queue[i] = NULL; pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr, IWL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); pkt = (struct iwl_rx_packet *)rxb->skb->data; /* Reclaim a command buffer only if this packet is a response * to a (driver-originated) command. * If the packet (e.g. Rx frame) originated from uCode, * there is no command buffer to reclaim. * Ucode should set SEQ_RX_FRAME bit if ucode-originated, * but apparently a few don't get set; catch them here. */ reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME) && (pkt->hdr.cmd != REPLY_RX_PHY_CMD) && (pkt->hdr.cmd != REPLY_4965_RX) && (pkt->hdr.cmd != REPLY_COMPRESSED_BA) && (pkt->hdr.cmd != STATISTICS_NOTIFICATION) && (pkt->hdr.cmd != REPLY_TX); /* Based on type of command response or notification, * handle those that need handling via function in * rx_handlers table. See iwl_setup_rx_handlers() */ if (priv->rx_handlers[pkt->hdr.cmd]) { IWL_DEBUG(IWL_DL_HOST_COMMAND | IWL_DL_RX | IWL_DL_ISR, "r = %d, i = %d, %s, 0x%02x\n", r, i, get_cmd_string(pkt->hdr.cmd), pkt->hdr.cmd); priv->rx_handlers[pkt->hdr.cmd] (priv, rxb); } else { /* No handling needed */ IWL_DEBUG(IWL_DL_HOST_COMMAND | IWL_DL_RX | IWL_DL_ISR, "r %d i %d No handler needed for %s, 0x%02x\n", r, i, get_cmd_string(pkt->hdr.cmd), pkt->hdr.cmd); } if (reclaim) { /* Invoke any callbacks, transfer the skb to caller, * and fire off the (possibly) blocking iwl_send_cmd() * as we reclaim the driver command queue */ if (rxb && rxb->skb) iwl_tx_cmd_complete(priv, rxb); else IWL_WARNING("Claim null rxb?\n"); } /* For now we just don't re-use anything. We can tweak this * later to try and re-use notification packets and SKBs that * fail to Rx correctly */ if (rxb->skb != NULL) { priv->alloc_rxb_skb--; dev_kfree_skb_any(rxb->skb); rxb->skb = NULL; } pci_unmap_single(priv->pci_dev, rxb->dma_addr, IWL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); spin_lock_irqsave(&rxq->lock, flags); list_add_tail(&rxb->list, &priv->rxq.rx_used); spin_unlock_irqrestore(&rxq->lock, flags); i = (i + 1) & RX_QUEUE_MASK; } /* Backtrack one entry */ priv->rxq.read = i; iwl_rx_queue_restock(priv); } int iwl_tx_queue_update_write_ptr(struct iwl_priv *priv, struct iwl_tx_queue *txq) { u32 reg = 0; int rc = 0; int txq_id = txq->q.id; if (txq->need_update == 0) return rc; /* if we're trying to save power */ if (test_bit(STATUS_POWER_PMI, &priv->status)) { /* wake up nic if it's powered down ... * uCode will wake up, and interrupt us again, so next * time we'll skip this part. */ reg = iwl_read32(priv, CSR_UCODE_DRV_GP1); if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { IWL_DEBUG_INFO("Requesting wakeup, GP1 = 0x%x\n", reg); iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); return rc; } /* restore this queue's parameters in nic hardware. */ rc = iwl_grab_restricted_access(priv); if (rc) return rc; iwl_write_restricted(priv, HBUS_TARG_WRPTR, txq->q.first_empty | (txq_id << 8)); iwl_release_restricted_access(priv); /* else not in power-save mode, uCode will never sleep when we're * trying to tx (during RFKILL, we're not trying to tx). */ } else iwl_write32(priv, HBUS_TARG_WRPTR, txq->q.first_empty | (txq_id << 8)); txq->need_update = 0; return rc; } #ifdef CONFIG_IWLWIFI_DEBUG static void iwl_print_rx_config_cmd(struct iwl_rxon_cmd *rxon) { DECLARE_MAC_BUF(mac); IWL_DEBUG_RADIO("RX CONFIG:\n"); iwl_print_hex_dump(IWL_DL_RADIO, (u8 *) rxon, sizeof(*rxon)); IWL_DEBUG_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel)); IWL_DEBUG_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags)); IWL_DEBUG_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags)); IWL_DEBUG_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type); IWL_DEBUG_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates); IWL_DEBUG_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates); IWL_DEBUG_RADIO("u8[6] node_addr: %s\n", print_mac(mac, rxon->node_addr)); IWL_DEBUG_RADIO("u8[6] bssid_addr: %s\n", print_mac(mac, rxon->bssid_addr)); IWL_DEBUG_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id)); } #endif static void iwl_enable_interrupts(struct iwl_priv *priv) { IWL_DEBUG_ISR("Enabling interrupts\n"); set_bit(STATUS_INT_ENABLED, &priv->status); iwl_write32(priv, CSR_INT_MASK, CSR_INI_SET_MASK); } static inline void iwl_disable_interrupts(struct iwl_priv *priv) { clear_bit(STATUS_INT_ENABLED, &priv->status); /* disable interrupts from uCode/NIC to host */ iwl_write32(priv, CSR_INT_MASK, 0x00000000); /* acknowledge/clear/reset any interrupts still pending * from uCode or flow handler (Rx/Tx DMA) */ iwl_write32(priv, CSR_INT, 0xffffffff); iwl_write32(priv, CSR_FH_INT_STATUS, 0xffffffff); IWL_DEBUG_ISR("Disabled interrupts\n"); } static const char *desc_lookup(int i) { switch (i) { case 1: return "FAIL"; case 2: return "BAD_PARAM"; case 3: return "BAD_CHECKSUM"; case 4: return "NMI_INTERRUPT"; case 5: return "SYSASSERT"; case 6: return "FATAL_ERROR"; } return "UNKNOWN"; } #define ERROR_START_OFFSET (1 * sizeof(u32)) #define ERROR_ELEM_SIZE (7 * sizeof(u32)) static void iwl_dump_nic_error_log(struct iwl_priv *priv) { u32 data2, line; u32 desc, time, count, base, data1; u32 blink1, blink2, ilink1, ilink2; int rc; base = le32_to_cpu(priv->card_alive.error_event_table_ptr); if (!iwl_hw_valid_rtc_data_addr(base)) { IWL_ERROR("Not valid error log pointer 0x%08X\n", base); return; } rc = iwl_grab_restricted_access(priv); if (rc) { IWL_WARNING("Can not read from adapter at this time.\n"); return; } count = iwl_read_restricted_mem(priv, base); if (ERROR_START_OFFSET <= count * ERROR_ELEM_SIZE) { IWL_ERROR("Start IWL Error Log Dump:\n"); IWL_ERROR("Status: 0x%08lX, Config: %08X count: %d\n", priv->status, priv->config, count); } desc = iwl_read_restricted_mem(priv, base + 1 * sizeof(u32)); blink1 = iwl_read_restricted_mem(priv, base + 3 * sizeof(u32)); blink2 = iwl_read_restricted_mem(priv, base + 4 * sizeof(u32)); ilink1 = iwl_read_restricted_mem(priv, base + 5 * sizeof(u32)); ilink2 = iwl_read_restricted_mem(priv, base + 6 * sizeof(u32)); data1 = iwl_read_restricted_mem(priv, base + 7 * sizeof(u32)); data2 = iwl_read_restricted_mem(priv, base + 8 * sizeof(u32)); line = iwl_read_restricted_mem(priv, base + 9 * sizeof(u32)); time = iwl_read_restricted_mem(priv, base + 11 * sizeof(u32)); IWL_ERROR("Desc Time " "data1 data2 line\n"); IWL_ERROR("%-13s (#%d) %010u 0x%08X 0x%08X %u\n", desc_lookup(desc), desc, time, data1, data2, line); IWL_ERROR("blink1 blink2 ilink1 ilink2\n"); IWL_ERROR("0x%05X 0x%05X 0x%05X 0x%05X\n", blink1, blink2, ilink1, ilink2); iwl_release_restricted_access(priv); } #define EVENT_START_OFFSET (4 * sizeof(u32)) /** * iwl_print_event_log - Dump error event log to syslog * * NOTE: Must be called with iwl_grab_restricted_access() already obtained! */ static void iwl_print_event_log(struct iwl_priv *priv, u32 start_idx, u32 num_events, u32 mode) { u32 i; u32 base; /* SRAM byte address of event log header */ u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */ u32 ptr; /* SRAM byte address of log data */ u32 ev, time, data; /* event log data */ if (num_events == 0) return; base = le32_to_cpu(priv->card_alive.log_event_table_ptr); if (mode == 0) event_size = 2 * sizeof(u32); else event_size = 3 * sizeof(u32); ptr = base + EVENT_START_OFFSET + (start_idx * event_size); /* "time" is actually "data" for mode 0 (no timestamp). * place event id # at far right for easier visual parsing. */ for (i = 0; i < num_events; i++) { ev = iwl_read_restricted_mem(priv, ptr); ptr += sizeof(u32); time = iwl_read_restricted_mem(priv, ptr); ptr += sizeof(u32); if (mode == 0) IWL_ERROR("0x%08x\t%04u\n", time, ev); /* data, ev */ else { data = iwl_read_restricted_mem(priv, ptr); ptr += sizeof(u32); IWL_ERROR("%010u\t0x%08x\t%04u\n", time, data, ev); } } } static void iwl_dump_nic_event_log(struct iwl_priv *priv) { int rc; u32 base; /* SRAM byte address of event log header */ u32 capacity; /* event log capacity in # entries */ u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */ u32 num_wraps; /* # times uCode wrapped to top of log */ u32 next_entry; /* index of next entry to be written by uCode */ u32 size; /* # entries that we'll print */ base = le32_to_cpu(priv->card_alive.log_event_table_ptr); if (!iwl_hw_valid_rtc_data_addr(base)) { IWL_ERROR("Invalid event log pointer 0x%08X\n", base); return; } rc = iwl_grab_restricted_access(priv); if (rc) { IWL_WARNING("Can not read from adapter at this time.\n"); return; } /* event log header */ capacity = iwl_read_restricted_mem(priv, base); mode = iwl_read_restricted_mem(priv, base + (1 * sizeof(u32))); num_wraps = iwl_read_restricted_mem(priv, base + (2 * sizeof(u32))); next_entry = iwl_read_restricted_mem(priv, base + (3 * sizeof(u32))); size = num_wraps ? capacity : next_entry; /* bail out if nothing in log */ if (size == 0) { IWL_ERROR("Start IWL Event Log Dump: nothing in log\n"); iwl_release_restricted_access(priv); return; } IWL_ERROR("Start IWL Event Log Dump: display count %d, wraps %d\n", size, num_wraps); /* if uCode has wrapped back to top of log, start at the oldest entry, * i.e the next one that uCode would fill. */ if (num_wraps) iwl_print_event_log(priv, next_entry, capacity - next_entry, mode); /* (then/else) start at top of log */ iwl_print_event_log(priv, 0, next_entry, mode); iwl_release_restricted_access(priv); } /** * iwl_irq_handle_error - called for HW or SW error interrupt from card */ static void iwl_irq_handle_error(struct iwl_priv *priv) { /* Set the FW error flag -- cleared on iwl_down */ set_bit(STATUS_FW_ERROR, &priv->status); /* Cancel currently queued command. */ clear_bit(STATUS_HCMD_ACTIVE, &priv->status); #ifdef CONFIG_IWLWIFI_DEBUG if (iwl_debug_level & IWL_DL_FW_ERRORS) { iwl_dump_nic_error_log(priv); iwl_dump_nic_event_log(priv); iwl_print_rx_config_cmd(&priv->staging_rxon); } #endif wake_up_interruptible(&priv->wait_command_queue); /* Keep the restart process from trying to send host * commands by clearing the INIT status bit */ clear_bit(STATUS_READY, &priv->status); if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) { IWL_DEBUG(IWL_DL_INFO | IWL_DL_FW_ERRORS, "Restarting adapter due to uCode error.\n"); if (iwl_is_associated(priv)) { memcpy(&priv->recovery_rxon, &priv->active_rxon, sizeof(priv->recovery_rxon)); priv->error_recovering = 1; } queue_work(priv->workqueue, &priv->restart); } } static void iwl_error_recovery(struct iwl_priv *priv) { unsigned long flags; memcpy(&priv->staging_rxon, &priv->recovery_rxon, sizeof(priv->staging_rxon)); priv->staging_rxon.filter_flags &= ~RXON_FILTER_ASSOC_MSK; iwl_commit_rxon(priv); iwl_rxon_add_station(priv, priv->bssid, 1); spin_lock_irqsave(&priv->lock, flags); priv->assoc_id = le16_to_cpu(priv->staging_rxon.assoc_id); priv->error_recovering = 0; spin_unlock_irqrestore(&priv->lock, flags); } static void iwl_irq_tasklet(struct iwl_priv *priv) { u32 inta, handled = 0; u32 inta_fh; unsigned long flags; #ifdef CONFIG_IWLWIFI_DEBUG u32 inta_mask; #endif spin_lock_irqsave(&priv->lock, flags); /* Ack/clear/reset pending uCode interrupts. * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, * and will clear only when CSR_FH_INT_STATUS gets cleared. */ inta = iwl_read32(priv, CSR_INT); iwl_write32(priv, CSR_INT, inta); /* Ack/clear/reset pending flow-handler (DMA) interrupts. * Any new interrupts that happen after this, either while we're * in this tasklet, or later, will show up in next ISR/tasklet. */ inta_fh = iwl_read32(priv, CSR_FH_INT_STATUS); iwl_write32(priv, CSR_FH_INT_STATUS, inta_fh); #ifdef CONFIG_IWLWIFI_DEBUG if (iwl_debug_level & IWL_DL_ISR) { inta_mask = iwl_read32(priv, CSR_INT_MASK); /* just for debug */ IWL_DEBUG_ISR("inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask, inta_fh); } #endif /* Since CSR_INT and CSR_FH_INT_STATUS reads and clears are not * atomic, make sure that inta covers all the interrupts that * we've discovered, even if FH interrupt came in just after * reading CSR_INT. */ if (inta_fh & CSR_FH_INT_RX_MASK) inta |= CSR_INT_BIT_FH_RX; if (inta_fh & CSR_FH_INT_TX_MASK) inta |= CSR_INT_BIT_FH_TX; /* Now service all interrupt bits discovered above. */ if (inta & CSR_INT_BIT_HW_ERR) { IWL_ERROR("Microcode HW error detected. Restarting.\n"); /* Tell the device to stop sending interrupts */ iwl_disable_interrupts(priv); iwl_irq_handle_error(priv); handled |= CSR_INT_BIT_HW_ERR; spin_unlock_irqrestore(&priv->lock, flags); return; } #ifdef CONFIG_IWLWIFI_DEBUG if (iwl_debug_level & (IWL_DL_ISR)) { /* NIC fires this, but we don't use it, redundant with WAKEUP */ if (inta & CSR_INT_BIT_MAC_CLK_ACTV) IWL_DEBUG_ISR("Microcode started or stopped.\n"); /* Alive notification via Rx interrupt will do the real work */ if (inta & CSR_INT_BIT_ALIVE) IWL_DEBUG_ISR("Alive interrupt\n"); } #endif /* Safely ignore these bits for debug checks below */ inta &= ~(CSR_INT_BIT_MAC_CLK_ACTV | CSR_INT_BIT_ALIVE); /* HW RF KILL switch toggled (4965 only) */ if (inta & CSR_INT_BIT_RF_KILL) { int hw_rf_kill = 0; if (!(iwl_read32(priv, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)) hw_rf_kill = 1; IWL_DEBUG(IWL_DL_INFO | IWL_DL_RF_KILL | IWL_DL_ISR, "RF_KILL bit toggled to %s.\n", hw_rf_kill ? "disable radio":"enable radio"); /* Queue restart only if RF_KILL switch was set to "kill" * when we loaded driver, and is now set to "enable". * After we're Alive, RF_KILL gets handled by * iwl_rx_card_state_notif() */ if (!hw_rf_kill && !test_bit(STATUS_ALIVE, &priv->status)) queue_work(priv->workqueue, &priv->restart); handled |= CSR_INT_BIT_RF_KILL; } /* Chip got too hot and stopped itself (4965 only) */ if (inta & CSR_INT_BIT_CT_KILL) { IWL_ERROR("Microcode CT kill error detected.\n"); handled |= CSR_INT_BIT_CT_KILL; } /* Error detected by uCode */ if (inta & CSR_INT_BIT_SW_ERR) { IWL_ERROR("Microcode SW error detected. Restarting 0x%X.