/* * QLogic ISP1020 Intelligent SCSI Processor Driver (PCI) * Written by Erik H. Moe, ehm@cris.com * Copyright 1995, Erik H. Moe * Copyright 1996, 1997 Michael A. Griffith <grif@acm.org> * Copyright 2000, Jayson C. Vantuyl <vantuyl@csc.smsu.edu> * and Bryon W. Roche <bryon@csc.smsu.edu> * * 64-bit addressing added by Kanoj Sarcar <kanoj@sgi.com> * and Leo Dagum <dagum@sgi.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include <linux/blkdev.h> #include <linux/config.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/ioport.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/unistd.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/byteorder.h> #include "scsi.h" #include <scsi/scsi_host.h> /* * With the qlogic interface, every queue slot can hold a SCSI * command with up to 4 scatter/gather entries. If we need more * than 4 entries, continuation entries can be used that hold * another 7 entries each. Unlike for other drivers, this means * that the maximum number of scatter/gather entries we can * support at any given time is a function of the number of queue * slots available. That is, host->can_queue and host->sg_tablesize * are dynamic and _not_ independent. This all works fine because * requests are queued serially and the scatter/gather limit is * determined for each queue request anew. */ #define QLOGICISP_REQ_QUEUE_LEN 63 /* must be power of two - 1 */ #define QLOGICISP_MAX_SG(ql) (4 + ((ql) > 0) ? 7*((ql) - 1) : 0) /* Configuration section *****************************************************/ /* Set the following macro to 1 to reload the ISP1020's firmware. This is the latest firmware provided by QLogic. This may be an earlier/later revision than supplied by your board. */ #define RELOAD_FIRMWARE 1 /* Set the following macro to 1 to reload the ISP1020's defaults from nvram. If you are not sure of your settings, leave this alone, the driver will use a set of 'safe' defaults */ #define USE_NVRAM_DEFAULTS 0 /* Macros used for debugging */ #define DEBUG_ISP1020 0 #define DEBUG_ISP1020_INTR 0 #define DEBUG_ISP1020_SETUP 0 #define TRACE_ISP 0 #define DEFAULT_LOOP_COUNT 1000000 /* End Configuration section *************************************************/ #include <linux/module.h> #if TRACE_ISP # define TRACE_BUF_LEN (32*1024) struct { u_long next; struct { u_long time; u_int index; u_int addr; u_char * name; } buf[TRACE_BUF_LEN]; } trace; #define TRACE(w, i, a) \ { \ unsigned long flags; \ \ trace.buf[trace.next].name = (w); \ trace.buf[trace.next].time = jiffies; \ trace.buf[trace.next].index = (i); \ trace.buf[trace.next].addr = (long) (a); \ trace.next = (trace.next + 1) & (TRACE_BUF_LEN - 1); \ } #else # define TRACE(w, i, a) #endif #if DEBUG_ISP1020 #define ENTER(x) printk("isp1020 : entering %s()\n", x); #define LEAVE(x) printk("isp1020 : leaving %s()\n", x); #define DEBUG(x) x #else #define ENTER(x) #define LEAVE(x) #define DEBUG(x) #endif /* DEBUG_ISP1020 */ #if DEBUG_ISP1020_INTR #define ENTER_INTR(x) printk("isp1020 : entering %s()\n", x); #define LEAVE_INTR(x) printk("isp1020 : leaving %s()\n", x); #define DEBUG_INTR(x) x #else #define ENTER_INTR(x) #define LEAVE_INTR(x) #define DEBUG_INTR(x) #endif /* DEBUG ISP1020_INTR */ #define ISP1020_REV_ID 1 #define MAX_TARGETS 16 #define MAX_LUNS 8 /* host configuration and control registers */ #define HOST_HCCR 0xc0 /* host command and control */ /* pci bus interface registers */ #define PCI_ID_LOW 0x00 /* vendor id */ #define PCI_ID_HIGH 0x02 /* device id */ #define ISP_CFG0 0x04 /* configuration register #0 */ #define ISP_CFG0_HWMSK 0x000f /* Hardware revision mask */ #define ISP_CFG0_1020 0x0001 /* ISP1020 */ #define ISP_CFG0_1020A 0x0002 /* ISP1020A */ #define ISP_CFG0_1040 0x0003 /* ISP1040 */ #define ISP_CFG0_1040A 0x0004 /* ISP1040A */ #define ISP_CFG0_1040B 0x0005 /* ISP1040B */ #define ISP_CFG0_1040C 0x0006 /* ISP1040C */ #define ISP_CFG1 0x06 /* configuration register #1 */ #define ISP_CFG1_F128 0x0040 /* 128-byte FIFO threshold */ #define ISP_CFG1_F64 0x0030 /* 128-byte FIFO threshold */ #define ISP_CFG1_F32 0x0020 /* 128-byte FIFO threshold */ #define ISP_CFG1_F16 0x0010 /* 128-byte FIFO threshold */ #define ISP_CFG1_BENAB 0x0004 /* Global Bus burst enable */ #define ISP_CFG1_SXP 0x0001 /* SXP register select */ #define PCI_INTF_CTL 0x08 /* pci interface control */ #define PCI_INTF_STS 0x0a /* pci interface status */ #define PCI_SEMAPHORE 0x0c /* pci semaphore */ #define PCI_NVRAM 0x0e /* pci nvram interface */ #define CDMA_CONF 0x20 /* Command DMA Config */ #define DDMA_CONF 0x40 /* Data DMA Config */ #define DMA_CONF_SENAB 0x0008 /* SXP to DMA Data enable */ #define DMA_CONF_RIRQ 0x0004 /* RISC interrupt enable */ #define DMA_CONF_BENAB 0x0002 /* Bus burst enable */ #define DMA_CONF_DIR 0x0001 /* DMA direction (0=fifo->host 1=host->fifo) */ /* mailbox registers */ #define MBOX0 0x70 /* mailbox 0 */ #define MBOX1 0x72 /* mailbox 1 */ #define MBOX2 0x74 /* mailbox 2 */ #define MBOX3 0x76 /* mailbox 3 */ #define MBOX4 0x78 /* mailbox 4 */ #define MBOX5 0x7a /* mailbox 5 */ #define MBOX6 0x7c /* mailbox 6 */ #define MBOX7 0x7e /* mailbox 7 */ /* mailbox command complete status codes */ #define MBOX_COMMAND_COMPLETE 0x4000 #define INVALID_COMMAND 0x4001 #define HOST_INTERFACE_ERROR 0x4002 #define TEST_FAILED 0x4003 #define COMMAND_ERROR 0x4005 #define COMMAND_PARAM_ERROR 0x4006 /* async event status codes */ #define ASYNC_SCSI_BUS_RESET 0x8001 #define SYSTEM_ERROR 0x8002 #define REQUEST_TRANSFER_ERROR 0x8003 #define RESPONSE_TRANSFER_ERROR 0x8004 #define REQUEST_QUEUE_WAKEUP 0x8005 #define EXECUTION_TIMEOUT_RESET 0x8006 #ifdef CONFIG_QL_ISP_A64 #define IOCB_SEGS 2 #define CONTINUATION_SEGS 5 #define MAX_CONTINUATION_ENTRIES 254 #else #define IOCB_SEGS 4 #define CONTINUATION_SEGS 7 #endif /* CONFIG_QL_ISP_A64 */ struct Entry_header { u_char entry_type; u_char entry_cnt; u_char sys_def_1; u_char flags; }; /* entry header type commands */ #ifdef CONFIG_QL_ISP_A64 #define ENTRY_COMMAND 9 #define ENTRY_CONTINUATION 0xa #else #define ENTRY_COMMAND 1 #define ENTRY_CONTINUATION 2 #endif /* CONFIG_QL_ISP_A64 */ #define ENTRY_STATUS 3 #define ENTRY_MARKER 4 #define ENTRY_EXTENDED_COMMAND 5 /* entry header flag definitions */ #define