/* zd_chip.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* This file implements all the hardware specific functions for the ZD1211 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy * Legge sent me a ZD1211B device. Thank you Tim. -- Uli */ #include #include #include "zd_def.h" #include "zd_chip.h" #include "zd_ieee80211.h" #include "zd_mac.h" #include "zd_rf.h" #include "zd_util.h" void zd_chip_init(struct zd_chip *chip, struct net_device *netdev, struct usb_interface *intf) { memset(chip, 0, sizeof(*chip)); mutex_init(&chip->mutex); zd_usb_init(&chip->usb, netdev, intf); zd_rf_init(&chip->rf); } void zd_chip_clear(struct zd_chip *chip) { ZD_ASSERT(!mutex_is_locked(&chip->mutex)); zd_usb_clear(&chip->usb); zd_rf_clear(&chip->rf); mutex_destroy(&chip->mutex); ZD_MEMCLEAR(chip, sizeof(*chip)); } static int scnprint_mac_oui(const u8 *addr, char *buffer, size_t size) { return scnprintf(buffer, size, "%02x-%02x-%02x", addr[0], addr[1], addr[2]); } /* Prints an identifier line, which will support debugging. */ static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size) { int i = 0; i = scnprintf(buffer, size, "zd1211%s chip ", chip->is_zd1211b ? "b" : ""); i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i); i += scnprintf(buffer+i, size-i, " "); i += scnprint_mac_oui(chip->e2p_mac, buffer+i, size-i); i += scnprintf(buffer+i, size-i, " "); i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i); i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c", chip->pa_type, chip->patch_cck_gain ? 'g' : '-', chip->patch_cr157 ? '7' : '-', chip->patch_6m_band_edge ? '6' : '-', chip->new_phy_layout ? 'N' : '-'); return i; } static void print_id(struct zd_chip *chip) { char buffer[80]; scnprint_id(chip, buffer, sizeof(buffer)); buffer[sizeof(buffer)-1] = 0; dev_info(zd_chip_dev(chip), "%s\n", buffer); } /* Read a variable number of 32-bit values. Parameter count is not allowed to * exceed USB_MAX_IOREAD32_COUNT. */ int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr, unsigned int count) { int r; int i; zd_addr_t *a16 = (zd_addr_t *)NULL; u16 *v16; unsigned int count16; if (count > USB_MAX_IOREAD32_COUNT) return -EINVAL; /* Allocate a single memory block for values and addresses. */ count16 = 2*count; a16 = kmalloc(count16 * (sizeof(zd_addr_t) + sizeof(u16)), GFP_NOFS); if (!a16) { dev_dbg_f(zd_chip_dev(chip), "error ENOMEM in allocation of a16\n"); r = -ENOMEM; goto out; } v16 = (u16 *)(a16 + count16); for (i = 0; i < count; i++) { int j = 2*i; /* We read the high word always first. */ a16[j] = zd_inc_word(addr[i]); a16[j+1] = addr[i]; } r = zd_ioread16v_locked(chip, v16, a16, count16); if (r) { dev_dbg_f(zd_chip_dev(chip), "error: zd_ioread16v_locked. Error number %d\n", r); goto out; } for (i = 0; i < count; i++) { int j = 2*i; values[i] = (v16[j] << 16) | v16[j+1]; } out: kfree((void *)a16); return r; } int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, unsigned int count) { int i, j, r; struct zd_ioreq16 *ioreqs16; unsigned int count16; ZD_ASSERT(mutex_is_locked(&chip->mutex)); if (count == 0) return 0; if (count > USB_MAX_IOWRITE32_COUNT) return -EINVAL; /* Allocate a single memory block for values and addresses. */ count16 = 2*count; ioreqs16 = kmalloc(count16 * sizeof(struct zd_ioreq16), GFP_NOFS); if (!ioreqs16) { r = -ENOMEM; dev_dbg_f(zd_chip_dev(chip), "error %d in ioreqs16 allocation\n", r); goto out; } for (i = 0; i < count; i++) { j = 2*i; /* We write the high word always first. */ ioreqs16[j].value = ioreqs[i].value >> 16; ioreqs16[j].addr = zd_inc_word(ioreqs[i].addr); ioreqs16[j+1].value = ioreqs[i].value; ioreqs16[j+1].addr = ioreqs[i].addr; } r = zd_usb_iowrite16v(&chip->usb, ioreqs16, count16); #ifdef DEBUG if (r) { dev_dbg_f(zd_chip_dev(chip), "error %d in zd_usb_write16v\n", r); } #endif /* DEBUG */ out: kfree(ioreqs16); return r; } int zd_iowrite16a_locked(struct zd_chip *chip, const struct zd_ioreq16 *ioreqs, unsigned int count) { int r; unsigned int i, j, t, max; ZD_ASSERT(mutex_is_locked(&chip->mutex)); for (i = 0; i < count; i += j + t) { t = 0; max = count-i; if (max > USB_MAX_IOWRITE16_COUNT) max = USB_MAX_IOWRITE16_COUNT; for (j = 0; j < max; j++) { if (!ioreqs[i+j].addr) { t = 1; break; } } r = zd_usb_iowrite16v(&chip->usb, &ioreqs[i], j); if (r) { dev_dbg_f(zd_chip_dev(chip), "error zd_usb_iowrite16v. Error number %d\n", r); return r; } } return 0; } /* Writes a variable number of 32 bit registers. The functions will split * that in several USB requests. A split can be forced by inserting an IO * request with an zero address field. */ int zd_iowrite32a_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, unsigned int count) { int r; unsigned int