/* Copyright (C) 2004 - 2008 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt73usb Abstract: rt73usb device specific routines. Supported chipsets: rt2571W & rt2671. */ #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00usb.h" #include "rt73usb.h" /* * Register access. * All access to the CSR registers will go through the methods * rt73usb_register_read and rt73usb_register_write. * BBP and RF register require indirect register access, * and use the CSR registers BBPCSR and RFCSR to achieve this. * These indirect registers work with busy bits, * and we will try maximal REGISTER_BUSY_COUNT times to access * the register while taking a REGISTER_BUSY_DELAY us delay * between each attampt. When the busy bit is still set at that time, * the access attempt is considered to have failed, * and we will print an error. * The _lock versions must be used if you already hold the usb_cache_mutex */ static inline void rt73usb_register_read(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u32 *value) { __le32 reg; rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, USB_VENDOR_REQUEST_IN, offset, ®, sizeof(u32), REGISTER_TIMEOUT); *value = le32_to_cpu(reg); } static inline void rt73usb_register_read_lock(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u32 *value) { __le32 reg; rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ, USB_VENDOR_REQUEST_IN, offset, ®, sizeof(u32), REGISTER_TIMEOUT); *value = le32_to_cpu(reg); } static inline void rt73usb_register_multiread(struct rt2x00_dev *rt2x00dev, const unsigned int offset, void *value, const u32 length) { int timeout = REGISTER_TIMEOUT * (length / sizeof(u32)); rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, USB_VENDOR_REQUEST_IN, offset, value, length, timeout); } static inline void rt73usb_register_write(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u32 value) { __le32 reg = cpu_to_le32(value); rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, offset, ®, sizeof(u32), REGISTER_TIMEOUT); } static inline void rt73usb_register_write_lock(struct rt2x00_dev *rt2x00dev, const unsigned int offset, u32 value) { __le32 reg = cpu_to_le32(value); rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, offset, ®, sizeof(u32), REGISTER_TIMEOUT); } static inline void rt73usb_register_multiwrite(struct rt2x00_dev *rt2x00dev, const unsigned int offset, void *value, const u32 length) { int timeout = REGISTER_TIMEOUT * (length / sizeof(u32)); rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, offset, value, length, timeout); } static u32 rt73usb_bbp_check(struct rt2x00_dev *rt2x00dev) { u32 reg; unsigned int i; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt73usb_register_read_lock(rt2x00dev, PHY_CSR3, ®); if (!rt2x00_get_field32(reg, PHY_CSR3_BUSY)) break; udelay(REGISTER_BUSY_DELAY); } return reg; } static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u8 value) { u32 reg; mutex_lock(&rt2x00dev->usb_cache_mutex); /* * Wait until the BBP becomes ready. */ reg = rt73usb_bbp_check(rt2x00dev); if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { ERROR(rt2x00dev, "PHY_CSR3 register busy. Write failed.\n"); mutex_unlock(&rt2x00dev->usb_cache_mutex); return; } /* * Write the data into the BBP. */ reg = 0; rt2x00_set_field32(®, PHY_CSR3_VALUE, value); rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); mutex_unlock(&rt2x00dev->usb_cache_mutex); } static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev, const unsigned int word, u8 *value) { u32 reg; mutex_lock(&rt2x00dev->usb_cache_mutex); /* * Wait until the BBP becomes ready. */ reg = rt73usb_bbp_check(rt2x00dev); if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n"); mutex_unlock(&rt2x00dev->usb_cache_mutex); return; } /* * Write the request into the BBP. */ reg = 0; rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); rt73usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); /* * Wait until the BBP becomes ready. */ reg = rt73usb_bbp_check(rt2x00dev); if (rt2x00_get_field32(reg, PHY_CSR3_BUSY)) { ERROR(rt2x00dev, "PHY_CSR3 register busy. Read failed.\n"); *value = 0xff; return; } *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); mutex_unlock(&rt2x00dev->usb_cache_mutex); } static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev, const unsigned int word, const u32 value) { u32 reg; unsigned int i; if (!word) return; mutex_lock(&rt2x00dev->usb_cache_mutex); for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt73usb_register_read_lock(rt2x00dev, PHY_CSR4, ®); if (!rt2x00_get_field32(reg, PHY_CSR4_BUSY)) goto rf_write; udelay(REGISTER_BUSY_DELAY); } mutex_unlock(&rt2x00dev->usb_cache_mutex); ERROR(rt2x00dev, "PHY_CSR4 register busy. Write failed.\n"); return; rf_write: reg = 0; rt2x00_set_field32(®, PHY_CSR4_VALUE, value); /* * RF5225 and RF2527 contain 21 bits per RF register value, * all others contain 20 bits. */ rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) || rt2x00_rf(&rt2x00dev->chip, RF2527))); rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); rt73usb_register_write_lock(rt2x00dev, PHY_CSR4, reg); rt2x00_rf_write(rt2x00dev, word, value); mutex_unlock(&rt2x00dev->usb_cache_mutex); } #ifdef CONFIG_RT2X00_LIB_DEBUGFS #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) ) static void rt73usb_read_csr(struct rt2x00_dev *rt2x00dev, const unsigned int word, u32 *data) { rt73usb_register_read(rt2x00dev, CSR_OFFSET(word), data); } static void rt73usb_write_csr(struct rt2x00_dev *rt2x00dev, const unsigned int word, u32 data) { rt73usb_register_write(rt2x00dev, CSR_OFFSET(word), data); } static const struct rt2x00debug rt73usb_rt2x00debug = { .owner = THIS_MODULE, .csr = { .read = rt73usb_read_csr, .write = rt73usb_write_csr, .word_size = sizeof(u32), .word_count = CSR_REG_SIZE / sizeof(u32), }, .eeprom = { .read = rt2x00_eeprom_read, .write = rt2x00_eeprom_write, .word_size = sizeof(u16), .word_count = EEPROM_SIZE / sizeof(u16), }, .bbp = { .read = rt73usb_bbp_read, .write = rt73usb_bbp_write, .word_size = sizeof(u8), .word_count = BBP_SIZE / sizeof(u8), }, .rf = { .read = rt2x00_rf_read, .write = rt73usb_rf_write, .word_size = sizeof(u32), .word_count = RF_SIZE / sizeof(u32), }, }; #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ #ifdef CONFIG_RT73USB_LEDS static void rt73usb_led_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { struct rt2x00_led *led = container_of(led_cdev, struct rt2x00_led, led_dev); unsigned int enabled = brightness != LED_OFF; unsigned int a_mode = (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); unsigned int bg_mode = (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); if (in_atomic()) { NOTICE(led->rt2x00dev, "Ignoring LED brightness command for led %d", led->type); return; } if (led->type == LED_TYPE_RADIO) { rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_RADIO_STATUS, enabled); rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 0, led->rt2x00dev->led_mcu_reg, REGISTER_TIMEOUT); } else if (led->type == LED_TYPE_ASSOC) { rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_LINK_BG_STATUS, bg_mode); rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, MCU_LEDCS_LINK_A_STATUS, a_mode); rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, 0, led->rt2x00dev->led_mcu_reg, REGISTER_TIMEOUT); } else if (led->type == LED_TYPE_QUALITY) { /* * The brightness is divided into 6 levels (0 - 5), * this means we need to convert the brightness * argument into the matching level within that range. */ rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, brightness / (LED_FULL / 6), led->rt2x00dev->led_mcu_reg, REGISTER_TIMEOUT); } } #else #define rt73usb_led_brightness NULL #endif /* CONFIG_RT73USB_LEDS */ /* * Configuration handlers. */ static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, struct rt2x00intf_conf *conf, const unsigned int flags) { unsigned int beacon_base; u32 reg; if (flags & CONFIG_UPDATE_TYPE) { /* * Clear current synchronisation setup. * For the Beacon base registers we only need to clear * the first byte since that byte contains the VALID and OWNER * bits which (when set to 0) will invalidate the entire beacon. */ beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx); rt73usb_register_write(rt2x00dev, TXRX_CSR9, 0); rt73usb_register_write(rt2x00dev, beacon_base, 0); /* * Enable synchronisation. */ rt73usb_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, (conf->sync == TSF_SYNC_BEACON)); rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg); } if (flags & CONFIG_UPDATE_MAC) { reg = le32_to_cpu(conf->mac[1]); rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); conf->mac[1] = cpu_to_le32(reg); rt73usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, sizeof(conf->mac)); } if (flags & CONFIG_UPDATE_BSSID) { reg = le32_to_cpu(conf->bssid[1]); rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); conf->bssid[1] = cpu_to_le32(reg); rt73usb_register_multiwrite(rt2x00dev, MAC_CSR4, conf->bssid, sizeof(conf->bssid)); } } static int rt73usb_config_preamble(struct rt2x00_dev *rt2x00dev, const int short_preamble, const int ack_timeout, const int ack_consume_time) { u32 reg; /* * When in atomic context, we should let rt2x00lib * try this configuration again later. */ if (in_atomic()) return -EAGAIN; rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, ack_timeout); rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg); rt73usb_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, !!short_preamble); rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg); return 0; } static void rt73usb_config_phymode(struct rt2x00_dev *rt2x00dev, const int basic_rate_mask) { rt73usb_register_write(rt2x00dev, TXRX_CSR5, basic_rate_mask); } static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev, struct rf_channel *rf, const int txpower) { u8 r3; u8 r94; u8 smart; rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) || rt2x00_rf(&rt2x00dev->chip, RF2527)); rt73usb_bbp_read(rt2x00dev, 3, &r3); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); rt73usb_bbp_write(rt2x00dev, 3, r3); r94 = 6; if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) r94 += txpower - MAX_TXPOWER; else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) r94 += txpower; rt73usb_bbp_write(rt2x00dev, 94, r94); rt73usb_rf_write(rt2x00dev, 1, rf->rf1); rt73usb_rf_write(rt2x00dev, 2, rf->rf2); rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); rt73usb_rf_write(rt2x00dev, 4, rf->rf4); rt73usb_rf_write(rt2x00dev, 1, rf->rf1); rt73usb_rf_write(rt2x00dev, 2, rf->rf2); rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); rt73usb_rf_write(rt2x00dev, 4, rf->rf4); rt73usb_rf_write(rt2x00dev, 1, rf->rf1); rt73usb_rf_write(rt2x00dev, 2, rf->rf2); rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); rt73usb_rf_write(rt2x00dev, 4, rf->rf4); udelay(10); } static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev, const int txpower) { struct rf_channel rf; rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); rt73usb_config_channel(rt2x00dev, &rf, txpower); } static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u8 r3; u8 r4; u8 r77; u8 temp; rt73usb_bbp_read(rt2x00dev, 3, &r3); rt73usb_bbp_read(rt2x00dev, 4, &r4); rt73usb_bbp_read(rt2x00dev, 77, &r77); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_HW_DIVERSITY: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags) && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp); break; case ANTENNA_A: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); else rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); break; case ANTENNA_SW_DIVERSITY: /* * NOTE: We should never come here because rt2x00lib is * supposed to catch this and send us the correct antenna * explicitely. However we are nog going to bug about this. * Instead, just default to antenna B. */ case ANTENNA_B: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); else rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); break; } rt73usb_bbp_write(rt2x00dev, 77, r77); rt73usb_bbp_write(rt2x00dev, 3, r3); rt73usb_bbp_write(rt2x00dev, 4, r4); } static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { u8 r3; u8 r4; u8 r77; rt73usb_bbp_read(rt2x00dev, 3, &r3); rt73usb_bbp_read(rt2x00dev, 4, &r4); rt73usb_bbp_read(rt2x00dev, 77, &r77); rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)); /* * Configure the RX antenna. */ switch (ant->rx) { case ANTENNA_HW_DIVERSITY: rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); break; case ANTENNA_A: rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); break; case ANTENNA_SW_DIVERSITY: /* * NOTE: We should never come here because rt2x00lib is * supposed to catch this and