/* * $Id: pci.c,v 1.91 1999/01/21 13:34:01 davem Exp $ * * PCI Bus Services, see include/linux/pci.h for further explanation. * * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, * David Mosberger-Tang * * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> */ #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/string.h> #include <asm/dma.h> /* isa_dma_bridge_buggy */ #include "pci.h" unsigned int pci_pm_d3_delay = 10; #define DEFAULT_CARDBUS_IO_SIZE (256) #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) /* pci=cbmemsize=nnM,cbiosize=nn can override this */ unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; /** * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children * @bus: pointer to PCI bus structure to search * * Given a PCI bus, returns the highest PCI bus number present in the set * including the given PCI bus and its list of child PCI buses. */ unsigned char __devinit pci_bus_max_busnr(struct pci_bus* bus) { struct list_head *tmp; unsigned char max, n; max = bus->subordinate; list_for_each(tmp, &bus->children) { n = pci_bus_max_busnr(pci_bus_b(tmp)); if(n > max) max = n; } return max; } EXPORT_SYMBOL_GPL(pci_bus_max_busnr); #if 0 /** * pci_max_busnr - returns maximum PCI bus number * * Returns the highest PCI bus number present in the system global list of * PCI buses. */ unsigned char __devinit pci_max_busnr(void) { struct pci_bus *bus = NULL; unsigned char max, n; max = 0; while ((bus = pci_find_next_bus(bus)) != NULL) { n = pci_bus_max_busnr(bus); if(n > max) max = n; } return max; } #endif /* 0 */ #define PCI_FIND_CAP_TTL 48 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, u8 pos, int cap, int *ttl) { u8 id; while ((*ttl)--) { pci_bus_read_config_byte(bus, devfn, pos, &pos); if (pos < 0x40) break; pos &= ~3; pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, &id); if (id == 0xff) break; if (id == cap) return pos; pos += PCI_CAP_LIST_NEXT; } return 0; } static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, u8 pos, int cap) { int ttl = PCI_FIND_CAP_TTL; return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); } int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) { return __pci_find_next_cap(dev->bus, dev->devfn, pos + PCI_CAP_LIST_NEXT, cap); } EXPORT_SYMBOL_GPL(pci_find_next_capability); static int __pci_bus_find_cap_start(struct pci_bus *bus, unsigned int devfn, u8 hdr_type) { u16 status; pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); if (!(status & PCI_STATUS_CAP_LIST)) return 0; switch (hdr_type) { case PCI_HEADER_TYPE_NORMAL: case PCI_HEADER_TYPE_BRIDGE: return PCI_CAPABILITY_LIST; case PCI_HEADER_TYPE_CARDBUS: return PCI_CB_CAPABILITY_LIST; default: return 0; } return 0; } /** * pci_find_capability - query for devices' capabilities * @dev: PCI device to query * @cap: capability code * * Tell if a device supports a given PCI capability. * Returns the address of the requested capability structure within the * device's PCI configuration space or 0 in case the device does not * support it. Possible values for @cap: * * %PCI_CAP_ID_PM Power Management * %PCI_CAP_ID_AGP Accelerated Graphics Port * %PCI_CAP_ID_VPD Vital Product Data * %PCI_CAP_ID_SLOTID Slot Identification * %PCI_CAP_ID_MSI Message Signalled Interrupts * %PCI_CAP_ID_CHSWP CompactPCI HotSwap * %PCI_CAP_ID_PCIX PCI-X * %PCI_CAP_ID_EXP PCI Express */ int pci_find_capability(struct pci_dev *dev, int cap) { int pos; pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); if (pos) pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); return pos; } /** * pci_bus_find_capability - query for devices' capabilities * @bus: the PCI bus to query * @devfn: PCI device to query * @cap: capability code * * Like pci_find_capability() but works for pci devices that do not have a * pci_dev structure set up yet. * * Returns the address of the requested capability structure within the * device's PCI configuration space or 0 in case the device does not * support it. */ int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) { int pos; u8 hdr_type; pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); if (pos) pos = __pci_find_next_cap(bus, devfn, pos, cap); return pos; } /** * pci_find_ext_capability - Find an extended capability * @dev: PCI device to query * @cap: capability code * * Returns the address of