\n", inta); iwl_irq_handle_error(priv); handled |= CSR_INT_BIT_SW_ERR; } /* uCode wakes up after power-down sleep */ if (inta & CSR_INT_BIT_WAKEUP) { IWL_DEBUG_ISR("Wakeup interrupt\n"); iwl_rx_queue_update_write_ptr(priv, &priv->rxq); iwl_tx_queue_update_write_ptr(priv, &priv->txq[0]); iwl_tx_queue_update_write_ptr(priv, &priv->txq[1]); iwl_tx_queue_update_write_ptr(priv, &priv->txq[2]); iwl_tx_queue_update_write_ptr(priv, &priv->txq[3]); iwl_tx_queue_update_write_ptr(priv, &priv->txq[4]); iwl_tx_queue_update_write_ptr(priv, &priv->txq[5]); handled |= CSR_INT_BIT_WAKEUP; } /* All uCode command responses, including Tx command responses, * Rx "responses" (frame-received notification), and other * notifications from uCode come through here*/ if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { iwl_rx_handle(priv); handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); } if (inta & CSR_INT_BIT_FH_TX) { IWL_DEBUG_ISR("Tx interrupt\n"); handled |= CSR_INT_BIT_FH_TX; } if (inta & ~handled) IWL_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled); if (inta & ~CSR_INI_SET_MASK) { IWL_WARNING("Disabled INTA bits 0x%08x were pending\n", inta & ~CSR_INI_SET_MASK); IWL_WARNING(" with FH_INT = 0x%08x\n", inta_fh); } /* Re-enable all interrupts */ iwl_enable_interrupts(priv); #ifdef CONFIG_IWLWIFI_DEBUG if (iwl_debug_level & (IWL_DL_ISR)) { inta = iwl_read32(priv, CSR_INT); inta_mask = iwl_read32(priv, CSR_INT_MASK); inta_fh = iwl_read32(priv, CSR_FH_INT_STATUS); IWL_DEBUG_ISR("End inta 0x%08x, enabled 0x%08x, fh 0x%08x, " "flags 0x%08lx\n", inta, inta_mask, inta_fh, flags); } #endif spin_unlock_irqrestore(&priv->lock, flags); } static irqreturn_t iwl_isr(int irq, void *data) { struct iwl_priv *priv = data; u32 inta, inta_mask; u32 inta_fh; if (!priv) return IRQ_NONE; spin_lock(&priv->lock); /* Disable (but don't clear!) interrupts here to avoid * back-to-back ISRs and sporadic interrupts from our NIC. * If we have something to service, the tasklet will re-enable ints. * If we *don't* have something, we'll re-enable before leaving here. */ inta_mask = iwl_read32(priv, CSR_INT_MASK); /* just for debug */ iwl_write32(priv, CSR_INT_MASK, 0x00000000); /* Discover which interrupts are active/pending */ inta = iwl_read32(priv, CSR_INT); inta_fh = iwl_read32(priv, CSR_FH_INT_STATUS); /* Ignore interrupt if there's nothing in NIC to service. * This may be due to IRQ shared with another device, * or due to sporadic interrupts thrown from our NIC. */ if (!inta && !inta_fh) { IWL_DEBUG_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n"); goto none; } if ((inta == 0xFFFFFFFF) || ((inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { /* Hardware disappeared */ IWL_WARNING("HARDWARE GONE?? INTA == 0x%080x\n", inta); goto none; } IWL_DEBUG_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask, inta_fh); /* iwl_irq_tasklet() will service interrupts and re-enable them */ tasklet_schedule(&priv->irq_tasklet); spin_unlock(&priv->lock); return IRQ_HANDLED; none: /* re-enable interrupts here since we don't have anything to service. */ iwl_enable_interrupts(priv); spin_unlock(&priv->lock); return IRQ_NONE; } /************************** EEPROM BANDS **************************** * * The iwl_eeprom_band definitions below provide the mapping from the * EEPROM contents to the specific channel number supported for each * band. * * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3 * definition below maps to physical channel 42 in the 5.2GHz spectrum. * The specific geography and calibration information for that channel * is contained in the eeprom map itself. * * During init, we copy the eeprom information and channel map * information into priv->channel_info_24/52 and priv->channel_map_24/52 * * channel_map_24/52 provides the index in the channel_info array for a * given channel. We have to have two separate maps as there is channel * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and * band_2 * * A value of 0xff stored in the channel_map indicates that the channel * is not supported by the hardware at all. * * A value of 0xfe in the channel_map indicates that the channel is not * valid for Tx with the current hardware. This means that * while the system can tune and receive on a given channel, it may not * be able to associate or transmit any frames on that * channel. There is no corresponding channel information for that * entry. * *********************************************************************/ /* 2.4 GHz */ static const u8 iwl_eeprom_band_1[14] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; /* 5.2 GHz bands */ static const u8 iwl_eeprom_band_2[] = { 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 }; static const u8 iwl_eeprom_band_3[] = { /* 5205-5320MHz */ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 }; static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */ 145, 149, 153, 157, 161, 165 }; static u8 iwl_eeprom_band_6[] = { /* 2.4 FAT channel */ 1, 2, 3, 4, 5, 6, 7 }; static u8 iwl_eeprom_band_7[] = { /* 5.2 FAT channel */ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 }; static void iwl_init_band_reference(const struct iwl_priv *priv, int band, int *eeprom_ch_count, const struct iwl_eeprom_channel **eeprom_ch_info, const u8 **eeprom_ch_index) { switch (band) { case 1: /* 2.4GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1); *eeprom_ch_info = priv->eeprom.band_1_channels; *eeprom_ch_index = iwl_eeprom_band_1; break; case 2: /* 5.2GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2); *eeprom_ch_info = priv->eeprom.band_2_channels; *eeprom_ch_index = iwl_eeprom_band_2; break; case 3: /* 5.2GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3); *eeprom_ch_info = priv->eeprom.band_3_channels; *eeprom_ch_index = iwl_eeprom_band_3; break; case 4: /* 5.2GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4); *eeprom_ch_info = priv->eeprom.band_4_channels; *eeprom_ch_index = iwl_eeprom_band_4; break; case 5: /* 5.2GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5); *eeprom_ch_info = priv->eeprom.band_5_channels; *eeprom_ch_index = iwl_eeprom_band_5; break; case 6: *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6); *eeprom_ch_info = priv->eeprom.band_24_channels; *eeprom_ch_index = iwl_eeprom_band_6; break; case 7: *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7); *eeprom_ch_info = priv->eeprom.band_52_channels; *eeprom_ch_index = iwl_eeprom_band_7; break; default: BUG(); return; } } const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv, int phymode, u16 channel) { int i; switch (phymode) { case MODE_IEEE80211A: for (i = 14; i < priv->channel_count; i++) { if (priv->channel_info[i].channel == channel) return &priv->channel_info[i]; } break; case MODE_IEEE80211B: case MODE_IEEE80211G: if (channel >= 1 && channel <= 14) return &priv->channel_info[channel - 1]; break; } return NULL; } #define CHECK_AND_PRINT(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \ ? # x " " : "") static int iwl_init_channel_map(struct iwl_priv *priv) { int eeprom_ch_count = 0; const u8 *eeprom_ch_index = NULL; const struct iwl_eeprom_channel *eeprom_ch_info = NULL; int band, ch; struct iwl_channel_info *ch_info; if (priv->channel_count) { IWL_DEBUG_INFO("Channel map already initialized.\n"); return 0; } if (priv->eeprom.version < 0x2f) { IWL_WARNING("Unsupported EEPROM version: 0x%04X\n", priv->eeprom.version); return -EINVAL; } IWL_DEBUG_INFO("Initializing regulatory info from EEPROM\n"); priv->channel_count = ARRAY_SIZE(iwl_eeprom_band_1) + ARRAY_SIZE(iwl_eeprom_band_2) + ARRAY_SIZE(iwl_eeprom_band_3) + ARRAY_SIZE(iwl_eeprom_band_4) + ARRAY_SIZE(iwl_eeprom_band_5); IWL_DEBUG_INFO("Parsing data for %d channels.\n", priv->channel_count); priv->channel_info = kzalloc(sizeof(struct iwl_channel_info) * priv->channel_count, GFP_KERNEL); if (!priv->channel_info) { IWL_ERROR("Could not allocate channel_info\n"); priv->channel_count = 0; return -ENOMEM; } ch_info = priv->channel_info; /* Loop through the 5 EEPROM bands adding them in order to the * channel map we maintain (that contains additional information than * what just in the EEPROM) */ for (band = 1; band <= 5; band++) { iwl_init_band_reference(priv, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_index); /* Loop through each band adding each of the channels */ for (ch = 0; ch < eeprom_ch_count; ch++) { ch_info->channel = eeprom_ch_index[ch]; ch_info->phymode = (band == 1) ? MODE_IEEE80211B : MODE_IEEE80211A; /* permanently store EEPROM's channel regulatory flags * and max power in channel info database. */ ch_info->eeprom = eeprom_ch_info[ch]; /* Copy the run-time flags so they are there even on * invalid channels */ ch_info->flags = eeprom_ch_info[ch].flags; if (!(is_channel_valid(ch_info))) { IWL_DEBUG_INFO("Ch. %d Flags %x [%sGHz] - " "No traffic\n", ch_info->channel, ch_info->flags, is_channel_a_band(ch_info) ? "5.2" : "2.4"); ch_info++; continue; } /* Initialize regulatory-based run-time data */ ch_info->max_power_avg = ch_info->curr_txpow = eeprom_ch_info[ch].max_power_avg; ch_info->scan_power = eeprom_ch_info[ch].max_power_avg; ch_info->min_power = 0; IWL_DEBUG_INFO("Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x" " %ddBm): Ad-Hoc %ssupported\n", ch_info->channel, is_channel_a_band(ch_info) ? "5.2" : "2.4", CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE), CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE), CHECK_AND_PRINT(NARROW), CHECK_AND_PRINT(DFS), eeprom_ch_info[ch].flags, eeprom_ch_info[ch].max_power_avg, ((eeprom_ch_info[ch]. flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch_info[ch]. flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); /* Set the user_txpower_limit to the highest power * supported by any channel */ if (eeprom_ch_info[ch].max_power_avg > priv->user_txpower_limit) priv->user_txpower_limit = eeprom_ch_info[ch].max_power_avg; ch_info++; } } for (band = 6; band <= 7; band++) { int phymode; u8 fat_extension_chan; iwl_init_band_reference(priv, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_index); phymode = (band == 6) ? MODE_IEEE80211B : MODE_IEEE80211A; /* Loop through each band adding each of the channels */ for (ch = 0; ch < eeprom_ch_count; ch++) { if ((band == 6) && ((eeprom_ch_index[ch] == 5) || (eeprom_ch_index[ch] == 6) || (eeprom_ch_index[ch] == 7))) fat_extension_chan = HT_IE_EXT_CHANNEL_MAX; else fat_extension_chan = HT_IE_EXT_CHANNEL_ABOVE; iwl4965_set_fat_chan_info(priv, phymode, eeprom_ch_index[ch], &(eeprom_ch_info[ch]), fat_extension_chan); iwl4965_set_fat_chan_info(priv, phymode, (eeprom_ch_index[ch] + 4), &(eeprom_ch_info[ch]), HT_IE_EXT_CHANNEL_BELOW); } } return 0; } /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after * sending probe req. This should be set long enough to hear probe responses * from more than one AP. */ #define IWL_ACTIVE_DWELL_TIME_24 (20) /* all times in msec */ #define IWL_ACTIVE_DWELL_TIME_52 (10) /* For faster active scanning, scan will move to the next channel if fewer than * PLCP_QUIET_THRESH packets are heard on this channel within * ACTIVE_QUIET_TIME after sending probe request. This shortens the dwell * time if it's a quiet channel (nothing responded to our probe, and there's * no other traffic). * Disable "quiet" feature by setting PLCP_QUIET_THRESH to 0. */ #define IWL_PLCP_QUIET_THRESH __constant_cpu_to_le16(1) /* packets */ #define IWL_ACTIVE_QUIET_TIME __constant_cpu_to_le16(5) /* msec */ /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel. * Must be set longer than active dwell time. * For the most reliable scan, set > AP beacon interval (typically 100msec). */ #define IWL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */ #define IWL_PASSIVE_DWELL_TIME_52 (10) #define IWL_PASSIVE_DWELL_BASE (100) #define IWL_CHANNEL_TUNE_TIME 5 static inline u16 iwl_get_active_dwell_time(struct iwl_priv *priv, int phymode) { if (phymode == MODE_IEEE80211A) return IWL_ACTIVE_DWELL_TIME_52; else return IWL_ACTIVE_DWELL_TIME_24; } static u16 iwl_get_passive_dwell_time(struct iwl_priv *priv, int phymode) { u16 active = iwl_get_active_dwell_time(priv, phymode); u16 passive = (phymode != MODE_IEEE80211A) ? IWL_PASSIVE_DWELL_BASE + IWL_PASSIVE_DWELL_TIME_24 : IWL_PASSIVE_DWELL_BASE + IWL_PASSIVE_DWELL_TIME_52; if (iwl_is_associated(priv)) { /* If we're associated, we clamp the maximum passive * dwell time to be 98% of the beacon interval (minus * 2 * channel tune time) */ passive = priv->beacon_int; if ((passive > IWL_PASSIVE_DWELL_BASE) || !passive) passive = IWL_PASSIVE_DWELL_BASE; passive = (passive * 98) / 100 - IWL_CHANNEL_TUNE_TIME * 2; } if (passive <= active) passive = active + 1; return passive; } static int iwl_get_channels_for_scan(struct iwl_priv *priv, int phymode, u8 is_active, u8 direct_mask, struct iwl_scan_channel *scan_ch) { const struct ieee80211_channel *channels = NULL; const struct ieee80211_hw_mode *hw_mode; const struct iwl_channel_info *ch_info; u16 passive_dwell = 0; u16 active_dwell = 0; int added, i; hw_mode = iwl_get_hw_mode(priv, phymode); if (!hw_mode) return 0; channels = hw_mode->channels; active_dwell = iwl_get_active_dwell_time(priv, phymode); passive_dwell = iwl_get_passive_dwell_time(priv, phymode); for (i = 0, added = 0; i < hw_mode->num_channels; i++) { if (channels[i].chan == le16_to_cpu(priv->active_rxon.channel)) { if (iwl_is_associated(priv)) { IWL_DEBUG_SCAN ("Skipping current channel %d\n", le16_to_cpu(priv->active_rxon.channel)); continue; } } else if (priv->only_active_channel) continue; scan_ch->channel = channels[i].chan; ch_info = iwl_get_channel_info(priv, phymode, scan_ch->channel); if (!is_channel_valid(ch_info)) { IWL_DEBUG_SCAN("Channel %d is INVALID for this SKU.\n", scan_ch->channel); continue; } if (!is_active || is_channel_passive(ch_info) || !(channels[i].flag & IEEE80211_CHAN_W_ACTIVE_SCAN)) scan_ch->type = 0; /* passive */ else scan_ch->type = 1; /* active */ if (scan_ch->type & 1) scan_ch->type |= (direct_mask << 1); if (is_channel_narrow(ch_info)) scan_ch->type |= (1 << 7); scan_ch->active_dwell = cpu_to_le16(active_dwell); scan_ch->passive_dwell = cpu_to_le16(passive_dwell); /* Set power levels to defaults */ scan_ch->tpc.dsp_atten = 110; /* scan_pwr_info->tpc.dsp_atten; */ /*scan_pwr_info->tpc.tx_gain; */ if (phymode == MODE_IEEE80211A) scan_ch->tpc.tx_gain = ((1 << 5) | (3 << 3)) | 3; else { scan_ch->tpc.tx_gain = ((1 << 5) | (5 << 3)); /* NOTE: if we were doing 6Mb OFDM for scans we'd use * power level scan_ch->tpc.tx_gain = ((1<<5) | (2 << 3)) | 3; */ } IWL_DEBUG_SCAN("Scanning %d [%s %d]\n", scan_ch->channel, (scan_ch->type & 1) ? "ACTIVE" : "PASSIVE", (scan_ch->type & 1) ? active_dwell : passive_dwell); scan_ch++; added++; } IWL_DEBUG_SCAN("total channels to scan %d \n", added); return added; } static void iwl_reset_channel_flag(struct iwl_priv *priv) { int i, j; for (i = 0; i < 3; i++) { struct ieee80211_hw_mode *hw_mode = (void *)&priv->modes[i]; for (j = 0; j < hw_mode->num_channels; j++) hw_mode->channels[j].flag = hw_mode->channels[j].val; } } static void iwl_init_hw_rates(struct iwl_priv *priv, struct ieee80211_rate *rates) { int i; for (i = 0; i < IWL_RATE_COUNT; i++) { rates[i].rate = iwl_rates[i].ieee * 5; rates[i].val = i; /* Rate scaling will work on indexes */ rates[i].val2 = i; rates[i].flags = IEEE80211_RATE_SUPPORTED; /* Only OFDM have the bits-per-symbol set */ if ((i <= IWL_LAST_OFDM_RATE) && (i >= IWL_FIRST_OFDM_RATE)) rates[i].flags |= IEEE80211_RATE_OFDM; else { /* * If CCK 1M then set rate flag to CCK else CCK_2 * which is CCK | PREAMBLE2 */ rates[i].flags |= (iwl_rates[i].plcp == 10) ? IEEE80211_RATE_CCK : IEEE80211_RATE_CCK_2; } /* Set up which ones are basic rates... */ if (IWL_BASIC_RATES_MASK & (1 << i)) rates[i].flags |= IEEE80211_RATE_BASIC; } iwl4965_init_hw_rates(priv, rates); } /** * iwl_init_geos - Initialize mac80211's geo/channel info based from eeprom */ static int iwl_init_geos(struct iwl_priv *priv) { struct iwl_channel_info *ch; struct ieee80211_hw_mode *modes; struct ieee80211_channel *channels; struct ieee80211_channel *geo_ch; struct ieee80211_rate *rates; int i = 0; enum { A = 0, B = 1, G = 2, A_11N = 3, G_11N = 4, }; int mode_count = 5; if (priv->modes) { IWL_DEBUG_INFO("Geography modes already initialized.