i, j, t, max; for (i = 0; i < count; i += j + t) { t = 0; max = count-i; if (max > USB_MAX_IOWRITE32_COUNT) max = USB_MAX_IOWRITE32_COUNT; for (j = 0; j < max; j++) { if (!ioreqs[i+j].addr) { t = 1; break; } } r = _zd_iowrite32v_locked(chip, &ioreqs[i], j); if (r) { dev_dbg_f(zd_chip_dev(chip), "error _zd_iowrite32v_locked." " Error number %d\n", r); return r; } } return 0; } int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value) { int r; mutex_lock(&chip->mutex); r = zd_ioread16_locked(chip, value, addr); mutex_unlock(&chip->mutex); return r; } int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value) { int r; mutex_lock(&chip->mutex); r = zd_ioread32_locked(chip, value, addr); mutex_unlock(&chip->mutex); return r; } int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value) { int r; mutex_lock(&chip->mutex); r = zd_iowrite16_locked(chip, value, addr); mutex_unlock(&chip->mutex); return r; } int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value) { int r; mutex_lock(&chip->mutex); r = zd_iowrite32_locked(chip, value, addr); mutex_unlock(&chip->mutex); return r; } int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses, u32 *values, unsigned int count) { int r; mutex_lock(&chip->mutex); r = zd_ioread32v_locked(chip, values, addresses, count); mutex_unlock(&chip->mutex); return r; } int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs, unsigned int count) { int r; mutex_lock(&chip->mutex); r = zd_iowrite32a_locked(chip, ioreqs, count); mutex_unlock(&chip->mutex); return r; } static int read_pod(struct zd_chip *chip, u8 *rf_type) { int r; u32 value; ZD_ASSERT(mutex_is_locked(&chip->mutex)); r = zd_ioread32_locked(chip, &value, E2P_POD); if (r) goto error; dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value); /* FIXME: AL2230 handling (Bit 7 in POD) */ *rf_type = value & 0x0f; chip->pa_type = (value >> 16) & 0x0f; chip->patch_cck_gain = (value >> 8) & 0x1; chip->patch_cr157 = (value >> 13) & 0x1; chip->patch_6m_band_edge = (value >> 21) & 0x1; chip->new_phy_layout = (value >> 31) & 0x1; chip->link_led = ((value >> 4) & 1) ? LED1 : LED2; chip->supports_tx_led = 1; if (value & (1 << 24)) { /* LED scenario */ if (value & (1 << 29)) chip->supports_tx_led = 0; } dev_dbg_f(zd_chip_dev(chip), "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d " "patch 6M %d new PHY %d link LED%d tx led %d\n", zd_rf_name(*rf_type), *rf_type, chip->pa_type, chip->patch_cck_gain, chip->patch_cr157, chip->patch_6m_band_edge, chip->new_phy_layout, chip->link_led == LED1 ? 1 : 2, chip->supports_tx_led); return 0; error: *rf_type = 0; chip->pa_type = 0; chip->patch_cck_gain = 0; chip->patch_cr157 = 0; chip->patch_6m_band_edge = 0; chip->new_phy_layout = 0; return r; } static int _read_mac_addr(struct zd_chip *chip, u8 *mac_addr, const zd_addr_t *addr) { int r; u32 parts[2]; r = zd_ioread32v_locked(chip, parts, (const zd_addr_t *)addr, 2); if (r) { dev_dbg_f(zd_chip_dev(chip), "error: couldn't read e2p macs. Error number %d\n", r); return r; } mac_addr[0] = parts[0]; mac_addr[1] = parts[0] >> 8; mac_addr[2] = parts[0] >> 16; mac_addr[3] = parts[0] >> 24; mac_addr[4] = parts[1]; mac_addr[5] = parts[1] >> 8; return 0; } static int read_e2p_mac_addr(struct zd_chip *chip) { static const zd_addr_t addr[2] = { E2P_MAC_ADDR_P1, E2P_MAC_ADDR_P2 }; ZD_ASSERT(mutex_is_locked(&chip->mutex)); return _read_mac_addr(chip, chip->e2p_mac, (const zd_addr_t *)addr); } /* MAC address: if custom mac addresses are to to be used CR_MAC_ADDR_P1 and * CR_MAC_ADDR_P2 must be overwritten */ void zd_get_e2p_mac_addr(struct zd_chip *chip, u8 *mac_addr) { mutex_lock(&chip->mutex); memcpy(mac_addr, chip->e2p_mac, ETH_ALEN); mutex_unlock(&chip->mutex); } static int read_mac_addr(struct zd_chip *chip, u8 *mac_addr) { static const zd_addr_t addr[2] = { CR_MAC_ADDR_P1, CR_MAC_ADDR_P2 }; return _read_mac_addr(chip, mac_addr, (const zd_addr_t *)addr); } int zd_read_mac_addr(struct zd_chip *chip, u8 *mac_addr) { int r; dev_dbg_f(zd_chip_dev(chip), "\n"); mutex_lock(&chip->mutex); r = read_mac_addr(chip, mac_addr); mutex_unlock(&chip->mutex); return r; } int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr) { int r; struct zd_ioreq32 reqs[2] = { [0] = { .addr = CR_MAC_ADDR_P1 }, [1] = { .addr = CR_MAC_ADDR_P2 }, }; reqs[0].value = (mac_addr[3] << 24) | (mac_addr[2] << 16) | (mac_addr[1] << 8) | mac_addr[0]; reqs[1].value = (mac_addr[5] << 8) | mac_addr[4]; dev_dbg_f(zd_chip_dev(chip), "mac addr " MAC_FMT "\n", MAC_ARG(mac_addr)); mutex_lock(&chip->mutex); r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs)); #ifdef DEBUG { u8 tmp[ETH_ALEN]; read_mac_addr(chip, tmp); } #endif /* DEBUG */ mutex_unlock(&chip->mutex); return