send us the correct antenna * explicitely. However we are nog going to bug about this. * Instead, just default to antenna B. */ case ANTENNA_B: rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); break; } rt73usb_bbp_write(rt2x00dev, 77, r77); rt73usb_bbp_write(rt2x00dev, 3, r3); rt73usb_bbp_write(rt2x00dev, 4, r4); } struct antenna_sel { u8 word; /* * value[0] -> non-LNA * value[1] -> LNA */ u8 value[2]; }; static const struct antenna_sel antenna_sel_a[] = { { 96, { 0x58, 0x78 } }, { 104, { 0x38, 0x48 } }, { 75, { 0xfe, 0x80 } }, { 86, { 0xfe, 0x80 } }, { 88, { 0xfe, 0x80 } }, { 35, { 0x60, 0x60 } }, { 97, { 0x58, 0x58 } }, { 98, { 0x58, 0x58 } }, }; static const struct antenna_sel antenna_sel_bg[] = { { 96, { 0x48, 0x68 } }, { 104, { 0x2c, 0x3c } }, { 75, { 0xfe, 0x80 } }, { 86, { 0xfe, 0x80 } }, { 88, { 0xfe, 0x80 } }, { 35, { 0x50, 0x50 } }, { 97, { 0x48, 0x48 } }, { 98, { 0x48, 0x48 } }, }; static void rt73usb_config_antenna(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) { const struct antenna_sel *sel; unsigned int lna; unsigned int i; u32 reg; if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { sel = antenna_sel_a; lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); } else { sel = antenna_sel_bg; lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); } for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); rt73usb_register_read(rt2x00dev, PHY_CSR0, ®); rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)); rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)); rt73usb_register_write(rt2x00dev, PHY_CSR0, reg); if (rt2x00_rf(&rt2x00dev->chip, RF5226) || rt2x00_rf(&rt2x00dev->chip, RF5225)) rt73usb_config_antenna_5x(rt2x00dev, ant); else if (rt2x00_rf(&rt2x00dev->chip, RF2528) || rt2x00_rf(&rt2x00dev->chip, RF2527)) rt73usb_config_antenna_2x(rt2x00dev, ant); } static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf) { u32 reg; rt73usb_register_read(rt2x00dev, MAC_CSR9, ®); rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, libconf->slot_time); rt73usb_register_write(rt2x00dev, MAC_CSR9, reg); rt73usb_register_read(rt2x00dev, MAC_CSR8, ®); rt2x00_set_field32(®, MAC_CSR8_SIFS, libconf->sifs); rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); rt2x00_set_field32(®, MAC_CSR8_EIFS, libconf->eifs); rt73usb_register_write(rt2x00dev, MAC_CSR8, reg); rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg); rt73usb_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg); rt73usb_register_read(rt2x00dev, TXRX_CSR9, ®); rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, libconf->conf->beacon_int * 16); rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg); } static void rt73usb_config(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_conf *libconf, const unsigned int flags) { if (flags & CONFIG_UPDATE_PHYMODE) rt73usb_config_phymode(rt2x00dev, libconf->basic_rates); if (flags & CONFIG_UPDATE_CHANNEL) rt73usb_config_channel(rt2x00dev, &libconf->rf, libconf->conf->power_level); if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL)) rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level); if (flags & CONFIG_UPDATE_ANTENNA) rt73usb_config_antenna(rt2x00dev, &libconf->ant); if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT)) rt73usb_config_duration(rt2x00dev, libconf); } /* * Link tuning */ static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) { u32 reg; /* * Update FCS error count from register. */ rt73usb_register_read(rt2x00dev, STA_CSR0, ®); qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); /* * Update False CCA count from register. */ rt73usb_register_read(rt2x00dev, STA_CSR1, ®); qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); } static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev) { rt73usb_bbp_write(rt2x00dev, 17, 0x20); rt2x00dev->link.vgc_level = 0x20; } static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev) { int rssi = rt2x00_get_link_rssi(&rt2x00dev->link); u8 r17; u8 up_bound; u8 low_bound; rt73usb_bbp_read(rt2x00dev, 17, &r17); /* * Determine r17 bounds. */ if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) { low_bound = 0x28; up_bound = 0x48; if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) { low_bound += 0x10; up_bound += 0x10; } } else { if (rssi > -82) { low_bound = 0x1c; up_bound = 0x40; } else if (rssi > -84) { low_bound = 0x1c; up_bound = 0x20; } else { low_bound = 0x1c; up_bound = 0x1c; } if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) { low_bound += 0x14; up_bound += 0x10; } } /* * If we are not associated, we should go straight to the * dynamic CCA tuning. */ if (!rt2x00dev->intf_associated) goto dynamic_cca_tune; /* * Special big-R17 for very short distance */ if (rssi > -35) { if (r17 != 0x60) rt73usb_bbp_write(rt2x00dev, 17, 0x60); return; } /* * Special big-R17 for short distance */ if (rssi >= -58) { if (r17 != up_bound) rt73usb_bbp_write(rt2x00dev, 17, up_bound); return; } /* * Special big-R17 for middle-short distance */ if (rssi >= -66) { low_bound += 0x10; if (r17 != low_bound) rt73usb_bbp_write(rt2x00dev, 17, low_bound); return; } /* * Special mid-R17 for middle distance */ if (rssi >= -74) { if (r17 != (low_bound + 0x10)) rt73usb_bbp_write(rt2x00dev, 17, low_bound + 0x08); return; } /* * Special case: Change up_bound based on the rssi. * Lower up_bound when rssi is weaker then -74 dBm. */ up_bound -= 2 * (-74 - rssi); if (low_bound > up_bound) up_bound = low_bound; if (r17 > up_bound) { rt73usb_bbp_write(rt2x00dev, 17, up_bound); return; } dynamic_cca_tune: /* * r17 does not yet exceed upper limit, continue and base * the r17 tuning on the false CCA count. */ if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) { r17 += 4; if (r17 > up_bound) r17 = up_bound; rt73usb_bbp_write(rt2x00dev, 17, r17); } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) { r17 -= 4; if (r17 < low_bound) r17 = low_bound; rt73usb_bbp_write(rt2x00dev, 17, r17); } } /* * Firmware name function. */ static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) { return FIRMWARE_RT2571; } /* * Initialization functions. */ static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, void *data, const size_t len) { unsigned int i; int status; u32 reg; char *ptr = data; char *cache; int buflen; int timeout; /* * Wait for stable hardware. */ for (i = 0; i < 100; i++) { rt73usb_register_read(rt2x00dev, MAC_CSR0, ®); if (reg) break; msleep(1); } if (!reg) { ERROR(rt2x00dev, "Unstable hardware.