\n"); set_bit(STATUS_GEO_CONFIGURED, &priv->status); return 0; } modes = kzalloc(sizeof(struct ieee80211_hw_mode) * mode_count, GFP_KERNEL); if (!modes) return -ENOMEM; channels = kzalloc(sizeof(struct ieee80211_channel) * priv->channel_count, GFP_KERNEL); if (!channels) { kfree(modes); return -ENOMEM; } rates = kzalloc((sizeof(struct ieee80211_rate) * (IWL_MAX_RATES + 1)), GFP_KERNEL); if (!rates) { kfree(modes); kfree(channels); return -ENOMEM; } /* 0 = 802.11a * 1 = 802.11b * 2 = 802.11g */ /* 5.2GHz channels start after the 2.4GHz channels */ modes[A].mode = MODE_IEEE80211A; modes[A].channels = &channels[ARRAY_SIZE(iwl_eeprom_band_1)]; modes[A].rates = rates; modes[A].num_rates = 8; /* just OFDM */ modes[A].rates = &rates[4]; modes[A].num_channels = 0; modes[B].mode = MODE_IEEE80211B; modes[B].channels = channels; modes[B].rates = rates; modes[B].num_rates = 4; /* just CCK */ modes[B].num_channels = 0; modes[G].mode = MODE_IEEE80211G; modes[G].channels = channels; modes[G].rates = rates; modes[G].num_rates = 12; /* OFDM & CCK */ modes[G].num_channels = 0; modes[G_11N].mode = MODE_IEEE80211G; modes[G_11N].channels = channels; modes[G_11N].num_rates = 13; /* OFDM & CCK */ modes[G_11N].rates = rates; modes[G_11N].num_channels = 0; modes[A_11N].mode = MODE_IEEE80211A; modes[A_11N].channels = &channels[ARRAY_SIZE(iwl_eeprom_band_1)]; modes[A_11N].rates = &rates[4]; modes[A_11N].num_rates = 9; /* just OFDM */ modes[A_11N].num_channels = 0; priv->ieee_channels = channels; priv->ieee_rates = rates; iwl_init_hw_rates(priv, rates); for (i = 0, geo_ch = channels; i < priv->channel_count; i++) { ch = &priv->channel_info[i]; if (!is_channel_valid(ch)) { IWL_DEBUG_INFO("Channel %d [%sGHz] is restricted -- " "skipping.\n", ch->channel, is_channel_a_band(ch) ? "5.2" : "2.4"); continue; } if (is_channel_a_band(ch)) { geo_ch = &modes[A].channels[modes[A].num_channels++]; modes[A_11N].num_channels++; } else { geo_ch = &modes[B].channels[modes[B].num_channels++]; modes[G].num_channels++; modes[G_11N].num_channels++; } geo_ch->freq = ieee80211chan2mhz(ch->channel); geo_ch->chan = ch->channel; geo_ch->power_level = ch->max_power_avg; geo_ch->antenna_max = 0xff; if (is_channel_valid(ch)) { geo_ch->flag = IEEE80211_CHAN_W_SCAN; if (ch->flags & EEPROM_CHANNEL_IBSS) geo_ch->flag |= IEEE80211_CHAN_W_IBSS; if (ch->flags & EEPROM_CHANNEL_ACTIVE) geo_ch->flag |= IEEE80211_CHAN_W_ACTIVE_SCAN; if (ch->flags & EEPROM_CHANNEL_RADAR) geo_ch->flag |= IEEE80211_CHAN_W_RADAR_DETECT; if (ch->max_power_avg > priv->max_channel_txpower_limit) priv->max_channel_txpower_limit = ch->max_power_avg; } geo_ch->val = geo_ch->flag; } if ((modes[A].num_channels == 0) && priv->is_abg) { printk(KERN_INFO DRV_NAME ": Incorrectly detected BG card as ABG. Please send " "your PCI ID 0x%04X:0x%04X to maintainer.\n", priv->pci_dev->device, priv->pci_dev->subsystem_device); priv->is_abg = 0; } printk(KERN_INFO DRV_NAME ": Tunable channels: %d 802.11bg, %d 802.11a channels\n", modes[G].num_channels, modes[A].num_channels); /* * NOTE: We register these in preference of order -- the * stack doesn't currently (as of 7.0.6 / Apr 24 '07) pick * a phymode based on rates or AP capabilities but seems to * configure it purely on if the channel being configured * is supported by a mode -- and the first match is taken */ if (modes[G].num_channels) ieee80211_register_hwmode(priv->hw, &modes[G]); if (modes[B].num_channels) ieee80211_register_hwmode(priv->hw, &modes[B]); if (modes[A].num_channels) ieee80211_register_hwmode(priv->hw, &modes[A]); priv->modes = modes; set_bit(STATUS_GEO_CONFIGURED, &priv->status); return 0; } /****************************************************************************** * * uCode download functions * ******************************************************************************/ static void iwl_dealloc_ucode_pci(struct iwl_priv *priv) { if (priv->ucode_code.v_addr != NULL) { pci_free_consistent(priv->pci_dev, priv->ucode_code.len, priv->ucode_code.v_addr, priv->ucode_code.p_addr); priv->ucode_code.v_addr = NULL; } if (priv->ucode_data.v_addr != NULL) { pci_free_consistent(priv->pci_dev, priv->ucode_data.len, priv->ucode_data.v_addr, priv->ucode_data.p_addr); priv->ucode_data.v_addr = NULL; } if (priv->ucode_data_backup.v_addr != NULL) { pci_free_consistent(priv->pci_dev, priv->ucode_data_backup.len, priv->ucode_data_backup.v_addr, priv->ucode_data_backup.p_addr); priv->ucode_data_backup.v_addr = NULL; } if (priv->ucode_init.v_addr != NULL) { pci_free_consistent(priv->pci_dev, priv->ucode_init.len, priv->ucode_init.v_addr, priv->ucode_init.p_addr); priv->ucode_init.v_addr = NULL; } if (priv->ucode_init_data.v_addr != NULL) { pci_free_consistent(priv->pci_dev, priv->ucode_init_data.len, priv->ucode_init_data.v_addr, priv->ucode_init_data.p_addr); priv->ucode_init_data.v_addr = NULL; } if (priv->ucode_boot.v_addr != NULL) { pci_free_consistent(priv->pci_dev, priv->ucode_boot.len, priv->ucode_boot.v_addr, priv->ucode_boot.p_addr); priv->ucode_boot.v_addr = NULL; } } /** * iwl_verify_inst_full - verify runtime uCode image in card vs. host, * looking at all data. */ static int iwl_verify_inst_full(struct iwl_priv *priv, __le32 * image, u32 len) { u32 val; u32 save_len = len; int rc = 0; u32 errcnt; IWL_DEBUG_INFO("ucode inst image size is %u\n", len); rc = iwl_grab_restricted_access(priv); if (rc) return rc; iwl_write_restricted(priv, HBUS_TARG_MEM_RADDR, RTC_INST_LOWER_BOUND); errcnt = 0; for (; len > 0; len -= sizeof(u32), image++) { /* read data comes through single port, auto-incr addr */ /* NOTE: Use the debugless read so we don't flood kernel log * if IWL_DL_IO is set */ val = _iwl_read_restricted(priv, HBUS_TARG_MEM_RDAT); if (val != le32_to_cpu(*image)) { IWL_ERROR("uCode INST section is invalid at " "offset 0x%x, is 0x%x, s/b 0x%x\n", save_len - len, val, le32_to_cpu(*image)); rc = -EIO; errcnt++; if (errcnt >= 20) break; } } iwl_release_restricted_access(priv); if (!errcnt) IWL_DEBUG_INFO ("ucode image in INSTRUCTION memory is good\n"); return rc; } /** * iwl_verify_inst_sparse - verify runtime uCode image in card vs. host, * using sample data 100 bytes apart. If these sample points are good, * it's a pretty good bet that everything between them is good, too. */ static int iwl_verify_inst_sparse(struct iwl_priv *priv, __le32 *image, u32 len) { u32 val; int rc = 0; u32 errcnt = 0; u32 i; IWL_DEBUG_INFO("ucode inst image size is %u\n", len); rc = iwl_grab_restricted_access(priv); if (rc) return rc; for (i = 0; i < len; i += 100, image += 100/sizeof(u32)) { /* read data comes through single port, auto-incr addr */ /* NOTE: Use the debugless read so we don't flood kernel log * if IWL_DL_IO is set */ iwl_write_restricted(priv, HBUS_TARG_MEM_RADDR, i + RTC_INST_LOWER_BOUND); val = _iwl_read_restricted(priv, HBUS_TARG_MEM_RDAT); if (val != le32_to_cpu(*image)) { #if 0 /* Enable this if you want to see details */ IWL_ERROR("uCode INST section is invalid at " "offset 0x%x, is 0x%x, s/b 0x%x\n", i, val, *image); #endif rc = -EIO; errcnt++; if (errcnt >= 3) break; } } iwl_release_restricted_access(priv); return rc; } /** * iwl_verify_ucode - determine which instruction image is in SRAM, * and verify its contents */ static int iwl_verify_ucode(struct iwl_priv *priv) { __le32 *image; u32 len; int rc = 0; /* Try bootstrap */ image = (__le32 *)priv->ucode_boot.v_addr; len = priv->ucode_boot.len; rc = iwl_verify_inst_sparse(priv, image, len); if (rc == 0) { IWL_DEBUG_INFO("Bootstrap uCode is good in inst SRAM\n"); return 0; } /* Try initialize */ image = (__le32 *)priv->ucode_init.v_addr; len = priv->ucode_init.len; rc = iwl_verify_inst_sparse(priv, image, len); if (rc == 0) { IWL_DEBUG_INFO("Initialize uCode is good in inst SRAM\n"); return 0; } /* Try runtime/protocol */ image = (__le32 *)priv->ucode_code.v_addr; len = priv->ucode_code.len; rc = iwl_verify_inst_sparse(priv, image, len); if (rc == 0) { IWL_DEBUG_INFO("Runtime uCode is good in inst SRAM\n"); return 0; } IWL_ERROR("NO VALID UCODE IMAGE IN INSTRUCTION SRAM!!\n"); /* Show first several data entries in instruction SRAM. * Selection of bootstrap image is arbitrary. */ image = (__le32 *)priv->ucode_boot.v_addr; len = priv->ucode_boot.len; rc = iwl_verify_inst_full(priv, image, len); return rc; } /* check contents of special bootstrap uCode SRAM */ static int iwl_verify_bsm(struct iwl_priv *priv) { __le32 *image = priv->ucode_boot.v_addr; u32 len = priv->ucode_boot.len; u32 reg; u32 val; IWL_DEBUG_INFO("Begin verify bsm\n"); /* verify BSM SRAM contents */ val = iwl_read_restricted_reg(priv, BSM_WR_DWCOUNT_REG); for (reg = BSM_SRAM_LOWER_BOUND; reg < BSM_SRAM_LOWER_BOUND + len; reg += sizeof(u32), image ++) { val = iwl_read_restricted_reg(priv, reg); if (val != le32_to_cpu(*image)) { IWL_ERROR("BSM uCode verification failed at " "addr 0x%08X+%u (of %u), is 0x%x, s/b 0x%x\n", BSM_SRAM_LOWER_BOUND, reg - BSM_SRAM_LOWER_BOUND, len, val, le32_to_cpu(*image)); return -EIO; } } IWL_DEBUG_INFO("BSM bootstrap uCode image OK\n"); return 0; } /** * iwl_load_bsm - Load bootstrap instructions * * BSM operation: * * The Bootstrap State Machine (BSM) stores a short bootstrap uCode program * in special SRAM that does not power down during RFKILL. When powering back * up after power-saving sleeps (or during initial uCode load), the BSM loads * the bootstrap program into the on-board processor, and starts it. * * The bootstrap program loads (via DMA) instructions and data for a new * program from host DRAM locations indicated by the host driver in the * BSM_DRAM_* registers. Once the new program is loaded, it starts * automatically. * * When initializing the NIC, the host driver points the BSM to the * "initialize" uCode image. This uCode sets up some internal data, then * notifies host via "initialize alive" that it is complete. * * The host then replaces the BSM_DRAM_* pointer values to point to the * normal runtime uCode instructions and a backup uCode data cache buffer * (filled initially with starting data values for the on-board processor), * then triggers the "initialize" uCode to load and launch the runtime uCode, * which begins normal operation. * * When doing a power-save shutdown, runtime uCode saves data SRAM into * the backup data cache in DRAM before SRAM is powered down. * * When powering back up, the BSM loads the bootstrap program. This reloads * the runtime uCode instructions and the backup data cache into SRAM, * and re-launches the runtime uCode from where it left off. */ static int iwl_load_bsm(struct iwl_priv *priv) { __le32 *image = priv->ucode_boot.v_addr; u32 len = priv->ucode_boot.len; dma_addr_t pinst; dma_addr_t pdata; u32 inst_len; u32 data_len; int rc; int i; u32 done; u32 reg_offset; IWL_DEBUG_INFO("Begin load bsm\n"); /* make sure bootstrap program is no larger than BSM's SRAM size */ if (len > IWL_MAX_BSM_SIZE) return -EINVAL; /* Tell bootstrap uCode where to find the "Initialize" uCode * in host DRAM ... bits 31:0 for 3945, bits 35:4 for 4965. * NOTE: iwl_initialize_alive_start() will replace these values, * after the "initialize" uCode has run, to point to * runtime/protocol instructions and backup data cache. */ pinst = priv->ucode_init.p_addr >> 4; pdata = priv->ucode_init_data.p_addr >> 4; inst_len = priv->ucode_init.len; data_len = priv->ucode_init_data.len; rc = iwl_grab_restricted_access(priv); if (rc) return rc; iwl_write_restricted_reg(priv, BSM_DRAM_INST_PTR_REG, pinst); iwl_write_restricted_reg(priv, BSM_DRAM_DATA_PTR_REG, pdata); iwl_write_restricted_reg(priv, BSM_DRAM_INST_BYTECOUNT_REG, inst_len); iwl_write_restricted_reg(priv, BSM_DRAM_DATA_BYTECOUNT_REG, data_len); /* Fill BSM memory with bootstrap instructions */ for (reg_offset = BSM_SRAM_LOWER_BOUND; reg_offset < BSM_SRAM_LOWER_BOUND + len; reg_offset += sizeof(u32), image++) _iwl_write_restricted_reg(priv, reg_offset, le32_to_cpu(*image)); rc = iwl_verify_bsm(priv); if (rc) { iwl_release_restricted_access(priv); return rc; } /* Tell BSM to copy from BSM SRAM into instruction SRAM, when asked */ iwl_write_restricted_reg(priv, BSM_WR_MEM_SRC_REG, 0x0); iwl_write_restricted_reg(priv, BSM_WR_MEM_DST_REG, RTC_INST_LOWER_BOUND); iwl_write_restricted_reg(priv, BSM_WR_DWCOUNT_REG, len / sizeof(u32)); /* Load bootstrap code into instruction SRAM now, * to prepare to load "initialize" uCode */ iwl_write_restricted_reg(priv, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START); /* Wait for load of bootstrap uCode to finish */ for (i = 0; i < 100; i++) { done = iwl_read_restricted_reg(priv, BSM_WR_CTRL_REG); if (!(done & BSM_WR_CTRL_REG_BIT_START)) break; udelay(10); } if (i < 100) IWL_DEBUG_INFO("BSM write complete, poll %d iterations\n", i); else { IWL_ERROR("BSM write did not complete!\n"); return -EIO; } /* Enable future boot loads whenever power management unit triggers it * (e.g. when powering back up after power-save shutdown) */ iwl_write_restricted_reg(priv, BSM_WR_CTRL_REG, BSM_WR_CTRL_REG_BIT_START_EN); iwl_release_restricted_access(priv); return 0; } static void iwl_nic_start(struct iwl_priv *priv) { /* Remove all resets to allow NIC to operate */ iwl_write32(priv, CSR_RESET, 0); } /** * iwl_read_ucode - Read uCode images from disk file. * * Copy into buffers for card to fetch via bus-mastering */ static int iwl_read_ucode(struct iwl_priv *priv) { struct iwl_ucode *ucode; int rc = 0; const struct firmware *ucode_raw; const char *name = "iwlwifi-4965" IWL4965_UCODE_API ".ucode"; u8 *src; size_t len; u32 ver, inst_size, data_size, init_size, init_data_size, boot_size; /* Ask kernel firmware_class module to get the boot firmware off disk. * request_firmware() is synchronous, file is in memory on return. */ rc = request_firmware(&ucode_raw, name, &priv->pci_dev->dev); if (rc < 0) { IWL_ERROR("%s firmware file req failed: Reason %d\n", name, rc); goto error; } IWL_DEBUG_INFO("Got firmware '%s' file (%zd bytes) from disk\n", name, ucode_raw->size); /* Make sure that we got at least our header! */ if (ucode_raw->size < sizeof(*ucode)) { IWL_ERROR("File size way too small!