the requested extended capability structure * within the device's PCI configuration space or 0 if the device does * not support it. Possible values for @cap: * * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting * %PCI_EXT_CAP_ID_VC Virtual Channel * %PCI_EXT_CAP_ID_DSN Device Serial Number * %PCI_EXT_CAP_ID_PWR Power Budgeting */ int pci_find_ext_capability(struct pci_dev *dev, int cap) { u32 header; int ttl = 480; /* 3840 bytes, minimum 8 bytes per capability */ int pos = 0x100; if (dev->cfg_size <= 256) return 0; if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) return 0; /* * If we have no capabilities, this is indicated by cap ID, * cap version and next pointer all being 0. */ if (header == 0) return 0; while (ttl-- > 0) { if (PCI_EXT_CAP_ID(header) == cap) return pos; pos = PCI_EXT_CAP_NEXT(header); if (pos < 0x100) break; if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) break; } return 0; } EXPORT_SYMBOL_GPL(pci_find_ext_capability); static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) { int rc, ttl = PCI_FIND_CAP_TTL; u8 cap, mask; if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) mask = HT_3BIT_CAP_MASK; else mask = HT_5BIT_CAP_MASK; pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, PCI_CAP_ID_HT, &ttl); while (pos) { rc = pci_read_config_byte(dev, pos + 3, &cap); if (rc != PCIBIOS_SUCCESSFUL) return 0; if ((cap & mask) == ht_cap) return pos; pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos + PCI_CAP_LIST_NEXT, PCI_CAP_ID_HT, &ttl); } return 0; } /** * pci_find_next_ht_capability - query a device's Hypertransport capabilities * @dev: PCI device to query * @pos: Position from which to continue searching * @ht_cap: Hypertransport capability code * * To be used in conjunction with pci_find_ht_capability() to search for * all capabilities matching @ht_cap. @pos should always be a value returned * from pci_find_ht_capability(). * * NB. To be 100% safe against broken PCI devices, the caller should take * steps to avoid an infinite loop. */ int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) { return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); } EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); /** * pci_find_ht_capability - query a device's Hypertransport capabilities * @dev: PCI device to query * @ht_cap: Hypertransport capability code * * Tell if a device supports a given Hypertransport capability. * Returns an address within the device's PCI configuration space * or 0 in case the device does not support the request capability. * The address points to the PCI capability, of type PCI_CAP_ID_HT, * which has a Hypertransport capability matching @ht_cap. */ int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) { int pos; pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); if (pos) pos = __pci_find_next_ht_cap(dev, pos, ht_cap); return pos; } EXPORT_SYMBOL_GPL(pci_find_ht_capability); /** * pci_find_parent_resource - return resource region of parent bus of given region * @dev: PCI device structure contains resources to be searched * @res: child resource record for which parent is sought * * For given resource region of given device, return the resource * region of parent bus the given region is contained in or where * it should be allocated from. */ struct resource * pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) { const struct pci_bus *bus = dev->bus; int i; struct resource *best = NULL; for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) { struct resource *r = bus->resource[i]; if (!r) continue; if (res->start && !(res->start >= r->start && res->end <= r->end)) continue; /* Not contained */ if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) continue; /* Wrong type */ if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) return r; /* Exact match */ if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH)) best = r; /* Approximating prefetchable by non-prefetchable */ } return best; } /** * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) * @dev: PCI device to have its BARs restored * * Restore the BAR values for a given device, so as to make it * accessible by its driver. */ void pci_restore_bars(struct pci_dev *dev) { int i, numres; switch (dev->hdr_type) { case PCI_HEADER_TYPE_NORMAL: numres = 6; break; case PCI_HEADER_TYPE_BRIDGE: numres = 2; break; case PCI_HEADER_TYPE_CARDBUS: numres = 1; break; default: /* Should never get here, but just in case... */ return; } for (i = 0; i < numres; i ++) pci_update_resource(dev, &dev->resource[i], i); } int (*platform_pci_set_power_state)(struct pci_dev *dev, pci_power_t t); /** * pci_set_power_state - Set the power state of a PCI device * @dev: PCI device to be suspended * @state: PCI power state (D0, D1, D2, D3hot, D3cold) we're entering * * Transition a device to a new power state, using the Power Management * Capabilities in the device's config space. * * RETURN VALUE: * -EINVAL if trying to enter a lower state than we're already in. * 0 if we're already in the requested state. * -EIO if device does not support PCI PM. * 0 if we can successfully change the power state. */ int pci_set_power_state(struct pci_dev *dev, pci_power_t state) { int pm, need_restore = 0; u16 pmcsr, pmc; /* bound the state we're entering */ if (state > PCI_D3hot) state = PCI_D3hot; /* * If the device or the parent bridge can't support PCI PM, ignore * the request if we're doing anything besides putting it into D0 * (which would only happen on boot). */ if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) return 0; /* Validate current state: * Can enter D0 from any state, but if we can only go deeper * to sleep if we're already in a low power state */ if (state != PCI_D0 && dev->current_state > state) { printk(KERN_ERR "%s(): %s: state=%d, current state=%d\n", __FUNCTION__, pci_name(dev), state, dev->current_state); return -EINVAL; } else if (dev->current_state == state) return 0; /* we're already there */ /* find PCI PM capability in list */ pm = pci_find_capability(dev, PCI_CAP_ID_PM); /* abort if the device doesn't support PM capabilities */ if (!pm) return -EIO; pci_read_config_word(dev,pm + PCI_PM_PMC,&pmc); if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { printk(KERN_DEBUG "PCI: %s has unsupported PM cap regs version (%u)\n", pci_name(dev), pmc & PCI_PM_CAP_VER_MASK); return -EIO; } /* check if this device supports the desired state */ if (state == PCI_D1 && !(pmc & PCI_PM_CAP_D1)) return -EIO; else if (state == PCI_D2 && !(pmc & PCI_PM_CAP_D2)) return -EIO; pci_read_config_word(dev, pm + PCI_PM_CTRL, &pmcsr); /* If we're (effectively) in D3, force entire word to 0. * This doesn't affect PME_Status, disables PME_En, and * sets PowerState to 0. */ switch (dev->current_state) { case PCI_D0: case PCI_D1: case PCI_D2: pmcsr &= ~PCI_PM_CTRL_STATE_MASK; pmcsr |= state; break; case PCI_UNKNOWN: /* Boot-up */ if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) need_restore = 1; /* Fall-through: force to D0 */ default: pmcsr = 0; break; } /* enter specified state */ pci_write_config_word(dev, pm + PCI_PM_CTRL, pmcsr); /* Mandatory power management transition delays */ /* see PCI PM 1.1 5.6.1 table 18 */ if (state == PCI_D3hot || dev->current_state == PCI_D3hot) msleep(pci_pm_d3_delay); else if (state == PCI_D2 || dev->current_state == PCI_D2) udelay(200); /* * Give firmware a chance to be called, such as ACPI _PRx, _PSx * Firmware method after native method ? */ if (platform_pci_set_power_state) platform_pci_set_power_state(dev, state); dev->current_state = state; /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning * from D3hot to D0 _may_ perform an internal reset, thereby * going to "D0 Uninitialized" rather than "D0 Initialized". * For example, at least some versions of the 3c905B and the * 3c556B exhibit this behaviour. * * At least some laptop BIOSen (e.g. the Thinkpad T21) leave * devices in a D3hot state at boot. Consequently, we need to * restore at least the BARs so that the device will be * accessible to its driver. */ if (need_restore) pci_restore_bars(dev); return 0; } int (*platform_pci_choose_state)(struct pci_dev *dev, pm_message_t state); /** * pci_choose_state - Choose the power state of a PCI device * @dev: PCI device to be suspended * @state: target sleep state for the whole system. This is the value * that is passed to suspend() function. * * Returns PCI power state suitable for given device and given system * message. */ pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) { int ret; if (!pci_find_capability(dev, PCI_CAP_ID_PM)) return PCI_D0; if (platform_pci_choose_state) { ret = platform_pci_choose_state(dev, state); if (ret >= 0) state.event = ret; } switch (state.event) { case PM_EVENT_ON: return PCI_D0; case PM_EVENT_FREEZE: case PM_EVENT_PRETHAW: /* REVISIT both freeze and pre-thaw "should" use D0 */ case PM_EVENT_SUSPEND: return PCI_D3hot; default: printk("Unrecognized suspend event %d\n", state.event); BUG(); } return PCI_D0; } EXPORT_SYMBOL(pci_choose_state); static int pci_save_pcie_state(struct pci_dev *dev) { int pos, i = 0; struct pci_cap_saved_state *save_state; u16 *cap; pos = pci_find_capability(dev, PCI_CAP_ID_EXP); if (pos <= 0) return 0; save_state = kzalloc(sizeof(*save_state) + sizeof(u16) * 4, GFP_KERNEL); if (!save_state) { dev_err(&dev->dev, "Out of memory in pci_save_pcie_state\n"); return -ENOMEM; } cap = (u16 *)&save_state->data[0]; pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]); pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]); pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]); pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]); pci_add_saved_cap(dev, save_state); return 0; } static void pci_restore_pcie_state(struct pci_dev *dev) { int i = 0, pos; struct pci_cap_saved_state *save_state; u16 *cap; save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); pos = pci_find_capability(dev, PCI_CAP_ID_EXP); if (!save_state || pos <= 0) return; cap = (u16 *)&save_state->data[0]; pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]); pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]); pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]); pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]); pci_remove_saved_cap(save_state); kfree(save_state); } static int pci_save_pcix_state(struct pci_dev *dev) { int pos, i = 0; struct pci_cap_saved_state *save_state; u16 *cap; pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); if (pos <= 0) return 0; save_state = kzalloc(sizeof(*save_state) + sizeof(u16), GFP_KERNEL); if (!save_state) { dev_err(&dev->dev, "Out of memory in pci_save_pcie_state\n"); return -ENOMEM; } cap = (u16 *)&save_state->data[0]; pci_read_config_word(dev, pos + PCI_X_CMD, &cap[i++]); pci_add_saved_cap(dev, save_state); return 0; } static void pci_restore_pcix_state(struct pci_dev *dev) { int i = 0, pos; struct pci_cap_saved_state *save_state; u16 *cap; save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); if (!save_state || pos <= 0) return; cap = (u16 *)&save_state->data[0]; pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); pci_remove_saved_cap(save_state); kfree(save_state); } /** * pci_save_state - save the PCI configuration space of a device before suspending * @dev: - PCI device that we're dealing with */ int pci_save_state(struct pci_dev *dev) { int i; /* XXX: 100% dword access ok here? */ for (i = 0; i < 16; i++) pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]); if ((i = pci_save_msi_state(dev)) != 0) return i; if ((i = pci_save_pcie_state(dev)) != 0) return i; if ((i = pci_save_pcix_state(dev)) != 0) return i; return 0; } /** * pci_restore_state - Restore the saved state of a PCI device * @dev: - PCI device that we're dealing with */ int pci_restore_state(struct pci_dev *dev) { int i; int val; /* PCI Express register must be restored first */ pci_restore_pcie_state(dev); /* * The Base Address register should be programmed before the command * register(s) */ for (i = 15; i >= 0; i--) { pci_read_config_dword(dev, i * 4, &val); if (val != dev->saved_config_space[i]) { printk(KERN_DEBUG "PM: Writing back config space on " "device %s at offset %x (was %x, writing %x)\n", pci_name(dev), i, val, (int)dev->saved_config_space[i]); pci_write_config_dword(dev,i * 4, dev->saved_config_space[i]); } } pci_restore_pcix_state(dev); pci_restore_msi_state(dev); return 0; } static int do_pci_enable_device(struct pci_dev *dev, int bars) { int err; err = pci_set_power_state(dev, PCI_D0); if (err < 0 && err != -EIO) return err; err = pcibios_enable_device(dev, bars); if (err < 0) return err; pci_fixup_device(pci_fixup_enable, dev); return 0; } /** * __pci_reenable_device - Resume abandoned device * @dev: PCI device to be resumed * * Note this function is a backend of pci_default_resume and is not supposed * to be called by normal code, write proper resume handler and use it instead. */ int __pci_reenable_device(struct pci_dev *dev) { if (atomic_read(&dev->enable_cnt)) return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); return 0; } /** * pci_enable_device_bars - Initialize some of a device for use * @dev: PCI device to be initialized * @bars: bitmask of BAR's that must be configured * * Initialize device before it's used by a driver. Ask low-level code * to enable selected I/O and memory resources. Wake up the device if it * was suspended. Beware, this function can fail. */ int pci_enable_device_bars(struct pci_dev *dev, int bars) { int err; if (atomic_add_return(1, &dev->enable_cnt) > 1) return 0; /* already enabled */ err = do_pci_enable_device(dev, bars); if (err < 0) atomic_dec(&dev->enable_cnt); return err; } /** * pci_enable_device - Initialize device before it's used by a driver. * @dev: PCI device to be initialized * * Initialize device before it's used by a driver. Ask low-level code * to enable I/O and memory. Wake up the device if it was suspended. * Beware, this function can fail. * * Note we don't actually enable the device many times if we call * this function repeatedly (we just increment the count). */ int pci_enable_device(struct pci_dev *dev) { return pci_enable_device_bars(dev, (1 << PCI_NUM_RESOURCES) - 1); } /* * Managed PCI resources. This manages device on/off, intx/msi/msix * on/off and BAR regions. pci_dev itself records msi/msix status, so * there's no need to track it separately. pci_devres is initialized * when a device is enabled using managed PCI device enable interface. */ struct pci_devres { unsigned int enabled:1; unsigned int pinned:1; unsigned int orig_intx:1; unsigned int restore_intx:1; u32 region_mask; }; static void pcim_release(struct device *gendev, void *res) { struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); struct pci_devres *this = res; int i; if (dev->msi_enabled) pci_disable_msi(dev); if (dev->msix_enabled) pci_disable_msix(dev); for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) if (this->region_mask & (1 << i)) pci_release_region(dev, i); if (this->restore_intx) pci_intx(dev, this->orig_intx); if (this->enabled && !this->pinned) pci_disable_device(dev); } static struct pci_devres * get_pci_dr(struct pci_dev *pdev) { struct pci_devres *dr, *new_dr; dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); if (dr) return dr; new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); if (!new_dr) return NULL; return devres_get(&pdev->dev, new_dr, NULL, NULL); } static struct pci_devres * find_pci_dr(struct pci_dev *pdev) { if (pci_is_managed(pdev)) return devres_find(&pdev->dev, pcim_release, NULL, NULL); return NULL; } /** * pcim_enable_device - Managed pci_enable_device() * @pdev: PCI device to be initialized * * Managed pci_enable_device(). */ int pcim_enable_device(struct pci_dev *pdev) { struct pci_devres *dr; int rc; dr = get_pci_dr(pdev); if (unlikely(!dr)) return -ENOMEM; WARN_ON(!!dr->enabled); rc = pci_enable_device(pdev); if (!rc) { pdev->is_managed = 1; dr->enabled = 1; } return rc; } /** * pcim_pin_device - Pin managed PCI device * @pdev: PCI device to pin * * Pin managed PCI device @pdev. Pinned device won't be disabled on * driver detach. @pdev must have been enabled with * pcim_enable_device(). */ void pcim_pin_device(struct pci_dev *pdev) { struct pci_devres *dr; dr = find_pci_dr(pdev); WARN_ON(!dr || !dr->enabled); if (dr) dr->pinned = 1; } /** * pcibios_disable_device - disable arch specific PCI resources for device dev * @dev: the PCI device to disable * * Disables architecture specific PCI resources for the device. This * is the default implementation. Architecture implementations can * override this. */ void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {} /** * pci_disable_device - Disable PCI device after use * @dev: PCI device to be disabled * * Signal to the system that the PCI device is not in use by the system * anymore. This only involves disabling PCI bus-mastering, if active. * * Note we don't actually disable the device until all callers of * pci_device_enable() have called pci_device_disable(). */ void pci_disable_device(struct pci_dev *dev) { struct pci_devres *dr; u16 pci_command; dr = find_pci_dr(dev); if (dr) dr->enabled = 0; if (atomic_sub_return(1, &dev->enable_cnt) != 0) return; pci_read_config_word(dev, PCI_COMMAND, &pci_command); if (pci_command & PCI_COMMAND_MASTER) { pci_command &= ~PCI_COMMAND_MASTER; pci_write_config_word(dev, PCI_COMMAND, pci_command); } dev->is_busmaster = 0; pcibios_disable_device(dev); } /** * pci_enable_wake - enable device to generate PME# when suspended * @dev: - PCI device to operate on * @state: - Current state of device. * @enable: - Flag to enable or disable generation * * Set the bits in the device's PM Capabilities to generate PME# when * the system is suspended. * * -EIO is returned if device doesn't have PM Capabilities. * -EINVAL is returned if device supports it, but can't generate wake events. * 0 if operation is successful. * */ int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable) { int pm; u16 value; /* find PCI PM capability in list */ pm = pci_find_capability(dev, PCI_CAP_ID_PM); /* If device doesn't support PM Capabilities, but request is to disable * wake events, it's a nop; otherwise fail */ if (!pm) return enable ? -EIO : 0; /* Check device's ability to generate PME# */ pci_read_config_word(dev,pm+PCI_PM_PMC,&value); value &= PCI_PM_CAP_PME_MASK; value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */ /* Check if it can generate PME# from requested state. */ if (!value || !(value & (1 << state))) return enable ? -EINVAL : 0; pci_read_config_word(dev, pm + PCI_PM_CTRL, &value); /* Clear PME_Status by writing 1 to it and enable PME# */ value |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; if (!enable) value &= ~PCI_PM_CTRL_PME_ENABLE; pci_write_config_word(dev, pm + PCI_PM_CTRL, value); return 0; } int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) { u8 pin; pin = dev->pin; if (!pin) return -1; pin--; while (dev->bus->self) { pin = (pin + PCI_SLOT(dev->devfn)) % 4; dev = dev->bus->self; } *bridge = dev; return pin; } /** * pci_release_region - Release a PCI bar * @pdev: PCI device whose resources were previously reserved by pci_request_region * @bar: BAR to release * * Releases the PCI I/O and memory resources previously reserved by a * successful call to pci_request_region. Call this function only * after all use of the PCI regions has ceased. */ void pci_release_region(struct pci_dev *pdev, int bar) { struct pci_devres *dr; if (pci_resource_len(pdev, bar) == 0) return; if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) release_region(pci_resource_start(pdev, bar), pci_resource_len(pdev, bar)); else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) release_mem_region(pci_resource_start(pdev, bar), pci_resource_len(pdev, bar)); dr = find_pci_dr(pdev); if (dr) dr->region_mask &= ~(1 << bar); } /** * pci_request_region - Reserved PCI I/O and memory resource * @pdev: PCI device whose resources are to be reserved * @bar: BAR to be reserved * @res_name: Name to be associated with resource. * * Mark the PCI region associated with PCI device @pdev BR @bar as * being reserved by owner @res_name. Do not access any * address inside the PCI regions unless this call returns * successfully. * * Returns 0 on success, or %EBUSY on error. A warning * message is also printed on failure. */ int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) { struct pci_devres *dr; if (pci_resource_len(pdev, bar) == 0) return 0; if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { if (!request_region(pci_resource_start(pdev, bar), pci_resource_len(pdev, bar), res_name)) goto err_out; } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { if (!request_mem_region(pci_resource_start(pdev, bar), pci_resource_len(pdev, bar), res_name)) goto err_out; } dr = find_pci_dr(pdev); if (dr) dr->region_mask |= 1 << bar; return 0; err_out: printk (KERN_WARNING "PCI: Unable to reserve %s region #%d:%llx@%llx " "for device %s\n", pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem", bar + 1, /* PCI BAR # */ (unsigned long long)pci_resource_len(pdev, bar), (unsigned long long)pci_resource_start(pdev, bar), pci_name(pdev)); return -EBUSY; } /** * pci_release_selected_regions - Release selected PCI I/O and memory resources * @pdev: PCI device whose resources were previously reserved * @bars: Bitmask of BARs to be released * * Release selected PCI I/O and memory resources previously reserved. * Call this function only after all use of the PCI regions has ceased. */ void pci_release_selected_regions(struct pci_dev *pdev, int bars) { int