EFLAG_CONTINUATION 1 #define EFLAG_BUSY 2 #define EFLAG_BAD_HEADER 4 #define EFLAG_BAD_PAYLOAD 8 struct dataseg { u_int d_base; #ifdef CONFIG_QL_ISP_A64 u_int d_base_hi; #endif u_int d_count; }; struct Command_Entry { struct Entry_header hdr; u_int handle; u_char target_lun; u_char target_id; u_short cdb_length; u_short control_flags; u_short rsvd; u_short time_out; u_short segment_cnt; u_char cdb[12]; #ifdef CONFIG_QL_ISP_A64 u_int rsvd1; u_int rsvd2; #endif struct dataseg dataseg[IOCB_SEGS]; }; /* command entry control flag definitions */ #define CFLAG_NODISC 0x01 #define CFLAG_HEAD_TAG 0x02 #define CFLAG_ORDERED_TAG 0x04 #define CFLAG_SIMPLE_TAG 0x08 #define CFLAG_TAR_RTN 0x10 #define CFLAG_READ 0x20 #define CFLAG_WRITE 0x40 struct Ext_Command_Entry { struct Entry_header hdr; u_int handle; u_char target_lun; u_char target_id; u_short cdb_length; u_short control_flags; u_short rsvd; u_short time_out; u_short segment_cnt; u_char cdb[44]; }; struct Continuation_Entry { struct Entry_header hdr; #ifndef CONFIG_QL_ISP_A64 u_int reserved; #endif struct dataseg dataseg[CONTINUATION_SEGS]; }; struct Marker_Entry { struct Entry_header hdr; u_int reserved; u_char target_lun; u_char target_id; u_char modifier; u_char rsvd; u_char rsvds[52]; }; /* marker entry modifier definitions */ #define SYNC_DEVICE 0 #define SYNC_TARGET 1 #define SYNC_ALL 2 struct Status_Entry { struct Entry_header hdr; u_int handle; u_short scsi_status; u_short completion_status; u_short state_flags; u_short status_flags; u_short time; u_short req_sense_len; u_int residual; u_char rsvd[8]; u_char req_sense_data[32]; }; /* status entry completion status definitions */ #define CS_COMPLETE 0x0000 #define CS_INCOMPLETE 0x0001 #define CS_DMA_ERROR 0x0002 #define CS_TRANSPORT_ERROR 0x0003 #define CS_RESET_OCCURRED 0x0004 #define CS_ABORTED 0x0005 #define CS_TIMEOUT 0x0006 #define CS_DATA_OVERRUN 0x0007 #define CS_COMMAND_OVERRUN 0x0008 #define CS_STATUS_OVERRUN 0x0009 #define CS_BAD_MESSAGE 0x000a #define CS_NO_MESSAGE_OUT 0x000b #define CS_EXT_ID_FAILED 0x000c #define CS_IDE_MSG_FAILED 0x000d #define CS_ABORT_MSG_FAILED 0x000e #define CS_REJECT_MSG_FAILED 0x000f #define CS_NOP_MSG_FAILED 0x0010 #define CS_PARITY_ERROR_MSG_FAILED 0x0011 #define CS_DEVICE_RESET_MSG_FAILED 0x0012 #define CS_ID_MSG_FAILED 0x0013 #define CS_UNEXP_BUS_FREE 0x0014 #define CS_DATA_UNDERRUN 0x0015 /* status entry state flag definitions */ #define SF_GOT_BUS 0x0100 #define SF_GOT_TARGET 0x0200 #define SF_SENT_CDB 0x0400 #define SF_TRANSFERRED_DATA 0x0800 #define SF_GOT_STATUS 0x1000 #define SF_GOT_SENSE 0x2000 /* status entry status flag definitions */ #define STF_DISCONNECT 0x0001 #define STF_SYNCHRONOUS 0x0002 #define STF_PARITY_ERROR 0x0004 #define STF_BUS_RESET 0x0008 #define STF_DEVICE_RESET 0x0010 #define STF_ABORTED 0x0020 #define STF_TIMEOUT 0x0040 #define STF_NEGOTIATION 0x0080 /* interface control commands */ #define ISP_RESET 0x0001 #define ISP_EN_INT 0x0002 #define ISP_EN_RISC 0x0004 /* host control commands */ #define HCCR_NOP 0x0000 #define HCCR_RESET 0x1000 #define HCCR_PAUSE 0x2000 #define HCCR_RELEASE 0x3000 #define HCCR_SINGLE_STEP 0x4000 #define HCCR_SET_HOST_INTR 0x5000 #define HCCR_CLEAR_HOST_INTR 0x6000 #define HCCR_CLEAR_RISC_INTR 0x7000 #define HCCR_BP_ENABLE 0x8000 #define HCCR_BIOS_DISABLE 0x9000 #define HCCR_TEST_MODE 0xf000 #define RISC_BUSY 0x0004 /* mailbox commands */ #define MBOX_NO_OP 0x0000 #define MBOX_LOAD_RAM 0x0001 #define MBOX_EXEC_FIRMWARE 0x0002 #define MBOX_DUMP_RAM 0x0003 #define MBOX_WRITE_RAM_WORD 0x0004 #define MBOX_READ_RAM_WORD 0x0005 #define MBOX_MAILBOX_REG_TEST 0x0006 #define MBOX_VERIFY_CHECKSUM 0x0007 #define MBOX_ABOUT_FIRMWARE 0x0008 #define MBOX_CHECK_FIRMWARE 0x000e #define MBOX_INIT_REQ_QUEUE 0x0010 #define MBOX_INIT_RES_QUEUE 0x0011 #define MBOX_EXECUTE_IOCB 0x0012 #define MBOX_WAKE_UP 0x0013 #define MBOX_STOP_FIRMWARE 0x0014 #define MBOX_ABORT 0x0015 #define MBOX_ABORT_DEVICE 0x0016 #define MBOX_ABORT_TARGET 0x0017 #define MBOX_BUS_RESET 0x0018 #define MBOX_STOP_QUEUE 0x0019 #define MBOX_START_QUEUE 0x001a #define MBOX_SINGLE_STEP_QUEUE 0x001b #define MBOX_ABORT_QUEUE 0x001c #define MBOX_GET_DEV_QUEUE_STATUS 0x001d #define MBOX_GET_FIRMWARE_STATUS 0x001f #define MBOX_GET_INIT_SCSI_ID 0x0020 #define MBOX_GET_SELECT_TIMEOUT 0x0021 #define MBOX_GET_RETRY_COUNT 0x0022 #define MBOX_GET_TAG_AGE_LIMIT 0x0023 #define MBOX_GET_CLOCK_RATE 0x0024 #define MBOX_GET_ACT_NEG_STATE 0x0025 #define MBOX_GET_ASYNC_DATA_SETUP_TIME 0x0026 #define MBOX_GET_PCI_PARAMS 0x0027 #define MBOX_GET_TARGET_PARAMS 0x0028 #define MBOX_GET_DEV_QUEUE_PARAMS 0x0029 #define MBOX_SET_INIT_SCSI_ID 0x0030 #define MBOX_SET_SELECT_TIMEOUT 0x0031 #define MBOX_SET_RETRY_COUNT 0x0032 #define MBOX_SET_TAG_AGE_LIMIT 0x0033 #define MBOX_SET_CLOCK_RATE 0x0034 #define MBOX_SET_ACTIVE_NEG_STATE 0x0035 #define MBOX_SET_ASYNC_DATA_SETUP_TIME 0x0036 #define MBOX_SET_PCI_CONTROL_PARAMS 0x0037 #define MBOX_SET_TARGET_PARAMS 0x0038 #define MBOX_SET_DEV_QUEUE_PARAMS 0x0039 #define MBOX_RETURN_BIOS_BLOCK_ADDR 0x0040 #define MBOX_WRITE_FOUR_RAM_WORDS 0x0041 #define MBOX_EXEC_BIOS_IOCB 0x0042 #ifdef CONFIG_QL_ISP_A64 #define MBOX_CMD_INIT_REQUEST_QUEUE_64 0x0052 #define MBOX_CMD_INIT_RESPONSE_QUEUE_64 0x0053 #endif /* CONFIG_QL_ISP_A64 */ #include "qlogicisp_asm.c" #define PACKB(a, b) (((a)<<4)|(b)) static const u_char mbox_param[] = { PACKB(1, 1), /* MBOX_NO_OP */ PACKB(5, 5), /* MBOX_LOAD_RAM */ PACKB(2, 0), /* MBOX_EXEC_FIRMWARE */ PACKB(5, 5), /* MBOX_DUMP_RAM */ PACKB(3, 3), /* MBOX_WRITE_RAM_WORD */ PACKB(2, 3), /* MBOX_READ_RAM_WORD */ PACKB(6, 6), /* MBOX_MAILBOX_REG_TEST */ PACKB(2, 3), /* MBOX_VERIFY_CHECKSUM */ PACKB(1, 3), /* MBOX_ABOUT_FIRMWARE */ PACKB(0, 0), /* 0x0009 */ PACKB(0, 0), /* 0x000a */ PACKB(0, 0), /* 0x000b */ PACKB(0, 0), /* 0x000c */ PACKB(0, 0), /* 0x000d */ PACKB(1, 2), /* MBOX_CHECK_FIRMWARE */ PACKB(0, 0), /* 0x000f */ PACKB(5, 5), /* MBOX_INIT_REQ_QUEUE */ PACKB(6, 6), /* MBOX_INIT_RES_QUEUE */ PACKB(4, 4), /* MBOX_EXECUTE_IOCB */ PACKB(2, 2), /* MBOX_WAKE_UP */ PACKB(1, 6), /* MBOX_STOP_FIRMWARE */ PACKB(4, 4), /* MBOX_ABORT */ PACKB(2, 2), /* MBOX_ABORT_DEVICE */ PACKB(3, 3), /* MBOX_ABORT_TARGET */ PACKB(2, 2), /* MBOX_BUS_RESET */ PACKB(2, 3), /* MBOX_STOP_QUEUE */ PACKB(2, 3), /* MBOX_START_QUEUE */ PACKB(2, 3), /* MBOX_SINGLE_STEP_QUEUE */ PACKB(2, 3), /* MBOX_ABORT_QUEUE */ PACKB(2, 4), /* MBOX_GET_DEV_QUEUE_STATUS */ PACKB(0, 0), /* 0x001e */ PACKB(1, 3), /* MBOX_GET_FIRMWARE_STATUS */ PACKB(1, 2), /* MBOX_GET_INIT_SCSI_ID */ PACKB(1, 2), /* MBOX_GET_SELECT_TIMEOUT */ PACKB(1, 3), /* MBOX_GET_RETRY_COUNT */ PACKB(1, 2), /* MBOX_GET_TAG_AGE_LIMIT */ PACKB(1, 2), /* MBOX_GET_CLOCK_RATE */ PACKB(1, 2), /* MBOX_GET_ACT_NEG_STATE */ PACKB(1, 2), /* MBOX_GET_ASYNC_DATA_SETUP_TIME */ PACKB(1, 3), /* MBOX_GET_PCI_PARAMS */ PACKB(2, 4), /* MBOX_GET_TARGET_PARAMS */ PACKB(2, 4), /* MBOX_GET_DEV_QUEUE_PARAMS */ PACKB(0, 0), /* 0x002a */ PACKB(0, 0), /* 0x002b */ PACKB(0, 0), /* 0x002c */ PACKB(0, 0), /* 0x002d */ PACKB(0, 0), /* 0x002e */ PACKB(0, 0), /* 0x002f */ PACKB(2, 2), /* MBOX_SET_INIT_SCSI_ID */ PACKB(2, 2), /* MBOX_SET_SELECT_TIMEOUT */ PACKB(3, 3), /* MBOX_SET_RETRY_COUNT */ PACKB(2, 2), /* MBOX_SET_TAG_AGE_LIMIT */ PACKB(2, 2), /* MBOX_SET_CLOCK_RATE */ PACKB(2, 2), /* MBOX_SET_ACTIVE_NEG_STATE */ PACKB(2, 2), /* MBOX_SET_ASYNC_DATA_SETUP_TIME */ PACKB(3, 3), /* MBOX_SET_PCI_CONTROL_PARAMS */ PACKB(4, 4), /* MBOX_SET_TARGET_PARAMS */ PACKB(4, 4), /* MBOX_SET_DEV_QUEUE_PARAMS */ PACKB(0, 0), /* 0x003a */ PACKB(0, 0), /* 0x003b */ PACKB(0, 0), /* 0x003c */ PACKB(0, 0), /* 0x003d */ PACKB(0, 0), /* 0x003e */ PACKB(0, 0), /* 0x003f */ PACKB(1, 2), /* MBOX_RETURN_BIOS_BLOCK_ADDR */ PACKB(6, 1), /* MBOX_WRITE_FOUR_RAM_WORDS */ PACKB(2, 3) /* MBOX_EXEC_BIOS_IOCB */ #ifdef CONFIG_QL_ISP_A64 ,PACKB(0, 0), /* 0x0043 */ PACKB(0, 0), /* 0x0044 */ PACKB(0, 0), /* 0x0045 */ PACKB(0, 0), /* 0x0046 */ PACKB(0, 0), /* 0x0047 */ PACKB(0, 0), /* 0x0048 */ PACKB(0, 0), /* 0x0049 */ PACKB(0, 0), /* 0x004a */ PACKB(0, 0), /* 0x004b */ PACKB(0, 0), /* 0x004c */ PACKB(0, 0), /* 0x004d */ PACKB(0, 0), /* 0x004e */ PACKB(0, 0), /* 0x004f */ PACKB(0, 0), /* 0x0050 */ PACKB(0, 0), /* 0x0051 */ PACKB(8, 8), /* MBOX_CMD_INIT_REQUEST_QUEUE_64 (0x0052) */ PACKB(8, 8) /* MBOX_CMD_INIT_RESPONSE_QUEUE_64 (0x0053) */ #endif /* CONFIG_QL_ISP_A64 */ }; #define MAX_MBOX_COMMAND (sizeof(mbox_param)/sizeof(u_short)) struct host_param { u_short fifo_threshold; u_short host_adapter_enable; u_short initiator_scsi_id; u_short bus_reset_delay; u_short retry_count; u_short retry_delay; u_short async_data_setup_time; u_short req_ack_active_negation; u_short data_line_active_negation; u_short data_dma_burst_enable; u_short command_dma_burst_enable; u_short tag_aging; u_short selection_timeout; u_short max_queue_depth; }; /* * Device Flags: * * Bit Name * --------- * 7 Disconnect Privilege * 6 Parity Checking * 5 Wide Data Transfers * 4 Synchronous Data Transfers * 3 Tagged Queuing * 2 Automatic Request Sense * 1 Stop Queue on Check Condition * 0 Renegotiate on Error */ struct dev_param { u_short device_flags; u_short execution_throttle; u_short synchronous_period; u_short synchronous_offset; u_short device_enable; u_short reserved; /* pad */ }; /* * The result queue can be quite a bit smaller since continuation entries * do not show up there: */ #define RES_QUEUE_LEN ((QLOGICISP_REQ_QUEUE_LEN + 1) / 8 - 1) #define QUEUE_ENTRY_LEN 64 #define QSIZE(entries) (((entries) + 1) * QUEUE_ENTRY_LEN) struct isp_queue_entry { char __opaque[QUEUE_ENTRY_LEN]; }; struct isp1020_hostdata { void __iomem *memaddr; u_char revision; struct host_param host_param; struct dev_param dev_param[MAX_TARGETS]; struct pci_dev *pci_dev; struct isp_queue_entry *res_cpu; /* CPU-side address of response queue. */ struct isp_queue_entry *req_cpu; /* CPU-size address of request queue. */ /* result and request queues (shared with isp1020): */ u_int req_in_ptr; /* index of next request slot */ u_int res_out_ptr; /* index of next result slot */ /* this is here so the queues are nicely aligned */ long send_marker; /* do we need to send a marker? */ /* The cmd->handle has a fixed size, and is only 32-bits. We * need to take care to handle 64-bit systems correctly thus what * we actually place in cmd->handle is an index to the following * table. Kudos to Matt Jacob for the technique. -DaveM */ Scsi_Cmnd *cmd_slots[QLOGICISP_REQ_QUEUE_LEN + 1]; dma_addr_t res_dma; /* PCI side view of response queue */ dma_addr_t req_dma; /* PCI side view of request queue */ }; /* queue length's _must_ be power of two: */ #define QUEUE_DEPTH(in, out, ql) ((in - out) & (ql)) #define REQ_QUEUE_DEPTH(in, out) QUEUE_DEPTH(in, out, \ QLOGICISP_REQ_QUEUE_LEN) #define RES_QUEUE_DEPTH(in, out) QUEUE_DEPTH(in, out, RES_QUEUE_LEN) static void isp1020_enable_irqs(struct Scsi_Host *); static void isp1020_disable_irqs(struct Scsi_Host *); static int isp1020_init(struct Scsi_Host *); static int isp1020_reset_hardware(struct Scsi_Host *); static int isp1020_set_defaults(struct Scsi_Host *); static int isp1020_load_parameters(struct Scsi_Host *); static int isp1020_mbox_command(struct Scsi_Host *, u_short []); static int isp1020_return_status(struct Status_Entry *); static void isp1020_intr_handler(int, void *, struct pt_regs *); static irqreturn_t do_isp1020_intr_handler(int, void *, struct pt_regs *); #if USE_NVRAM_DEFAULTS static int isp1020_get_defaults(struct Scsi_Host *); static int isp1020_verify_nvram(struct Scsi_Host *); static u_short isp1020_read_nvram_word(struct Scsi_Host *, u_short); #endif #if DEBUG_ISP1020 static void isp1020_print_scsi_cmd(Scsi_Cmnd *); #endif #if DEBUG_ISP1020_INTR static void isp1020_print_status_entry(struct Status_Entry *); #endif /* memaddr should be used to determine if memmapped port i/o is being used * non-null memaddr == mmap'd * JV 7-Jan-2000 */ static inline u_short isp_inw(struct Scsi_Host *host, long offset) { struct isp1020_hostdata *h = (struct isp1020_hostdata *)host->hostdata; if (h->memaddr) return readw(h->memaddr + offset); else return inw(host->io_port + offset); } static inline void isp_outw(u_short val, struct Scsi_Host *host, long offset) { struct isp1020_hostdata *h = (struct isp1020_hostdata *)host->hostdata; if (h->memaddr) writew(val, h->memaddr + offset); else outw(val, host->io_port + offset); } static inline void isp1020_enable_irqs(struct Scsi_Host *host) { isp_outw(ISP_EN_INT|ISP_EN_RISC, host, PCI_INTF_CTL); } static inline void isp1020_disable_irqs(struct Scsi_Host *host) { isp_outw(0x0, host, PCI_INTF_CTL); } static int isp1020_detect(Scsi_Host_Template *tmpt) { int hosts = 0; struct Scsi_Host *host; struct isp1020_hostdata *hostdata; struct pci_dev *pdev = NULL; ENTER("isp1020_detect"); tmpt->proc_name = "isp1020"; while ((pdev = pci_find_device(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP1020, pdev))) { if (pci_enable_device(pdev)) continue; host = scsi_register(tmpt, sizeof(struct isp1020_hostdata)); if (!host) continue; hostdata = (struct isp1020_hostdata *) host->hostdata; memset(hostdata, 0, sizeof(struct isp1020_hostdata)); hostdata->pci_dev = pdev; if (isp1020_init(host)) goto fail_and_unregister; if (isp1020_reset_hardware(host) #if USE_NVRAM_DEFAULTS || isp1020_get_defaults(host) #else || isp1020_set_defaults(host) #endif /* USE_NVRAM_DEFAULTS */ || isp1020_load_parameters(host)) { goto fail_uninit; } host->this_id = hostdata->host_param.initiator_scsi_id; host->max_sectors = 64; if (request_irq(host->irq, do_isp1020_intr_handler, SA_INTERRUPT | SA_SHIRQ, "qlogicisp", host)) { printk("qlogicisp : interrupt %d already in use\n", host->irq); goto fail_uninit; } isp_outw(0x0, host, PCI_SEMAPHORE); isp_outw(HCCR_CLEAR_RISC_INTR, host, HOST_HCCR); isp1020_enable_irqs(host); hosts++; continue; fail_uninit: iounmap(hostdata->memaddr); release_region(host->io_port, 0xff); fail_and_unregister: if (hostdata->res_cpu) pci_free_consistent(hostdata->pci_dev, QSIZE(RES_QUEUE_LEN), hostdata->res_cpu, hostdata->res_dma); if (hostdata->req_cpu) pci_free_consistent(hostdata->pci_dev, QSIZE(QLOGICISP_REQ_QUEUE_LEN), hostdata->req_cpu, hostdata->req_dma); scsi_unregister(host); } LEAVE("isp1020_detect"); return hosts; } static int isp1020_release(struct Scsi_Host *host) { struct isp1020_hostdata *hostdata; ENTER("isp1020_release"); hostdata = (struct isp1020_hostdata *) host->hostdata; isp_outw(0x0, host, PCI_INTF_CTL); free_irq(host->irq, host); iounmap(hostdata->memaddr); release_region(host->io_port, 0xff); LEAVE("isp1020_release"); return 0; } static const char *isp1020_info(struct Scsi_Host *host) { static char buf[80]; struct isp1020_hostdata *hostdata; ENTER("isp1020_info"); hostdata = (struct isp1020_hostdata *) host->hostdata; sprintf(buf, "QLogic ISP1020 SCSI on PCI bus %02x device %02x irq %d %s base 0x%lx", hostdata->pci_dev->bus->number, hostdata->pci_dev->devfn, host->irq, (hostdata->memaddr ? "MEM" : "I/O"), (hostdata->memaddr ? (unsigned long)hostdata->memaddr : host->io_port)); LEAVE("isp1020_info"); return buf; } /* * The middle SCSI layer ensures that queuecommand never gets invoked * concurrently with itself or the interrupt handler (though the * interrupt handler may call this routine as part of * request-completion handling). */ static int isp1020_queuecommand(Scsi_Cmnd *Cmnd, void (*done)(Scsi_Cmnd *)) { int i, n, num_free; u_int in_ptr, out_ptr; struct dataseg * ds; struct scatterlist *sg; struct Command_Entry *cmd; struct Continuation_Entry *cont; struct Scsi_Host *host; struct isp1020_hostdata *hostdata; dma_addr_t dma_addr; ENTER("isp1020_queuecommand"); host = Cmnd->device->host; hostdata = (struct isp1020_hostdata *) host->hostdata; Cmnd->scsi_done = done; DEBUG(isp1020_print_scsi_cmd(Cmnd)); out_ptr = isp_inw(host, + MBOX4); in_ptr = hostdata->req_in_ptr; DEBUG(printk("qlogicisp : request queue depth %d\n", REQ_QUEUE_DEPTH(in_ptr, out_ptr))); cmd = (struct Command_Entry *) &hostdata->req_cpu[in_ptr]; in_ptr = (in_ptr + 1) & QLOGICISP_REQ_QUEUE_LEN; if (in_ptr == out_ptr) { printk("qlogicisp : request queue overflow\n"); return 1; } if (hostdata->send_marker) { struct Marker_Entry *marker; TRACE("queue marker", in_ptr, 0); DEBUG(printk("qlogicisp : adding marker entry\n")); marker = (struct Marker_Entry *) cmd; memset(marker, 0, sizeof(struct Marker_Entry)); marker->hdr.entry_type = ENTRY_MARKER; marker->hdr.entry_cnt = 1; marker->modifier = SYNC_ALL; hostdata->send_marker = 0; if (((in_ptr + 1) & QLOGICISP_REQ_QUEUE_LEN) == out_ptr) { isp_outw(in_ptr, host, MBOX4); hostdata->req_in_ptr = in_ptr; printk("qlogicisp : request queue overflow\n"); return 1; } cmd = (struct Command_Entry *) &hostdata->req_cpu[in_ptr]; in_ptr = (in_ptr + 1) & QLOGICISP_REQ_QUEUE_LEN; } TRACE("queue command", in_ptr, Cmnd); memset(cmd, 0, sizeof(struct Command_Entry)); cmd->hdr.entry_type = ENTRY_COMMAND; cmd->hdr.entry_cnt = 1; cmd->target_lun = Cmnd->device->lun; cmd->target_id = Cmnd->device->id; cmd->cdb_length = cpu_to_le16(Cmnd->cmd_len); cmd->control_flags = cpu_to_le16(CFLAG_READ | CFLAG_WRITE); cmd->time_out = cpu_to_le16(30); memcpy(cmd->cdb, Cmnd->cmnd, Cmnd->cmd_len); if (Cmnd->use_sg) { int sg_count; sg = (struct scatterlist *) Cmnd->request_buffer; ds = cmd->dataseg; sg_count = pci_map_sg(hostdata->pci_dev, sg, Cmnd->use_sg, Cmnd->sc_data_direction); cmd->segment_cnt = cpu_to_le16(sg_count); /* fill in first four sg entries: */ n = sg_count; if (n > IOCB_SEGS) n = IOCB_SEGS; for (i = 0; i < n; i++) { dma_addr = sg_dma_address(sg); ds[i].d_base = cpu_to_le32((u32) dma_addr); #ifdef CONFIG_QL_ISP_A64 ds[i].d_base_hi = cpu_to_le32((u32) (dma_addr>>32)); #endif /* CONFIG_QL_ISP_A64 */ ds[i].d_count = cpu_to_le32(sg_dma_len(sg)); ++sg; } sg_count -= IOCB_SEGS; while (sg_count > 0) { ++cmd->hdr.entry_cnt; cont = (struct Continuation_Entry *) &hostdata->req_cpu[in_ptr]; in_ptr = (in_ptr + 1) & QLOGICISP_REQ_QUEUE_LEN; if (in_ptr == out_ptr) { printk("isp1020: unexpected request queue " "overflow\n"); return 1; } TRACE("queue continuation", in_ptr, 0); cont->hdr.entry_type = ENTRY_CONTINUATION; cont->hdr.entry_cnt = 0; cont->hdr.sys_def_1 = 0; cont->hdr.flags = 0; #ifndef CONFIG_QL_ISP_A64 cont->reserved = 0; #endif ds = cont->dataseg; n = sg_count; if (n > CONTINUATION_SEGS) n = CONTINUATION_SEGS; for (i = 0; i < n; ++i) { dma_addr = sg_dma_address(sg); ds[i].d_base = cpu_to_le32((u32) dma_addr); #ifdef CONFIG_QL_ISP_A64 ds[i].d_base_hi = cpu_to_le32((u32)(dma_addr>>32)); #endif /* CONFIG_QL_ISP_A64 */ ds[i].d_count = cpu_to_le32(sg_dma_len(sg)); ++sg; } sg_count -= n; } } else if (Cmnd->request_bufflen) { /*Cmnd->SCp.ptr = (char *)(unsigned long)*/ dma_addr = pci_map_single(hostdata->pci_dev, Cmnd->request_buffer, Cmnd->request_bufflen, Cmnd->sc_data_direction); Cmnd->SCp.ptr = (char *)(unsigned long) dma_addr; cmd->dataseg[0].d_base = cpu_to_le32((u32) dma_addr); #ifdef CONFIG_QL_ISP_A64 cmd->dataseg[0].d_base_hi = cpu_to_le32((u32) (dma_addr>>32)); #endif /* CONFIG_QL_ISP_A64 */ cmd->dataseg[0].d_count = cpu_to_le32((u32)Cmnd->request_bufflen); cmd->segment_cnt = cpu_to_le16(1); } else { cmd->dataseg[0].d_base = 0; #ifdef CONFIG_QL_ISP_A64 cmd->dataseg[0].d_base_hi = 0; #endif /* CONFIG_QL_ISP_A64 */ cmd->dataseg[0].d_count = 0; cmd->segment_cnt = cpu_to_le16(1); /* Shouldn't this be 0? */ } /* Committed, record Scsi_Cmd so we can find it later. */ cmd->handle = in_ptr; hostdata->cmd_slots[in_ptr] = Cmnd; isp_outw(in_ptr, host, MBOX4); hostdata->req_in_ptr = in_ptr; num_free = QLOGICISP_REQ_QUEUE_LEN - REQ_QUEUE_DEPTH(in_ptr, out_ptr); host->can_queue = host->host_busy + num_free; host->sg_tablesize = QLOGICISP_MAX_SG(num_free); LEAVE("isp1020_queuecommand"); return 0; } #define ASYNC_EVENT_INTERRUPT 0x01 irqreturn_t do_isp1020_intr_handler(int irq, void *dev_id, struct pt_regs *regs) { struct Scsi_Host *host = dev_id; unsigned long flags; spin_lock_irqsave(host->host_lock, flags); isp1020_intr_handler(irq, dev_id, regs); spin_unlock_irqrestore(host->host_lock, flags); return IRQ_HANDLED; } void isp1020_intr_handler(int irq, void *dev_id, struct pt_regs *regs) { Scsi_Cmnd *Cmnd; struct Status_Entry *sts; struct Scsi_Host *host = dev_id; struct isp1020_hostdata *hostdata; u_int in_ptr, out_ptr; u_short status; ENTER_INTR("isp1020_intr_handler"); hostdata = (struct isp1020_hostdata *) host->hostdata; DEBUG_INTR(printk("qlogicisp : interrupt on line %d\n", irq)); if (!(isp_inw(host, PCI_INTF_STS) & 0x04)) { /* spurious interrupts can happen legally */ DEBUG_INTR(printk("qlogicisp: got spurious interrupt\n")); return; } in_ptr = isp_inw(host, MBOX5); isp_outw(HCCR_CLEAR_RISC_INTR, host, HOST_HCCR); if ((isp_inw(host, PCI_SEMAPHORE) & ASYNC_EVENT_INTERRUPT)) { status = isp_inw(host, MBOX0); DEBUG_INTR(printk("qlogicisp : mbox completion status: %x\n", status)); switch (status) { case ASYNC_SCSI_BUS_RESET: case EXECUTION_TIMEOUT_RESET: hostdata->send_marker = 1; break; case INVALID_COMMAND: case HOST_INTERFACE_ERROR: case COMMAND_ERROR: case COMMAND_PARAM_ERROR: printk("qlogicisp : bad mailbox return status\n"); break; } isp_outw(0x0, host, PCI_SEMAPHORE); } out_ptr = hostdata->res_out_ptr; DEBUG_INTR(printk("qlogicisp : response queue update\n")); DEBUG_INTR(printk("qlogicisp : response queue depth %d\n", QUEUE_DEPTH(in_ptr, out_ptr, RES_QUEUE_LEN))); while (out_ptr != in_ptr) { u_int cmd_slot; sts = (struct Status_Entry *) &hostdata->res_cpu[out_ptr]; out_ptr = (out_ptr + 1) & RES_QUEUE_LEN; cmd_slot = sts->handle; Cmnd = hostdata->cmd_slots[cmd_slot]; hostdata->cmd_slots[cmd_slot] = NULL; TRACE("done", out_ptr, Cmnd); if (le16_to_cpu(sts->completion_status) == CS_RESET_OCCURRED || le16_to_cpu(sts->completion_status) == CS_ABORTED || (le16_to_cpu(sts->status_flags) & STF_BUS_RESET)) hostdata->send_marker = 1; if (le16_to_cpu(sts->state_flags) & SF_GOT_SENSE) memcpy(Cmnd->sense_buffer, sts->req_sense_data, sizeof(Cmnd->sense_buffer)); DEBUG_INTR(isp1020_print_status_entry(sts)); if (sts->hdr.entry_type == ENTRY_STATUS) Cmnd->result = isp1020_return_status(sts); else Cmnd->result = DID_ERROR << 16; if (Cmnd->use_sg) pci_unmap_sg(hostdata->pci_dev, (struct scatterlist *)Cmnd->buffer, Cmnd->use_sg, Cmnd->sc_data_direction); else if (Cmnd->request_bufflen) pci_unmap_single(hostdata->pci_dev, #ifdef CONFIG_QL_ISP_A64 (dma_addr_t)((long)Cmnd->SCp.ptr), #else (u32)((long)Cmnd->SCp.ptr), #endif Cmnd->request_bufflen, Cmnd->sc_data_direction); isp_outw(out_ptr, host, MBOX5); (*Cmnd->scsi_done)(Cmnd); } hostdata->res_out_ptr = out_ptr; LEAVE_INTR("isp1020_intr_handler"); } static int isp1020_return_status(struct Status_Entry *sts) { int host_status = DID_ERROR; #if DEBUG_ISP1020_INTR static char *reason[] = { "DID_OK", "DID_NO_CONNECT", "DID_BUS_BUSY", "DID_TIME_OUT", "DID_BAD_TARGET", "DID_ABORT", "DID_PARITY", "DID_ERROR", "DID_RESET", "DID_BAD_INTR" }; #endif /* DEBUG_ISP1020_INTR */ ENTER("isp1020_return_status"); DEBUG(printk("qlogicisp : completion status = 0x%04x\n", le16_to_cpu(sts->completion_status))); switch(le16_to_cpu(sts->completion_status)) { case CS_COMPLETE: host_status = DID_OK; break; case CS_INCOMPLETE: if (!(le16_to_cpu(sts->state_flags) & SF_GOT_BUS)) host_status = DID_NO_CONNECT; else if (!(le16_to_cpu(sts->state_flags) & SF_GOT_TARGET)) host_status = DID_BAD_TARGET; else if (!(le16_to_cpu(sts->state_flags) & SF_SENT_CDB)) host_status = DID_ERROR; else if (!(le16_to_cpu(sts->state_flags) & SF_TRANSFERRED_DATA)) host_status = DID_ERROR; else if (!(le16_to_cpu(sts->state_flags) & SF_GOT_STATUS)) host_status = DID_ERROR; else if (!(le16_to_cpu(sts->state_flags) & SF_GOT_SENSE)) host_status = DID_ERROR; break; case CS_DMA_ERROR: case CS_TRANSPORT_ERROR: host_status = DID_ERROR; break; case CS_RESET_OCCURRED: host_status = DID_RESET; break; case CS_ABORTED: host_status = DID_ABORT; break; case CS_TIMEOUT: host_status = DID_TIME_OUT; break; case CS_DATA_OVERRUN: case CS_COMMAND_OVERRUN: case CS_STATUS_OVERRUN: case CS_BAD_MESSAGE: case CS_NO_MESSAGE_OUT: case CS_EXT_ID_FAILED: case CS_IDE_MSG_FAILED: case CS_ABORT_MSG_FAILED: case CS_NOP_MSG_FAILED: case CS_PARITY_ERROR_MSG_FAILED: case CS_DEVICE_RESET_MSG_FAILED: case CS_ID_MSG_FAILED: case CS_UNEXP_BUS_FREE: host_status = DID_ERROR; break; case CS_DATA_UNDERRUN: host_status = DID_OK; break; default: printk("qlogicisp : unknown completion status 0x%04x\n", le16_to_cpu(sts->completion_status)); host_status = DID_ERROR; break; } DEBUG_INTR(printk("qlogicisp : host status (%s) scsi status %x\n", reason[host_status], le16_to_cpu(sts->scsi_status))); LEAVE("isp1020_return_status"); return (le16_to_cpu(sts->scsi_status) & STATUS_MASK) | (host_status << 16); } static int isp1020_biosparam(struct scsi_device *sdev, struct block_device *n, sector_t capacity, int ip[]) { int size = capacity; ENTER("isp1020_biosparam"); ip[0] = 64; ip[1] = 32; ip[2] = size >> 11; if (ip[2] > 1024) { ip[0] = 255; ip[1] = 