/* Copyright (C) 2004 - 2007 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00 Abstract: rt2x00 global information. */ #ifndef RT2X00_H #define RT2X00_H #include #include #include #include #include #include #include "rt2x00debug.h" #include "rt2x00reg.h" #include "rt2x00ring.h" /* * Module information. * DRV_NAME should be set within the individual module source files. */ #define DRV_VERSION "2.0.9" #define DRV_PROJECT "http://rt2x00.serialmonkey.com" /* * Debug definitions. * Debug output has to be enabled during compile time. */ #define DEBUG_PRINTK_MSG(__dev, __kernlvl, __lvl, __msg, __args...) \ printk(__kernlvl "%s -> %s: %s - " __msg, \ wiphy_name((__dev)->hw->wiphy), __FUNCTION__, __lvl, ##__args) #define DEBUG_PRINTK_PROBE(__kernlvl, __lvl, __msg, __args...) \ printk(__kernlvl "%s -> %s: %s - " __msg, \ DRV_NAME, __FUNCTION__, __lvl, ##__args) #ifdef CONFIG_RT2X00_DEBUG #define DEBUG_PRINTK(__dev, __kernlvl, __lvl, __msg, __args...) \ DEBUG_PRINTK_MSG(__dev, __kernlvl, __lvl, __msg, ##__args); #else #define DEBUG_PRINTK(__dev, __kernlvl, __lvl, __msg, __args...) \ do { } while (0) #endif /* CONFIG_RT2X00_DEBUG */ /* * Various debug levels. * The debug levels PANIC and ERROR both indicate serious problems, * for this reason they should never be ignored. * The special ERROR_PROBE message is for messages that are generated * when the rt2x00_dev is not yet initialized. */ #define PANIC(__dev, __msg, __args...) \ DEBUG_PRINTK_MSG(__dev, KERN_CRIT, "Panic", __msg, ##__args) #define ERROR(__dev, __msg, __args...) \ DEBUG_PRINTK_MSG(__dev, KERN_ERR, "Error", __msg, ##__args) #define ERROR_PROBE(__msg, __args...) \ DEBUG_PRINTK_PROBE(KERN_ERR, "Error", __msg, ##__args) #define WARNING(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_WARNING, "Warning", __msg, ##__args) #define NOTICE(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_NOTICE, "Notice", __msg, ##__args) #define INFO(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_INFO, "Info", __msg, ##__args) #define DEBUG(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_DEBUG, "Debug", __msg, ##__args) #define EEPROM(__dev, __msg, __args...) \ DEBUG_PRINTK(__dev, KERN_DEBUG, "EEPROM recovery", __msg, ##__args) /* * Ring sizes. * Ralink PCI devices demand the Frame size to be a multiple of 128 bytes. * DATA_FRAME_SIZE is used for TX, RX, ATIM and PRIO rings. * MGMT_FRAME_SIZE is used for the BEACON ring. */ #define DATA_FRAME_SIZE 2432 #define MGMT_FRAME_SIZE 256 /* * Number of entries in a packet ring. * PCI devices only need 1 Beacon entry, * but USB devices require a second because they * have to send a Guardian byte first. */ #define RX_ENTRIES 12 #define TX_ENTRIES 12 #define ATIM_ENTRIES 1 #define BEACON_ENTRIES 2 /* * Standard timing and size defines. * These values should follow the ieee80211 specifications. */ #define ACK_SIZE 14 #define IEEE80211_HEADER 24 #define PLCP 48 #define BEACON 100 #define PREAMBLE 144 #define SHORT_PREAMBLE 72 #define SLOT_TIME 20 #define SHORT_SLOT_TIME 9 #define SIFS 10 #define PIFS ( SIFS + SLOT_TIME ) #define SHORT_PIFS ( SIFS + SHORT_SLOT_TIME ) #define DIFS ( PIFS + SLOT_TIME ) #define SHORT_DIFS ( SHORT_PIFS + SHORT_SLOT_TIME ) #define EIFS ( SIFS + (8 * (IEEE80211_HEADER + ACK_SIZE)) ) /* * IEEE802.11 header defines */ static inline int is_rts_frame(u16 fc) { return !!(((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) && ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_RTS)); } static inline int is_cts_frame(u16 fc) { return !!(((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL) && ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_CTS)); } static inline int is_probe_resp(u16 fc) { return !!