\n"); rc = -EINVAL; goto err_release; } /* Data from ucode file: header followed by uCode images */ ucode = (void *)ucode_raw->data; ver = le32_to_cpu(ucode->ver); inst_size = le32_to_cpu(ucode->inst_size); data_size = le32_to_cpu(ucode->data_size); init_size = le32_to_cpu(ucode->init_size); init_data_size = le32_to_cpu(ucode->init_data_size); boot_size = le32_to_cpu(ucode->boot_size); IWL_DEBUG_INFO("f/w package hdr ucode version = 0x%x\n", ver); IWL_DEBUG_INFO("f/w package hdr runtime inst size = %u\n", inst_size); IWL_DEBUG_INFO("f/w package hdr runtime data size = %u\n", data_size); IWL_DEBUG_INFO("f/w package hdr init inst size = %u\n", init_size); IWL_DEBUG_INFO("f/w package hdr init data size = %u\n", init_data_size); IWL_DEBUG_INFO("f/w package hdr boot inst size = %u\n", boot_size); /* Verify size of file vs. image size info in file's header */ if (ucode_raw->size < sizeof(*ucode) + inst_size + data_size + init_size + init_data_size + boot_size) { IWL_DEBUG_INFO("uCode file size %d too small\n", (int)ucode_raw->size); rc = -EINVAL; goto err_release; } /* Verify that uCode images will fit in card's SRAM */ if (inst_size > IWL_MAX_INST_SIZE) { IWL_DEBUG_INFO("uCode instr len %d too large to fit in card\n", (int)inst_size); rc = -EINVAL; goto err_release; } if (data_size > IWL_MAX_DATA_SIZE) { IWL_DEBUG_INFO("uCode data len %d too large to fit in card\n", (int)data_size); rc = -EINVAL; goto err_release; } if (init_size > IWL_MAX_INST_SIZE) { IWL_DEBUG_INFO ("uCode init instr len %d too large to fit in card\n", (int)init_size); rc = -EINVAL; goto err_release; } if (init_data_size > IWL_MAX_DATA_SIZE) { IWL_DEBUG_INFO ("uCode init data len %d too large to fit in card\n", (int)init_data_size); rc = -EINVAL; goto err_release; } if (boot_size > IWL_MAX_BSM_SIZE) { IWL_DEBUG_INFO ("uCode boot instr len %d too large to fit in bsm\n", (int)boot_size); rc = -EINVAL; goto err_release; } /* Allocate ucode buffers for card's bus-master loading ... */ /* Runtime instructions and 2 copies of data: * 1) unmodified from disk * 2) backup cache for save/restore during power-downs */ priv->ucode_code.len = inst_size; priv->ucode_code.v_addr = pci_alloc_consistent(priv->pci_dev, priv->ucode_code.len, &(priv->ucode_code.p_addr)); priv->ucode_data.len = data_size; priv->ucode_data.v_addr = pci_alloc_consistent(priv->pci_dev, priv->ucode_data.len, &(priv->ucode_data.p_addr)); priv->ucode_data_backup.len = data_size; priv->ucode_data_backup.v_addr = pci_alloc_consistent(priv->pci_dev, priv->ucode_data_backup.len, &(priv->ucode_data_backup.p_addr)); /* Initialization instructions and data */ priv->ucode_init.len = init_size; priv->ucode_init.v_addr = pci_alloc_consistent(priv->pci_dev, priv->ucode_init.len, &(priv->ucode_init.p_addr)); priv->ucode_init_data.len = init_data_size; priv->ucode_init_data.v_addr = pci_alloc_consistent(priv->pci_dev, priv->ucode_init_data.len, &(priv->ucode_init_data.p_addr)); /* Bootstrap (instructions only, no data) */ priv->ucode_boot.len = boot_size; priv->ucode_boot.v_addr = pci_alloc_consistent(priv->pci_dev, priv->ucode_boot.len, &(priv->ucode_boot.p_addr)); if (!priv->ucode_code.v_addr || !priv->ucode_data.v_addr || !priv->ucode_init.v_addr || !priv->ucode_init_data.v_addr || !priv->ucode_boot.v_addr || !priv->ucode_data_backup.v_addr) goto err_pci_alloc; /* Copy images into buffers for card's bus-master reads ... */ /* Runtime instructions (first block of data in file) */ src = &ucode->data[0]; len = priv->ucode_code.len; IWL_DEBUG_INFO("Copying (but not loading) uCode instr len %d\n", (int)len); memcpy(priv->ucode_code.v_addr, src, len); IWL_DEBUG_INFO("uCode instr buf vaddr = 0x%p, paddr = 0x%08x\n", priv->ucode_code.v_addr, (u32)priv->ucode_code.p_addr); /* Runtime data (2nd block) * NOTE: Copy into backup buffer will be done in iwl_up() */ src = &ucode->data[inst_size]; len = priv->ucode_data.len; IWL_DEBUG_INFO("Copying (but not loading) uCode data len %d\n", (int)len); memcpy(priv->ucode_data.v_addr, src, len); memcpy(priv->ucode_data_backup.v_addr, src, len); /* Initialization instructions (3rd block) */ if (init_size) { src = &ucode->data[inst_size + data_size]; len = priv->ucode_init.len; IWL_DEBUG_INFO("Copying (but not loading) init instr len %d\n", (int)len); memcpy(priv->ucode_init.v_addr, src, len); } /* Initialization data (4th block) */ if (init_data_size) { src = &ucode->data[inst_size + data_size + init_size]; len = priv->ucode_init_data.len; IWL_DEBUG_INFO("Copying (but not loading) init data len %d\n", (int)len); memcpy(priv->ucode_init_data.v_addr, src, len); } /* Bootstrap instructions (5th block) */ src = &ucode->data[inst_size + data_size + init_size + init_data_size]; len = priv->ucode_boot.len; IWL_DEBUG_INFO("Copying (but not loading) boot instr len %d\n", (int)len); memcpy(priv->ucode_boot.v_addr, src, len); /* We have our copies now, allow OS release its copies */ release_firmware(ucode_raw); return 0; err_pci_alloc: IWL_ERROR("failed to allocate pci memory\n"); rc = -ENOMEM; iwl_dealloc_ucode_pci(priv); err_release: release_firmware(ucode_raw); error: return rc; } /** * iwl_set_ucode_ptrs - Set uCode address location * * Tell initialization uCode where to find runtime uCode. * * BSM registers initially contain pointers to initialization uCode. * We need to replace them to load runtime uCode inst and data, * and to save runtime data when powering down. */ static int iwl_set_ucode_ptrs(struct iwl_priv *priv) { dma_addr_t pinst; dma_addr_t pdata; int rc = 0; unsigned long flags; /* bits 35:4 for 4965 */ pinst = priv->ucode_code.p_addr >> 4; pdata = priv->ucode_data_backup.p_addr >> 4; spin_lock_irqsave(&priv->lock, flags); rc = iwl_grab_restricted_access(priv); if (rc) { spin_unlock_irqrestore(&priv->lock, flags); return rc; } /* Tell bootstrap uCode where to find image to load */ iwl_write_restricted_reg(priv, BSM_DRAM_INST_PTR_REG, pinst); iwl_write_restricted_reg(priv, BSM_DRAM_DATA_PTR_REG, pdata); iwl_write_restricted_reg(priv, BSM_DRAM_DATA_BYTECOUNT_REG, priv->ucode_data.len); /* Inst bytecount must be last to set up, bit 31 signals uCode * that all new ptr/size info is in place */ iwl_write_restricted_reg(priv, BSM_DRAM_INST_BYTECOUNT_REG, priv->ucode_code.len | BSM_DRAM_INST_LOAD); iwl_release_restricted_access(priv); spin_unlock_irqrestore(&priv->lock, flags); IWL_DEBUG_INFO("Runtime uCode pointers are set.\n"); return rc; } /** * iwl_init_alive_start - Called after REPLY_ALIVE notification receieved * * Called after REPLY_ALIVE notification received from "initialize" uCode. * * The 4965 "initialize" ALIVE reply contains calibration data for: * Voltage, temperature, and MIMO tx gain correction, now stored in priv * (3945 does not contain this data). * * Tell "initialize" uCode to go ahead and load the runtime uCode. */ static void iwl_init_alive_start(struct iwl_priv *priv) { /* Check alive response for "valid" sign from uCode */ if (priv->card_alive_init.is_valid != UCODE_VALID_OK) { /* We had an error bringing up the hardware, so take it * all the way back down so we can try again */ IWL_DEBUG_INFO("Initialize Alive failed.\n"); goto restart; } /* Bootstrap uCode has loaded initialize uCode ... verify inst image. * This is a paranoid check, because we would not have gotten the * "initialize" alive if code weren't properly loaded. */ if (iwl_verify_ucode(priv)) { /* Runtime instruction load was bad; * take it all the way back down so we can try again */ IWL_DEBUG_INFO("Bad \"initialize\" uCode load.\n"); goto restart; } /* Calculate temperature */ priv->temperature = iwl4965_get_temperature(priv); /* Send pointers to protocol/runtime uCode image ... init code will * load and launch runtime uCode, which will send us another "Alive" * notification. */ IWL_DEBUG_INFO("Initialization Alive received.\n"); if (iwl_set_ucode_ptrs(priv)) { /* Runtime instruction load won't happen; * take it all the way back down so we can try again */ IWL_DEBUG_INFO("Couldn't set up uCode pointers.\n"); goto restart; } return; restart: queue_work(priv->workqueue, &priv->restart); } /** * iwl_alive_start - called after REPLY_ALIVE notification received * from protocol/runtime uCode (initialization uCode's * Alive gets handled by iwl_init_alive_start()). */ static void iwl_alive_start(struct iwl_priv *priv) { int rc = 0; IWL_DEBUG_INFO("Runtime Alive received.\n"); if (priv->card_alive.is_valid != UCODE_VALID_OK) { /* We had an error bringing up the hardware, so take it * all the way back down so we can try again */ IWL_DEBUG_INFO("Alive failed.\n"); goto restart; } /* Initialize uCode has loaded Runtime uCode ... verify inst image. * This is a paranoid check, because we would not have gotten the * "runtime" alive if code weren't properly loaded. */ if (iwl_verify_ucode(priv)) { /* Runtime instruction load was bad; * take it all the way back down so we can try again */ IWL_DEBUG_INFO("Bad runtime uCode load.\n"); goto restart; } iwl_clear_stations_table(priv); rc = iwl4965_alive_notify(priv); if (rc) { IWL_WARNING("Could not complete ALIVE transition [ntf]: %d\n", rc); goto restart; } /* After the ALIVE response, we can process host commands */ set_bit(STATUS_ALIVE, &priv->status); /* Clear out the uCode error bit if it is set */ clear_bit(STATUS_FW_ERROR, &priv->status); rc = iwl_init_channel_map(priv); if (rc) { IWL_ERROR("initializing regulatory failed: %d\n", rc); return; } iwl_init_geos(priv); if (iwl_is_rfkill(priv)) return; if (!priv->mac80211_registered) { /* Unlock so any user space entry points can call back into * the driver without a deadlock... */ mutex_unlock(&priv->mutex); iwl_rate_control_register(priv->hw); rc = ieee80211_register_hw(priv->hw); priv->hw->conf.beacon_int = 100; mutex_lock(&priv->mutex); if (rc) { IWL_ERROR("Failed to register network " "device (error %d)\n", rc); return; } priv->mac80211_registered = 1; iwl_reset_channel_flag(priv); } else ieee80211_start_queues(priv->hw); priv->active_rate = priv->rates_mask; priv->active_rate_basic = priv->rates_mask & IWL_BASIC_RATES_MASK; iwl_send_power_mode(priv, IWL_POWER_LEVEL(priv->power_mode)); if (iwl_is_associated(priv)) { struct iwl_rxon_cmd *active_rxon = (struct iwl_rxon_cmd *)(&priv->active_rxon); memcpy(&priv->staging_rxon, &priv->active_rxon, sizeof(priv->staging_rxon)); active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK; } else { /* Initialize our rx_config data */ iwl_connection_init_rx_config(priv); memcpy(priv->staging_rxon.node_addr, priv->mac_addr, ETH_ALEN); } /* Configure BT coexistence */ iwl_send_bt_config(priv); /* Configure the adapter for unassociated operation */ iwl_commit_rxon(priv); /* At this point, the NIC is initialized and operational */ priv->notif_missed_beacons = 0; set_bit(STATUS_READY, &priv->status); iwl4965_rf_kill_ct_config(priv); IWL_DEBUG_INFO("ALIVE processing complete.\n"); if (priv->error_recovering) iwl_error_recovery(priv); return; restart: queue_work(priv->workqueue, &priv->restart); } static void iwl_cancel_deferred_work(struct iwl_priv *priv); static void __iwl_down(struct iwl_priv *priv) { unsigned long flags; int exit_pending = test_bit(STATUS_EXIT_PENDING, &priv->status); struct ieee80211_conf *conf = NULL; IWL_DEBUG_INFO(DRV_NAME " is going down\n"); conf = ieee80211_get_hw_conf(priv->hw); if (!exit_pending) set_bit(STATUS_EXIT_PENDING, &priv->status); iwl_clear_stations_table(priv); /* Unblock any waiting calls */ wake_up_interruptible_all(&priv->wait_command_queue); iwl_cancel_deferred_work(priv); /* Wipe out the EXIT_PENDING status bit if we are not actually * exiting the module */ if (!exit_pending) clear_bit(STATUS_EXIT_PENDING, &priv->status); /* stop and reset the on-board processor */ iwl_write32(priv, CSR_RESET, CSR_RESET_REG_FLAG_NEVO_RESET); /* tell the device to stop sending interrupts */ iwl_disable_interrupts(priv); if (priv->mac80211_registered) ieee80211_stop_queues(priv->hw); /* If we have not previously called iwl_init() then * clear all bits but the RF Kill and SUSPEND bits and return */ if (!iwl_is_init(priv)) { priv->status = test_bit(STATUS_RF_KILL_HW, &priv->status) << STATUS_RF_KILL_HW | test_bit(STATUS_RF_KILL_SW, &priv->status) << STATUS_RF_KILL_SW | test_bit(STATUS_IN_SUSPEND, &priv->status) << STATUS_IN_SUSPEND; goto exit; } /* ...otherwise clear out all the status bits but the RF Kill and * SUSPEND bits and continue taking the NIC down. */ priv->status &= test_bit(STATUS_RF_KILL_HW, &priv->status) << STATUS_RF_KILL_HW | test_bit(STATUS_RF_KILL_SW, &priv->status) << STATUS_RF_KILL_SW | test_bit(STATUS_IN_SUSPEND, &priv->status) << STATUS_IN_SUSPEND | test_bit(STATUS_FW_ERROR, &priv->status) << STATUS_FW_ERROR; spin_lock_irqsave(&priv->lock, flags); iwl_clear_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); spin_unlock_irqrestore(&priv->lock, flags); iwl_hw_txq_ctx_stop(priv); iwl_hw_rxq_stop(priv); spin_lock_irqsave(&priv->lock, flags); if (!iwl_grab_restricted_access(priv)) { iwl_write_restricted_reg(priv, APMG_CLK_DIS_REG, APMG_CLK_VAL_DMA_CLK_RQT); iwl_release_restricted_access(priv); } spin_unlock_irqrestore(&priv->lock, flags); udelay(5); iwl_hw_nic_stop_master(priv); iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); iwl_hw_nic_reset(priv); exit: memset(&priv->card_alive, 0, sizeof(struct iwl_alive_resp)); if (priv->ibss_beacon) dev_kfree_skb(priv->ibss_beacon); priv->ibss_beacon = NULL; /* clear out any free frames */ iwl_clear_free_frames(priv); } static void iwl_down(struct iwl_priv *priv) { mutex_lock(&priv->mutex); __iwl_down(priv); mutex_unlock(&priv->mutex); } #define MAX_HW_RESTARTS 5 static int __iwl_up(struct iwl_priv *priv) { DECLARE_MAC_BUF(mac); int rc, i; u32 hw_rf_kill = 0; if (test_bit(STATUS_EXIT_PENDING, &priv->status)) { IWL_WARNING("Exit pending; will not bring the NIC up\n"); return -EIO; } if (test_bit(STATUS_RF_KILL_SW, &priv->status)) { IWL_WARNING("Radio disabled by SW RF kill (module " "parameter)\n"); return 0; } iwl_write32(priv, CSR_INT, 0xFFFFFFFF); rc = iwl_hw_nic_init(priv); if (rc) { IWL_ERROR("Unable to int nic\n"); return rc; } /* make sure rfkill handshake bits are cleared */ iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable host interrupts */ iwl_write32(priv, CSR_INT, 0xFFFFFFFF); iwl_enable_interrupts(priv); /* really make sure rfkill handshake bits are cleared */ iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); /* Copy original ucode data image from disk into backup cache. * This will be used to initialize the on-board processor's * data SRAM for a clean start when the runtime program first loads. */ memcpy(priv->ucode_data_backup.v_addr, priv->ucode_data.v_addr, priv->ucode_data.len); /* If platform's RF_KILL switch is set to KILL, * wait for BIT_INT_RF_KILL interrupt before loading uCode * and getting things started */ if (!(iwl_read32(priv, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW)) hw_rf_kill = 1; if (test_bit(STATUS_RF_KILL_HW, &priv->status) || hw_rf_kill) { IWL_WARNING("Radio disabled by HW RF Kill switch\n"); return 0; } for (i = 0; i < MAX_HW_RESTARTS; i++) { iwl_clear_stations_table(priv); /* load bootstrap state machine, * load bootstrap program into processor's memory, * prepare to load the "initialize" uCode */ rc = iwl_load_bsm(priv); if (rc) { IWL_ERROR("Unable to set up bootstrap uCode: %d\n", rc); continue; } /* start card; "initialize" will load runtime ucode */ iwl_nic_start(priv); /* MAC Address location in EEPROM same for 3945/4965 */ get_eeprom_mac(priv, priv->mac_addr); IWL_DEBUG_INFO("MAC address: %s\n", print_mac(mac, priv->mac_addr)); SET_IEEE80211_PERM_ADDR(priv->hw, priv->mac_addr); IWL_DEBUG_INFO(DRV_NAME " is coming up\n"); return 0; } set_bit(STATUS_EXIT_PENDING, &priv->status); __iwl_down(priv); /* tried to restart and config the device for as long as our * patience could withstand */ IWL_ERROR("Unable to initialize device after %d attempts.