\n"); return -EBUSY; } /* * Write firmware to device. * We setup a seperate cache for this action, * since we are going to write larger chunks of data * then normally used cache size. */ cache = kmalloc(CSR_CACHE_SIZE_FIRMWARE, GFP_KERNEL); if (!cache) { ERROR(rt2x00dev, "Failed to allocate firmware cache.\n"); return -ENOMEM; } for (i = 0; i < len; i += CSR_CACHE_SIZE_FIRMWARE) { buflen = min_t(int, len - i, CSR_CACHE_SIZE_FIRMWARE); timeout = REGISTER_TIMEOUT * (buflen / sizeof(u32)); memcpy(cache, ptr, buflen); rt2x00usb_vendor_request(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, FIRMWARE_IMAGE_BASE + i, 0, cache, buflen, timeout); ptr += buflen; } kfree(cache); /* * Send firmware request to device to load firmware, * we need to specify a long timeout time. */ status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, USB_MODE_FIRMWARE, REGISTER_TIMEOUT_FIRMWARE); if (status < 0) { ERROR(rt2x00dev, "Failed to write Firmware to device.\n"); return status; } return 0; } static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg); rt73usb_register_read(rt2x00dev, TXRX_CSR1, ®); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); rt73usb_register_write(rt2x00dev, TXRX_CSR1, reg); /* * CCK TXD BBP registers */ rt73usb_register_read(rt2x00dev, TXRX_CSR2, ®); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); rt73usb_register_write(rt2x00dev, TXRX_CSR2, reg); /* * OFDM TXD BBP registers */ rt73usb_register_read(rt2x00dev, TXRX_CSR3, ®); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); rt73usb_register_write(rt2x00dev, TXRX_CSR3, reg); rt73usb_register_read(rt2x00dev, TXRX_CSR7, ®); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); rt73usb_register_write(rt2x00dev, TXRX_CSR7, reg); rt73usb_register_read(rt2x00dev, TXRX_CSR8, ®); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); rt73usb_register_write(rt2x00dev, TXRX_CSR8, reg); rt73usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); rt73usb_register_read(rt2x00dev, MAC_CSR6, ®); rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff); rt73usb_register_write(rt2x00dev, MAC_CSR6, reg); rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718); if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) return -EBUSY; rt73usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00); rt73usb_register_read(rt2x00dev, MAC_CSR14, ®); rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, 70); rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, 30); rt73usb_register_write(rt2x00dev, MAC_CSR14, reg); /* * Invalidate all Shared Keys (SEC_CSR0), * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) */ rt73usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000); rt73usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000); rt73usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000); reg = 0x000023b0; if (rt2x00_rf(&rt2x00dev->chip, RF5225) || rt2x00_rf(&rt2x00dev->chip, RF2527)) rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1); rt73usb_register_write(rt2x00dev, PHY_CSR1, reg); rt73usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06); rt73usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606); rt73usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408); rt73usb_register_read(rt2x00dev, AC_TXOP_CSR0, ®); rt2x00_set_field32(®, AC_TXOP_CSR0_AC0_TX_OP, 0); rt2x00_set_field32(®, AC_TXOP_CSR0_AC1_TX_OP, 0); rt73usb_register_write(rt2x00dev, AC_TXOP_CSR0, reg); rt73usb_register_read(rt2x00dev, AC_TXOP_CSR1, ®); rt2x00_set_field32(®, AC_TXOP_CSR1_AC2_TX_OP, 192); rt2x00_set_field32(®, AC_TXOP_CSR1_AC3_TX_OP, 48); rt73usb_register_write(rt2x00dev, AC_TXOP_CSR1, reg); rt73usb_register_read(rt2x00dev, MAC_CSR9, ®); rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); rt73usb_register_write(rt2x00dev, MAC_CSR9, reg); /* * Clear all beacons * For the Beacon base registers we only need to clear * the first byte since that byte contains the VALID and OWNER * bits which (when set to 0) will invalidate the entire beacon. */ rt73usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0); rt73usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0); rt73usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0); rt73usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0); /* * We must clear the error counters. * These registers are cleared on read, * so we may pass a useless variable to store the value. */ rt73usb_register_read(rt2x00dev, STA_CSR0, ®); rt73usb_register_read(rt2x00dev, STA_CSR1, ®); rt73usb_register_read(rt2x00dev, STA_CSR2, ®); /* * Reset MAC and BBP registers. */ rt73usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); rt73usb_register_write(rt2x00dev, MAC_CSR1, reg); rt73usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); rt73usb_register_write(rt2x00dev, MAC_CSR1, reg); rt73usb_register_read(rt2x00dev, MAC_CSR1, ®); rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); rt73usb_register_write(rt2x00dev, MAC_CSR1, reg); return 0; } static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev) { unsigned int i; u16 eeprom; u8 reg_id; u8 value; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt73usb_bbp_read(rt2x00dev, 0, &value); if ((value != 0xff) && (value != 0x00)) goto continue_csr_init; NOTICE(rt2x00dev, "Waiting for BBP register.\n"); udelay(REGISTER_BUSY_DELAY); } ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); return -EACCES; continue_csr_init: rt73usb_bbp_write(rt2x00dev, 3, 0x80); rt73usb_bbp_write(rt2x00dev, 15, 0x30); rt73usb_bbp_write(rt2x00dev, 21, 0xc8); rt73usb_bbp_write(rt2x00dev, 22, 0x38); rt73usb_bbp_write(rt2x00dev, 23, 0x06); rt73usb_bbp_write(rt2x00dev, 24, 0xfe); rt73usb_bbp_write(rt2x00dev, 25, 0x0a); rt73usb_bbp_write(rt2x00dev, 26, 0x0d); rt73usb_bbp_write(rt2x00dev, 32, 0x0b); rt73usb_bbp_write(rt2x00dev, 34, 0x12); rt73usb_bbp_write(rt2x00dev, 37, 0x07); rt73usb_bbp_write(rt2x00dev, 39, 0xf8); rt73usb_bbp_write(rt2x00dev, 41, 0x60); rt73usb_bbp_write(rt2x00dev, 53, 0x10); rt73usb_bbp_write(rt2x00dev, 54, 0x18); rt73usb_bbp_write(rt2x00dev, 60, 0x10); rt73usb_bbp_write(rt2x00dev, 61, 0x04); rt73usb_bbp_write(rt2x00dev, 62, 0x04); rt73usb_bbp_write(rt2x00dev, 75, 0xfe); rt73usb_bbp_write(rt2x00dev, 86, 0xfe); rt73usb_bbp_write(rt2x00dev, 88, 0xfe); rt73usb_bbp_write(rt2x00dev, 90, 0x0f); rt73usb_bbp_write(rt2x00dev, 99, 0x00); rt73usb_bbp_write(rt2x00dev, 102, 0x16); rt73usb_bbp_write(rt2x00dev, 107, 0x04); for (i = 0; i < EEPROM_BBP_SIZE; i++) { rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); if (eeprom != 0xffff && eeprom != 0x0000) { reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); rt73usb_bbp_write(rt2x00dev, reg_id, value); } } return 0; } /* * Device state switch handlers. */ static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, state == STATE_RADIO_RX_OFF); rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg); } static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev) { /* * Initialize all registers. */ if (rt73usb_init_registers(rt2x00dev) || rt73usb_init_bbp(rt2x00dev)) { ERROR(rt2x00dev, "Register initialization failed.