63; ip[2] = size / (ip[0] * ip[1]); #if 0 if (ip[2] > 1023) ip[2] = 1023; #endif } LEAVE("isp1020_biosparam"); return 0; } static int isp1020_reset_hardware(struct Scsi_Host *host) { u_short param[6]; int loop_count; ENTER("isp1020_reset_hardware"); isp_outw(ISP_RESET, host, PCI_INTF_CTL); udelay(100); isp_outw(HCCR_RESET, host, HOST_HCCR); udelay(100); isp_outw(HCCR_RELEASE, host, HOST_HCCR); isp_outw(HCCR_BIOS_DISABLE, host, HOST_HCCR); loop_count = DEFAULT_LOOP_COUNT; while (--loop_count && isp_inw(host, HOST_HCCR) == RISC_BUSY) { barrier(); cpu_relax(); } if (!loop_count) printk("qlogicisp: reset_hardware loop timeout\n"); isp_outw(0, host, ISP_CFG1); #if DEBUG_ISP1020 printk("qlogicisp : mbox 0 0x%04x \n", isp_inw(host, MBOX0)); printk("qlogicisp : mbox 1 0x%04x \n", isp_inw(host, MBOX1)); printk("qlogicisp : mbox 2 0x%04x \n", isp_inw(host, MBOX2)); printk("qlogicisp : mbox 3 0x%04x \n", isp_inw(host, MBOX3)); printk("qlogicisp : mbox 4 0x%04x \n", isp_inw(host, MBOX4)); printk("qlogicisp : mbox 5 0x%04x \n", isp_inw(host, MBOX5)); #endif /* DEBUG_ISP1020 */ param[0] = MBOX_NO_OP; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : NOP test failed\n"); return 1; } DEBUG(printk("qlogicisp : loading risc ram\n")); #if RELOAD_FIRMWARE for (loop_count = 0; loop_count < risc_code_length01; loop_count++) { param[0] = MBOX_WRITE_RAM_WORD; param[1] = risc_code_addr01 + loop_count; param[2] = risc_code01[loop_count]; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : firmware load failure at %d\n", loop_count); return 1; } } #endif /* RELOAD_FIRMWARE */ DEBUG(printk("qlogicisp : verifying checksum\n")); param[0] = MBOX_VERIFY_CHECKSUM; param[1] = risc_code_addr01; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : ram checksum failure\n"); return 1; } DEBUG(printk("qlogicisp : executing firmware\n")); param[0] = MBOX_EXEC_FIRMWARE; param[1] = risc_code_addr01; isp1020_mbox_command(host, param); param[0] = MBOX_ABOUT_FIRMWARE; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : about firmware failure\n"); return 1; } DEBUG(printk("qlogicisp : firmware major revision %d\n", param[1])); DEBUG(printk("qlogicisp : firmware minor revision %d\n", param[2])); LEAVE("isp1020_reset_hardware"); return 0; } static int isp1020_init(struct Scsi_Host *sh) { u_long io_base, mem_base, io_flags, mem_flags; struct isp1020_hostdata *hostdata; u_char revision; u_int irq; u_short command; struct pci_dev *pdev; ENTER("isp1020_init"); hostdata = (struct isp1020_hostdata *) sh->hostdata; pdev = hostdata->pci_dev; if (pci_read_config_word(pdev, PCI_COMMAND, &command) || pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision)) { printk("qlogicisp : error reading PCI configuration\n"); return 1; } io_base = pci_resource_start(pdev, 0); mem_base = pci_resource_start(pdev, 1); io_flags = pci_resource_flags(pdev, 0); mem_flags = pci_resource_flags(pdev, 1); irq = pdev->irq; if (pdev->vendor != PCI_VENDOR_ID_QLOGIC) { printk("qlogicisp : 0x%04x is not QLogic vendor ID\n", pdev->vendor); return 1; } if (pdev->device != PCI_DEVICE_ID_QLOGIC_ISP1020) { printk("qlogicisp : 0x%04x does not match ISP1020 device id\n", pdev->device); return 1; } #ifdef __alpha__ /* Force ALPHA to use bus I/O and not bus MEM. This is to avoid having to use HAE_MEM registers, which is broken on some platforms and with SMP. */ command &= ~PCI_COMMAND_MEMORY; #endif sh->io_port = io_base; if (!request_region(sh->io_port, 0xff, "qlogicisp")) { printk("qlogicisp : i/o region 0x%lx-0x%lx already " "in use\n", sh->io_port, sh->io_port + 0xff); return 1; } if ((command & PCI_COMMAND_MEMORY) && ((mem_flags & 1) == 0)) { hostdata->memaddr = ioremap(mem_base, PAGE_SIZE); if (!hostdata->memaddr) { printk("qlogicisp : i/o remapping failed.\n"); goto out_release; } } else { if (command & PCI_COMMAND_IO && (io_flags & 3) != 1) { printk("qlogicisp : i/o mapping is disabled\n"); goto out_release; } hostdata->memaddr = NULL; /* zero to signify no i/o mapping */ mem_base = 0; } if (revision != ISP1020_REV_ID) printk("qlogicisp : new isp1020 revision ID (%d)\n", revision); if (isp_inw(sh, PCI_ID_LOW) != PCI_VENDOR_ID_QLOGIC || isp_inw(sh, PCI_ID_HIGH) != PCI_DEVICE_ID_QLOGIC_ISP1020) { printk("qlogicisp : can't decode %s address space 0x%lx\n", (io_base ? "I/O" : "MEM"), (io_base ? io_base : mem_base)); goto out_unmap; } hostdata->revision = revision; sh->irq = irq; sh->max_id = MAX_TARGETS; sh->max_lun = MAX_LUNS; hostdata->res_cpu = pci_alloc_consistent(hostdata->pci_dev, QSIZE(RES_QUEUE_LEN), &hostdata->res_dma); if (hostdata->res_cpu == NULL) { printk("qlogicisp : can't allocate response queue\n"); goto out_unmap; } hostdata->req_cpu = pci_alloc_consistent(hostdata->pci_dev, QSIZE(QLOGICISP_REQ_QUEUE_LEN), &hostdata->req_dma); if (hostdata->req_cpu == NULL) { pci_free_consistent(hostdata->pci_dev, QSIZE(RES_QUEUE_LEN), hostdata->res_cpu, hostdata->res_dma); printk("qlogicisp : can't allocate request queue\n"); goto out_unmap; } pci_set_master(pdev); LEAVE("isp1020_init"); return 0; out_unmap: iounmap(hostdata->memaddr); out_release: release_region(sh->io_port, 0xff); return 1; } #if USE_NVRAM_DEFAULTS static int isp1020_get_defaults(struct Scsi_Host *host) { int i; u_short value; struct isp1020_hostdata *hostdata = (struct isp1020_hostdata *) host->hostdata; ENTER("isp1020_get_defaults"); if (!isp1020_verify_nvram(host)) { printk("qlogicisp : nvram checksum failure\n"); printk("qlogicisp : attempting to use default parameters\n"); return isp1020_set_defaults(host); } value = isp1020_read_nvram_word(host, 2); hostdata->host_param.fifo_threshold = (value >> 8) & 0x03; hostdata->host_param.host_adapter_enable = (value >> 11) & 0x01; hostdata->host_param.initiator_scsi_id = (value >> 12) & 0x0f; value = isp1020_read_nvram_word(host, 3); hostdata->host_param.bus_reset_delay = value & 0xff; hostdata->host_param.retry_count = value >> 8; value = isp1020_read_nvram_word(host, 4); hostdata->host_param.retry_delay = value & 0xff; hostdata->host_param.async_data_setup_time = (value >> 8) & 0x0f; hostdata->host_param.req_ack_active_negation = (value >> 12) & 0x01; hostdata->host_param.data_line_active_negation = (value >> 13) & 0x01; hostdata->host_param.data_dma_burst_enable = (value >> 14) & 0x01; hostdata->host_param.command_dma_burst_enable = (value >> 15); value = isp1020_read_nvram_word(host, 5); hostdata->host_param.tag_aging = value & 0xff; value = isp1020_read_nvram_word(host, 6); hostdata->host_param.selection_timeout = value & 0xffff; value = isp1020_read_nvram_word(host, 7); hostdata->host_param.max_queue_depth = value & 0xffff; #if DEBUG_ISP1020_SETUP printk("qlogicisp : fifo threshold=%d\n", hostdata->host_param.fifo_threshold); printk("qlogicisp : initiator scsi id=%d\n", hostdata->host_param.initiator_scsi_id); printk("qlogicisp : bus reset delay=%d\n", hostdata->host_param.bus_reset_delay); printk("qlogicisp : retry count=%d\n", hostdata->host_param.retry_count); printk("qlogicisp : retry delay=%d\n", hostdata->host_param.retry_delay); printk("qlogicisp : async data setup time=%d\n", hostdata->host_param.async_data_setup_time); printk("qlogicisp : req/ack active negation=%d\n", hostdata->host_param.req_ack_active_negation); printk("qlogicisp : data line active negation=%d\n", hostdata->host_param.data_line_active_negation); printk("qlogicisp : data DMA burst enable=%d\n", hostdata->host_param.data_dma_burst_enable); printk("qlogicisp : command DMA burst enable=%d\n", hostdata->host_param.command_dma_burst_enable); printk("qlogicisp : tag age limit=%d\n", hostdata->host_param.tag_aging); printk("qlogicisp : selection timeout limit=%d\n", hostdata->host_param.selection_timeout); printk("qlogicisp : max queue depth=%d\n", hostdata->host_param.max_queue_depth); #endif /* DEBUG_ISP1020_SETUP */ for (i = 0; i < MAX_TARGETS; i++) { value = isp1020_read_nvram_word(host, 14 + i * 3); hostdata->dev_param[i].device_flags = value & 0xff; hostdata->dev_param[i].execution_throttle = value >> 8; value = isp1020_read_nvram_word(host, 15 + i * 3); hostdata->dev_param[i].synchronous_period = value & 0xff; hostdata->dev_param[i].synchronous_offset = (value >> 8) & 0x0f; hostdata->dev_param[i].device_enable = (value >> 12) & 0x01; #if DEBUG_ISP1020_SETUP printk("qlogicisp : target 0x%02x\n", i); printk("qlogicisp : device flags=0x%02x\n", hostdata->dev_param[i].device_flags); printk("qlogicisp : execution throttle=%d\n", hostdata->dev_param[i].execution_throttle); printk("qlogicisp : synchronous period=%d\n", hostdata->dev_param[i].synchronous_period); printk("qlogicisp : synchronous offset=%d\n", hostdata->dev_param[i].synchronous_offset); printk("qlogicisp : device enable=%d\n", hostdata->dev_param[i].device_enable); #endif /* DEBUG_ISP1020_SETUP */ } LEAVE("isp1020_get_defaults"); return 0; } #define ISP1020_NVRAM_LEN 0x40 #define ISP1020_NVRAM_SIG1 0x5349 #define ISP1020_NVRAM_SIG2 0x2050 static int isp1020_verify_nvram(struct Scsi_Host *host) { int i; u_short value; u_char checksum = 0; for (i = 0; i < ISP1020_NVRAM_LEN; i++) { value = isp1020_read_nvram_word(host, i); switch (i) { case 0: if (value != ISP1020_NVRAM_SIG1) return 0; break; case 1: if (value != ISP1020_NVRAM_SIG2) return 0; break; case 2: if ((value & 0xff) != 0x02) return 0; break; } checksum += value & 0xff; checksum += value >> 8; } return (checksum == 0); } #define NVRAM_DELAY() udelay(2) /* 2 microsecond delay */ u_short isp1020_read_nvram_word(struct Scsi_Host *host, u_short byte) { int i; u_short value, output, input; byte &= 0x3f; byte |= 0x0180; for (i = 8; i >= 0; i--) { output = ((byte >> i) & 0x1) ? 0x4 : 0x0; isp_outw(output | 0x2, host, PCI_NVRAM); NVRAM_DELAY(); isp_outw(output | 0x3, host, PCI_NVRAM); NVRAM_DELAY(); isp_outw(output | 0x2, host, PCI_NVRAM); NVRAM_DELAY(); } for (i = 0xf, value = 0; i >= 0; i--) { value <<= 1; isp_outw(0x3, host, PCI_NVRAM); NVRAM_DELAY(); input = isp_inw(host, PCI_NVRAM); NVRAM_DELAY(); isp_outw(0x2, host, PCI_NVRAM); NVRAM_DELAY(); if (input & 0x8) value |= 1; } isp_outw(0x0, host, PCI_NVRAM); NVRAM_DELAY(); return value; } #endif /* USE_NVRAM_DEFAULTS */ static int isp1020_set_defaults(struct Scsi_Host *host) { struct isp1020_hostdata *hostdata = (struct isp1020_hostdata *) host->hostdata; int i; ENTER("isp1020_set_defaults"); hostdata->host_param.fifo_threshold = 2; hostdata->host_param.host_adapter_enable = 1; hostdata->host_param.initiator_scsi_id = 7; hostdata->host_param.bus_reset_delay = 3; hostdata->host_param.retry_count = 0; hostdata->host_param.retry_delay = 1; hostdata->host_param.async_data_setup_time = 6; hostdata->host_param.req_ack_active_negation = 1; hostdata->host_param.data_line_active_negation = 1; hostdata->host_param.data_dma_burst_enable = 1; hostdata->host_param.command_dma_burst_enable = 1; hostdata->host_param.tag_aging = 8; hostdata->host_param.selection_timeout = 250; hostdata->host_param.max_queue_depth = 256; for (i = 0; i < MAX_TARGETS; i++) { hostdata->dev_param[i].device_flags = 0xfd; hostdata->dev_param[i].execution_throttle = 16; hostdata->dev_param[i].synchronous_period = 25; hostdata->dev_param[i].synchronous_offset = 12; hostdata->dev_param[i].device_enable = 1; } LEAVE("isp1020_set_defaults"); return 0; } static int isp1020_load_parameters(struct Scsi_Host *host) { int i, k; #ifdef CONFIG_QL_ISP_A64 u_long queue_addr; u_short param[8]; #else u_int queue_addr; u_short param[6]; #endif u_short isp_cfg1, hwrev; struct isp1020_hostdata *hostdata = (struct isp1020_hostdata *) host->hostdata; ENTER("isp1020_load_parameters"); hwrev = isp_inw(host, ISP_CFG0) & ISP_CFG0_HWMSK; isp_cfg1 = ISP_CFG1_F64 | ISP_CFG1_BENAB; if (hwrev == ISP_CFG0_1040A) { /* Busted fifo, says mjacob. */ isp_cfg1 &= ISP_CFG1_BENAB; } isp_outw(isp_inw(host, ISP_CFG1) | isp_cfg1, host, ISP_CFG1); isp_outw(isp_inw(host, CDMA_CONF) | DMA_CONF_BENAB, host, CDMA_CONF); isp_outw(isp_inw(host, DDMA_CONF) | DMA_CONF_BENAB, host, DDMA_CONF); param[0] = MBOX_SET_INIT_SCSI_ID; param[1] = hostdata->host_param.initiator_scsi_id; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set initiator id failure\n"); return 1; } param[0] = MBOX_SET_RETRY_COUNT; param[1] = hostdata->host_param.retry_count; param[2] = hostdata->host_param.retry_delay; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set retry count failure\n"); return 1; } param[0] = MBOX_SET_ASYNC_DATA_SETUP_TIME; param[1] = hostdata->host_param.async_data_setup_time; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : async data setup time failure\n"); return 1; } param[0] = MBOX_SET_ACTIVE_NEG_STATE; param[1] = (hostdata->host_param.req_ack_active_negation << 4) | (hostdata->host_param.data_line_active_negation << 5); isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set active negation state failure\n"); return 1; } param[0] = MBOX_SET_PCI_CONTROL_PARAMS; param[1] = hostdata->host_param.data_dma_burst_enable << 1; param[2] = hostdata->host_param.command_dma_burst_enable << 1; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set pci control parameter failure\n"); return 1; } param[0] = MBOX_SET_TAG_AGE_LIMIT; param[1] = hostdata->host_param.tag_aging; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set tag age limit failure\n"); return 1; } param[0] = MBOX_SET_SELECT_TIMEOUT; param[1] = hostdata->host_param.selection_timeout; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set selection timeout failure\n"); return 1; } for (i = 0; i < MAX_TARGETS; i++) { if (!hostdata->dev_param[i].device_enable) continue; param[0] = MBOX_SET_TARGET_PARAMS; param[1] = i << 8; param[2] = hostdata->dev_param[i].device_flags << 8; param[3] = (hostdata->dev_param[i].synchronous_offset << 8) | hostdata->dev_param[i].synchronous_period; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set target parameter failure\n"); return 1; } for (k = 0; k < MAX_LUNS; k++) { param[0] = MBOX_SET_DEV_QUEUE_PARAMS; param[1] = (i << 8) | k; param[2] = hostdata->host_param.max_queue_depth; param[3] = hostdata->dev_param[i].execution_throttle; isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set device queue " "parameter failure\n"); return 1; } } } queue_addr = hostdata->res_dma; #ifdef CONFIG_QL_ISP_A64 param[0] = MBOX_CMD_INIT_RESPONSE_QUEUE_64; #else param[0] = MBOX_INIT_RES_QUEUE; #endif param[1] = RES_QUEUE_LEN + 1; param[2] = (u_short) (queue_addr >> 16); param[3] = (u_short) (queue_addr & 0xffff); param[4] = 0; param[5] = 0; #ifdef CONFIG_QL_ISP_A64 param[6] = (u_short) (queue_addr >> 48); param[7] = (u_short) (queue_addr >> 32); #endif isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set response queue failure\n"); return 1; } queue_addr = hostdata->req_dma; #ifdef CONFIG_QL_ISP_A64 param[0] = MBOX_CMD_INIT_REQUEST_QUEUE_64; #else param[0] = MBOX_INIT_REQ_QUEUE; #endif param[1] = QLOGICISP_REQ_QUEUE_LEN + 1; param[2] = (u_short) (queue_addr >> 16); param[3] = (u_short) (queue_addr & 0xffff); param[4] = 0; #ifdef CONFIG_QL_ISP_A64 param[5] = 0; param[6] = (u_short) (queue_addr >> 48); param[7] = (u_short) (queue_addr >> 32); #endif isp1020_mbox_command(host, param); if (param[0] != MBOX_COMMAND_COMPLETE) { printk("qlogicisp : set request queue failure\n"); return 1; } LEAVE("isp1020_load_parameters"); return 0; } /* * currently, this is only called during initialization or abort/reset, * at which times interrupts are disabled, so polling is OK, I guess... */ static int isp1020_mbox_command(struct Scsi_Host *host, u_short param[]) { int loop_count; if (mbox_param[param[0]] == 0) return 1; loop_count = DEFAULT_LOOP_COUNT; while (--loop_count && isp_inw(host, HOST_HCCR) & 0x0080) { barrier(); cpu_relax(); } if (!loop_count) printk("qlogicisp: mbox_command loop timeout #1\n"); switch(mbox_param[param[0]] >> 4) { case 8: isp_outw(param[7], host, MBOX7); case 7: isp_outw(param[6], host, MBOX6); case 6: isp_outw(param[5], host, MBOX5); case 5: isp_outw(param[4], host, MBOX4); case 4: isp_outw(param[3], host, MBOX3); case 3: isp_outw(param[2], host, MBOX2); case 2: isp_outw(param[1], host, MBOX1); case 1: isp_outw(param[0], host, MBOX0); } isp_outw(0x0, host, PCI_SEMAPHORE); isp_outw(HCCR_CLEAR_RISC_INTR, host, HOST_HCCR); isp_outw(HCCR_SET_HOST_INTR, host, HOST_HCCR); loop_count = DEFAULT_LOOP_COUNT; while (--loop_count && !(isp_inw(host, PCI_INTF_STS) & 0x04)) { barrier(); cpu_relax(); } if (!loop_count) printk("qlogicisp: mbox_command loop timeout #2\n"); loop_count = DEFAULT_LOOP_COUNT; while (--loop_count && isp_inw(host, MBOX0) == 0x04) { barrier(); cpu_relax(); } if (!loop_count) printk("qlogicisp: mbox_command loop timeout #3\n"); switch(mbox_param[param[0]] & 0xf) { case 8: param[7] = isp_inw(host, MBOX7); case 7: param[6] = isp_inw(host, MBOX6); case 6: param[5] = isp_inw(host, MBOX5); case 5: param[4] = isp_inw(host, MBOX4); case 4: param[3] = isp_inw(host, MBOX3); case 3: param[2] = isp_inw(host, MBOX2); case 2: param[1] = isp_inw(host, MBOX1); case 1: param[0] = isp_inw(host, MBOX0); } isp_outw(0x0, host, PCI_SEMAPHORE); isp_outw(HCCR_CLEAR_RISC_INTR, host, HOST_HCCR); return 0; } #if DEBUG_ISP1020_INTR void isp1020_print_status_entry(struct Status_Entry *status) { int i; printk("qlogicisp : entry count = 0x%02x, type = 0x%02x, flags = 0x%02x\n", status->hdr.entry_cnt, status->hdr.entry_type, status->hdr.flags); printk("qlogicisp : scsi status = 0x%04x, completion status = 0x%04x\n", le16_to_cpu(status->scsi_status), le16_to_cpu(status->completion_status)); printk("qlogicisp : state flags = 0x%04x, status flags = 0x%04x\n", le16_to_cpu(status->state_flags), le16_to_cpu(status->status_flags)); printk("qlogicisp : time = 0x%04x, request sense length = 0x%04x\n", le16_to_cpu(status->time), le16_to_cpu(status->req_sense_len)); printk("qlogicisp : residual transfer length = 0x%08x\n", le32_to_cpu(status->residual)); for (i = 0; i < le16_to_cpu(status->req_sense_len); i++) printk("qlogicisp : sense data = 0x%02x\n", status->req_sense_data[i]); } #endif /* DEBUG_ISP1020_INTR */ #if DEBUG_ISP1020 void isp1020_print_scsi_cmd(Scsi_Cmnd *cmd) { int i; printk("qlogicisp : target = 0x%02x, lun = 0x%02x, cmd_len = 0x%02x\n", cmd->target, cmd->lun, cmd->cmd_len); printk("qlogicisp : command = "); for (i = 0; i < cmd->cmd_len; i++) printk("0x%02x ", cmd->cmnd[i]); printk("\n"); } #endif /* DEBUG_ISP1020 */ MODULE_LICENSE("GPL"); static Scsi_Host_Template driver_template = { .detect = isp1020_detect, .release = isp1020_release, .info = isp1020_info, .queuecommand = isp1020_queuecommand, .bios_param = isp1020_biosparam, .can_queue = QLOGICISP_REQ_QUEUE_LEN, .this_id = -1, .sg_tablesize = QLOGICISP_MAX_SG(QLOGICISP_REQ_QUEUE_LEN), .cmd_per_lun = 1, .use_clustering = DISABLE_CLUSTERING, }; #include "scsi_module.c"