\n", i); return -EIO; } /***************************************************************************** * * Workqueue callbacks * *****************************************************************************/ static void iwl_bg_init_alive_start(struct work_struct *data) { struct iwl_priv *priv = container_of(data, struct iwl_priv, init_alive_start.work); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; mutex_lock(&priv->mutex); iwl_init_alive_start(priv); mutex_unlock(&priv->mutex); } static void iwl_bg_alive_start(struct work_struct *data) { struct iwl_priv *priv = container_of(data, struct iwl_priv, alive_start.work); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; mutex_lock(&priv->mutex); iwl_alive_start(priv); mutex_unlock(&priv->mutex); } static void iwl_bg_rf_kill(struct work_struct *work) { struct iwl_priv *priv = container_of(work, struct iwl_priv, rf_kill); wake_up_interruptible(&priv->wait_command_queue); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; mutex_lock(&priv->mutex); if (!iwl_is_rfkill(priv)) { IWL_DEBUG(IWL_DL_INFO | IWL_DL_RF_KILL, "HW and/or SW RF Kill no longer active, restarting " "device\n"); if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) queue_work(priv->workqueue, &priv->restart); } else { if (!test_bit(STATUS_RF_KILL_HW, &priv->status)) IWL_DEBUG_RF_KILL("Can not turn radio back on - " "disabled by SW switch\n"); else IWL_WARNING("Radio Frequency Kill Switch is On:\n" "Kill switch must be turned off for " "wireless networking to work.\n"); } mutex_unlock(&priv->mutex); } #define IWL_SCAN_CHECK_WATCHDOG (7 * HZ) static void iwl_bg_scan_check(struct work_struct *data) { struct iwl_priv *priv = container_of(data, struct iwl_priv, scan_check.work); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; mutex_lock(&priv->mutex); if (test_bit(STATUS_SCANNING, &priv->status) || test_bit(STATUS_SCAN_ABORTING, &priv->status)) { IWL_DEBUG(IWL_DL_INFO | IWL_DL_SCAN, "Scan completion watchdog resetting adapter (%dms)\n", jiffies_to_msecs(IWL_SCAN_CHECK_WATCHDOG)); if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) queue_work(priv->workqueue, &priv->restart); } mutex_unlock(&priv->mutex); } static void iwl_bg_request_scan(struct work_struct *data) { struct iwl_priv *priv = container_of(data, struct iwl_priv, request_scan); struct iwl_host_cmd cmd = { .id = REPLY_SCAN_CMD, .len = sizeof(struct iwl_scan_cmd), .meta.flags = CMD_SIZE_HUGE, }; int rc = 0; struct iwl_scan_cmd *scan; struct ieee80211_conf *conf = NULL; u8 direct_mask; int phymode; conf = ieee80211_get_hw_conf(priv->hw); mutex_lock(&priv->mutex); if (!iwl_is_ready(priv)) { IWL_WARNING("request scan called when driver not ready.\n"); goto done; } /* Make sure the scan wasn't cancelled before this queued work * was given the chance to run... */ if (!test_bit(STATUS_SCANNING, &priv->status)) goto done; /* This should never be called or scheduled if there is currently * a scan active in the hardware. */ if (test_bit(STATUS_SCAN_HW, &priv->status)) { IWL_DEBUG_INFO("Multiple concurrent scan requests in parallel. " "Ignoring second request.\n"); rc = -EIO; goto done; } if (test_bit(STATUS_EXIT_PENDING, &priv->status)) { IWL_DEBUG_SCAN("Aborting scan due to device shutdown\n"); goto done; } if (test_bit(STATUS_SCAN_ABORTING, &priv->status)) { IWL_DEBUG_HC("Scan request while abort pending. Queuing.\n"); goto done; } if (iwl_is_rfkill(priv)) { IWL_DEBUG_HC("Aborting scan due to RF Kill activation\n"); goto done; } if (!test_bit(STATUS_READY, &priv->status)) { IWL_DEBUG_HC("Scan request while uninitialized. Queuing.\n"); goto done; } if (!priv->scan_bands) { IWL_DEBUG_HC("Aborting scan due to no requested bands\n"); goto done; } if (!priv->scan) { priv->scan = kmalloc(sizeof(struct iwl_scan_cmd) + IWL_MAX_SCAN_SIZE, GFP_KERNEL); if (!priv->scan) { rc = -ENOMEM; goto done; } } scan = priv->scan; memset(scan, 0, sizeof(struct iwl_scan_cmd) + IWL_MAX_SCAN_SIZE); scan->quiet_plcp_th = IWL_PLCP_QUIET_THRESH; scan->quiet_time = IWL_ACTIVE_QUIET_TIME; if (iwl_is_associated(priv)) { u16 interval = 0; u32 extra; u32 suspend_time = 100; u32 scan_suspend_time = 100; unsigned long flags; IWL_DEBUG_INFO("Scanning while associated...\n"); spin_lock_irqsave(&priv->lock, flags); interval = priv->beacon_int; spin_unlock_irqrestore(&priv->lock, flags); scan->suspend_time = 0; scan->max_out_time = cpu_to_le32(600 * 1024); if (!interval) interval = suspend_time; extra = (suspend_time / interval) << 22; scan_suspend_time = (extra | ((suspend_time % interval) * 1024)); scan->suspend_time = cpu_to_le32(scan_suspend_time); IWL_DEBUG_SCAN("suspend_time 0x%X beacon interval %d\n", scan_suspend_time, interval); } /* We should add the ability for user to lock to PASSIVE ONLY */ if (priv->one_direct_scan) { IWL_DEBUG_SCAN ("Kicking off one direct scan for '%s'\n", iwl_escape_essid(priv->direct_ssid, priv->direct_ssid_len)); scan->direct_scan[0].id = WLAN_EID_SSID; scan->direct_scan[0].len = priv->direct_ssid_len; memcpy(scan->direct_scan[0].ssid, priv->direct_ssid, priv->direct_ssid_len); direct_mask = 1; } else if (!iwl_is_associated(priv)) { scan->direct_scan[0].id = WLAN_EID_SSID; scan->direct_scan[0].len = priv->essid_len; memcpy(scan->direct_scan[0].ssid, priv->essid, priv->essid_len); direct_mask = 1; } else direct_mask = 0; /* We don't build a direct scan probe request; the uCode will do * that based on the direct_mask added to each channel entry */ scan->tx_cmd.len = cpu_to_le16( iwl_fill_probe_req(priv, (struct ieee80211_mgmt *)scan->data, IWL_MAX_SCAN_SIZE - sizeof(scan), 0)); scan->tx_cmd.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK; scan->tx_cmd.sta_id = priv->hw_setting.bcast_sta_id; scan->tx_cmd.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE; /* flags + rate selection */ scan->tx_cmd.tx_flags |= cpu_to_le32(0x200); switch (priv->scan_bands) { case 2: scan->flags = RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK; scan->tx_cmd.rate_n_flags = iwl_hw_set_rate_n_flags(IWL_RATE_1M_PLCP, RATE_MCS_ANT_B_MSK|RATE_MCS_CCK_MSK); scan->good_CRC_th = 0; phymode = MODE_IEEE80211G; break; case 1: scan->tx_cmd.rate_n_flags = iwl_hw_set_rate_n_flags(IWL_RATE_6M_PLCP, RATE_MCS_ANT_B_MSK); scan->good_CRC_th = IWL_GOOD_CRC_TH; phymode = MODE_IEEE80211A; break; default: IWL_WARNING("Invalid scan band count\n"); goto done; } /* select Rx chains */ /* Force use of chains B and C (0x6) for scan Rx. * Avoid A (0x1) because of its off-channel reception on A-band. * MIMO is not used here, but value is required to make uCode happy. */ scan->rx_chain = RXON_RX_CHAIN_DRIVER_FORCE_MSK | cpu_to_le16((0x7 << RXON_RX_CHAIN_VALID_POS) | (0x6 << RXON_RX_CHAIN_FORCE_SEL_POS) | (0x7 << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS)); if (priv->iw_mode == IEEE80211_IF_TYPE_MNTR) scan->filter_flags = RXON_FILTER_PROMISC_MSK; if (direct_mask) IWL_DEBUG_SCAN ("Initiating direct scan for %s.\n", iwl_escape_essid(priv->essid, priv->essid_len)); else IWL_DEBUG_SCAN("Initiating indirect scan.\n"); scan->channel_count = iwl_get_channels_for_scan( priv, phymode, 1, /* active */ direct_mask, (void *)&scan->data[le16_to_cpu(scan->tx_cmd.len)]); cmd.len += le16_to_cpu(scan->tx_cmd.len) + scan->channel_count * sizeof(struct iwl_scan_channel); cmd.data = scan; scan->len = cpu_to_le16(cmd.len); set_bit(STATUS_SCAN_HW, &priv->status); rc = iwl_send_cmd_sync(priv, &cmd); if (rc) goto done; queue_delayed_work(priv->workqueue, &priv->scan_check, IWL_SCAN_CHECK_WATCHDOG); mutex_unlock(&priv->mutex); return; done: /* inform mac80211 sacn aborted */ queue_work(priv->workqueue, &priv->scan_completed); mutex_unlock(&priv->mutex); } static void iwl_bg_up(struct work_struct *data) { struct iwl_priv *priv = container_of(data, struct iwl_priv, up); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; mutex_lock(&priv->mutex); __iwl_up(priv); mutex_unlock(&priv->mutex); } static void iwl_bg_restart(struct work_struct *data) { struct iwl_priv *priv = container_of(data, struct iwl_priv, restart); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; iwl_down(priv); queue_work(priv->workqueue, &priv->up); } static void iwl_bg_rx_replenish(struct work_struct *data) { struct iwl_priv *priv = container_of(data, struct iwl_priv, rx_replenish); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; mutex_lock(&priv->mutex); iwl_rx_replenish(priv); mutex_unlock(&priv->mutex); } static void iwl_bg_post_associate(struct work_struct *data) { struct iwl_priv *priv = container_of(data, struct iwl_priv, post_associate.work); int rc = 0; struct ieee80211_conf *conf = NULL; DECLARE_MAC_BUF(mac); if (priv->iw_mode == IEEE80211_IF_TYPE_AP) { IWL_ERROR("%s Should not be called in AP mode\n", __FUNCTION__); return; } IWL_DEBUG_ASSOC("Associated as %d to: %s\n", priv->assoc_id, print_mac(mac, priv->active_rxon.bssid_addr)); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; mutex_lock(&priv->mutex); conf = ieee80211_get_hw_conf(priv->hw); priv->staging_rxon.filter_flags &= ~RXON_FILTER_ASSOC_MSK; iwl_commit_rxon(priv); memset(&priv->rxon_timing, 0, sizeof(struct iwl_rxon_time_cmd)); iwl_setup_rxon_timing(priv); rc = iwl_send_cmd_pdu(priv, REPLY_RXON_TIMING, sizeof(priv->rxon_timing), &priv->rxon_timing); if (rc) IWL_WARNING("REPLY_RXON_TIMING failed - " "Attempting to continue.\n"); priv->staging_rxon.filter_flags |= RXON_FILTER_ASSOC_MSK; #ifdef CONFIG_IWLWIFI_HT if (priv->is_ht_enabled && priv->current_assoc_ht.is_ht) iwl4965_set_rxon_ht(priv, &priv->current_assoc_ht); else { priv->active_rate_ht[0] = 0; priv->active_rate_ht[1] = 0; priv->current_channel_width = IWL_CHANNEL_WIDTH_20MHZ; } #endif /* CONFIG_IWLWIFI_HT*/ iwl4965_set_rxon_chain(priv); priv->staging_rxon.assoc_id = cpu_to_le16(priv->assoc_id); IWL_DEBUG_ASSOC("assoc id %d beacon interval %d\n", priv->assoc_id, priv->beacon_int); if (priv->assoc_capability & WLAN_CAPABILITY_SHORT_PREAMBLE) priv->staging_rxon.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; else priv->staging_rxon.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; if (priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK) { if (priv->assoc_capability & WLAN_CAPABILITY_SHORT_SLOT_TIME) priv->staging_rxon.flags |= RXON_FLG_SHORT_SLOT_MSK; else priv->staging_rxon.flags &= ~RXON_FLG_SHORT_SLOT_MSK; if (priv->iw_mode == IEEE80211_IF_TYPE_IBSS) priv->staging_rxon.flags &= ~RXON_FLG_SHORT_SLOT_MSK; } iwl_commit_rxon(priv); switch (priv->iw_mode) { case IEEE80211_IF_TYPE_STA: iwl_rate_scale_init(priv->hw, IWL_AP_ID); break; case IEEE80211_IF_TYPE_IBSS: /* clear out the station table */ iwl_clear_stations_table(priv); iwl_rxon_add_station(priv, BROADCAST_ADDR, 0); iwl_rxon_add_station(priv, priv->bssid, 0); iwl_rate_scale_init(priv->hw, IWL_STA_ID); iwl_send_beacon_cmd(priv); break; default: IWL_ERROR("%s Should not be called in %d mode\n", __FUNCTION__, priv->iw_mode); break; } iwl_sequence_reset(priv); #ifdef CONFIG_IWLWIFI_SENSITIVITY /* Enable Rx differential gain and sensitivity calibrations */ iwl4965_chain_noise_reset(priv); priv->start_calib = 1; #endif /* CONFIG_IWLWIFI_SENSITIVITY */ if (priv->iw_mode == IEEE80211_IF_TYPE_IBSS) priv->assoc_station_added = 1; #ifdef CONFIG_IWLWIFI_QOS iwl_activate_qos(priv, 0); #endif /* CONFIG_IWLWIFI_QOS */ mutex_unlock(&priv->mutex); } static void iwl_bg_abort_scan(struct work_struct *work) { struct iwl_priv *priv = container_of(work, struct iwl_priv, abort_scan); if (!iwl_is_ready(priv)) return; mutex_lock(&priv->mutex); set_bit(STATUS_SCAN_ABORTING, &priv->status); iwl_send_scan_abort(priv); mutex_unlock(&priv->mutex); } static void iwl_bg_scan_completed(struct work_struct *work) { struct iwl_priv *priv = container_of(work, struct iwl_priv, scan_completed); IWL_DEBUG(IWL_DL_INFO | IWL_DL_SCAN, "SCAN complete scan\n"); if (test_bit(STATUS_EXIT_PENDING, &priv->status)) return; ieee80211_scan_completed(priv->hw); /* Since setting the TXPOWER may have been deferred while * performing the scan, fire one off */ mutex_lock(&priv->mutex); iwl_hw_reg_send_txpower(priv); mutex_unlock(&priv->mutex); } /***************************************************************************** * * mac80211 entry point functions * *****************************************************************************/ static int iwl_mac_start(struct ieee80211_hw *hw) { struct iwl_priv *priv = hw->priv; IWL_DEBUG_MAC80211("enter\n"); /* we should be verifying the device is ready to be opened */ mutex_lock(&priv->mutex); priv->is_open = 1; if (!iwl_is_rfkill(priv)) ieee80211_start_queues(priv->hw); mutex_unlock(&priv->mutex); IWL_DEBUG_MAC80211("leave\n"); return 0; } static void iwl_mac_stop(struct ieee80211_hw *hw) { struct iwl_priv *priv = hw->priv; IWL_DEBUG_MAC80211("enter\n"); priv->is_open = 0; /*netif_stop_queue(dev); */ flush_workqueue(priv->workqueue); IWL_DEBUG_MAC80211("leave\n"); } static int iwl_mac_tx(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_control *ctl) { struct iwl_priv *priv = hw->priv; IWL_DEBUG_MAC80211("enter\n"); if (priv->iw_mode == IEEE80211_IF_TYPE_MNTR) { IWL_DEBUG_MAC80211("leave - monitor\n"); return -1; } IWL_DEBUG_TX("dev->xmit(%d bytes) at rate 0x%02x\n", skb->len, ctl->tx_rate); if (iwl_tx_skb(priv, skb, ctl)) dev_kfree_skb_any(skb); IWL_DEBUG_MAC80211("leave\n"); return 0; } static int iwl_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct iwl_priv *priv = hw->priv; unsigned long flags; DECLARE_MAC_BUF(mac); IWL_DEBUG_MAC80211("enter: id %d, type %d\n", conf->if_id, conf->type); if (conf->mac_addr) IWL_DEBUG_MAC80211("enter: MAC %s\n", print_mac(mac, conf->mac_addr)); if (priv->interface_id) { IWL_DEBUG_MAC80211("leave - interface_id != 0\n"); return 0; } spin_lock_irqsave(&priv->lock, flags); priv->interface_id = conf->if_id; spin_unlock_irqrestore(&priv->lock, flags); mutex_lock(&priv->mutex); iwl_set_mode(priv, conf->type); IWL_DEBUG_MAC80211("leave\n"); mutex_unlock(&priv->mutex); return 0; } /** * iwl_mac_config - mac80211 config callback * * We ignore conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME since it seems to * be set inappropriately and the driver currently sets the hardware up to * use it whenever needed. */ static int iwl_mac_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf) { struct iwl_priv *priv = hw->priv; const struct iwl_channel_info *ch_info; unsigned long flags; mutex_lock(&priv->mutex); IWL_DEBUG_MAC80211("enter to channel %d\n", conf->channel); if (!iwl_is_ready(priv)) { IWL_DEBUG_MAC80211("leave - not ready\n"); mutex_unlock(&priv->mutex); return -EIO; } /* TODO: Figure out how to get ieee80211_local->sta_scanning w/ only * what is exposed through include/ declrations */ if (unlikely(!iwl_param_disable_hw_scan && test_bit(STATUS_SCANNING, &priv->status))) { IWL_DEBUG_MAC80211("leave - scanning\n"); mutex_unlock(&priv->mutex); return 0; } spin_lock_irqsave(&priv->lock, flags); ch_info = iwl_get_channel_info(priv, conf->phymode, conf->channel); if (!is_channel_valid(ch_info)) { IWL_DEBUG_SCAN("Channel %d [%d] is INVALID for this SKU.\n", conf->channel, conf->phymode); IWL_DEBUG_MAC80211("leave - invalid channel\n"); spin_unlock_irqrestore(&priv->lock, flags); mutex_unlock(&priv->mutex); return -EINVAL; } #ifdef CONFIG_IWLWIFI_HT /* if we are switching fron ht to 2.4 clear flags * from any ht related info since 2.4 does not * support ht */ if ((le16_to_cpu(priv->staging_rxon.channel) != conf->channel) #ifdef IEEE80211_CONF_CHANNEL_SWITCH && !