\n"); return -EIO; } return 0; } static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev) { rt73usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818); /* * Disable synchronisation. */ rt73usb_register_write(rt2x00dev, TXRX_CSR9, 0); rt2x00usb_disable_radio(rt2x00dev); } static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; unsigned int i; char put_to_sleep; char current_state; put_to_sleep = (state != STATE_AWAKE); rt73usb_register_read(rt2x00dev, MAC_CSR12, ®); rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); rt73usb_register_write(rt2x00dev, MAC_CSR12, reg); /* * Device is not guaranteed to be in the requested state yet. * We must wait until the register indicates that the * device has entered the correct state. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt73usb_register_read(rt2x00dev, MAC_CSR12, ®); current_state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE); if (current_state == !put_to_sleep) return 0; msleep(10); } NOTICE(rt2x00dev, "Device failed to enter state %d, " "current device state %d.\n", !put_to_sleep, current_state); return -EBUSY; } static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: retval = rt73usb_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: rt73usb_disable_radio(rt2x00dev); break; case STATE_RADIO_RX_ON: case STATE_RADIO_RX_ON_LINK: rt73usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON); break; case STATE_RADIO_RX_OFF: case STATE_RADIO_RX_OFF_LINK: rt73usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF); break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt73usb_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } return retval; } /* * TX descriptor initialization */ static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct txentry_desc *txdesc, struct ieee80211_tx_control *control) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); __le32 *txd = skbdesc->desc; u32 word; /* * Start writing the descriptor words. */ rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue); rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs); rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min); rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max); rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER); rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, 1); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal); rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low); rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high); rt2x00_desc_write(txd, 2, word); rt2x00_desc_read(txd, 5, &word); rt2x00_set_field32(&word, TXD_W5_TX_POWER, TXPOWER_TO_DEV(rt2x00dev->tx_power)); rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); rt2x00_desc_write(txd, 5, word); rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_VALID, 1); rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_ACK, test_bit(ENTRY_TXD_ACK, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_OFDM, test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs); rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, !!(control->flags & IEEE80211_TXCTL_LONG_RETRY_LIMIT)); rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, 0); rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len); rt2x00_set_field32(&word, TXD_W0_BURST2, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); rt2x00_desc_write(txd, 0, word); } static int rt73usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb) { int length; /* * The length _must_ be a multiple of 4, * but it must _not_ be a multiple of the USB packet size. */ length = roundup(skb->len, 4); length += (4 * !(length % rt2x00dev->usb_maxpacket)); return length; } /* * TX data initialization */ static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev, const unsigned int queue) { u32 reg; if (queue != RT2X00_BCN_QUEUE_BEACON) return; /* * For Wi-Fi faily generated beacons between participating stations. * Set TBTT phase adaptive adjustment step to 8us (default 16us) */ rt73usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); rt73usb_register_read(rt2x00dev, TXRX_CSR9, ®); if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) { rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); rt73usb_register_write(rt2x00dev, TXRX_CSR9, reg); } } /* * RX control handlers */ static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) { u16 eeprom; u8 offset; u8 lna; lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); switch (lna) { case 3: offset = 90; break; case 2: offset = 74; break; case 1: offset = 64; break; default: return 0; } if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) { if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) { if (lna == 3 || lna == 2) offset += 10; } else { if (lna == 3) offset += 6; else if (lna == 2) offset += 8; } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); } else { if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) offset += 14; rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); offset -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); } return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; } static void rt73usb_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); __le32 *rxd = (__le32 *)entry->skb->data; unsigned int offset = entry->queue->desc_size + 2; u32 word0; u32 word1; /* * Copy descriptor to the available headroom inside the skbuffer. * Remove the original copy by pulling the skbuffer. */ skb_push(entry->skb, offset); memcpy(entry->skb->data, rxd, entry->queue->desc_size); rxd = (__le32 *)entry->skb->data; skb_pull(entry->skb, offset + entry->queue->desc_size); skb_trim(entry->skb, rxdesc->size); /* * The descriptor is now aligned to 4 bytes and thus it is * now safe to read it on all architectures. */ rt2x00_desc_read(rxd, 0, &word0); rt2x00_desc_read(rxd, 1, &word1); rxdesc->flags = 0; if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; /* * Obtain the status about this packet. */ rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); rxdesc->rssi = rt73usb_agc_to_rssi(entry->queue->rt2x00dev, word1); rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM); rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS); /* * Set descriptor and data pointer. */ skbdesc->data = entry->skb->data; skbdesc->data_len = rxdesc->size; skbdesc->desc = entry->skb->data - offset; skbdesc->desc_len = entry->queue->desc_size; } /* * Device probe functions. */ static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) { u16 word; u8 *mac; s8 value; rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); /* * Start validation of the data that has been read. */ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); if (!is_valid_ether_addr(mac)) { DECLARE_MAC_BUF(macbuf); random_ether_addr(mac); EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac)); } rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, ANTENNA_B); rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, ANTENNA_B); rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0); rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0); rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, LED_MODE_DEFAULT); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); EEPROM(rt2x00dev, "Led: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); } else { value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); } else { value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); if (value < -10 || value > 10) rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); } return 0; } static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 value; u16 eeprom; /* * Read EEPROM word for configuration. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Identify RF chipset. */ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); rt73usb_register_read(rt2x00dev, MAC_CSR0, ®); rt2x00_set_chip(rt2x00dev, RT2571, value, reg); if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) { ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); return -ENODEV; } if (!rt2x00_rf(&rt2x00dev->chip, RF5226) && !rt2x00_rf(&rt2x00dev->chip, RF2528) && !rt2x00_rf(&rt2x00dev->chip, RF5225) && !rt2x00_rf(&rt2x00dev->chip, RF2527)) { ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); return -ENODEV; } /* * Identify default antenna configuration. */ rt2x00dev->default_ant.tx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); rt2x00dev->default_ant.rx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); /* * Read the Frame type. */ if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) __set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags); /* * Read frequency offset. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); /* * Read external LNA informations. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) { __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); } /* * Store led settings, for correct led behaviour. */ #ifdef CONFIG_RT73USB_LEDS rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); switch (value) { case LED_MODE_TXRX_ACTIVITY: case LED_MODE_ASUS: case LED_MODE_ALPHA: case LED_MODE_DEFAULT: rt2x00dev->led_flags = LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC; break; case LED_MODE_SIGNAL_STRENGTH: rt2x00dev->led_flags = LED_SUPPORT_RADIO | LED_SUPPORT_ASSOC | LED_SUPPORT_QUALITY; break; } rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_0)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_1)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_2)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_3)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_GPIO_4)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_RDY_G)); rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_RDY_A)); #endif /* CONFIG_RT73USB_LEDS */ return 0; } /* * RF value list for RF2528 * Supports: 2.4 GHz */ static const struct rf_channel rf_vals_bg_2528[] = { { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, }; /* * RF value list for RF5226 * Supports: 2.4 GHz & 5.2 GHz */ static const struct rf_channel rf_vals_5226[] = { { 1, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, { 2, 0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, { 3, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, { 4, 0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, { 5, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, { 6, 0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, { 7, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, { 8, 0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, { 9, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 }, { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 }, { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b }, { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 }, { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b }, { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 }, { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 }, { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b }, /* 802.11 HyperLan 2 */ { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 }, { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b }, { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 }, { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b }, { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 }, { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 }, { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b }, { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 }, { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b }, { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 }, /* 802.11 UNII */ { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 }, { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f }, { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 }, { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 }, { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f }, { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 }, /* MMAC(Japan)J52 ch 34,38,42,46 */ { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b }, { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 }, { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b }, { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 }, }; /* * RF value list for RF5225 & RF2527 * Supports: 2.4 GHz & 5.2 GHz */ static const struct rf_channel rf_vals_5225_2527[] = { { 1, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, { 2, 0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, { 3, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, { 4, 0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, { 5, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, { 6, 0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, { 7, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, { 8, 0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, { 9, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, /* 802.11 HyperLan 2 */ { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, /* 802.11 UNII */ { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, /* MMAC(Japan)J52 ch 34,38,42,46 */ { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, }; static void rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; u8 *txpower; unsigned int i; /* * Initialize all hw fields. */ rt2x00dev->hw->flags = IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING; rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE; rt2x00dev->hw->max_signal = MAX_SIGNAL; rt2x00dev->hw->max_rssi = MAX_RX_SSI; rt2x00dev->hw->queues = 4; SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev); SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0)); /* * Convert tx_power array in eeprom. */ txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); for (i = 0; i < 14; i++) txpower[i] = TXPOWER_FROM_DEV(txpower[i]); /* * Initialize hw_mode information. */ spec->supported_bands = SUPPORT_BAND_2GHZ; spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; spec->tx_power_a = NULL; spec->tx_power_bg = txpower; spec->tx_power_default = DEFAULT_TXPOWER; if (rt2x00_rf(&rt2x00dev->chip, RF2528)) { spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528); spec->channels = rf_vals_bg_2528; } else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals_5226); spec->channels = rf_vals_5226; } else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) { spec->num_channels = 14; spec->channels = rf_vals_5225_2527; } else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527); spec->channels = rf_vals_5225_2527; } if (rt2x00_rf(&rt2x00dev->chip, RF5225) || rt2x00_rf(&rt2x00dev->chip, RF5226)) { txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); for (i = 0; i < 14; i++) txpower[i] = TXPOWER_FROM_DEV(txpower[i]); spec->tx_power_a = txpower; } } static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; /* * Allocate eeprom data. */ retval = rt73usb_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt73usb_init_eeprom(rt2x00dev); if (retval) return retval; /* * Initialize hw specifications. */ rt73usb_probe_hw_mode(rt2x00dev); /* * This device requires firmware. */ __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags); __set_bit(DRIVER_REQUIRE_FIRMWARE_CRC_ITU_T, &rt2x00dev->flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } /* * IEEE80211 stack callback functions. */ static void rt73usb_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, int mc_count, struct dev_addr_list *mc_list) { struct rt2x00_dev *rt2x00dev = hw->priv; u32 reg; /* * Mask off any flags we are going to ignore from * the total_flags field. */ *total_flags &= FIF_ALLMULTI | FIF_FCSFAIL | FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | FIF_PROMISC_IN_BSS; /* * Apply some rules to the filters: * - Some filters imply different filters to be set. * - Some things we can't filter out at all. */ if (mc_count) *total_flags |= FIF_ALLMULTI; if (*total_flags & FIF_OTHER_BSS || *total_flags & FIF_PROMISC_IN_BSS) *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS; /* * Check if there is any work left for us. */ if (rt2x00dev->packet_filter == *total_flags) return; rt2x00dev->packet_filter = *total_flags; /* * When in atomic context, reschedule and let rt2x00lib * call this function again. */ if (in_atomic()) { queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work); return; } /* * Start configuration steps. * Note that the version error will always be dropped * and broadcast frames will always be accepted since * there is no filter for it at this time. */ rt73usb_register_read(rt2x00dev, TXRX_CSR0, ®); rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, !(*total_flags & FIF_FCSFAIL)); rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, !(*total_flags & FIF_PLCPFAIL)); rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, !(*total_flags & FIF_CONTROL)); rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, !(*total_flags & FIF_PROMISC_IN_BSS)); rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, !(*total_flags & FIF_PROMISC_IN_BSS)); rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, !(*total_flags & FIF_ALLMULTI)); rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, !(*total_flags & FIF_CONTROL)); rt73usb_register_write(rt2x00dev, TXRX_CSR0, reg); } static int rt73usb_set_retry_limit(struct ieee80211_hw *hw, u32 short_retry, u32 long_retry) { struct rt2x00_dev *rt2x00dev = hw->priv; u32 reg; rt73usb_register_read(rt2x00dev, TXRX_CSR4, ®); rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, long_retry); rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, short_retry); rt73usb_register_write(rt2x00dev, TXRX_CSR4, reg); return 0; } #if 0 /* * Mac80211 demands get_tsf must be atomic. * This is not possible for rt73usb since all register access * functions require sleeping. Untill mac80211 no longer needs * get_tsf to be atomic, this function should be disabled. */ static u64 rt73usb_get_tsf(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; u64 tsf; u32 reg; rt73usb_register_read(rt2x00dev, TXRX_CSR13, ®); tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; rt73usb_register_read(rt2x00dev, TXRX_CSR12, ®); tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); return