(((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) && ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP)); } /* * Chipset identification * The chipset on the device is composed of a RT and RF chip. * The chipset combination is important for determining device capabilities. */ struct rt2x00_chip { u16 rt; #define RT2460 0x0101 #define RT2560 0x0201 #define RT2570 0x1201 #define RT2561s 0x0301 /* Turbo */ #define RT2561 0x0302 #define RT2661 0x0401 #define RT2571 0x1300 u16 rf; u32 rev; }; /* * RF register values that belong to a particular channel. */ struct rf_channel { int channel; u32 rf1; u32 rf2; u32 rf3; u32 rf4; }; /* * To optimize the quality of the link we need to store * the quality of received frames and periodically * optimize the link. */ struct link { /* * Link tuner counter * The number of times the link has been tuned * since the radio has been switched on. */ u32 count; /* * Statistics required for Link tuning. * For the average RSSI value we use the "Walking average" approach. * When adding RSSI to the average value the following calculation * is needed: * * avg_rssi = ((avg_rssi * 7) + rssi) / 8; * * The advantage of this approach is that we only need 1 variable * to store the average in (No need for a count and a total). * But more importantly, normal average values will over time * move less and less towards newly added values this results * that with link tuning, the device can have a very good RSSI * for a few minutes but when the device is moved away from the AP * the average will not decrease fast enough to compensate. * The walking average compensates this and will move towards * the new values correctly allowing a effective link tuning. */ int avg_rssi; int vgc_level; int false_cca; /* * Statistics required for Signal quality calculation. * For calculating the Signal quality we have to determine * the total number of success and failed RX and TX frames. * After that we also use the average RSSI value to help * determining the signal quality. * For the calculation we will use the following algorithm: * * rssi_percentage = (avg_rssi * 100) / rssi_offset * rx_percentage = (rx_success * 100) / rx_total * tx_percentage = (tx_success * 100) / tx_total * avg_signal = ((WEIGHT_RSSI * avg_rssi) + * (WEIGHT_TX * tx_percentage) + * (WEIGHT_RX * rx_percentage)) / 100 * * This value should then be checked to not be greated then 100. */ int rx_percentage; int rx_success; int rx_failed; int tx_percentage; int tx_success; int tx_failed; #define WEIGHT_RSSI 20 #define WEIGHT_RX 40 #define WEIGHT_TX 40 /* * Work structure for scheduling periodic link tuning. */ struct delayed_work work; }; /* * Clear all counters inside the link structure. * This can be easiest achieved by memsetting everything * except for the work structure at the end. */ static inline void rt2x00_clear_link(struct link *link) { memset(link, 0x00, sizeof(*link) - sizeof(link->work)); link->rx_percentage = 50; link->tx_percentage = 50; } /* * Update the rssi using the walking average approach. */ static inline void rt2x00_update_link_rssi(struct link *link, int rssi) { if (!link->avg_rssi) link->avg_rssi = rssi; else link->avg_rssi = ((link->avg_rssi * 7) + rssi) / 8; } /* * When the avg_rssi is unset or no frames have been received), * we need to return the default value which needs to be less * than -80 so the device will select the maximum sensitivity. */ static inline int rt2x00_get_link_rssi(struct link *link) { return (link->avg_rssi && link->rx_success) ? link->avg_rssi : -128; } /* * Interface structure * Configuration details about the current interface. */ struct interface { /* * Interface identification. The value is assigned * to us by the 80211 stack, and is used to request * new beacons. */ int id; /* * Current working type (IEEE80211_IF_TYPE_*). * When set to INVALID_INTERFACE, no interface is configured. */ int type; #define