/************************************************************************ * Copyright 2003 Digi International (www.digi.com) * * Copyright (C) 2004 IBM Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 * Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * Contact Information: * Scott H Kilau <Scott_Kilau@digi.com> * Wendy Xiong <wendyx@us.ltcfwd.linux.ibm.com> * ***********************************************************************/ #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial_reg.h> #include <linux/delay.h> /* For udelay */ #include <linux/pci.h> #include "jsm.h" static void jsm_carrier(struct jsm_channel *ch); static inline int jsm_get_mstat(struct jsm_channel *ch) { unsigned char mstat; unsigned result; jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "start\n"); mstat = (ch->ch_mostat | ch->ch_mistat); result = 0; if (mstat & UART_MCR_DTR) result |= TIOCM_DTR; if (mstat & UART_MCR_RTS) result |= TIOCM_RTS; if (mstat & UART_MSR_CTS) result |= TIOCM_CTS; if (mstat & UART_MSR_DSR) result |= TIOCM_DSR; if (mstat & UART_MSR_RI) result |= TIOCM_RI; if (mstat & UART_MSR_DCD) result |= TIOCM_CD; jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n"); return result; } static unsigned int jsm_tty_tx_empty(struct uart_port *port) { return TIOCSER_TEMT; } /* * Return modem signals to ld. */ static unsigned int jsm_tty_get_mctrl(struct uart_port *port) { int result; struct jsm_channel *channel = (struct jsm_channel *)port; jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n"); result = jsm_get_mstat(channel); if (result < 0) return -ENXIO; jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n"); return result; } /* * jsm_set_modem_info() * * Set modem signals, called by ld. */ static void jsm_tty_set_mctrl(struct uart_port *port, unsigned int mctrl) { struct jsm_channel *channel = (struct jsm_channel *)port; jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n"); if (mctrl & TIOCM_RTS) channel->ch_mostat |= UART_MCR_RTS; else channel->ch_mostat &= ~UART_MCR_RTS; if (mctrl & TIOCM_DTR) channel->ch_mostat |= UART_MCR_DTR; else channel->ch_mostat &= ~UART_MCR_DTR; channel->ch_bd->bd_ops->assert_modem_signals(channel); jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n"); udelay(10); } static void jsm_tty_start_tx(struct uart_port *port, unsigned int tty_start) { struct jsm_channel *channel = (struct jsm_channel *)port; jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n"); channel->ch_flags &= ~(CH_STOP); jsm_tty_write(port); jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n"); } static void jsm_tty_stop_tx(struct uart_port *port, unsigned int tty_stop) { struct jsm_channel *channel = (struct jsm_channel *)port; jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "start\n"); channel->ch_flags |= (CH_STOP); jsm_printk(IOCTL, INFO, &channel->ch_bd->pci_dev, "finish\n"); } static void jsm_tty_send_xchar(struct uart_port *port, char ch) { unsigned long lock_flags; struct jsm_channel *channel = (struct jsm_channel *)port; spin_lock_irqsave(&port->lock, lock_flags); if (ch == port->info->tty->termios->c_cc[VSTART]) channel->ch_bd->bd_ops->send_start_character(channel); if (ch == port->info->tty->termios->c_cc[VSTOP]) channel->ch_bd->bd_ops->send_stop_character(channel); spin_unlock_irqrestore(&port->lock, lock_flags); } static void jsm_tty_stop_rx(struct uart_port *port) { struct jsm_channel *channel = (struct jsm_channel *)port; channel->ch_bd->bd_ops->disable_receiver(channel); } static void jsm_tty_break(struct uart_port *port, int break_state) { unsigned long lock_flags; struct jsm_channel *channel = (struct jsm_channel *)port; spin_lock_irqsave(&port->lock, lock_flags); if (break_state == -1) channel->ch_bd->bd_ops->send_break(channel); else channel->ch_bd->bd_ops->clear_break(channel, 0); spin_unlock_irqrestore(&port->lock, lock_flags); } static