(conf->flags & IEEE80211_CONF_CHANNEL_SWITCH) #endif ) priv->staging_rxon.flags = 0; #endif /* CONFIG_IWLWIFI_HT */ iwl_set_rxon_channel(priv, conf->phymode, conf->channel); iwl_set_flags_for_phymode(priv, conf->phymode); /* The list of supported rates and rate mask can be different * for each phymode; since the phymode may have changed, reset * the rate mask to what mac80211 lists */ iwl_set_rate(priv); spin_unlock_irqrestore(&priv->lock, flags); #ifdef IEEE80211_CONF_CHANNEL_SWITCH if (conf->flags & IEEE80211_CONF_CHANNEL_SWITCH) { iwl_hw_channel_switch(priv, conf->channel); mutex_unlock(&priv->mutex); return 0; } #endif iwl_radio_kill_sw(priv, !conf->radio_enabled); if (!conf->radio_enabled) { IWL_DEBUG_MAC80211("leave - radio disabled\n"); mutex_unlock(&priv->mutex); return 0; } if (iwl_is_rfkill(priv)) { IWL_DEBUG_MAC80211("leave - RF kill\n"); mutex_unlock(&priv->mutex); return -EIO; } iwl_set_rate(priv); if (memcmp(&priv->active_rxon, &priv->staging_rxon, sizeof(priv->staging_rxon))) iwl_commit_rxon(priv); else IWL_DEBUG_INFO("No re-sending same RXON configuration.\n"); IWL_DEBUG_MAC80211("leave\n"); mutex_unlock(&priv->mutex); return 0; } static void iwl_config_ap(struct iwl_priv *priv) { int rc = 0; if (priv->status & STATUS_EXIT_PENDING) return; /* The following should be done only at AP bring up */ if ((priv->active_rxon.filter_flags & RXON_FILTER_ASSOC_MSK) == 0) { /* RXON - unassoc (to set timing command) */ priv->staging_rxon.filter_flags &= ~RXON_FILTER_ASSOC_MSK; iwl_commit_rxon(priv); /* RXON Timing */ memset(&priv->rxon_timing, 0, sizeof(struct iwl_rxon_time_cmd)); iwl_setup_rxon_timing(priv); rc = iwl_send_cmd_pdu(priv, REPLY_RXON_TIMING, sizeof(priv->rxon_timing), &priv->rxon_timing); if (rc) IWL_WARNING("REPLY_RXON_TIMING failed - " "Attempting to continue.\n"); iwl4965_set_rxon_chain(priv); /* FIXME: what should be the assoc_id for AP? */ priv->staging_rxon.assoc_id = cpu_to_le16(priv->assoc_id); if (priv->assoc_capability & WLAN_CAPABILITY_SHORT_PREAMBLE) priv->staging_rxon.flags |= RXON_FLG_SHORT_PREAMBLE_MSK; else priv->staging_rxon.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK; if (priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK) { if (priv->assoc_capability & WLAN_CAPABILITY_SHORT_SLOT_TIME) priv->staging_rxon.flags |= RXON_FLG_SHORT_SLOT_MSK; else priv->staging_rxon.flags &= ~RXON_FLG_SHORT_SLOT_MSK; if (priv->iw_mode == IEEE80211_IF_TYPE_IBSS) priv->staging_rxon.flags &= ~RXON_FLG_SHORT_SLOT_MSK; } /* restore RXON assoc */ priv->staging_rxon.filter_flags |= RXON_FILTER_ASSOC_MSK; iwl_commit_rxon(priv); #ifdef CONFIG_IWLWIFI_QOS iwl_activate_qos(priv, 1); #endif iwl_rxon_add_station(priv, BROADCAST_ADDR, 0); } iwl_send_beacon_cmd(priv); /* FIXME - we need to add code here to detect a totally new * configuration, reset the AP, unassoc, rxon timing, assoc, * clear sta table, add BCAST sta... */ } static int iwl_mac_config_interface(struct ieee80211_hw *hw, int if_id, struct ieee80211_if_conf *conf) { struct iwl_priv *priv = hw->priv; DECLARE_MAC_BUF(mac); unsigned long flags; int rc; if (conf == NULL) return -EIO; if ((priv->iw_mode == IEEE80211_IF_TYPE_AP) && (!conf->beacon || !conf->ssid_len)) { IWL_DEBUG_MAC80211 ("Leaving in AP mode because HostAPD is not ready.\n"); return 0; } mutex_lock(&priv->mutex); IWL_DEBUG_MAC80211("enter: interface id %d\n", if_id); if (conf->bssid) IWL_DEBUG_MAC80211("bssid: %s\n", print_mac(mac, conf->bssid)); /* * very dubious code was here; the probe filtering flag is never set: * if (unlikely(test_bit(STATUS_SCANNING, &priv->status)) && !(priv->hw->flags & IEEE80211_HW_NO_PROBE_FILTERING)) { */ if (unlikely(test_bit(STATUS_SCANNING, &priv->status))) { IWL_DEBUG_MAC80211("leave - scanning\n"); mutex_unlock(&priv->mutex); return 0; } if (priv->interface_id != if_id) { IWL_DEBUG_MAC80211("leave - interface_id != if_id\n"); mutex_unlock(&priv->mutex); return 0; } if (priv->iw_mode == IEEE80211_IF_TYPE_AP) { if (!conf->bssid) { conf->bssid = priv->mac_addr; memcpy(priv->bssid, priv->mac_addr, ETH_ALEN); IWL_DEBUG_MAC80211("bssid was set to: %s\n", print_mac(mac, conf->bssid)); } if (priv->ibss_beacon) dev_kfree_skb(priv->ibss_beacon); priv->ibss_beacon = conf->beacon; } if (conf->bssid && !is_zero_ether_addr(conf->bssid) && !is_multicast_ether_addr(conf->bssid)) { /* If there is currently a HW scan going on in the background * then we need to cancel it else the RXON below will fail. */ if (iwl_scan_cancel_timeout(priv, 100)) { IWL_WARNING("Aborted scan still in progress " "after 100ms\n"); IWL_DEBUG_MAC80211("leaving - scan abort failed.\n"); mutex_unlock(&priv->mutex); return -EAGAIN; } memcpy(priv->staging_rxon.bssid_addr, conf->bssid, ETH_ALEN); /* TODO: Audit driver for usage of these members and see * if mac80211 deprecates them (priv->bssid looks like it * shouldn't be there, but I haven't scanned the IBSS code * to verify) - jpk */ memcpy(priv->bssid, conf->bssid, ETH_ALEN); if (priv->iw_mode == IEEE80211_IF_TYPE_AP) iwl_config_ap(priv); else { priv->staging_rxon.filter_flags |= RXON_FILTER_ASSOC_MSK; rc = iwl_commit_rxon(priv); if ((priv->iw_mode == IEEE80211_IF_TYPE_STA) && rc) iwl_rxon_add_station( priv, priv->active_rxon.bssid_addr, 1); } } else { priv->staging_rxon.filter_flags &= ~RXON_FILTER_ASSOC_MSK; iwl_commit_rxon(priv); } spin_lock_irqsave(&priv->lock, flags); if (!conf->ssid_len) memset(priv->essid, 0, IW_ESSID_MAX_SIZE); else memcpy(priv->essid, conf->ssid, conf->ssid_len); priv->essid_len = conf->ssid_len; spin_unlock_irqrestore(&priv->lock, flags); IWL_DEBUG_MAC80211("leave\n"); mutex_unlock(&priv->mutex); return 0; } static void iwl_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, int mc_count, struct dev_addr_list *mc_list) { /* * XXX: dummy * see also iwl_connection_init_rx_config */ *total_flags = 0; } static void iwl_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct iwl_priv *priv = hw->priv; IWL_DEBUG_MAC80211("enter\n"); mutex_lock(&priv->mutex); if (priv->interface_id == conf->if_id) { priv->interface_id = 0; memset(priv->bssid, 0, ETH_ALEN); memset(priv->essid, 0, IW_ESSID_MAX_SIZE); priv->essid_len = 0; } mutex_unlock(&priv->mutex); IWL_DEBUG_MAC80211("leave\n"); } #define IWL_DELAY_NEXT_SCAN (HZ*2) static int iwl_mac_hw_scan(struct ieee80211_hw *hw, u8 *ssid, size_t len) { int rc = 0; unsigned long flags; struct iwl_priv *priv = hw->priv; IWL_DEBUG_MAC80211("enter\n"); spin_lock_irqsave(&priv->lock, flags); if (!iwl_is_ready_rf(priv)) { rc = -EIO; IWL_DEBUG_MAC80211("leave - not ready or exit pending\n"); goto out_unlock; } if (priv->iw_mode == IEEE80211_IF_TYPE_AP) { /* APs don't scan */ rc = -EIO; IWL_ERROR("ERROR: APs don't scan\n"); goto out_unlock; } /* if we just finished scan ask for delay */ if (priv->last_scan_jiffies && time_after(priv->last_scan_jiffies + IWL_DELAY_NEXT_SCAN, jiffies)) { rc = -EAGAIN; goto out_unlock; } if (len) { IWL_DEBUG_SCAN("direct scan for " "%s [%d]\n ", iwl_escape_essid(ssid, len), (int)len); priv->one_direct_scan = 1; priv->direct_ssid_len = (u8) min((u8) len, (u8) IW_ESSID_MAX_SIZE); memcpy(priv->direct_ssid, ssid, priv->direct_ssid_len); } rc = iwl_scan_initiate(priv); IWL_DEBUG_MAC80211("leave\n"); out_unlock: spin_unlock_irqrestore(&priv->lock, flags); return rc; } static int iwl_mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, const u8 *local_addr, const u8 *addr, struct ieee80211_key_conf *key) { struct iwl_priv *priv = hw->priv; DECLARE_MAC_BUF(mac); int rc = 0; u8 sta_id; IWL_DEBUG_MAC80211("enter\n"); if (!iwl_param_hwcrypto) { IWL_DEBUG_MAC80211("leave - hwcrypto disabled\n"); return -EOPNOTSUPP; } if (is_zero_ether_addr(addr)) /* only support pairwise keys */ return -EOPNOTSUPP; sta_id = iwl_hw_find_station(priv, addr); if (sta_id == IWL_INVALID_STATION) { IWL_DEBUG_MAC80211("leave - %s not in station map.\n", print_mac(mac, addr)); return -EINVAL; } mutex_lock(&priv->mutex); switch (cmd) { case SET_KEY: rc = iwl_update_sta_key_info(priv, key, sta_id); if (!rc) { iwl_set_rxon_hwcrypto(priv, 1); iwl_commit_rxon(priv); key->hw_key_idx = sta_id; IWL_DEBUG_MAC80211("set_key success, using hwcrypto\n"); key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; } break; case DISABLE_KEY: rc = iwl_clear_sta_key_info(priv, sta_id); if (!rc) { iwl_set_rxon_hwcrypto(priv, 0); iwl_commit_rxon(priv); IWL_DEBUG_MAC80211("disable hwcrypto key\n"); } break; default: rc = -EINVAL; } IWL_DEBUG_MAC80211("leave\n"); mutex_unlock(&priv->mutex); return rc; } static int iwl_mac_conf_tx(struct ieee80211_hw *hw, int queue, const struct ieee80211_tx_queue_params *params) { struct iwl_priv *priv = hw->priv; #ifdef CONFIG_IWLWIFI_QOS unsigned long flags; int q; #endif /* CONFIG_IWL_QOS */ IWL_DEBUG_MAC80211("enter\n"); if (!iwl_is_ready_rf(priv)) { IWL_DEBUG_MAC80211("leave - RF not ready\n"); return -EIO; } if (queue >= AC_NUM) { IWL_DEBUG_MAC80211("leave - queue >= AC_NUM %d\n", queue); return 0; } #ifdef CONFIG_IWLWIFI_QOS if (!priv->qos_data.qos_enable) { priv->qos_data.qos_active = 0; IWL_DEBUG_MAC80211("leave - qos not enabled\n"); return 0; } q = AC_NUM - 1 - queue; spin_lock_irqsave(&priv->lock, flags); priv->qos_data.def_qos_parm.ac[q].cw_min = cpu_to_le16(params->cw_min); priv->qos_data.def_qos_parm.ac[q].cw_max = cpu_to_le16(params->cw_max); priv->qos_data.def_qos_parm.ac[q].aifsn = params->aifs; priv->qos_data.def_qos_parm.ac[q].edca_txop = cpu_to_le16((params->burst_time * 100)); priv->qos_data.def_qos_parm.ac[q].reserved1 = 0; priv->qos_data.qos_active = 1; spin_unlock_irqrestore(&priv->lock, flags); mutex_lock(&priv->mutex); if (priv->iw_mode == IEEE80211_IF_TYPE_AP) iwl_activate_qos(priv, 1); else if (priv->assoc_id && iwl_is_associated(priv)) iwl_activate_qos(priv, 0); mutex_unlock(&priv->mutex); #endif /*CONFIG_IWLWIFI_QOS */ IWL_DEBUG_MAC80211("leave\n"); return 0; } static int iwl_mac_get_tx_stats(struct ieee80211_hw *hw, struct ieee80211_tx_queue_stats *stats) { struct iwl_priv *priv = hw->priv; int i, avail; struct iwl_tx_queue *txq; struct iwl_queue *q; unsigned long flags; IWL_DEBUG_MAC80211("enter\n"); if (!iwl_is_ready_rf(priv)) { IWL_DEBUG_MAC80211("leave - RF not ready\n"); return -EIO; } spin_lock_irqsave(&priv->lock, flags); for (i = 0; i < AC_NUM; i++) { txq = &priv->txq[i]; q = &txq->q; avail = iwl_queue_space(q); stats->data[i].len = q->n_window - avail; stats->data[i].limit = q->n_window - q->high_mark; stats->data[i].count = q->n_window; } spin_unlock_irqrestore(&priv->lock, flags); IWL_DEBUG_MAC80211("leave\n"); return 0; } static int iwl_mac_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { IWL_DEBUG_MAC80211("enter\n"); IWL_DEBUG_MAC80211("leave\n"); return 0; } static u64 iwl_mac_get_tsf(struct ieee80211_hw *hw) { IWL_DEBUG_MAC80211("enter\n"); IWL_DEBUG_MAC80211("leave\n"); return 0; } static void iwl_mac_reset_tsf(struct ieee80211_hw *hw) { struct iwl_priv *priv = hw->priv; unsigned long flags; mutex_lock(&priv->mutex); IWL_DEBUG_MAC80211("enter\n"); priv->lq_mngr.lq_ready = 0; #ifdef CONFIG_IWLWIFI_HT spin_lock_irqsave(&priv->lock, flags); memset(&priv->current_assoc_ht, 0, sizeof(struct sta_ht_info)); spin_unlock_irqrestore(&priv->lock, flags); #ifdef CONFIG_IWLWIFI_HT_AGG /* if (priv->lq_mngr.agg_ctrl.granted_ba) iwl4965_turn_off_agg(priv, TID_ALL_SPECIFIED);*/ memset(&(priv->lq_mngr.agg_ctrl), 0, sizeof(struct iwl_agg_control)); priv->lq_mngr.agg_ctrl.tid_traffic_load_threshold = 10; priv->lq_mngr.agg_ctrl.ba_timeout = 5000; priv->lq_mngr.agg_ctrl.auto_agg = 1; if (priv->lq_mngr.agg_ctrl.auto_agg) priv->lq_mngr.agg_ctrl.requested_ba = TID_ALL_ENABLED; #endif /*CONFIG_IWLWIFI_HT_AGG */ #endif /* CONFIG_IWLWIFI_HT */ #ifdef CONFIG_IWLWIFI_QOS iwl_reset_qos(priv); #endif cancel_delayed_work(&priv->post_associate); spin_lock_irqsave(&priv->lock, flags); priv->assoc_id = 0; priv->assoc_capability = 0; priv->call_post_assoc_from_beacon = 0; priv->assoc_station_added = 0; /* new association get rid of ibss beacon skb */ if (priv->ibss_beacon) dev_kfree_skb(priv->ibss_beacon); priv->ibss_beacon = NULL; priv->beacon_int = priv->hw->conf.beacon_int; priv->timestamp1 = 0; priv->timestamp0 = 0; if ((priv->iw_mode == IEEE80211_IF_TYPE_STA)) priv->beacon_int = 0; spin_unlock_irqrestore(&priv->lock, flags); /* Per mac80211.h: This is only used in IBSS mode... */ if (priv->iw_mode != IEEE80211_IF_TYPE_IBSS) { IWL_DEBUG_MAC80211("leave - not in IBSS\n"); mutex_unlock(&priv->mutex); return; } if (!iwl_is_ready_rf(priv)) { IWL_DEBUG_MAC80211("leave - not ready\n"); mutex_unlock(&priv->mutex); return; } priv->only_active_channel = 0; iwl_set_rate(priv); mutex_unlock(&priv->mutex); IWL_DEBUG_MAC80211("leave\n"); } static int iwl_mac_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_control *control) { struct iwl_priv *priv = hw->priv; unsigned long flags; mutex_lock(&priv->mutex); IWL_DEBUG_MAC80211("enter\n"); if (!iwl_is_ready_rf(priv)) { IWL_DEBUG_MAC80211("leave - RF not ready\n"); mutex_unlock(&priv->mutex); return -EIO; } if (priv->iw_mode != IEEE80211_IF_TYPE_IBSS) { IWL_DEBUG_MAC80211("leave - not IBSS\n"); mutex_unlock(&priv->mutex); return -EIO; } spin_lock_irqsave(&priv->lock, flags); if (priv->ibss_beacon) dev_kfree_skb(priv->ibss_beacon); priv->ibss_beacon = skb; priv->assoc_id = 0; IWL_DEBUG_MAC80211("leave\n"); spin_unlock_irqrestore(&priv->lock, flags); #ifdef CONFIG_IWLWIFI_QOS iwl_reset_qos(priv); #endif queue_work(priv->workqueue, &priv->post_associate.work); mutex_unlock(&priv->mutex); return 0; } #ifdef CONFIG_IWLWIFI_HT union ht_cap_info { struct { u16 advanced_coding_cap :1; u16 supported_chan_width_set :1; u16 mimo_power_save_mode :2; u16 green_field :1; u16 short_GI20 :1; u16 short_GI40 :1; u16 tx_stbc :1; u16 rx_stbc :1; u16 beam_forming :1; u16 delayed_ba :1; u16 maximal_amsdu_size :1; u16 cck_mode_at_40MHz :1; u16 psmp_support :1; u16 stbc_ctrl_frame_support :1; u16 sig_txop_protection_support :1; }; u16 val; } __attribute__ ((packed)); union ht_param_info{ struct { u8 max_rx_ampdu_factor :2; u8 mpdu_density :3; u8 reserved :3; }; u8 val; } __attribute__ ((packed)); union ht_exra_param_info { struct { u8 ext_chan_offset :2; u8 tx_chan_width :1; u8 rifs_mode :1; u8 controlled_access_only :1; u8 service_interval_granularity :3; }; u8 val; } __attribute__ ((packed)); union ht_operation_mode{ struct { u16 op_mode :2; u16 non_GF :1; u16 reserved :13; }; u16 val; } __attribute__ ((packed)); static int sta_ht_info_init(struct ieee80211_ht_capability *ht_cap, struct ieee80211_ht_additional_info *ht_extra, struct sta_ht_info *ht_info_ap, struct sta_ht_info *ht_info) { union ht_cap_info cap; union ht_operation_mode op_mode; union ht_param_info param_info; union ht_exra_param_info extra_param_info; IWL_DEBUG_MAC80211("enter: \n"); if (!ht_info) { IWL_DEBUG_MAC80211("leave: ht_info is NULL\n"); return -1; } if (ht_cap) { cap.val = (u16) le16_to_cpu(ht_cap->capabilities_info); param_info.val = ht_cap->mac_ht_params_info; ht_info->is_ht = 1; if (cap.short_GI20) ht_info->sgf |= 0x1; if (cap.short_GI40) ht_info->sgf |= 0x2; ht_info->is_green_field = cap.green_field; ht_info->max_amsdu_size = cap.maximal_amsdu_size; ht_info->supported_chan_width = cap.supported_chan_width_set; ht_info->tx_mimo_ps_mode = cap.mimo_power_save_mode; memcpy(ht_info->supp_rates, ht_cap->supported_mcs_set, 16); ht_info->ampdu_factor = param_info.max_rx_ampdu_factor; ht_info->mpdu_density = param_info.mpdu_density; IWL_DEBUG_MAC80211("SISO mask 0x%X MIMO mask 0x%X \n", ht_cap->supported_mcs_set[0], ht_cap->supported_mcs_set[1]); if (ht_info_ap) { ht_info->control_channel = ht_info_ap->control_channel; ht_info->extension_chan_offset = ht_info_ap->extension_chan_offset; ht_info->tx_chan_width = ht_info_ap->tx_chan_width; ht_info->operating_mode = ht_info_ap->operating_mode; } if (ht_extra) { extra_param_info.val = ht_extra->ht_param; ht_info->control_channel = ht_extra->control_chan; ht_info->extension_chan_offset = extra_param_info.ext_chan_offset; ht_info->tx_chan_width = extra_param_info.tx_chan_width; op_mode.val = (u16) le16_to_cpu(ht_extra->operation_mode); ht_info->operating_mode = op_mode.op_mode; IWL_DEBUG_MAC80211("control channel %d\n", ht_extra->control_chan); } } else ht_info->is_ht = 0; IWL_DEBUG_MAC80211("leave\n"); return 0; } static int iwl_mac_conf_ht(struct ieee80211_hw *hw, struct ieee80211_ht_capability *ht_cap, struct ieee80211_ht_additional_info *ht_extra) { struct iwl_priv *priv = hw->priv; int rs; IWL_DEBUG_MAC80211("enter: \n"); rs = sta_ht_info_init(ht_cap, ht_extra, NULL, &priv->current_assoc_ht); iwl4965_set_rxon_chain(priv); if (priv && priv->assoc_id && (priv->iw_mode == IEEE80211_IF_TYPE_STA)) { unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (priv->beacon_int) queue_work(priv->workqueue, &priv->post_associate.work); else priv->call_post_assoc_from_beacon = 1; spin_unlock_irqrestore(&priv->lock, flags); } IWL_DEBUG_MAC80211("leave: control channel %d\n", ht_extra->control_chan); return rs; } static void iwl_set_ht_capab(struct ieee80211_hw *hw, struct ieee80211_ht_capability *ht_cap, u8 use_wide_chan) { union ht_cap_info cap; union ht_param_info param_info; memset(&cap, 0, sizeof(union ht_cap_info)); memset(¶m_info, 0, sizeof(union ht_param_info)); cap.maximal_amsdu_size = HT_IE_MAX_AMSDU_SIZE_4K; cap.green_field = 1; cap.short_GI20 = 1; cap.short_GI40 = 1; cap.supported_chan_width_set = use_wide_chan; cap.mimo_power_save_mode = 0x3; param_info.max_rx_ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF; param_info.mpdu_density = CFG_HT_MPDU_DENSITY_DEF; ht_cap->capabilities_info = (__le16) cpu_to_le16(cap.val); ht_cap->mac_ht_params_info = (u8) param_info.val; ht_cap->supported_mcs_set[0] = 0xff; ht_cap->supported_mcs_set[1] = 0xff; ht_cap->supported_mcs_set[4] = (cap.supported_chan_width_set) ? 