INVALID_INTERFACE IEEE80211_IF_TYPE_INVALID /* * MAC of the device. */ u8 mac[ETH_ALEN]; /* * BBSID of the AP to associate with. */ u8 bssid[ETH_ALEN]; /* * Store the packet filter mode for the current interface. */ unsigned int filter; }; static inline int is_interface_present(struct interface *intf) { return !!intf->id; } static inline int is_interface_type(struct interface *intf, int type) { return intf->type == type; } /* * Details about the supported modes, rates and channels * of a particular chipset. This is used by rt2x00lib * to build the ieee80211_hw_mode array for mac80211. */ struct hw_mode_spec { /* * Number of modes, rates and channels. */ int num_modes; int num_rates; int num_channels; /* * txpower values. */ const u8 *tx_power_a; const u8 *tx_power_bg; u8 tx_power_default; /* * Device/chipset specific value. */ const struct rf_channel *channels; }; /* * rt2x00lib callback functions. */ struct rt2x00lib_ops { /* * Interrupt handlers. */ irq_handler_t irq_handler; /* * Device init handlers. */ int (*probe_hw) (struct rt2x00_dev *rt2x00dev); char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev); int (*load_firmware) (struct rt2x00_dev *rt2x00dev, void *data, const size_t len); /* * Device initialization/deinitialization handlers. */ int (*initialize) (struct rt2x00_dev *rt2x00dev); void (*uninitialize) (struct rt2x00_dev *rt2x00dev); /* * Radio control handlers. */ int (*set_device_state) (struct rt2x00_dev *rt2x00dev, enum dev_state state); int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev); void (*link_stats) (struct rt2x00_dev *rt2x00dev); void (*reset_tuner) (struct rt2x00_dev *rt2x00dev); void (*link_tuner) (struct rt2x00_dev *rt2x00dev); /* * TX control handlers */ void (*write_tx_desc) (struct rt2x00_dev *rt2x00dev, struct data_desc *txd, struct txdata_entry_desc *desc, struct ieee80211_hdr *ieee80211hdr, unsigned int length, struct ieee80211_tx_control *control); int (*write_tx_data) (struct rt2x00_dev *rt2x00dev, struct data_ring *ring, struct sk_buff *skb, struct ieee80211_tx_control *control); void (*kick_tx_queue) (struct rt2x00_dev *rt2x00dev, unsigned int queue); /* * RX control handlers */ void (*fill_rxdone) (struct data_entry *entry, struct rxdata_entry_desc *desc); /* * Configuration handlers. */ void (*config_mac_addr) (struct rt2x00_dev *rt2x00dev, __le32 *mac); void (*config_bssid) (struct rt2x00_dev *rt2x00dev, __le32 *bssid); void (*config_packet_filter) (struct rt2x00_dev *rt2x00dev, const unsigned int filter); void (*config_type) (struct rt2x00_dev *rt2x00dev, const int type); void (*config) (struct rt2x00_dev *rt2x00dev, const unsigned int flags, struct ieee80211_conf *conf); #define CONFIG_UPDATE_PHYMODE ( 1 << 1 ) #define CONFIG_UPDATE_CHANNEL ( 1 << 2 ) #define CONFIG_UPDATE_TXPOWER ( 1 << 3 ) #define CONFIG_UPDATE_ANTENNA ( 1 << 4 ) #define CONFIG_UPDATE_SLOT_TIME ( 1 << 5 ) #define CONFIG_UPDATE_BEACON_INT ( 1 << 6 ) #define CONFIG_UPDATE_ALL 0xffff }; /* * rt2x00 driver callback operation structure. */ struct rt2x00_ops { const char *name; const unsigned int rxd_size; const unsigned int txd_size; const unsigned int eeprom_size; const unsigned int rf_size; const struct rt2x00lib_ops *lib; const struct ieee80211_ops *hw; #ifdef CONFIG_RT2X00_LIB_DEBUGFS const struct rt2x00debug *debugfs; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * rt2x00 device structure. */ struct rt2x00_dev { /* * Device structure. * The structure stored in here depends on the * system bus (PCI or USB). * When accessing this variable, the rt2x00dev_{pci,usb} * macro's should be used for correct typecasting. */ void *dev; #define rt2x00dev_pci(__dev) ( (struct pci_dev*)(__dev)->dev ) #define rt2x00dev_usb(__dev) ( (struct usb_interface*)(__dev)->dev ) /* * Callback functions. */ const struct rt2x00_ops *ops; /* * IEEE80211 control structure. */ struct ieee80211_hw *hw; struct ieee80211_hw_mode *hwmodes; unsigned int curr_hwmode; #define HWMODE_B 0 #define HWMODE_G 1 #define HWMODE_A 2 /* * rfkill structure for RF state switching support. * This will only be compiled in when required. */ #ifdef CONFIG_RT2X00_LIB_RFKILL struct rfkill *rfkill; struct input_polled_dev *poll_dev; #endif /* CONFIG_RT2X00_LIB_RFKILL */ /* * If enabled, the debugfs interface structures * required for deregistration of debugfs. */ #ifdef CONFIG_RT2X00_LIB_DEBUGFS const struct rt2x00debug_intf *debugfs_intf; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ /* * Device flags. * In these flags the current status and some * of the device capabilities are stored. */ unsigned long flags; #define DEVICE_PRESENT 1 #define DEVICE_REGISTERED_HW 2 #define DEVICE_INITIALIZED 3 #define DEVICE_STARTED 4 #define DEVICE_ENABLED_RADIO 5 #define DEVICE_ENABLED_RADIO_HW 6 #define DRIVER_REQUIRE_FIRMWARE 7 #define DRIVER_REQUIRE_BEACON_RING 8 #define CONFIG_SUPPORT_HW_BUTTON 9 #define CONFIG_FRAME_TYPE 10 #define CONFIG_RF_SEQUENCE 11 #define CONFIG_EXTERNAL_LNA_A 12 #define CONFIG_EXTERNAL_LNA_BG 13 #define CONFIG_DOUBLE_ANTENNA 14 #define CONFIG_DISABLE_LINK_TUNING 15 /* * Chipset identification. */ struct rt2x00_chip chip; /* * hw capability specifications. */ struct hw_mode_spec spec; /* * Register pointers * csr_addr: Base register address. (PCI) * csr_cache: CSR cache for usb_control_msg. (USB) */ void __iomem *csr_addr; void *csr_cache; /* * Interface configuration. */ struct interface interface; /* * Link quality */ struct link link; /* * EEPROM data. */ __le16 *eeprom; /* * Active RF register values. * These are stored here so we don't need * to read the rf registers and can directly * use this value instead. * This field should be accessed by using * rt2x00_rf_read() and rt2x00_rf_write(). */ u32 *rf; /* * Current TX power value. */ u16 tx_power; /* * LED register (for rt61pci & rt73usb). */ u16 led_reg; /* * Led mode (LED_MODE_*) */ u8 led_mode; /* * Rssi <-> Dbm offset */ u8 rssi_offset; /* * Frequency offset (for rt61pci & rt73usb). */ u8 freq_offset; /* * Low level statistics which will have * to be kept up to date while device is running. */ struct ieee80211_low_level_stats low_level_stats; /* * RX configuration information. */ struct ieee80211_rx_status rx_status; /* * Scheduled work. */ struct work_struct beacon_work; struct work_struct filter_work; /* * Data ring arrays for RX, TX and Beacon. * The Beacon array also contains the Atim ring * if that is supported by the device. */ int data_rings; struct data_ring *rx; struct data_ring *tx; struct data_ring *bcn; /* * Firmware image. */ const struct firmware *fw; }; /* * For-each loop for the ring array. * All rings have been allocated as a single array, * this means we can create a very simply loop macro * that is capable of looping through all rings. * ring_end(), txring_end() and ring_loop() are helper macro's which * should not be used directly. Instead the following should be used: * ring_for_each() - Loops through all rings (RX, TX, Beacon & Atim) * txring_for_each() - Loops through TX data rings (TX only) * txringall_for_each() - Loops through all TX rings (TX, Beacon & Atim) */ #define ring_end(__dev) \ &(__dev)->rx[(__dev)->data_rings] #define txring_end(__dev) \ &(__dev)->tx[(__dev)->hw->queues] #define ring_loop(__entry, __start, __end) \ for ((__entry) = (__start); \ prefetch(&(__entry)[1]), (__entry) != (__end); \ (__entry) = &(__entry)[1]) #define ring_for_each(__dev, __entry) \ ring_loop(__entry, (__dev)->rx, ring_end(__dev)) #define txring_for_each(__dev, __entry) \ ring_loop(__entry, (__dev)->tx, txring_end(__dev)) #define txringall_for_each(__dev, __entry) \ ring_loop(__entry, (__dev)->tx, ring_end(__dev)) /* * Generic