r; } int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain) { int r; u32 value; mutex_lock(&chip->mutex); r = zd_ioread32_locked(chip, &value, E2P_SUBID); mutex_unlock(&chip->mutex); if (r) return r; *regdomain = value >> 16; dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain); return 0; } static int read_values(struct zd_chip *chip, u8 *values, size_t count, zd_addr_t e2p_addr, u32 guard) { int r; int i; u32 v; ZD_ASSERT(mutex_is_locked(&chip->mutex)); for (i = 0;;) { r = zd_ioread32_locked(chip, &v, e2p_addr+i/2); if (r) return r; v -= guard; if (i+4 < count) { values[i++] = v; values[i++] = v >> 8; values[i++] = v >> 16; values[i++] = v >> 24; continue; } for (;i < count; i++) values[i] = v >> (8*(i%3)); return 0; } } static int read_pwr_cal_values(struct zd_chip *chip) { return read_values(chip, chip->pwr_cal_values, E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1, 0); } static int read_pwr_int_values(struct zd_chip *chip) { return read_values(chip, chip->pwr_int_values, E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1, E2P_PWR_INT_GUARD); } static int read_ofdm_cal_values(struct zd_chip *chip) { int r; int i; static const zd_addr_t addresses[] = { E2P_36M_CAL_VALUE1, E2P_48M_CAL_VALUE1, E2P_54M_CAL_VALUE1, }; for (i = 0; i < 3; i++) { r = read_values(chip, chip->ofdm_cal_values[i], E2P_CHANNEL_COUNT, addresses[i], 0); if (r) return r; } return 0; } static int read_cal_int_tables(struct zd_chip *chip) { int r; r = read_pwr_cal_values(chip); if (r) return r; r = read_pwr_int_values(chip); if (r) return r; r = read_ofdm_cal_values(chip); if (r) return r; return 0; } /* phy means physical registers */ int zd_chip_lock_phy_regs(struct zd_chip *chip) { int r; u32 tmp; ZD_ASSERT(mutex_is_locked(&chip->mutex)); r = zd_ioread32_locked(chip, &tmp, CR_REG1); if (r) { dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r); return r; } dev_dbg_f(zd_chip_dev(chip), "CR_REG1: 0x%02x -> 0x%02x\n", tmp, tmp & ~UNLOCK_PHY_REGS); tmp &= ~UNLOCK_PHY_REGS; r = zd_iowrite32_locked(chip, tmp, CR_REG1); if (r) dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r); return r; } int zd_chip_unlock_phy_regs(struct zd_chip *chip) { int r; u32 tmp; ZD_ASSERT(mutex_is_locked(&chip->mutex)); r = zd_ioread32_locked(chip, &tmp, CR_REG1); if (r) { dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r); return r; } dev_dbg_f(zd_chip_dev(chip), "CR_REG1: 0x%02x -> 0x%02x\n", tmp, tmp | UNLOCK_PHY_REGS); tmp |= UNLOCK_PHY_REGS; r = zd_iowrite32_locked(chip, tmp, CR_REG1); if (r) dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r); return r; } /* CR157 can be optionally patched by the EEPROM */ static int patch_cr157(struct zd_chip *chip) { int r; u32 value; if (!chip->patch_cr157) return 0; r = zd_ioread32_locked(chip, &value, E2P_PHY_REG); if (r) return r; dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8); return zd_iowrite32_locked(chip, value >> 8, CR157); } /* * 6M band edge can be optionally overwritten for certain RF's * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge * bit (for AL2230, AL2230S) */ static int patch_6m_band_edge(struct zd_chip *chip, int channel) { struct zd_ioreq16 ioreqs[] = { { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 }, { CR47, 0x1e }, }; if (!chip->patch_6m_band_edge || !chip->rf.patch_6m_band_edge) return 0; /* FIXME: Channel 11 is not the edge for all regulatory domains. */ if (channel == 1 || channel == 11) ioreqs[0].value = 0x12; dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel); return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); } static int zd1211_hw_reset_phy(struct zd_chip *chip) { static const struct zd_ioreq16 ioreqs[] = { { CR0, 0x0a }, { CR1, 0x06 }, { CR2, 0x26 }, { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xa0 }, { CR10, 0x81 }, { CR11, 0x00 }, { CR12, 0x7f }, { CR13, 0x8c }, { CR14, 0x80 }, { CR15, 0x3d }, { CR16, 0x20 }, { CR17, 0x1e }, { CR18, 0x0a }, { CR19, 0x48 }, { CR20, 0x0c }, { CR21, 0x0c }, { CR22, 0x23 }, { CR23, 0x90 }, { CR24, 0x14 }, { CR25, 0x40 }, { CR26, 0x10 }, { CR27, 0x19 }, { CR28, 0x7f }, { CR29, 0x80 }, { CR30, 0x4b }, { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 }, { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 }, { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c }, { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 }, { CR43, 0x10 }, { CR44, 0x12 }, { CR46, 0xff }, { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b }, { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 }, { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 }, { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff }, { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 }, { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 }, { CR79, 0x68 }, { CR80, 0x64 }, { CR81, 0x64 }, { CR82, 0x00 }, { CR83, 0x00 }, { CR84, 0x00 }, { CR85, 0x02 }, { CR86, 0x00 }, { CR87, 0x00 }, { CR88, 0xff }, { CR89, 0xfc }, { CR90, 0x00 }, { CR91, 0x00 }, { CR92, 0x00 }, { CR93, 0x08 }, { CR94, 0x00 }, { CR95, 0x00 }, { CR96, 0xff }, { CR97, 0xe7 }, { CR98, 0x00 }, { CR99, 0x00 }, { CR100, 0x00 }, { CR101, 0xae }, { CR102, 0x02 }, { CR103, 0x00 }, { CR104, 0x03 }, { CR105, 0x65 }, { CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a }, { CR109, 0xaa }, { CR110, 0xaa }, { CR111, 0x25 }, { CR112, 0x25 }, { CR113, 0x00 }, { CR119, 0x1e }, { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 }, { }, { CR5, 0x00 }, { CR6, 0x00 }, { CR7, 0x00 }, { CR8, 0x00 }, { CR9, 0x20 }, { CR12, 0xf0 }, { CR20, 0x0e }, { CR21, 0x0e }, { CR27, 0x10 }, { CR44, 0x33 }, { CR47, 0x1E }, { CR83, 0x24 }, { CR84, 0x04 }, { CR85, 0x00 }, { CR86, 0x0C }, { CR87, 0x12 }, { CR88, 0x0C }, { CR89, 0x00 }, { CR90, 0x10 }, { CR91, 0x08 }, { CR93, 0x00 }, { CR94, 0x01 }, { CR95, 0x00 }, { CR96, 0x50 }, { CR97, 0x37 }, { CR98, 0x35 }, { CR101, 0x13 }, { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 }, { CR105, 0x12 }, { CR109, 0x27 }, { CR110, 0x27 }, { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 }, { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 }, { CR117, 0xfc }, { CR118, 0xfa }, { CR120, 0x4f }, { CR123, 0x27 }, { CR125, 0xaa }, { CR127, 0x03 }, { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 }, { CR131, 0x0C }, { CR136, 0xdf }, { CR137, 0x40 }, { CR138, 0xa0 }, { CR139, 0xb0 }, { CR140, 0x99 }, { CR141, 0x82 }, { CR142, 0x54 }, { CR143, 0x1c }, { CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x4c }, { CR149, 0x50 }, { CR150, 0x0e }, { CR151, 0x18 }, { CR160, 0xfe }, { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa }, { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe }, { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba }, { CR170, 0xba }, { CR171, 0xba }, /* Note: CR204 must lead the CR203 */ { CR204, 0x7d }, { }, { CR203, 0x30 }, }; int r, t; dev_dbg_f(zd_chip_dev(chip), "\n"); r = zd_chip_lock_phy_regs(chip); if (r) goto out; r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); if (r) goto unlock; r = patch_cr157(chip); unlock: t = zd_chip_unlock_phy_regs(chip); if (t && !r) r = t; out: return r; } static int zd1211b_hw_reset_phy(struct zd_chip *chip) { static const struct zd_ioreq16 ioreqs[] = { { CR0, 0x14 }, { CR1, 0x06 }, { CR2, 0x26 }, { CR3, 0x38 }, { CR4, 0x80 }, { CR9, 0xe0 }, { CR10, 0x81 }, /* power control { { CR11, 1 << 6 }, */ { CR11, 0x00 }, { CR12, 0xf0 }, { CR13, 0x8c }, { CR14, 0x80 }, { CR15, 0x3d }, { CR16, 0x20 }, { CR17, 0x1e }, { CR18, 0x0a }, { CR19, 0x48 }, { CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */ { CR21, 0x0e }, { CR22, 0x23 }, { CR23, 0x90 }, { CR24, 0x14 }, { CR25, 0x40 }, { CR26, 0x10 }, { CR27, 0x10 }, { CR28, 0x7f }, { CR29, 0x80 }, { CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */ { CR31, 0x60 }, { CR32, 0x43 }, { CR33, 0x08 }, { CR34, 0x06 }, { CR35, 0x0a }, { CR36, 0x00 }, { CR37, 0x00 }, { CR38, 0x38 }, { CR39, 0x0c }, { CR40, 0x84 }, { CR41, 0x2a }, { CR42, 0x80 }, { CR43, 0x10 }, { CR44, 0x33 }, { CR46, 0xff }, { CR47, 0x1E }, { CR48, 0x26 }, { CR49, 0x5b }, { CR64, 0xd0 }, { CR65, 0x04 }, { CR66, 0x58 }, { CR67, 0xc9 }, { CR68, 0x88 }, { CR69, 0x41 }, { CR70, 0x23 }, { CR71, 0x10 }, { CR72, 0xff }, { CR73, 0x32 }, { CR74, 0x30 }, { CR75, 0x65 }, { CR76, 0x41 }, { CR77, 0x1b }, { CR78, 0x30 }, { CR79, 0xf0 }, { CR80, 0x64 }, { CR81, 0x64 }, { CR82, 0x00 }, { CR83, 0x24 }, { CR84, 0x04 }, { CR85, 0x00 }, { CR86, 0x0c }, { CR87, 0x12 }, { CR88, 0x0c }, { CR89, 0x00 }, { CR90, 0x58 }, { CR91, 0x04 }, { CR92, 0x00 }, { CR93, 0x00 }, { CR94, 0x01 }, { CR95, 0x20 }, /* ZD1211B */ { CR96, 0x50 }, { CR97, 0x37 }, { CR98, 0x35 }, { CR99, 0x00 }, { CR100, 0x01 }, { CR101, 0x13 }, { CR102, 0x27 }, { CR103, 0x27 }, { CR104, 0x18 }, { CR105, 0x12 }, { CR106, 0x04 }, { CR107, 0x00 }, { CR108, 0x0a }, { CR109, 0x27 }, { CR110, 0x27 }, { CR111, 0x27 }, { CR112, 0x27 }, { CR113, 0x27 }, { CR114, 0x27 }, { CR115, 0x26 }, { CR116, 0x24 }, { CR117, 0xfc }, { CR118, 0xfa }, { CR119, 0x1e }, { CR125, 0x90 }, { CR126, 0x00 }, { CR127, 0x00 }, { CR128, 0x14 }, { CR129, 0x12 }, { CR130, 0x10 }, { CR131, 0x0c }, { CR136, 0xdf }, { CR137, 0xa0 }, { CR138, 0xa8 }, { CR139, 0xb4 }, { CR140, 0x98 }, { CR141, 0x82 }, { CR142, 0x53 }, { CR143, 0x1c }, { CR144, 0x6c }, { CR147, 0x07 }, { CR148, 0x40 }, { CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */ { CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */ { CR151, 0x18 }, { CR159, 