i; for (i = 0; i < 6; i++) if (bars & (1 << i)) pci_release_region(pdev, i); } /** * pci_request_selected_regions - Reserve selected PCI I/O and memory resources * @pdev: PCI device whose resources are to be reserved * @bars: Bitmask of BARs to be requested * @res_name: Name to be associated with resource */ int pci_request_selected_regions(struct pci_dev *pdev, int bars, const char *res_name) { int i; for (i = 0; i < 6; i++) if (bars & (1 << i)) if(pci_request_region(pdev, i, res_name)) goto err_out; return 0; err_out: while(--i >= 0) if (bars & (1 << i)) pci_release_region(pdev, i); return -EBUSY; } /** * pci_release_regions - Release reserved PCI I/O and memory resources * @pdev: PCI device whose resources were previously reserved by pci_request_regions * * Releases all PCI I/O and memory resources previously reserved by a * successful call to pci_request_regions. Call this function only * after all use of the PCI regions has ceased. */ void pci_release_regions(struct pci_dev *pdev) { pci_release_selected_regions(pdev, (1 << 6) - 1); } /** * pci_request_regions - Reserved PCI I/O and memory resources * @pdev: PCI device whose resources are to be reserved * @res_name: Name to be associated with resource. * * Mark all PCI regions associated with PCI device @pdev as * being reserved by owner @res_name. Do not access any * address inside the PCI regions unless this call returns * successfully. * * Returns 0 on success, or %EBUSY on error. A warning * message is also printed on failure. */ int pci_request_regions(struct pci_dev *pdev, const char *res_name) { return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); } /** * pci_set_master - enables bus-mastering for device dev * @dev: the PCI device to enable * * Enables bus-mastering on the device and calls pcibios_set_master() * to do the needed arch specific settings. */ void pci_set_master(struct pci_dev *dev) { u16 cmd; pci_read_config_word(dev, PCI_COMMAND, &cmd); if (! (cmd & PCI_COMMAND_MASTER)) { pr_debug("PCI: Enabling bus mastering for device %s\n", pci_name(dev)); cmd |= PCI_COMMAND_MASTER; pci_write_config_word(dev, PCI_COMMAND, cmd); } dev->is_busmaster = 1; pcibios_set_master(dev); } #ifdef PCI_DISABLE_MWI int pci_set_mwi(struct pci_dev *dev) { return 0; } void pci_clear_mwi(struct pci_dev *dev) { } #else #ifndef PCI_CACHE_LINE_BYTES #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES #endif /* This can be overridden by arch code. */ /* Don't forget this is measured in 32-bit words, not bytes */ u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4; /** * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed * @dev: the PCI device for which MWI is to be enabled * * Helper function for pci_set_mwi. * Originally copied from drivers/net/acenic.c. * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ static int pci_set_cacheline_size(struct pci_dev *dev) { u8 cacheline_size; if (!pci_cache_line_size) return -EINVAL; /* The system doesn't support MWI. */ /* Validate current setting: the PCI_CACHE_LINE_SIZE must be equal to or multiple of the right value. */ pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); if (cacheline_size >= pci_cache_line_size && (cacheline_size % pci_cache_line_size) == 0) return 0; /* Write the correct value. */ pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); /* Read it back. */ pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); if (cacheline_size == pci_cache_line_size) return 0; printk(KERN_DEBUG "PCI: cache line size of %d is not supported " "by device %s\n", pci_cache_line_size << 2, pci_name(dev)); return -EINVAL; } /** * pci_set_mwi - enables memory-write-invalidate PCI transaction * @dev: the PCI device for which MWI is enabled * * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND, * and then calls @pcibios_set_mwi to do the needed arch specific * operations or a generic mwi-prep function. * * RETURNS: An appropriate -ERRNO error value on error, or zero for success. */ int pci_set_mwi(struct pci_dev *dev) { int rc; u16 cmd; rc = pci_set_cacheline_size(dev); if (rc) return rc; pci_read_config_word(dev, PCI_COMMAND, &cmd); if (! (cmd & PCI_COMMAND_INVALIDATE)) { pr_debug("PCI: Enabling Mem-Wr-Inval for device %s\n", pci_name(dev)); cmd |= PCI_COMMAND_INVALIDATE; pci_write_config_word(dev, PCI_COMMAND, cmd); } return 