RF access. * The RF is being accessed by word index. */ static inline void rt2x00_rf_read(const struct rt2x00_dev *rt2x00dev, const unsigned int word, u32 *data) { *data = rt2x00dev->rf[word]; } static inline void rt2x00_rf_write(const struct rt2x00_dev *rt2x00dev, const unsigned int word, u32 data) { rt2x00dev->rf[word] = data; } /* * Generic EEPROM access. * The EEPROM is being accessed by word index. */ static inline void *rt2x00_eeprom_addr(const struct rt2x00_dev *rt2x00dev, const unsigned int word) { return (void *)&rt2x00dev->eeprom[word]; } static inline void rt2x00_eeprom_read(const struct rt2x00_dev *rt2x00dev, const unsigned int word, u16 *data) { *data = le16_to_cpu(rt2x00dev->eeprom[word]); } static inline void rt2x00_eeprom_write(const struct rt2x00_dev *rt2x00dev, const unsigned int word, u16 data) { rt2x00dev->eeprom[word] = cpu_to_le16(data); } /* * Chipset handlers */ static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev, const u16 rt, const u16 rf, const u32 rev) { INFO(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %08x.\n", rt, rf, rev); rt2x00dev->chip.rt = rt; rt2x00dev->chip.rf = rf; rt2x00dev->chip.rev = rev; } static inline char rt2x00_rt(const struct rt2x00_chip *chipset, const u16 chip) { return (chipset->rt == chip); } static inline char rt2x00_rf(const struct rt2x00_chip *chipset, const u16 chip) { return (chipset->rf == chip); } static inline u16 rt2x00_get_rev(const struct rt2x00_chip *chipset) { return chipset->rev; } static inline u16 rt2x00_rev(const struct rt2x00_chip *chipset, const u32 mask) { return chipset->rev & mask; } /* * Duration calculations * The rate variable passed is: 100kbs. * To convert from bytes to bits we multiply size with 8, * then the size is multiplied with 10 to make the * real rate -> rate argument correction. */ static inline u16 get_duration(const unsigned int size, const u8 rate) { return ((size * 8 * 10) / rate); } static inline u16 get_duration_res(const unsigned int size, const u8 rate) { return ((size * 8 * 10) % rate); } /* * Library functions. */ struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev, const unsigned int queue); /* * Interrupt context handlers. */ void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev); void rt2x00lib_txdone(struct data_entry *entry, const int status, const int retry); void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb, struct rxdata_entry_desc *desc); /* * TX descriptor initializer */ void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct data_desc *txd, struct ieee80211_hdr *ieee80211hdr, unsigned int length, struct ieee80211_tx_control *control); /* * mac80211 handlers. */ int rt2x00mac_tx(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_control *control); int rt2x00mac_start(struct ieee80211_hw *hw); void rt2x00mac_stop(struct ieee80211_hw *hw); int rt2x00mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf); void rt2x00mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf); int rt2x00mac_config(struct ieee80211_hw *hw, struct ieee80211_conf *conf); int rt2x00mac_config_interface(struct ieee80211_hw *hw, int if_id, struct ieee80211_if_conf *conf); int rt2x00mac_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats); int rt2x00mac_get_tx_stats(struct ieee80211_hw *hw, struct ieee80211_tx_queue_stats *stats); int rt2x00mac_conf_tx(struct ieee80211_hw *hw, int queue, const struct ieee80211_tx_queue_params *params); /* * Driver allocation handlers. */ int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev); void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev); #ifdef CONFIG_PM int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state); int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev); #endif /* CONFIG_PM */ #endif /* RT2X00_H */