#include <linux/interrupt.h> #include <linux/dmar.h> #include <linux/spinlock.h> #include <linux/jiffies.h> #include <linux/pci.h> #include <linux/irq.h> #include <asm/io_apic.h> #include <asm/smp.h> #include <asm/cpu.h> #include <linux/intel-iommu.h> #include "intr_remapping.h" static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; static int ir_ioapic_num; int intr_remapping_enabled; struct irq_2_iommu { struct intel_iommu *iommu; u16 irte_index; u16 sub_handle; u8 irte_mask; }; #ifdef CONFIG_GENERIC_HARDIRQS static struct irq_2_iommu *get_one_free_irq_2_iommu(int cpu) { struct irq_2_iommu *iommu; int node; node = cpu_to_node(cpu); iommu = kzalloc_node(sizeof(*iommu), GFP_ATOMIC, node); printk(KERN_DEBUG "alloc irq_2_iommu on cpu %d node %d\n", cpu, node); return iommu; } static struct irq_2_iommu *irq_2_iommu(unsigned int irq) { struct irq_desc *desc; desc = irq_to_desc(irq); if (WARN_ON_ONCE(!desc)) return NULL; return desc->irq_2_iommu; } static struct irq_2_iommu *irq_2_iommu_alloc_cpu(unsigned int irq, int cpu) { struct irq_desc *desc; struct irq_2_iommu *irq_iommu; /* * alloc irq desc if not allocated already. */ desc = irq_to_desc_alloc_cpu(irq, cpu); if (!desc) { printk(KERN_INFO "can not get irq_desc for %d\n", irq); return NULL; } irq_iommu = desc->irq_2_iommu; if (!irq_iommu) desc->irq_2_iommu = get_one_free_irq_2_iommu(cpu); return desc->irq_2_iommu; } static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq) { return irq_2_iommu_alloc_cpu(irq, boot_cpu_id); } #else /* !CONFIG_SPARSE_IRQ */ static struct irq_2_iommu irq_2_iommuX[NR_IRQS]; static struct irq_2_iommu *irq_2_iommu(unsigned int irq) { if (irq < nr_irqs) return &irq_2_iommuX[irq]; return NULL; } static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq) { return irq_2_iommu(irq); } #endif static DEFINE_SPINLOCK(irq_2_ir_lock); static struct irq_2_iommu *valid_irq_2_iommu(unsigned int irq) { struct irq_2_iommu *irq_iommu; irq_iommu = irq_2_iommu(irq); if (!irq_iommu) return NULL; if (!irq_iommu->iommu) return NULL; return irq_iommu; } int irq_remapped(int irq) { return valid_irq_2_iommu(irq) != NULL; } int get_irte(int irq, struct irte *entry) { int index; struct irq_2_iommu *irq_iommu; if (!entry) return -1; spin_lock(&irq_2_ir_lock); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock(&irq_2_ir_lock); return -1; } index = irq_iommu->irte_index + irq_iommu->sub_handle; *entry = *(irq_iommu->iommu->ir_table->base + index); spin_unlock(&irq_2_ir_lock); return 0; } int alloc_irte(struct intel_iommu *iommu, int irq, u16 count) { struct ir_table *table = iommu->ir_table; struct irq_2_iommu *irq_iommu; u16 index, start_index; unsigned int mask = 0; int i; if (!count) return -1; #ifndef CONFIG_SPARSE_IRQ /* protect irq_2_iommu_alloc later */ if (irq >= nr_irqs) return -1; #endif /* * start the IRTE search from index 0. */ index = start_index = 0; if (count > 1) { count = __roundup_pow_of_two(count); mask = ilog2(count); } if (mask > ecap_max_handle_mask(iommu->ecap)) { printk(KERN_ERR "Requested mask %x exceeds the max invalidation handle" " mask value %Lx\n", mask, ecap_max_handle_mask(iommu->ecap)); return -1; } spin_lock(&irq_2_ir_lock); do { for (i = index; i < index + count; i++) if (table->base[i].present) break; /* empty index found */ if (i == index + count) break; index = (index + count) % INTR_REMAP_TABLE_ENTRIES; if (index == start_index) { spin_unlock(&irq_2_ir_lock); printk(KERN_ERR "can't allocate an IRTE\n"); return -1; } } while (1); for (i = index; i < index + count; i++) table->base[i].present = 1; irq_iommu = irq_2_iommu_alloc(irq); if (!irq_iommu) { spin_unlock(&irq_2_ir_lock); printk(KERN_ERR "can't allocate irq_2_iommu\n"); return -1; } irq_iommu->iommu = iommu; irq_iommu->irte_index = index; irq_iommu->sub_handle = 0; irq_iommu->irte_mask = mask; spin_unlock(&irq_2_ir_lock); return index; } static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) { struct qi_desc desc; desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) | QI_IEC_SELECTIVE; desc.high = 0; return qi_submit_sync(&desc, iommu); } int map_irq_to_irte_handle(int irq, u16 *sub_handle) { int index; struct irq_2_iommu *irq_iommu; spin_lock(&irq_2_ir_lock); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock(&irq_2_ir_lock); return -1; } *sub_handle = irq_iommu->sub_handle; index = irq_iommu->irte_index; spin_unlock(&irq_2_ir_lock); return index; } int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle) { struct irq_2_iommu *irq_iommu; spin_lock(&irq_2_ir_lock); irq_iommu = irq_2_iommu_alloc(irq); if (!irq_iommu) { spin_unlock(&irq_2_ir_lock); printk(KERN_ERR "can't allocate irq_2_iommu\n"); return -1; } irq_iommu->iommu = iommu; irq_iommu->irte_index = index; irq_iommu->sub_handle = subhandle; irq_iommu->irte_mask = 0; spin_unlock(&irq_2_ir_lock); return 0; } int clear_irte_irq(int irq, struct intel_iommu *iommu, u16 index) { struct irq_2_iommu *irq_iommu; spin_lock(&irq_2_ir_lock); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock(&irq_2_ir_lock); return -1; } irq_iommu->iommu = NULL; irq_iommu->irte_index = 0; irq_iommu->sub_handle = 0; irq_2_iommu(irq)->irte_mask = 0; spin_unlock(&irq_2_ir_lock); return 0; } int modify_irte(int irq, struct irte *irte_modified) { int rc; int index; struct irte *irte; struct intel_iommu *iommu; struct irq_2_iommu *irq_iommu; spin_lock(&irq_2_ir_lock); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock(&irq_2_ir_lock); return -1; } iommu = irq_iommu->iommu; index = irq_iommu->irte_index + irq_iommu->sub_handle; irte = &iommu->ir_table->base[index]; set_64bit((unsigned long *)irte, irte_modified->low | (1 << 1)); __iommu_flush_cache(iommu, irte, sizeof(*irte)); rc = qi_flush_iec(iommu, index, 0); spin_unlock(&irq_2_ir_lock); return rc; } int flush_irte(int irq) { int rc; int index; struct intel_iommu *iommu; struct irq_2_iommu *irq_iommu; spin_lock(&irq_2_ir_lock); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock(&irq_2_ir_lock); return -1; } iommu = irq_iommu->iommu; index = irq_iommu->irte_index + irq_iommu->sub_handle; rc = qi_flush_iec(iommu, index, irq_iommu->irte_mask); spin_unlock(&irq_2_ir_lock); return rc; } struct intel_iommu *map_ioapic_to_ir(int apic) { int i; for (i = 0; i < MAX_IO_APICS; i++) if (ir_ioapic[i].id == apic) return ir_ioapic[i].iommu; return NULL; } struct intel_iommu *map_dev_to_ir(struct pci_dev *dev) { struct dmar_drhd_unit *drhd; drhd = dmar_find_matched_drhd_unit(dev); if (!drhd) return NULL; return drhd->iommu; } int free_irte(int irq) { int rc = 0; int index, i; struct irte *irte; struct intel_iommu *iommu; struct irq_2_iommu *irq_iommu; spin_lock(&irq_2_ir_lock); irq_iommu = valid_irq_2_iommu(irq); if (!irq_iommu) { spin_unlock(&irq_2_ir_lock); return -1; } iommu = irq_iommu->iommu; index = irq_iommu->irte_index + irq_iommu->sub_handle; irte = &iommu->ir_table->base[index]; if (!irq_iommu->sub_handle) { for (i = 0; i < (1 << irq_iommu->irte_mask); i++) set_64bit((unsigned long *)irte, 0); rc = qi_flush_iec(iommu, index, irq_iommu->irte_mask); } irq_iommu->iommu = NULL; irq_iommu->irte_index = 0; irq_iommu->sub_handle = 0; irq_iommu->irte_mask = 0; spin_unlock(&irq_2_ir_lock); return rc; } static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode) { u64 addr; u32 cmd, sts; unsigned long flags; addr = virt_to_phys((void *)iommu->ir_table->base); spin_lock_irqsave(&iommu->register_lock, flags); dmar_writeq(iommu->reg + DMAR_IRTA_REG, (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); /* Set interrupt-remapping table pointer */ cmd = iommu->gcmd | DMA_GCMD_SIRTP; writel(cmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_IRTPS), sts); spin_unlock_irqrestore(&iommu->register_lock, flags); /* * global invalidation of interrupt entry cache before enabling * interrupt-remapping. */ qi_global_iec(iommu); spin_lock_irqsave(&iommu->register_lock, flags); /* Enable interrupt-remapping */ cmd = iommu->gcmd | DMA_GCMD_IRE; iommu->gcmd |= DMA_GCMD_IRE; writel(cmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_IRES), sts); spin_unlock_irqrestore(&iommu->register_lock, flags); } static int setup_intr_remapping(struct intel_iommu *iommu, int mode) { struct ir_table *ir_table; struct page *pages; ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); if (!iommu->ir_table) return -ENOMEM; pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER); if (!pages) { printk(KERN_ERR "failed to allocate pages of order %d\n", INTR_REMAP_PAGE_ORDER); kfree(iommu->ir_table); return -ENOMEM; } ir_table->base = page_address(pages); iommu_set_intr_remapping(iommu, mode); return 0; } int __init enable_intr_remapping(int eim) { struct dmar_drhd_unit *drhd; int setup = 0; /* * check for the Interrupt-remapping support */ for_each_drhd_unit(drhd) { struct intel_iommu *iommu = drhd->iommu; if (!ecap_ir_support(iommu->ecap)) continue; if (eim && !ecap_eim_support(iommu->ecap)) { printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, " " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap); return -1; } } /* * Enable queued invalidation for all the DRHD's. */ for_each_drhd_unit(drhd) { int ret; struct intel_iommu *iommu = drhd->iommu; ret = dmar_enable_qi(iommu); if (ret) { printk(KERN_ERR "DRHD %Lx: failed to enable queued, " " invalidation, ecap %Lx, ret %d\n", drhd->reg_base_addr, iommu->ecap, ret); return -1; } } /* * Setup Interrupt-remapping for all the DRHD's now. */ for_each_drhd_unit(drhd) { struct intel_iommu *iommu = drhd->iommu; if (!ecap_ir_support(iommu->ecap)) continue; if (setup_intr_remapping(iommu, eim)) goto error; setup = 1; } if (!setup) goto error; intr_remapping_enabled = 1; return 0; error: /* * handle error condition gracefully here! */ return -1; } static int ir_parse_ioapic_scope(struct acpi_dmar_header *header, struct intel_iommu *iommu) { struct acpi_dmar_hardware_unit *drhd; struct acpi_dmar_device_scope *scope; void *start, *end; drhd = (struct acpi_dmar_hardware_unit *)header; start = (void *)(drhd + 1); end = ((void *)drhd) + header->length; while (start < end) { scope = start; if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) { if (ir_ioapic_num == MAX_IO_APICS) { printk(KERN_WARNING "Exceeded Max IO APICS\n"); return -1; } printk(KERN_INFO "IOAPIC id %d under DRHD base" " 0x%Lx\n", scope->enumeration_id, drhd->address); ir_ioapic[ir_ioapic_num].iommu = iommu; ir_ioapic[ir_ioapic_num].id = scope->enumeration_id; ir_ioapic_num++; } start += scope->length; } return 0; } /* * Finds the assocaition between IOAPIC's and its Interrupt-remapping * hardware unit. */ int __init parse_ioapics_under_ir(void) { struct dmar_drhd_unit *drhd; int ir_supported = 0; for_each_drhd_unit(drhd) { struct intel_iommu *iommu = drhd->iommu; if (ecap_ir_support(iommu->ecap)) { if (ir_parse_ioapic_scope(drhd->hdr, iommu)) return -1; ir_supported = 1; } } if (ir_supported && ir_ioapic_num != nr_ioapics) { printk(KERN_WARNING "Not all IO-APIC's listed under remapping hardware\n"); return -1; } return ir_supported; }