tsf; } #else #define rt73usb_get_tsf NULL #endif static int rt73usb_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb, struct ieee80211_tx_control *control) { struct rt2x00_dev *rt2x00dev = hw->priv; struct rt2x00_intf *intf = vif_to_intf(control->vif); struct skb_frame_desc *skbdesc; unsigned int beacon_base; unsigned int timeout; if (unlikely(!intf->beacon)) return -ENOBUFS; /* * Add the descriptor in front of the skb. */ skb_push(skb, intf->beacon->queue->desc_size); memset(skb->data, 0, intf->beacon->queue->desc_size); /* * Fill in skb descriptor */ skbdesc = get_skb_frame_desc(skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED; skbdesc->data = skb->data + intf->beacon->queue->desc_size; skbdesc->data_len = skb->len - intf->beacon->queue->desc_size; skbdesc->desc = skb->data; skbdesc->desc_len = intf->beacon->queue->desc_size; skbdesc->entry = intf->beacon; /* * mac80211 doesn't provide the control->queue variable * for beacons. Set our own queue identification so * it can be used during descriptor initialization. */ control->queue = RT2X00_BCN_QUEUE_BEACON; rt2x00lib_write_tx_desc(rt2x00dev, skb, control); /* * Write entire beacon with descriptor to register, * and kick the beacon generator. */ beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx); timeout = REGISTER_TIMEOUT * (skb->len / sizeof(u32)); rt2x00usb_vendor_request(rt2x00dev, USB_MULTI_WRITE, USB_VENDOR_REQUEST_OUT, beacon_base, 0, skb->data, skb->len, timeout); rt73usb_kick_tx_queue(rt2x00dev, control->queue); return 0; } static const struct ieee80211_ops rt73usb_mac80211_ops = { .tx = rt2x00mac_tx, .start = rt2x00mac_start, .stop = rt2x00mac_stop, .add_interface = rt2x00mac_add_interface, .remove_interface = rt2x00mac_remove_interface, .config = rt2x00mac_config, .config_interface = rt2x00mac_config_interface, .configure_filter = rt73usb_configure_filter, .get_stats = rt2x00mac_get_stats, .set_retry_limit = rt73usb_set_retry_limit, .bss_info_changed = rt2x00mac_bss_info_changed, .conf_tx = rt2x00mac_conf_tx, .get_tx_stats = rt2x00mac_get_tx_stats, .get_tsf = rt73usb_get_tsf, .beacon_update = rt73usb_beacon_update, }; static const struct rt2x00lib_ops rt73usb_rt2x00_ops = { .probe_hw = rt73usb_probe_hw, .get_firmware_name = rt73usb_get_firmware_name, .load_firmware = rt73usb_load_firmware, .initialize = rt2x00usb_initialize, .uninitialize = rt2x00usb_uninitialize, .init_rxentry = rt2x00usb_init_rxentry, .init_txentry = rt2x00usb_init_txentry, .set_device_state = rt73usb_set_device_state, .link_stats = rt73usb_link_stats, .reset_tuner = rt73usb_reset_tuner, .link_tuner = rt73usb_link_tuner, .led_brightness = rt73usb_led_brightness, .write_tx_desc = rt73usb_write_tx_desc, .write_tx_data = rt2x00usb_write_tx_data, .get_tx_data_len = rt73usb_get_tx_data_len, .kick_tx_queue = rt73usb_kick_tx_queue, .fill_rxdone = rt73usb_fill_rxdone, .config_intf = rt73usb_config_intf, .config_preamble = rt73usb_config_preamble, .config = rt73usb_config, }; static const struct data_queue_desc rt73usb_queue_rx = { .entry_num = RX_ENTRIES, .data_size = DATA_FRAME_SIZE, .desc_size = RXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb_rx), }; static const struct data_queue_desc rt73usb_queue_tx = { .entry_num = TX_ENTRIES, .data_size = DATA_FRAME_SIZE, .desc_size = TXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb_tx), }; static const struct data_queue_desc rt73usb_queue_bcn = { .entry_num = 4 * BEACON_ENTRIES, .data_size = MGMT_FRAME_SIZE, .desc_size = TXINFO_SIZE, .priv_size = sizeof(struct queue_entry_priv_usb_tx), }; static const struct rt2x00_ops rt73usb_ops = { .name = KBUILD_MODNAME, .max_sta_intf = 1, .max_ap_intf = 4, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .rx = &rt73usb_queue_rx, .tx = &rt73usb_queue_tx, .bcn = &rt73usb_queue_bcn, .lib = &rt73usb_rt2x00_ops, .hw = &rt73usb_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt73usb_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * rt73usb module information. */ static struct usb_device_id rt73usb_device_table[] = { /* AboCom */ { USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) }, /* Askey */ { USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) }, /* ASUS */ { USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) }, /* Belkin */ { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) }, /* Billionton */ { USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) }, /* Buffalo */ { USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) }, /* CNet */ { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) }, /* Conceptronic */ { USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) }, /* D-Link */ { USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) }, /* Gemtek */ { USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) }, /* Gigabyte */ { USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) }, /* Huawei-3Com */ { USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) }, /* Hercules */ { USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) }, /* Linksys */ { USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) }, /* MSI */ { USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) }, /* Ralink */ { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) }, /* Qcom */ { USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) }, /* Senao */ { USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) }, /* Sitecom */ { USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) }, /* Surecom */ { USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) }, /* Planex */ { USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) }, { USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) }, { 0, } }; MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards"); MODULE_DEVICE_TABLE(usb, rt73usb_device_table); MODULE_FIRMWARE(FIRMWARE_RT2571); MODULE_LICENSE("GPL"); static struct usb_driver rt73usb_driver = { .name = KBUILD_MODNAME, .id_table = rt73usb_device_table, .probe = rt2x00usb_probe, .disconnect = rt2x00usb_disconnect, .suspend = rt2x00usb_suspend, .resume = rt2x00usb_resume, }; static int __init rt73usb_init(void) { return usb_register(&rt73usb_driver); } static void __exit rt73usb_exit(void) { usb_deregister(&rt73usb_driver); } module_init(rt73usb_init); module_exit(rt73usb_exit);