0x1: 0x0; } static void iwl_mac_get_ht_capab(struct ieee80211_hw *hw, struct ieee80211_ht_capability *ht_cap) { u8 use_wide_channel = 1; struct iwl_priv *priv = hw->priv; IWL_DEBUG_MAC80211("enter: \n"); if (priv->channel_width != IWL_CHANNEL_WIDTH_40MHZ) use_wide_channel = 0; /* no fat tx allowed on 2.4GHZ */ if (priv->phymode != MODE_IEEE80211A) use_wide_channel = 0; iwl_set_ht_capab(hw, ht_cap, use_wide_channel); IWL_DEBUG_MAC80211("leave: \n"); } #endif /*CONFIG_IWLWIFI_HT*/ /***************************************************************************** * * sysfs attributes * *****************************************************************************/ #ifdef CONFIG_IWLWIFI_DEBUG /* * The following adds a new attribute to the sysfs representation * of this device driver (i.e. a new file in /sys/bus/pci/drivers/iwl/) * used for controlling the debug level. * * See the level definitions in iwl for details. */ static ssize_t show_debug_level(struct device_driver *d, char *buf) { return sprintf(buf, "0x%08X\n", iwl_debug_level); } static ssize_t store_debug_level(struct device_driver *d, const char *buf, size_t count) { char *p = (char *)buf; u32 val; val = simple_strtoul(p, &p, 0); if (p == buf) printk(KERN_INFO DRV_NAME ": %s is not in hex or decimal form.\n", buf); else iwl_debug_level = val; return strnlen(buf, count); } static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level, store_debug_level); #endif /* CONFIG_IWLWIFI_DEBUG */ static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr, char *buf) { /* * 0 - RF kill not enabled * 1 - SW based RF kill active (sysfs) * 2 - HW based RF kill active * 3 - Both HW and SW based RF kill active */ struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; int val = (test_bit(STATUS_RF_KILL_SW, &priv->status) ? 0x1 : 0x0) | (test_bit(STATUS_RF_KILL_HW, &priv->status) ? 0x2 : 0x0); return sprintf(buf, "%i\n", val); } static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; mutex_lock(&priv->mutex); iwl_radio_kill_sw(priv, buf[0] == '1'); mutex_unlock(&priv->mutex); return count; } static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill); static ssize_t show_temperature(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; if (!iwl_is_alive(priv)) return -EAGAIN; return sprintf(buf, "%d\n", iwl_hw_get_temperature(priv)); } static DEVICE_ATTR(temperature, S_IRUGO, show_temperature, NULL); static ssize_t show_rs_window(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = d->driver_data; return iwl_fill_rs_info(priv->hw, buf, IWL_AP_ID); } static DEVICE_ATTR(rs_window, S_IRUGO, show_rs_window, NULL); static ssize_t show_tx_power(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; return sprintf(buf, "%d\n", priv->user_txpower_limit); } static ssize_t store_tx_power(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; char *p = (char *)buf; u32 val; val = simple_strtoul(p, &p, 10); if (p == buf) printk(KERN_INFO DRV_NAME ": %s is not in decimal form.\n", buf); else iwl_hw_reg_set_txpower(priv, val); return count; } static DEVICE_ATTR(tx_power, S_IWUSR | S_IRUGO, show_tx_power, store_tx_power); static ssize_t show_flags(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; return sprintf(buf, "0x%04X\n", priv->active_rxon.flags); } static ssize_t store_flags(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; u32 flags = simple_strtoul(buf, NULL, 0); mutex_lock(&priv->mutex); if (le32_to_cpu(priv->staging_rxon.flags) != flags) { /* Cancel any currently running scans... */ if (iwl_scan_cancel_timeout(priv, 100)) IWL_WARNING("Could not cancel scan.\n"); else { IWL_DEBUG_INFO("Committing rxon.flags = 0x%04X\n", flags); priv->staging_rxon.flags = cpu_to_le32(flags); iwl_commit_rxon(priv); } } mutex_unlock(&priv->mutex); return count; } static DEVICE_ATTR(flags, S_IWUSR | S_IRUGO, show_flags, store_flags); static ssize_t show_filter_flags(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; return sprintf(buf, "0x%04X\n", le32_to_cpu(priv->active_rxon.filter_flags)); } static ssize_t store_filter_flags(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; u32 filter_flags = simple_strtoul(buf, NULL, 0); mutex_lock(&priv->mutex); if (le32_to_cpu(priv->staging_rxon.filter_flags) != filter_flags) { /* Cancel any currently running scans... */ if (iwl_scan_cancel_timeout(priv, 100)) IWL_WARNING("Could not cancel scan.\n"); else { IWL_DEBUG_INFO("Committing rxon.filter_flags = " "0x%04X\n", filter_flags); priv->staging_rxon.filter_flags = cpu_to_le32(filter_flags); iwl_commit_rxon(priv); } } mutex_unlock(&priv->mutex); return count; } static DEVICE_ATTR(filter_flags, S_IWUSR | S_IRUGO, show_filter_flags, store_filter_flags); static ssize_t show_tune(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; return sprintf(buf, "0x%04X\n", (priv->phymode << 8) | le16_to_cpu(priv->active_rxon.channel)); } static void iwl_set_flags_for_phymode(struct iwl_priv *priv, u8 phymode); static ssize_t store_tune(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; char *p = (char *)buf; u16 tune = simple_strtoul(p, &p, 0); u8 phymode = (tune >> 8) & 0xff; u16 channel = tune & 0xff; IWL_DEBUG_INFO("Tune request to:%d channel:%d\n", phymode, channel); mutex_lock(&priv->mutex); if ((le16_to_cpu(priv->staging_rxon.channel) != channel) || (priv->phymode != phymode)) { const struct iwl_channel_info *ch_info; ch_info = iwl_get_channel_info(priv, phymode, channel); if (!ch_info) { IWL_WARNING("Requested invalid phymode/channel " "combination: %d %d\n", phymode, channel); mutex_unlock(&priv->mutex); return -EINVAL; } /* Cancel any currently running scans... */ if (iwl_scan_cancel_timeout(priv, 100)) IWL_WARNING("Could not cancel scan.\n"); else { IWL_DEBUG_INFO("Committing phymode and " "rxon.channel = %d %d\n", phymode, channel); iwl_set_rxon_channel(priv, phymode, channel); iwl_set_flags_for_phymode(priv, phymode); iwl_set_rate(priv); iwl_commit_rxon(priv); } } mutex_unlock(&priv->mutex); return count; } static DEVICE_ATTR(tune, S_IWUSR | S_IRUGO, show_tune, store_tune); #ifdef CONFIG_IWLWIFI_SPECTRUM_MEASUREMENT static ssize_t show_measurement(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = dev_get_drvdata(d); struct iwl_spectrum_notification measure_report; u32 size = sizeof(measure_report), len = 0, ofs = 0; u8 *data = (u8 *) & measure_report; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (!(priv->measurement_status & MEASUREMENT_READY)) { spin_unlock_irqrestore(&priv->lock, flags); return 0; } memcpy(&measure_report, &priv->measure_report, size); priv->measurement_status = 0; spin_unlock_irqrestore(&priv->lock, flags); while (size && (PAGE_SIZE - len)) { hex_dump_to_buffer(data + ofs, size, 16, 1, buf + len, PAGE_SIZE - len, 1); len = strlen(buf); if (PAGE_SIZE - len) buf[len++] = '\n'; ofs += 16; size -= min(size, 16U); } return len; } static ssize_t store_measurement(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct iwl_priv *priv = dev_get_drvdata(d); struct ieee80211_measurement_params params = { .channel = le16_to_cpu(priv->active_rxon.channel), .start_time = cpu_to_le64(priv->last_tsf), .duration = cpu_to_le16(1), }; u8 type = IWL_MEASURE_BASIC; u8 buffer[32]; u8 channel; if (count) { char *p = buffer; strncpy(buffer, buf, min(sizeof(buffer), count)); channel = simple_strtoul(p, NULL, 0); if (channel) params.channel = channel; p = buffer; while (*p && *p != ' ') p++; if (*p) type = simple_strtoul(p + 1, NULL, 0); } IWL_DEBUG_INFO("Invoking measurement of type %d on " "channel %d (for '%s')\n", type, params.channel, buf); iwl_get_measurement(priv, ¶ms, type); return count; } static DEVICE_ATTR(measurement, S_IRUSR | S_IWUSR, show_measurement, store_measurement); #endif /* CONFIG_IWLWIFI_SPECTRUM_MEASUREMENT */ static ssize_t store_retry_rate(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct iwl_priv *priv = dev_get_drvdata(d); priv->retry_rate = simple_strtoul(buf, NULL, 0); if (priv->retry_rate <= 0) priv->retry_rate = 1; return count; } static ssize_t show_retry_rate(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = dev_get_drvdata(d); return sprintf(buf, "%d", priv->retry_rate); } static DEVICE_ATTR(retry_rate, S_IWUSR | S_IRUSR, show_retry_rate, store_retry_rate); static ssize_t store_power_level(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { struct iwl_priv *priv = dev_get_drvdata(d); int rc; int mode; mode = simple_strtoul(buf, NULL, 0); mutex_lock(&priv->mutex); if (!iwl_is_ready(priv)) { rc = -EAGAIN; goto out; } if ((mode < 1) || (mode > IWL_POWER_LIMIT) || (mode == IWL_POWER_AC)) mode = IWL_POWER_AC; else mode |= IWL_POWER_ENABLED; if (mode != priv->power_mode) { rc = iwl_send_power_mode(priv, IWL_POWER_LEVEL(mode)); if (rc) { IWL_DEBUG_MAC80211("failed setting power mode.\n"); goto out; } priv->power_mode = mode; } rc = count; out: mutex_unlock(&priv->mutex); return rc; } #define MAX_WX_STRING 80 /* Values are in microsecond */ static const s32 timeout_duration[] = { 350000, 250000, 75000, 37000, 25000, }; static const s32 period_duration[] = { 400000, 700000, 1000000, 1000000, 1000000 }; static ssize_t show_power_level(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = dev_get_drvdata(d); int level = IWL_POWER_LEVEL(priv->power_mode); char *p = buf; p += sprintf(p, "%d ", level); switch (level) { case IWL_POWER_MODE_CAM: case IWL_POWER_AC: p += sprintf(p, "(AC)"); break; case IWL_POWER_BATTERY: p += sprintf(p, "(BATTERY)"); break; default: p += sprintf(p, "(Timeout %dms, Period %dms)", timeout_duration[level - 1] / 1000, period_duration[level - 1] / 1000); } if (!(priv->power_mode & IWL_POWER_ENABLED)) p += sprintf(p, " OFF\n"); else p += sprintf(p, " \n"); return (p - buf + 1); } static DEVICE_ATTR(power_level, S_IWUSR | S_IRUSR, show_power_level, store_power_level); static ssize_t show_channels(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = dev_get_drvdata(d); int len = 0, i; struct ieee80211_channel *channels = NULL; const struct ieee80211_hw_mode *hw_mode = NULL; int count = 0; if (!iwl_is_ready(priv)) return -EAGAIN; hw_mode = iwl_get_hw_mode(priv, MODE_IEEE80211G); if (!hw_mode) hw_mode = iwl_get_hw_mode(priv, MODE_IEEE80211B); if (hw_mode) { channels = hw_mode->channels; count = hw_mode->num_channels; } len += sprintf(&buf[len], "Displaying %d channels in 2.4GHz band " "(802.11bg):\n", count); for (i = 0; i < count; i++) len += sprintf(&buf[len], "%d: %ddBm: BSS%s%s, %s.\n", channels[i].chan, channels[i].power_level, channels[i]. flag & IEEE80211_CHAN_W_RADAR_DETECT ? " (IEEE 802.11h required)" : "", (!(channels[i].flag & IEEE80211_CHAN_W_IBSS) || (channels[i]. flag & IEEE80211_CHAN_W_RADAR_DETECT)) ? "" : ", IBSS", channels[i]. flag & IEEE80211_CHAN_W_ACTIVE_SCAN ? "active/passive" : "passive only"); hw_mode = iwl_get_hw_mode(priv, MODE_IEEE80211A); if (hw_mode) { channels = hw_mode->channels; count = hw_mode->num_channels; } else { channels = NULL; count = 0; } len += sprintf(&buf[len], "Displaying %d channels in 5.2GHz band " "(802.11a):\n", count); for (i = 0; i < count; i++) len += sprintf(&buf[len], "%d: %ddBm: BSS%s%s, %s.\n", channels[i].chan, channels[i].power_level, channels[i]. flag & IEEE80211_CHAN_W_RADAR_DETECT ? " (IEEE 802.11h required)" : "", (!(channels[i].flag & IEEE80211_CHAN_W_IBSS) || (channels[i]. flag & IEEE80211_CHAN_W_RADAR_DETECT)) ? "" : ", IBSS", channels[i]. flag & IEEE80211_CHAN_W_ACTIVE_SCAN ? "active/passive" : "passive only"); return len; } static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL); static ssize_t show_statistics(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = dev_get_drvdata(d); u32 size = sizeof(struct iwl_notif_statistics); u32 len = 0, ofs = 0; u8 *data = (u8 *) & priv->statistics; int rc = 0; if (!iwl_is_alive(priv)) return -EAGAIN; mutex_lock(&priv->mutex); rc = iwl_send_statistics_request(priv); mutex_unlock(&priv->mutex); if (rc) { len = sprintf(buf, "Error sending statistics request: 0x%08X\n", rc); return len; } while (size && (PAGE_SIZE - len)) { hex_dump_to_buffer(data + ofs, size, 16, 1, buf + len, PAGE_SIZE - len, 1); len = strlen(buf); if (PAGE_SIZE - len) buf[len++] = '\n'; ofs += 16; size -= min(size, 16U); } return len; } static DEVICE_ATTR(statistics, S_IRUGO, show_statistics, NULL); static ssize_t show_antenna(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = dev_get_drvdata(d); if (!iwl_is_alive(priv)) return -EAGAIN; return sprintf(buf, "%d\n", priv->antenna); } static ssize_t store_antenna(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { int ant; struct iwl_priv *priv = dev_get_drvdata(d); if (count == 0) return 0; if (sscanf(buf, "%1i", &ant) != 1) { IWL_DEBUG_INFO("not in hex or decimal form.\n"); return count; } if ((ant >= 0) && (ant <= 2)) { IWL_DEBUG_INFO("Setting antenna select to %d.\n", ant); priv->antenna = (enum iwl_antenna)ant; } else IWL_DEBUG_INFO("Bad antenna select value %d.