0x70 }, { CR160, 0xfe }, { CR161, 0xee }, { CR162, 0xaa }, { CR163, 0xfa }, { CR164, 0xfa }, { CR165, 0xea }, { CR166, 0xbe }, { CR167, 0xbe }, { CR168, 0x6a }, { CR169, 0xba }, { CR170, 0xba }, { CR171, 0xba }, /* Note: CR204 must lead the CR203 */ { CR204, 0x7d }, {}, { CR203, 0x30 }, }; int r, t; dev_dbg_f(zd_chip_dev(chip), "\n"); r = zd_chip_lock_phy_regs(chip); if (r) goto out; r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); if (r) goto unlock; r = patch_cr157(chip); unlock: t = zd_chip_unlock_phy_regs(chip); if (t && !r) r = t; out: return r; } static int hw_reset_phy(struct zd_chip *chip) { return chip->is_zd1211b ? zd1211b_hw_reset_phy(chip) : zd1211_hw_reset_phy(chip); } static int zd1211_hw_init_hmac(struct zd_chip *chip) { static const struct zd_ioreq32 ioreqs[] = { { CR_ZD1211_RETRY_MAX, 0x2 }, { CR_RX_THRESHOLD, 0x000c0640 }, }; dev_dbg_f(zd_chip_dev(chip), "\n"); ZD_ASSERT(mutex_is_locked(&chip->mutex)); return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); } static int zd1211b_hw_init_hmac(struct zd_chip *chip) { static const struct zd_ioreq32 ioreqs[] = { { CR_ZD1211B_RETRY_MAX, 0x02020202 }, { CR_ZD1211B_TX_PWR_CTL4, 0x007f003f }, { CR_ZD1211B_TX_PWR_CTL3, 0x007f003f }, { CR_ZD1211B_TX_PWR_CTL2, 0x003f001f }, { CR_ZD1211B_TX_PWR_CTL1, 0x001f000f }, { CR_ZD1211B_AIFS_CTL1, 0x00280028 }, { CR_ZD1211B_AIFS_CTL2, 0x008C003C }, { CR_ZD1211B_TXOP, 0x01800824 }, { CR_RX_THRESHOLD, 0x000c0eff, }, }; dev_dbg_f(zd_chip_dev(chip), "\n"); ZD_ASSERT(mutex_is_locked(&chip->mutex)); return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); } static int hw_init_hmac(struct zd_chip *chip) { int r; static const struct zd_ioreq32 ioreqs[] = { { CR_ACK_TIMEOUT_EXT, 0x20 }, { CR_ADDA_MBIAS_WARMTIME, 0x30000808 }, { CR_SNIFFER_ON, 0 }, { CR_RX_FILTER, STA_RX_FILTER }, { CR_GROUP_HASH_P1, 0x00 }, { CR_GROUP_HASH_P2, 0x80000000 }, { CR_REG1, 0xa4 }, { CR_ADDA_PWR_DWN, 0x7f }, { CR_BCN_PLCP_CFG, 0x00f00401 }, { CR_PHY_DELAY, 0x00 }, { CR_ACK_TIMEOUT_EXT, 0x80 }, { CR_ADDA_PWR_DWN, 0x00 }, { CR_ACK_TIME_80211, 0x100 }, { CR_RX_PE_DELAY, 0x70 }, { CR_PS_CTRL, 0x10000000 }, { CR_RTS_CTS_RATE, 0x02030203 }, { CR_AFTER_PNP, 0x1 }, { CR_WEP_PROTECT, 0x114 }, { CR_IFS_VALUE, IFS_VALUE_DEFAULT }, }; ZD_ASSERT(mutex_is_locked(&chip->mutex)); r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); if (r) return r; return chip->is_zd1211b ? zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip); } struct aw_pt_bi { u32 atim_wnd_period; u32 pre_tbtt; u32 beacon_interval; }; static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s) { int r; static const zd_addr_t aw_pt_bi_addr[] = { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL }; u32 values[3]; r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr, ARRAY_SIZE(aw_pt_bi_addr)); if (r) { memset(s, 0, sizeof(*s)); return r; } s->atim_wnd_period = values[0]; s->pre_tbtt = values[1]; s->beacon_interval = values[2]; dev_dbg_f(zd_chip_dev(chip), "aw %u pt %u bi %u\n", s->atim_wnd_period, s->pre_tbtt, s->beacon_interval); return 0; } static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s) { struct zd_ioreq32 reqs[3]; if (s->beacon_interval <= 5) s->beacon_interval = 5; if (s->pre_tbtt < 4 || s->pre_tbtt >= s->beacon_interval) s->pre_tbtt = s->beacon_interval - 1; if (s->atim_wnd_period >= s->pre_tbtt) s->atim_wnd_period = s->pre_tbtt - 1; reqs[0].addr = CR_ATIM_WND_PERIOD; reqs[0].value = s->atim_wnd_period; reqs[1].addr = CR_PRE_TBTT; reqs[1].value = s->pre_tbtt; reqs[2].addr = CR_BCN_INTERVAL; reqs[2].value = s->beacon_interval; dev_dbg_f(zd_chip_dev(chip), "aw %u pt %u bi %u\n", s->atim_wnd_period, s->pre_tbtt, s->beacon_interval); return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs)); } static int set_beacon_interval(struct zd_chip *chip, u32 interval) { int r; struct aw_pt_bi s; ZD_ASSERT(mutex_is_locked(&chip->mutex)); r = get_aw_pt_bi(chip, &s); if (r) return r; s.beacon_interval = interval; return set_aw_pt_bi(chip, &s); } int zd_set_beacon_interval(struct zd_chip *chip, u32 interval) { int r; mutex_lock(&chip->mutex); r = set_beacon_interval(chip, interval); mutex_unlock(&chip->mutex); return r; } static int hw_init(struct zd_chip *chip) { int r; dev_dbg_f(zd_chip_dev(chip), "\n"); ZD_ASSERT(mutex_is_locked(&chip->mutex)); r = hw_reset_phy(chip); if (r) return r; r = hw_init_hmac(chip); if (r) return r; return set_beacon_interval(chip, 100); } #ifdef DEBUG static int dump_cr(struct zd_chip *chip, const zd_addr_t addr, const char *addr_string) { int r; u32 value; r = zd_ioread32_locked(chip, &value, addr); if (r) { dev_dbg_f(zd_chip_dev(chip), "error reading %s. Error number %d\n", addr_string, r); return r; } dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n", addr_string, (unsigned int)value); return 0; } static int test_init(struct zd_chip *chip) { int r; r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP"); if (r) return r; r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN"); if (r) return r; return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT"); } static void dump_fw_registers(struct zd_chip *chip) { static const zd_addr_t addr[4] = { FW_FIRMWARE_VER, FW_USB_SPEED, FW_FIX_TX_RATE, FW_LINK_STATUS }; int r; u16 values[4]; r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr, ARRAY_SIZE(addr)); if (r) { dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n", r); return; } dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]); dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]); dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]); dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]); } #endif /* DEBUG */ static int print_fw_version(struct zd_chip *chip) { int r; u16 version; r = zd_ioread16_locked(chip, &version, FW_FIRMWARE_VER); if (r) return r; dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version); return 0; } static int set_mandatory_rates(struct zd_chip *chip, enum ieee80211_std std) { u32 rates; ZD_ASSERT(mutex_is_locked(&chip->mutex)); /* This sets the mandatory rates, which only depend from the standard * that the device is supporting. Until further notice we should try * to support 802.11g also for full speed USB. */ switch (std) { case IEEE80211B: rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M; break; case IEEE80211G: rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M| CR_RATE_6M|CR_RATE_12M|CR_RATE_24M; break; default: return -EINVAL; } return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL); } int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip, u8 rts_rate, int preamble) { int rts_mod = ZD_RX_CCK; u32 value = 0; /* Modulation bit */ if (ZD_CS_TYPE(rts_rate) == ZD_CS_OFDM) rts_mod = ZD_RX_OFDM; dev_dbg_f(zd_chip_dev(chip), "rts_rate=%x preamble=%x\n", rts_rate, preamble); value |= rts_rate << RTSCTS_SH_RTS_RATE; value |= rts_mod << RTSCTS_SH_RTS_MOD_TYPE; value |= preamble << RTSCTS_SH_RTS_PMB_TYPE; value |= preamble << RTSCTS_SH_CTS_PMB_TYPE; /* We always send 11M self-CTS messages, like the vendor driver. */ value |= ZD_CCK_RATE_11M << RTSCTS_SH_CTS_RATE; value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE; return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE); } int zd_chip_enable_hwint(struct zd_chip *chip) { int r; mutex_lock(&chip->mutex); r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT); mutex_unlock(&chip->mutex); return r; } static int disable_hwint(struct zd_chip *chip) { return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT); } int zd_chip_disable_hwint(struct zd_chip *chip) { int r; mutex_lock(&chip->mutex); r = disable_hwint(chip); mutex_unlock(&chip->mutex); return r; } int zd_chip_init_hw(struct zd_chip *chip, u8 device_type) { int r; u8 rf_type; dev_dbg_f(zd_chip_dev(chip), "\n"); mutex_lock(&chip->mutex); chip->is_zd1211b = (device_type == DEVICE_ZD1211B) != 0; #ifdef DEBUG r = test_init(chip); if (r) goto out; #endif r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP); if (r) goto out; r = zd_usb_init_hw(&chip->usb); if (r) goto out; /* GPI is always disabled, also in the other driver. */ r = zd_iowrite32_locked(chip, 0, CR_GPI_EN); if (r) goto out; r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX); if (r) goto out; /* Currently we support IEEE 802.11g for full and high speed USB. * It might be discussed, whether we should suppport pure b mode for * full speed USB. */ r = set_mandatory_rates(chip, IEEE80211G); if (r) goto out; /* Disabling interrupts is certainly a smart thing here. */ r = disable_hwint(chip); if (r) goto out; r = read_pod(chip, &rf_type); if (r) goto out; r = hw_init(chip); if (r) goto out; r = zd_rf_init_hw(&chip->rf, rf_type); if (r) goto out; r = print_fw_version(chip); if (r) goto out; #ifdef DEBUG dump_fw_registers(chip); r = test_init(chip); if (r) goto out; #endif /* DEBUG */ r = read_e2p_mac_addr(chip); if (r) goto out; r = read_cal_int_tables(chip); if (r) goto out; print_id(chip); out: mutex_unlock(&chip->mutex); return r; } static int update_pwr_int(struct zd_chip *chip, u8 channel) { u8 value = chip->pwr_int_values[channel - 1]; dev_dbg_f(zd_chip_dev(chip), "channel %d pwr_int %#04x\n", channel, value); return zd_iowrite16_locked(chip, value, CR31); } static int update_pwr_cal(struct zd_chip *chip, u8 channel) { u8 value = chip->pwr_cal_values[channel-1]; dev_dbg_f(zd_chip_dev(chip), "channel %d pwr_cal %#04x\n", channel, value); return