0; } /** * pci_clear_mwi - disables Memory-Write-Invalidate for device dev * @dev: the PCI device to disable * * Disables PCI Memory-Write-Invalidate transaction on the device */ void pci_clear_mwi(struct pci_dev *dev) { u16 cmd; pci_read_config_word(dev, PCI_COMMAND, &cmd); if (cmd & PCI_COMMAND_INVALIDATE) { cmd &= ~PCI_COMMAND_INVALIDATE; pci_write_config_word(dev, PCI_COMMAND, cmd); } } #endif /* ! PCI_DISABLE_MWI */ /** * pci_intx - enables/disables PCI INTx for device dev * @pdev: the PCI device to operate on * @enable: boolean: whether to enable or disable PCI INTx * * Enables/disables PCI INTx for device dev */ void pci_intx(struct pci_dev *pdev, int enable) { u16 pci_command, new; pci_read_config_word(pdev, PCI_COMMAND, &pci_command); if (enable) { new = pci_command & ~PCI_COMMAND_INTX_DISABLE; } else { new = pci_command | PCI_COMMAND_INTX_DISABLE; } if (new != pci_command) { struct pci_devres *dr; pci_write_config_word(pdev, PCI_COMMAND, new); dr = find_pci_dr(pdev); if (dr && !dr->restore_intx) { dr->restore_intx = 1; dr->orig_intx = !enable; } } } /** * pci_msi_off - disables any msi or msix capabilities * @pdev: the PCI device to operate on * * If you want to use msi see pci_enable_msi and friends. * This is a lower level primitive that allows us to disable * msi operation at the device level. */ void pci_msi_off(struct pci_dev *dev) { int pos; u16 control; pos = pci_find_capability(dev, PCI_CAP_ID_MSI); if (pos) { pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); control &= ~PCI_MSI_FLAGS_ENABLE; pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); } pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); if (pos) { pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); control &= ~PCI_MSIX_FLAGS_ENABLE; pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); } } #ifndef HAVE_ARCH_PCI_SET_DMA_MASK /* * These can be overridden by arch-specific implementations */ int pci_set_dma_mask(struct pci_dev *dev, u64 mask) { if (!pci_dma_supported(dev, mask)) return -EIO; dev->dma_mask = mask; return 0; } int pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask) { if (!pci_dma_supported(dev, mask)) return -EIO; dev->dev.coherent_dma_mask = mask; return 0; } #endif /** * pci_select_bars - Make BAR mask from the type of resource * @dev: the PCI device for which BAR mask is made * @flags: resource type mask to be selected * * This helper routine makes bar mask from the type of resource. */ int pci_select_bars(struct pci_dev *dev, unsigned long flags) { int i, bars = 0; for (i = 0; i < PCI_NUM_RESOURCES; i++) if (pci_resource_flags(dev, i) & flags) bars |= (1 << i); return bars; } static int __devinit pci_init(void) { struct pci_dev *dev = NULL; while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { pci_fixup_device(pci_fixup_final, dev); } return 0; } static int __devinit pci_setup(char *str) { while (str) { char *k = strchr(str, ','); if (k) *k++ = 0; if (*str && (str = pcibios_setup(str)) && *str) { if (!strcmp(str, "nomsi")) { pci_no_msi(); } else if (!strncmp(str, "cbiosize=", 9)) { pci_cardbus_io_size = memparse(str + 9, &str); } else if (!strncmp(str, "cbmemsize=", 10)) { pci_cardbus_mem_size = memparse(str + 10, &str); } else { printk(KERN_ERR "PCI: Unknown option `%s'\n", str); } } str = k; } return 0; } early_param("pci", pci_setup); device_initcall(pci_init); EXPORT_SYMBOL_GPL(pci_restore_bars); EXPORT_SYMBOL(pci_enable_device_bars); EXPORT_SYMBOL(pci_enable_device); EXPORT_SYMBOL(pcim_enable_device); EXPORT_SYMBOL(pcim_pin_device); EXPORT_SYMBOL(pci_disable_device); EXPORT_SYMBOL(pci_find_capability); EXPORT_SYMBOL(pci_bus_find_capability); EXPORT_SYMBOL(pci_release_regions); EXPORT_SYMBOL(pci_request_regions); EXPORT_SYMBOL(pci_release_region); EXPORT_SYMBOL(pci_request_region); EXPORT_SYMBOL(pci_release_selected_regions); EXPORT_SYMBOL(pci_request_selected_regions); EXPORT_SYMBOL(pci_set_master); EXPORT_SYMBOL(pci_set_mwi); EXPORT_SYMBOL(pci_clear_mwi); EXPORT_SYMBOL_GPL(pci_intx); EXPORT_SYMBOL(pci_set_dma_mask); EXPORT_SYMBOL(pci_set_consistent_dma_mask); EXPORT_SYMBOL(pci_assign_resource); EXPORT_SYMBOL(pci_find_parent_resource); EXPORT_SYMBOL(pci_select_bars); EXPORT_SYMBOL(pci_set_power_state); EXPORT_SYMBOL(pci_save_state); EXPORT_SYMBOL(pci_restore_state); EXPORT_SYMBOL(pci_enable_wake);