/* * * Alchemy Semi Pb1x00 boards specific pcmcia routines. * * Copyright 2002 MontaVista Software Inc. * Author: MontaVista Software, Inc. * ppopov@mvista.com or source@mvista.com * * ######################################################################## * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/tqueue.h> #include <linux/timer.h> #include <linux/mm.h> #include <linux/proc_fs.h> #include <linux/types.h> #include <pcmcia/cs_types.h> #include <pcmcia/cs.h> #include <pcmcia/ss.h> #include <pcmcia/cistpl.h> #include <pcmcia/bus_ops.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/system.h> #include <asm/au1000.h> #include <asm/au1000_pcmcia.h> #define debug(fmt, arg...) do { } while (0) #ifdef CONFIG_MIPS_PB1000 #include <asm/pb1000.h> #define PCMCIA_IRQ AU1000_GPIO_15 #elif defined (CONFIG_MIPS_PB1500) #include <asm/pb1500.h> #define PCMCIA_IRQ AU1500_GPIO_203 #elif defined (CONFIG_MIPS_PB1100) #include <asm/pb1100.h> #define PCMCIA_IRQ AU1000_GPIO_11 #endif static int pb1x00_pcmcia_init(struct pcmcia_init *init) { #ifdef CONFIG_MIPS_PB1000 u16 pcr; pcr = PCR_SLOT_0_RST | PCR_SLOT_1_RST; au_writel(0x8000, PB1000_MDR); /* clear pcmcia interrupt */ au_sync_delay(100); au_writel(0x4000, PB1000_MDR); /* enable pcmcia interrupt */ au_sync(); pcr |= SET_VCC_VPP(VCC_HIZ,VPP_HIZ,0); pcr |= SET_VCC_VPP(VCC_HIZ,VPP_HIZ,1); au_writel(pcr, PB1000_PCR); au_sync_delay(20); return PCMCIA_NUM_SOCKS; #else /* fixme -- take care of the Pb1500 at some point */ u16 pcr; pcr = au_readw(PCMCIA_BOARD_REG) & ~0xf; /* turn off power */ pcr &= ~(PC_DEASSERT_RST | PC_DRV_EN); au_writew(pcr, PCMCIA_BOARD_REG); au_sync_delay(500); return PCMCIA_NUM_SOCKS; #endif } static int pb1x00_pcmcia_shutdown(void) { #ifdef CONFIG_MIPS_PB1000 u16 pcr; pcr = PCR_SLOT_0_RST | PCR_SLOT_1_RST; pcr |= SET_VCC_VPP(VCC_HIZ,VPP_HIZ,0); pcr |= SET_VCC_VPP(VCC_HIZ,VPP_HIZ,1); au_writel(pcr, PB1000_PCR); au_sync_delay(20); return 0; #else u16 pcr; pcr = au_readw(PCMCIA_BOARD_REG) & ~0xf; /* turn off power */ pcr &= ~(PC_DEASSERT_RST | PC_DRV_EN); au_writew(pcr, PCMCIA_BOARD_REG); au_sync_delay(2); return 0; #endif } static int pb1x00_pcmcia_socket_state(unsigned sock, struct pcmcia_state *state) { u32 inserted0, inserted1; u16 vs0, vs1; #ifdef CONFIG_MIPS_PB1000 vs0 = vs1 = (u16)au_readl(PB1000_ACR1); inserted0 = !(vs0 & (ACR1_SLOT_0_CD1 | ACR1_SLOT_0_CD2)); inserted1 = !(vs1 & (ACR1_SLOT_1_CD1 | ACR1_SLOT_1_CD2)); vs0 = (vs0 >> 4) & 0x3; vs1 = (vs1 >> 12) & 0x3; #else vs0 = (au_readw(BOARD_STATUS_REG) >> 4) & 0x3; #ifdef CONFIG_MIPS_PB1500 inserted0 = !((au_readl(GPIO2_PINSTATE) >> 1) & 0x1); /* gpio 201 */ #else /* Pb1100 */ inserted0 = !((au_readl(SYS_PINSTATERD) >> 9) & 0x1); /* gpio 9 */ #endif inserted1 = 0; #endif state->ready = 0; state->vs_Xv = 0; state->vs_3v = 0; state->detect = 0; if (sock == 0) { if (inserted0) { switch (vs0) { case 0: case 2: state->vs_3v=1; break; case 3: /* 5V */ break; default: /* return without setting 'detect' */ printk(KERN_ERR "pb1x00 bad VS (%d)\n", vs0); return 0; } state->detect = 1; } } else { if (inserted1) { switch (vs1) { case 0: case 2: state->vs_3v=1; break; case 3: /* 5V */ break; default: /* return without setting 'detect' */ printk(KERN_ERR "pb1x00 bad VS (%d)\n", vs1); return 0; } state->detect = 1; } } if (state->detect) { state->ready = 1; } state->bvd1=1; state->bvd2=1; state->wrprot=0; return 1; } static int pb1x00_pcmcia_get_irq_info(struct pcmcia_irq_info *info) { if(info->sock > PCMCIA_MAX_SOCK) return -1; /* * Even in the case of the Pb1000, both sockets are connected * to the same irq line. */ info->irq = PCMCIA_IRQ; return 0; } static int pb1x00_pcmcia_configure_socket(const struct pcmcia_configure *configure) { u16 pcr; if(configure->sock > PCMCIA_MAX_SOCK) return -1; #ifdef CONFIG_MIPS_PB1000 pcr = au_readl(PB1000_PCR); if (configure->sock == 0) { pcr &= ~(PCR_SLOT_0_VCC0 | PCR_SLOT_0_VCC1 | PCR_SLOT_0_VPP0 | PCR_SLOT_0_VPP1); } else { pcr &= ~(PCR_SLOT_1_VCC0 | PCR_SLOT_1_VCC1 | PCR_SLOT_1_VPP0 | PCR_SLOT_1_VPP1); } pcr &= ~PCR_SLOT_0_RST; debug("Vcc %dV Vpp %dV, pcr %x\n", configure->vcc, configure->vpp, pcr); switch(configure->vcc){ case 0: /* Vcc 0 */ switch(configure->vpp) { case 0: pcr |= SET_VCC_VPP(VCC_HIZ,VPP_GND, configure->sock); break; case 12: pcr |= SET_VCC_VPP(VCC_HIZ,VPP_12V, configure->sock); break; case 50: pcr |= SET_VCC_VPP(VCC_HIZ,VPP_5V, configure->sock); break; case 33: pcr |= SET_VCC_VPP(VCC_HIZ,VPP_3V, configure->sock); break; default: pcr |= SET_VCC_VPP(VCC_HIZ,VPP_HIZ, configure->sock); printk("%s: bad Vcc/Vpp (%d:%d)\n", __func__, configure->vcc, configure->vpp); break; } break; case 50: /* Vcc 5V */ switch(configure->vpp) { case 0: pcr |= SET_VCC_VPP(VCC_5V,VPP_GND, configure->sock); break; case 50: pcr |= SET_VCC_VPP(VCC_5V,VPP_5V, configure->sock); break; case 12: pcr |= SET_VCC_VPP(VCC_5V,VPP_12V, configure->sock); break; case 33: pcr |= SET_VCC_VPP(VCC_5V,VPP_3V, configure->sock); break; default: pcr |= SET_VCC_VPP(VCC_HIZ,VPP_HIZ, configure->sock); printk("%s: bad Vcc/Vpp (%d:%d)\n", __func__, configure->vcc, configure->vpp); break; } break; case 33: /* Vcc 3.3V */ switch(configure->vpp) { case 0: pcr |= SET_VCC_VPP(VCC_3V,VPP_GND, configure->sock); break; case 50: pcr |= SET_VCC_VPP(VCC_3V,VPP_5V, configure->sock); break; case 12: pcr |= SET_VCC_VPP(VCC_3V,VPP_12V, configure->sock); break; case 33: pcr |= SET_VCC_VPP(VCC_3V,VPP_3V, configure->sock); break; default: pcr |= SET_VCC_VPP(VCC_HIZ,VPP_HIZ, configure->sock); printk("%s: bad Vcc/Vpp (%d:%d)\n", __func__, configure->vcc, configure->vpp); break; } break; default: /* what's this ? */ pcr |= SET_VCC_VPP(VCC_HIZ,VPP_HIZ,configure->sock); printk(KERN_ERR "%s: bad Vcc %d\n", __func__, configure->vcc); break; } if (configure->sock == 0) { pcr &= ~(PCR_SLOT_0_RST); if (configure->reset) pcr |= PCR_SLOT_0_RST; } else { pcr &= ~(PCR_SLOT_1_RST); if (configure->reset) pcr |= PCR_SLOT_1_RST; } au_writel(pcr, PB1000_PCR); au_sync_delay(300); #else pcr = au_readw(PCMCIA_BOARD_REG) & ~0xf; debug("Vcc %dV Vpp %dV, pcr %x, reset %d\n", configure->vcc, configure->vpp, pcr, configure->reset); switch(configure->vcc){ case 0: /* Vcc 0 */ pcr |= SET_VCC_VPP(0,0); break; case 50: /* Vcc 5V */ switch(configure->vpp) { case 0: pcr |= SET_VCC_VPP(2,0); break; case 50: pcr |= SET_VCC_VPP(2,1); break; case 12: pcr |= SET_VCC_VPP(2,2); break; case 33: default: pcr |= SET_VCC_VPP(0,0); printk("%s: bad Vcc/Vpp (%d:%d)\n", __func__, configure->vcc, configure->vpp); break; } break; case 33: /* Vcc 3.3V */ switch(configure->vpp) { case 0: pcr |= SET_VCC_VPP(1,0); break; case 12: pcr |= SET_VCC_VPP(1,2); break; case 33: pcr |= SET_VCC_VPP(1,1); break; case 50: default: pcr |= SET_VCC_VPP(0,0); printk("%s: bad Vcc/Vpp (%d:%d)\n", __func__, configure->vcc, configure->vpp); break; } break; default: /* what's this ? */ pcr |= SET_VCC_VPP(0,0); printk(KERN_ERR "%s: bad Vcc %d\n", __func__, configure->vcc); break; } au_writew(pcr, PCMCIA_BOARD_REG); au_sync_delay(300); if (!configure->reset) { pcr |= PC_DRV_EN; au_writew(pcr, PCMCIA_BOARD_REG); au_sync_delay(100); pcr |= PC_DEASSERT_RST; au_writew(pcr, PCMCIA_BOARD_REG); au_sync_delay(100); } else { pcr &= ~(PC_DEASSERT_RST | PC_DRV_EN); au_writew(pcr, PCMCIA_BOARD_REG); au_sync_delay(100); } #endif return 0; } struct pcmcia_low_level pb1x00_pcmcia_ops = { pb1x00_pcmcia_init, pb1x00_pcmcia_shutdown, pb1x00_pcmcia_socket_state, pb1x00_pcmcia_get_irq_info, pb1x00_pcmcia_configure_socket };