\n", ant); return count; } static DEVICE_ATTR(antenna, S_IWUSR | S_IRUGO, show_antenna, store_antenna); static ssize_t show_status(struct device *d, struct device_attribute *attr, char *buf) { struct iwl_priv *priv = (struct iwl_priv *)d->driver_data; if (!iwl_is_alive(priv)) return -EAGAIN; return sprintf(buf, "0x%08x\n", (int)priv->status); } static DEVICE_ATTR(status, S_IRUGO, show_status, NULL); static ssize_t dump_error_log(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { char *p = (char *)buf; if (p[0] == '1') iwl_dump_nic_error_log((struct iwl_priv *)d->driver_data); return strnlen(buf, count); } static DEVICE_ATTR(dump_errors, S_IWUSR, NULL, dump_error_log); static ssize_t dump_event_log(struct device *d, struct device_attribute *attr, const char *buf, size_t count) { char *p = (char *)buf; if (p[0] == '1') iwl_dump_nic_event_log((struct iwl_priv *)d->driver_data); return strnlen(buf, count); } static DEVICE_ATTR(dump_events, S_IWUSR, NULL, dump_event_log); /***************************************************************************** * * driver setup and teardown * *****************************************************************************/ static void iwl_setup_deferred_work(struct iwl_priv *priv) { priv->workqueue = create_workqueue(DRV_NAME); init_waitqueue_head(&priv->wait_command_queue); INIT_WORK(&priv->up, iwl_bg_up); INIT_WORK(&priv->restart, iwl_bg_restart); INIT_WORK(&priv->rx_replenish, iwl_bg_rx_replenish); INIT_WORK(&priv->scan_completed, iwl_bg_scan_completed); INIT_WORK(&priv->request_scan, iwl_bg_request_scan); INIT_WORK(&priv->abort_scan, iwl_bg_abort_scan); INIT_WORK(&priv->rf_kill, iwl_bg_rf_kill); INIT_WORK(&priv->beacon_update, iwl_bg_beacon_update); INIT_DELAYED_WORK(&priv->post_associate, iwl_bg_post_associate); INIT_DELAYED_WORK(&priv->init_alive_start, iwl_bg_init_alive_start); INIT_DELAYED_WORK(&priv->alive_start, iwl_bg_alive_start); INIT_DELAYED_WORK(&priv->scan_check, iwl_bg_scan_check); iwl_hw_setup_deferred_work(priv); tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long)) iwl_irq_tasklet, (unsigned long)priv); } static void iwl_cancel_deferred_work(struct iwl_priv *priv) { iwl_hw_cancel_deferred_work(priv); cancel_delayed_work(&priv->scan_check); cancel_delayed_work(&priv->alive_start); cancel_delayed_work(&priv->post_associate); cancel_work_sync(&priv->beacon_update); } static struct attribute *iwl_sysfs_entries[] = { &dev_attr_antenna.attr, &dev_attr_channels.attr, &dev_attr_dump_errors.attr, &dev_attr_dump_events.attr, &dev_attr_flags.attr, &dev_attr_filter_flags.attr, #ifdef CONFIG_IWLWIFI_SPECTRUM_MEASUREMENT &dev_attr_measurement.attr, #endif &dev_attr_power_level.attr, &dev_attr_retry_rate.attr, &dev_attr_rf_kill.attr, &dev_attr_rs_window.attr, &dev_attr_statistics.attr, &dev_attr_status.attr, &dev_attr_temperature.attr, &dev_attr_tune.attr, &dev_attr_tx_power.attr, NULL }; static struct attribute_group iwl_attribute_group = { .name = NULL, /* put in device directory */ .attrs = iwl_sysfs_entries, }; static struct ieee80211_ops iwl_hw_ops = { .tx = iwl_mac_tx, .start = iwl_mac_start, .stop = iwl_mac_stop, .add_interface = iwl_mac_add_interface, .remove_interface = iwl_mac_remove_interface, .config = iwl_mac_config, .config_interface = iwl_mac_config_interface, .configure_filter = iwl_configure_filter, .set_key = iwl_mac_set_key, .get_stats = iwl_mac_get_stats, .get_tx_stats = iwl_mac_get_tx_stats, .conf_tx = iwl_mac_conf_tx, .get_tsf = iwl_mac_get_tsf, .reset_tsf = iwl_mac_reset_tsf, .beacon_update = iwl_mac_beacon_update, #ifdef CONFIG_IWLWIFI_HT .conf_ht = iwl_mac_conf_ht, .get_ht_capab = iwl_mac_get_ht_capab, #ifdef CONFIG_IWLWIFI_HT_AGG .ht_tx_agg_start = iwl_mac_ht_tx_agg_start, .ht_tx_agg_stop = iwl_mac_ht_tx_agg_stop, .ht_rx_agg_start = iwl_mac_ht_rx_agg_start, .ht_rx_agg_stop = iwl_mac_ht_rx_agg_stop, #endif /* CONFIG_IWLWIFI_HT_AGG */ #endif /* CONFIG_IWLWIFI_HT */ .hw_scan = iwl_mac_hw_scan }; static int iwl_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err = 0; struct iwl_priv *priv; struct ieee80211_hw *hw; int i; if (iwl_param_disable_hw_scan) { IWL_DEBUG_INFO("Disabling hw_scan\n"); iwl_hw_ops.hw_scan = NULL; } if ((iwl_param_queues_num > IWL_MAX_NUM_QUEUES) || (iwl_param_queues_num < IWL_MIN_NUM_QUEUES)) { IWL_ERROR("invalid queues_num, should be between %d and %d\n", IWL_MIN_NUM_QUEUES, IWL_MAX_NUM_QUEUES); err = -EINVAL; goto out; } /* mac80211 allocates memory for this device instance, including * space for this driver's private structure */ hw = ieee80211_alloc_hw(sizeof(struct iwl_priv), &iwl_hw_ops); if (hw == NULL) { IWL_ERROR("Can not allocate network device\n"); err = -ENOMEM; goto out; } SET_IEEE80211_DEV(hw, &pdev->dev); IWL_DEBUG_INFO("*** LOAD DRIVER ***\n"); priv = hw->priv; priv->hw = hw; priv->pci_dev = pdev; priv->antenna = (enum iwl_antenna)iwl_param_antenna; #ifdef CONFIG_IWLWIFI_DEBUG iwl_debug_level = iwl_param_debug; atomic_set(&priv->restrict_refcnt, 0); #endif priv->retry_rate = 1; priv->ibss_beacon = NULL; /* Tell mac80211 and its clients (e.g. Wireless Extensions) * the range of signal quality values that we'll provide. * Negative values for level/noise indicate that we'll provide dBm. * For WE, at least, non-0 values here *enable* display of values * in app (iwconfig). */ hw->max_rssi = -20; /* signal level, negative indicates dBm */ hw->max_noise = -20; /* noise level, negative indicates dBm */ hw->max_signal = 100; /* link quality indication (%) */ /* Tell mac80211 our Tx characteristics */ hw->flags = IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE; hw->queues = 4; #ifdef CONFIG_IWLWIFI_HT #ifdef CONFIG_IWLWIFI_HT_AGG hw->queues = 16; #endif /* CONFIG_IWLWIFI_HT_AGG */ #endif /* CONFIG_IWLWIFI_HT */ spin_lock_init(&priv->lock); spin_lock_init(&priv->power_data.lock); spin_lock_init(&priv->sta_lock); spin_lock_init(&priv->hcmd_lock); spin_lock_init(&priv->lq_mngr.lock); for (i = 0; i < IWL_IBSS_MAC_HASH_SIZE; i++) INIT_LIST_HEAD(&priv->ibss_mac_hash[i]); INIT_LIST_HEAD(&priv->free_frames); mutex_init(&priv->mutex); if (pci_enable_device(pdev)) { err = -ENODEV; goto out_ieee80211_free_hw; } pci_set_master(pdev); iwl_clear_stations_table(priv); priv->data_retry_limit = -1; priv->ieee_channels = NULL; priv->ieee_rates = NULL; priv->phymode = -1; err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); if (err) { printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n"); goto out_pci_disable_device; } pci_set_drvdata(pdev, priv); err = pci_request_regions(pdev, DRV_NAME); if (err) goto out_pci_disable_device; /* We disable the RETRY_TIMEOUT register (0x41) to keep * PCI Tx retries from interfering with C3 CPU state */ pci_write_config_byte(pdev, 0x41, 0x00); priv->hw_base = pci_iomap(pdev, 0, 0); if (!priv->hw_base) { err = -ENODEV; goto out_pci_release_regions; } IWL_DEBUG_INFO("pci_resource_len = 0x%08llx\n", (unsigned long long) pci_resource_len(pdev, 0)); IWL_DEBUG_INFO("pci_resource_base = %p\n", priv->hw_base); /* Initialize module parameter values here */ if (iwl_param_disable) { set_bit(STATUS_RF_KILL_SW, &priv->status); IWL_DEBUG_INFO("Radio disabled.\n"); } priv->iw_mode = IEEE80211_IF_TYPE_STA; priv->ps_mode = 0; priv->use_ant_b_for_management_frame = 1; /* start with ant B */ priv->is_ht_enabled = 1; priv->channel_width = IWL_CHANNEL_WIDTH_40MHZ; priv->valid_antenna = 0x7; /* assume all 3 connected */ priv->ps_mode = IWL_MIMO_PS_NONE; priv->cck_power_index_compensation = iwl_read32( priv, CSR_HW_REV_WA_REG); iwl4965_set_rxon_chain(priv); printk(KERN_INFO DRV_NAME ": Detected Intel Wireless WiFi Link 4965AGN\n"); /* Device-specific setup */ if (iwl_hw_set_hw_setting(priv)) { IWL_ERROR("failed to set hw settings\n"); mutex_unlock(&priv->mutex); goto out_iounmap; } #ifdef CONFIG_IWLWIFI_QOS if (iwl_param_qos_enable) priv->qos_data.qos_enable = 1; iwl_reset_qos(priv); priv->qos_data.qos_active = 0; priv->qos_data.qos_cap.val = 0; #endif /* CONFIG_IWLWIFI_QOS */ iwl_set_rxon_channel(priv, MODE_IEEE80211G, 6); iwl_setup_deferred_work(priv); iwl_setup_rx_handlers(priv); priv->rates_mask = IWL_RATES_MASK; /* If power management is turned on, default to AC mode */ priv->power_mode = IWL_POWER_AC; priv->user_txpower_limit = IWL_DEFAULT_TX_POWER; pci_enable_msi(pdev); err = request_irq(pdev->irq, iwl_isr, IRQF_SHARED, DRV_NAME, priv); if (err) { IWL_ERROR("Error allocating IRQ %d\n", pdev->irq); goto out_disable_msi; } mutex_lock(&priv->mutex); err = sysfs_create_group(&pdev->dev.kobj, &iwl_attribute_group); if (err) { IWL_ERROR("failed to create sysfs device attributes\n"); mutex_unlock(&priv->mutex); goto out_release_irq; } /* fetch ucode file from disk, alloc and copy to bus-master buffers ... * ucode filename and max sizes are card-specific. */ err = iwl_read_ucode(priv); if (err) { IWL_ERROR("Could not read microcode: %d\n", err); mutex_unlock(&priv->mutex); goto out_pci_alloc; } mutex_unlock(&priv->mutex); IWL_DEBUG_INFO("Queing UP work.\n"); queue_work(priv->workqueue, &priv->up); return 0; out_pci_alloc: iwl_dealloc_ucode_pci(priv); sysfs_remove_group(&pdev->dev.kobj, &iwl_attribute_group); out_release_irq: free_irq(pdev->irq, priv); out_disable_msi: pci_disable_msi(pdev); destroy_workqueue(priv->workqueue); priv->workqueue = NULL; iwl_unset_hw_setting(priv); out_iounmap: pci_iounmap(pdev, priv->hw_base); out_pci_release_regions: pci_release_regions(pdev); out_pci_disable_device: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); out_ieee80211_free_hw: ieee80211_free_hw(priv->hw); out: return err; } static void iwl_pci_remove(struct pci_dev *pdev) { struct iwl_priv *priv = pci_get_drvdata(pdev); struct list_head *p, *q; int i; if (!priv) return; IWL_DEBUG_INFO("*** UNLOAD DRIVER ***\n"); mutex_lock(&priv->mutex); set_bit(STATUS_EXIT_PENDING, &priv->status); __iwl_down(priv); mutex_unlock(&priv->mutex); /* Free MAC hash list for ADHOC */ for (i = 0; i < IWL_IBSS_MAC_HASH_SIZE; i++) { list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) { list_del(p); kfree(list_entry(p, struct iwl_ibss_seq, list)); } } sysfs_remove_group(&pdev->dev.kobj, &iwl_attribute_group); iwl_dealloc_ucode_pci(priv); if (priv->rxq.bd) iwl_rx_queue_free(priv, &priv->rxq); iwl_hw_txq_ctx_free(priv); iwl_unset_hw_setting(priv); iwl_clear_stations_table(priv); if (priv->mac80211_registered) { ieee80211_unregister_hw(priv->hw); iwl_rate_control_unregister(priv->hw); } /* ieee80211_unregister_hw calls iwl_mac_stop, which flushes * priv->workqueue... so we can't take down the workqueue * until now... */ destroy_workqueue(priv->workqueue); priv->workqueue = NULL; free_irq(pdev->irq, priv); pci_disable_msi(pdev); pci_iounmap(pdev, priv->hw_base); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); kfree(priv->channel_info); kfree(priv->ieee_channels); kfree(priv->ieee_rates); if (priv->ibss_beacon) dev_kfree_skb(priv->ibss_beacon); ieee80211_free_hw(priv->hw); } #ifdef CONFIG_PM static int iwl_pci_suspend(struct pci_dev *pdev, pm_message_t state) { struct iwl_priv *priv = pci_get_drvdata(pdev); mutex_lock(&priv->mutex); set_bit(STATUS_IN_SUSPEND, &priv->status); /* Take down the device; powers it off, etc. */ __iwl_down(priv); if (priv->mac80211_registered) ieee80211_stop_queues(priv->hw); pci_save_state(pdev); pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); mutex_unlock(&priv->mutex); return 0; } static void iwl_resume(struct iwl_priv *priv) { unsigned long flags; /* The following it a temporary work around due to the * suspend / resume not fully initializing the NIC correctly. * Without all of the following, resume will not attempt to take * down the NIC (it shouldn't really need to) and will just try * and bring the NIC back up. However that fails during the * ucode verification process. This then causes iwl_down to be * called *after* iwl_hw_nic_init() has succeeded -- which * then lets the next init sequence succeed. So, we've * replicated all of that NIC init code here... */ iwl_write32(priv, CSR_INT, 0xFFFFFFFF); iwl_hw_nic_init(priv); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); iwl_write32(priv, CSR_INT, 0xFFFFFFFF); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL); /* tell the device to stop sending interrupts */ iwl_disable_interrupts(priv); spin_lock_irqsave(&priv->lock, flags); iwl_clear_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); if (!iwl_grab_restricted_access(priv)) { iwl_write_restricted_reg(priv, APMG_CLK_DIS_REG, APMG_CLK_VAL_DMA_CLK_RQT); iwl_release_restricted_access(priv); } spin_unlock_irqrestore(&priv->lock, flags); udelay(5); iwl_hw_nic_reset(priv); /* Bring the device back up */ clear_bit(STATUS_IN_SUSPEND, &priv->status); queue_work(priv->workqueue, &priv->up); } static int iwl_pci_resume(struct pci_dev *pdev) { struct iwl_priv *priv = pci_get_drvdata(pdev); int err; printk(KERN_INFO "Coming out of suspend...\n"); mutex_lock(&priv->mutex); pci_set_power_state(pdev, PCI_D0); err = pci_enable_device(pdev); pci_restore_state(pdev); /* * Suspend/Resume resets the PCI configuration space, so we have to * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries * from interfering with C3 CPU state. pci_restore_state won't help * here since it only restores the first 64 bytes pci config header. */ pci_write_config_byte(pdev, 0x41, 0x00); iwl_resume(priv); mutex_unlock(&priv->mutex); return 0; } #endif /* CONFIG_PM */ /***************************************************************************** * * driver and module entry point * *****************************************************************************/ static struct pci_driver iwl_driver = { .name = DRV_NAME, .id_table = iwl_hw_card_ids, .probe = iwl_pci_probe, .remove = __devexit_p(iwl_pci_remove), #ifdef CONFIG_PM .suspend = iwl_pci_suspend, .resume = iwl_pci_resume, #endif }; static int __init iwl_init(void) { int ret; printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n"); printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n"); ret = pci_register_driver(&iwl_driver); if (ret) { IWL_ERROR("Unable to initialize PCI module\n"); return ret; } #ifdef CONFIG_IWLWIFI_DEBUG ret = driver_create_file(&iwl_driver.driver, &driver_attr_debug_level); if (ret) { IWL_ERROR("Unable to create driver sysfs file\n"); pci_unregister_driver(&iwl_driver); return ret; } #endif return ret; } static void __exit iwl_exit(void) { #ifdef CONFIG_IWLWIFI_DEBUG driver_remove_file(&iwl_driver.driver, &driver_attr_debug_level); #endif pci_unregister_driver(&iwl_driver); } module_param_named(antenna, iwl_param_antenna, int, 0444); MODULE_PARM_DESC(antenna, "select antenna (1=Main, 2=Aux, default 0 [both])"); module_param_named(disable, iwl_param_disable, int, 0444); MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])"); module_param_named(hwcrypto, iwl_param_hwcrypto, int, 0444); MODULE_PARM_DESC(hwcrypto, "using hardware crypto engine (default 0 [software])\n"); module_param_named(debug, iwl_param_debug, int, 0444); MODULE_PARM_DESC(debug, "debug output mask"); module_param_named(disable_hw_scan, iwl_param_disable_hw_scan, int, 0444); MODULE_PARM_DESC(disable_hw_scan, "disable hardware scanning (default 0)"); module_param_named(queues_num, iwl_param_queues_num, int, 0444); MODULE_PARM_DESC(queues_num, "number of hw queues."); /* QoS */ module_param_named(qos_enable, iwl_param_qos_enable, int, 0444); MODULE_PARM_DESC(qos_enable, "enable all QoS functionality"); module_exit(iwl_exit); module_init(iwl_init);