zd_iowrite16_locked(chip, value, CR68); } static int update_ofdm_cal(struct zd_chip *chip, u8 channel) { struct zd_ioreq16 ioreqs[3]; ioreqs[0].addr = CR67; ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1]; ioreqs[1].addr = CR66; ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1]; ioreqs[2].addr = CR65; ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1]; dev_dbg_f(zd_chip_dev(chip), "channel %d ofdm_cal 36M %#04x 48M %#04x 54M %#04x\n", channel, ioreqs[0].value, ioreqs[1].value, ioreqs[2].value); return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); } static int update_channel_integration_and_calibration(struct zd_chip *chip, u8 channel) { int r; r = update_pwr_int(chip, channel); if (r) return r; if (chip->is_zd1211b) { static const struct zd_ioreq16 ioreqs[] = { { CR69, 0x28 }, {}, { CR69, 0x2a }, }; r = update_ofdm_cal(chip, channel); if (r) return r; r = update_pwr_cal(chip, channel); if (r) return r; r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); if (r) return r; } return 0; } /* The CCK baseband gain can be optionally patched by the EEPROM */ static int patch_cck_gain(struct zd_chip *chip) { int r; u32 value; if (!chip->patch_cck_gain) return 0; ZD_ASSERT(mutex_is_locked(&chip->mutex)); r = zd_ioread32_locked(chip, &value, E2P_PHY_REG); if (r) return r; dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff); return zd_iowrite16_locked(chip, value & 0xff, CR47); } int zd_chip_set_channel(struct zd_chip *chip, u8 channel) { int r, t; mutex_lock(&chip->mutex); r = zd_chip_lock_phy_regs(chip); if (r) goto out; r = zd_rf_set_channel(&chip->rf, channel); if (r) goto unlock; r = update_channel_integration_and_calibration(chip, channel); if (r) goto unlock; r = patch_cck_gain(chip); if (r) goto unlock; r = patch_6m_band_edge(chip, channel); if (r) goto unlock; r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS); unlock: t = zd_chip_unlock_phy_regs(chip); if (t && !r) r = t; out: mutex_unlock(&chip->mutex); return r; } u8 zd_chip_get_channel(struct zd_chip *chip) { u8 channel; mutex_lock(&chip->mutex); channel = chip->rf.channel; mutex_unlock(&chip->mutex); return channel; } int zd_chip_control_leds(struct zd_chip *chip, enum led_status status) { static const zd_addr_t a[] = { FW_LINK_STATUS, CR_LED, }; int r; u16 v[ARRAY_SIZE(a)]; struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = { [0] = { FW_LINK_STATUS }, [1] = { CR_LED }, }; u16 other_led; mutex_lock(&chip->mutex); r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a)); if (r) goto out; other_led = chip->link_led == LED1 ? LED2 : LED1; switch (status) { case LED_OFF: ioreqs[0].value = FW_LINK_OFF; ioreqs[1].value = v[1] & ~(LED1|LED2); break; case LED_SCANNING: ioreqs[0].value = FW_LINK_OFF; ioreqs[1].value = v[1] & ~other_led; if (get_seconds() % 3 == 0) { ioreqs[1].value &= ~chip->link_led; } else { ioreqs[1].value |= chip->link_led; } break; case LED_ASSOCIATED: ioreqs[0].value = FW_LINK_TX; ioreqs[1].value = v[1] & ~other_led; ioreqs[1].value |= chip->link_led; break; default: r = -EINVAL; goto out; } if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) { r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); if (r) goto out; } r = 0; out: mutex_unlock(&chip->mutex); return r; } int zd_chip_set_basic_rates_locked(struct zd_chip *chip, u16 cr_rates) { ZD_ASSERT((cr_rates & ~(CR_RATES_80211B | CR_RATES_80211G)) == 0); dev_dbg_f(zd_chip_dev(chip), "%x\n", cr_rates); return zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL); } static int ofdm_qual_db(u8 status_quality, u8 rate, unsigned int size) { static const u16 constants[] = { 715, 655, 585, 540, 470, 410, 360, 315, 270, 235, 205, 175, 150, 125, 105, 85, 65, 50, 40, 25, 15 }; int i; u32 x; /* It seems that their quality parameter is somehow per signal * and is now transferred per bit. */ switch (rate) { case ZD_OFDM_RATE_6M: case ZD_OFDM_RATE_12M: case ZD_OFDM_RATE_24M: size *= 2; break; case ZD_OFDM_RATE_9M: case ZD_OFDM_RATE_18M: case ZD_OFDM_RATE_36M: case ZD_OFDM_RATE_54M: size *= 4; size /= 3; break; case ZD_OFDM_RATE_48M: size *= 3; size /= 2; break; default: return -EINVAL; } x = (10000 * status_quality)/size; for (i = 0; i < ARRAY_SIZE(constants); i++) { if (x > constants[i]) break; } switch (rate) { case ZD_OFDM_RATE_6M: case ZD_OFDM_RATE_9M: i += 3; break; case ZD_OFDM_RATE_12M: case ZD_OFDM_RATE_18M: i += 5; break; case ZD_OFDM_RATE_24M: case ZD_OFDM_RATE_36M: i += 9; break; case ZD_OFDM_RATE_48M: case ZD_OFDM_RATE_54M: i += 15; break; default: return -EINVAL; } return i; } static int ofdm_qual_percent(u8 status_quality, u8 rate, unsigned int size) { int r; r = ofdm_qual_db(status_quality, rate, size); ZD_ASSERT(r >= 0); if (r < 0) r = 0; r = (r * 100)/29; return r <= 100 ? r : 100; } static unsigned int log10times100(unsigned int x) { static const u8 log10[] = { 0, 0, 30, 47, 60, 69, 77, 84, 90, 95, 100, 104, 107, 111, 114, 117, 120, 123, 125, 127, 130, 132, 134, 136, 138, 139, 141, 143, 144, 146, 147, 149, 150, 151, 153, 154, 155, 156, 157, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 169, 170, 171, 172, 173, 174, 174, 175, 176, 177, 177, 178, 179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 185, 186, 186, 187, 188, 188, 189, 189, 190, 190, 191, 191, 192, 192, 193, 193, 194, 194, 195, 195, 196, 196, 197, 197, 198, 198, 199, 199, 200, 200, 200, 201, 201, 202, 202, 202, 203, 203, 204, 204, 204, 205, 205, 206, 206, 206, 207, 207, 207, 208, 208, 208, 209, 209, 210, 210, 210, 211, 211, 211, 212, 212, 212, 213, 213, 213, 213, 214, 214, 214, 215, 215, 215, 216, 216, 216, 217, 217, 217, 217, 218, 218, 218, 219, 219, 219, 219, 220, 220, 220, 220, 221, 221, 221, 222, 222, 222, 222, 223, 223, 223, 223, 224, 224, 224, 224, }; return x < ARRAY_SIZE(log10) ? log10[x] : 225; } enum { MAX_CCK_EVM_DB = 45, }; static int cck_evm_db(u8 status_quality) { return (20 * log10times100(status_quality)) / 100; } static int cck_snr_db(u8 status_quality) { int r = MAX_CCK_EVM_DB - cck_evm_db(status_quality); ZD_ASSERT(r >= 0); return r; } static int cck_qual_percent(u8 status_quality) { int r; r = cck_snr_db(status_quality); r = (100*r)/17; return r <= 100 ? r : 100; } u8 zd_rx_qual_percent(const void *rx_frame, unsigned int size, const struct rx_status *status) { return (status->frame_status&ZD_RX_OFDM) ? ofdm_qual_percent(status->signal_quality_ofdm, zd_ofdm_plcp_header_rate(rx_frame), size) : cck_qual_percent(status->signal_quality_cck); } u8 zd_rx_strength_percent(u8 rssi) { int r = (rssi*100) / 41; if (r > 100) r = 100; return (u8) r; } u16 zd_rx_rate(const void *rx_frame, const struct rx_status *status) { static const u16 ofdm_rates[] = { [ZD_OFDM_RATE_6M] = 60, [ZD_OFDM_RATE_9M] = 90, [ZD_OFDM_RATE_12M] = 120, [ZD_OFDM_RATE_18M] = 180, [ZD_OFDM_RATE_24M] = 240, [ZD_OFDM_RATE_36M] = 360, [ZD_OFDM_RATE_48M] = 480, [ZD_OFDM_RATE_54M] = 540, }; u16 rate; if (status->frame_status & ZD_RX_OFDM) { u8 ofdm_rate = zd_ofdm_plcp_header_rate(rx_frame); rate = ofdm_rates[ofdm_rate & 0xf]; } else { u8 cck_rate = zd_cck_plcp_header_rate(rx_frame); switch (cck_rate) { case ZD_CCK_SIGNAL_1M: rate = 10; break; case ZD_CCK_SIGNAL_2M: rate = 20; break; case ZD_CCK_SIGNAL_5M5: rate = 55; break; case ZD_CCK_SIGNAL_11M: rate = 110; break; default: rate = 0; } } return rate; } int zd_chip_switch_radio_on(struct zd_chip *chip) { int r; mutex_lock(&chip->mutex); r = zd_switch_radio_on(&chip->rf); mutex_unlock(&chip->mutex); return r; } int zd_chip_switch_radio_off(struct zd_chip *chip) { int r; mutex_lock(&chip->mutex); r = zd_switch_radio_off(&chip->rf); mutex_unlock(&chip->mutex); return r; } int zd_chip_enable_int(struct zd_chip *chip) { int r; mutex_lock(&chip->mutex); r = zd_usb_enable_int(&chip->usb); mutex_unlock(&chip->mutex); return r; } void zd_chip_disable_int(struct zd_chip *chip) { mutex_lock(&chip->mutex); zd_usb_disable_int(&chip->usb); mutex_unlock(&chip->mutex); } int zd_chip_enable_rx(struct zd_chip *chip) { int r; mutex_lock(&chip->mutex); r = zd_usb_enable_rx(&chip->usb); mutex_unlock(&chip->mutex); return r; } void zd_chip_disable_rx(struct zd_chip *chip) { mutex_lock(&chip->mutex); zd_usb_disable_rx(&chip->usb); mutex_unlock(&chip->mutex); } int zd_rfwritev_locked(struct zd_chip *chip, const u32* values, unsigned int count, u8 bits) { int r; unsigned int i; for (i = 0; i < count; i++) { r = zd_rfwrite_locked(chip, values[i], bits); if (r) return r; } return 0; } /* * We can optionally program the RF directly through CR regs, if supported by * the hardware. This is much faster than the older method. */ int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value) { struct zd_ioreq16 ioreqs[] = { { CR244, (value >> 16) & 0xff }, { CR243, (value >> 8) & 0xff }, { CR242, value & 0xff }, }; ZD_ASSERT(mutex_is_locked(&chip->mutex)); return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs)); } int zd_rfwritev_cr_locked(struct zd_chip *chip, const u32 *values, unsigned int count) { int r; unsigned int i; for (i = 0; i < count; i++) { r = zd_rfwrite_cr_locked(chip, values[i]); if (r) return r; } return 0; } int zd_chip_set_multicast_hash(struct zd_chip *chip, struct zd_mc_hash *hash) { struct zd_ioreq32 ioreqs[] = { { CR_GROUP_HASH_P1, hash->low }, { CR_GROUP_HASH_P2, hash->high }, }; dev_dbg_f(zd_chip_dev(chip), "hash l 0x%08x h 0x%08x\n", ioreqs[0].value, ioreqs[1].value); return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs)); }