int jsm_tty_open(struct uart_port *port) { struct jsm_board *brd; int rc = 0; struct jsm_channel *channel = (struct jsm_channel *)port; /* Get board pointer from our array of majors we have allocated */ brd = channel->ch_bd; /* * Allocate channel buffers for read/write/error. * Set flag, so we don't get trounced on. */ channel->ch_flags |= (CH_OPENING); /* Drop locks, as malloc with GFP_KERNEL can sleep */ if (!channel->ch_rqueue) { channel->ch_rqueue = (u8 *) kmalloc(RQUEUESIZE, GFP_KERNEL); if (!channel->ch_rqueue) { jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev, "unable to allocate read queue buf"); return -ENOMEM; } memset(channel->ch_rqueue, 0, RQUEUESIZE); } if (!channel->ch_equeue) { channel->ch_equeue = (u8 *) kmalloc(EQUEUESIZE, GFP_KERNEL); if (!channel->ch_equeue) { jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev, "unable to allocate error queue buf"); return -ENOMEM; } memset(channel->ch_equeue, 0, EQUEUESIZE); } if (!channel->ch_wqueue) { channel->ch_wqueue = (u8 *) kmalloc(WQUEUESIZE, GFP_KERNEL); if (!channel->ch_wqueue) { jsm_printk(INIT, ERR, &channel->ch_bd->pci_dev, "unable to allocate write queue buf"); return -ENOMEM; } memset(channel->ch_wqueue, 0, WQUEUESIZE); } channel->ch_flags &= ~(CH_OPENING); /* * Initialize if neither terminal is open. */ jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "jsm_open: initializing channel in open...\n"); /* * Flush input queues. */ channel->ch_r_head = channel->ch_r_tail = 0; channel->ch_e_head = channel->ch_e_tail = 0; channel->ch_w_head = channel->ch_w_tail = 0; brd->bd_ops->flush_uart_write(channel); brd->bd_ops->flush_uart_read(channel); channel->ch_flags = 0; channel->ch_cached_lsr = 0; channel->ch_stops_sent = 0; channel->ch_c_cflag = port->info->tty->termios->c_cflag; channel->ch_c_iflag = port->info->tty->termios->c_iflag; channel->ch_c_oflag = port->info->tty->termios->c_oflag; channel->ch_c_lflag = port->info->tty->termios->c_lflag; channel->ch_startc = port->info->tty->termios->c_cc[VSTART]; channel->ch_stopc = port->info->tty->termios->c_cc[VSTOP]; /* Tell UART to init itself */ brd->bd_ops->uart_init(channel); /* * Run param in case we changed anything */ brd->bd_ops->param(channel); jsm_carrier(channel); channel->ch_open_count++; jsm_printk(OPEN, INFO, &channel->ch_bd->pci_dev, "finish\n"); return rc; } static void jsm_tty_close(struct uart_port *port) { struct jsm_board *bd; struct termios *ts; struct jsm_channel *channel = (struct jsm_channel *)port; jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "start\n"); bd = channel->ch_bd; ts = channel->uart_port.info->tty->termios; channel->ch_flags &= ~(CH_STOPI); channel->ch_open_count--; /* * If we have HUPCL set, lower DTR and RTS */ if (channel->ch_c_cflag & HUPCL) { jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "Close. HUPCL set, dropping DTR/RTS\n"); /* Drop RTS/DTR */ channel->ch_mostat &= ~(UART_MCR_DTR | UART_MCR_RTS); bd->bd_ops->assert_modem_signals(channel); } channel->ch_old_baud = 0; /* Turn off UART interrupts for this port */ channel->ch_bd->bd_ops->uart_off(channel); jsm_printk(CLOSE, INFO, &channel->ch_bd->pci_dev, "finish\n"); } static void jsm_tty_set_termios(struct uart_port *port, struct termios *termios, struct termios *old_termios) { unsigned long lock_flags; struct jsm_channel *channel = (struct jsm_channel *)port; spin_lock_irqsave(&port->lock, lock_flags); channel->ch_c_cflag = termios->c_cflag; channel->ch_c_iflag = termios->c_iflag; channel->ch_c_oflag = termios->c_oflag; channel->ch_c_lflag = termios->c_lflag; channel->ch_startc = termios->c_cc[VSTART]; channel->ch_stopc = termios->c_cc[VSTOP]; channel->ch_bd->bd_ops->param(channel); jsm_carrier(channel); spin_unlock_irqrestore(&port->lock, lock_flags); } static const char *jsm_tty_type(struct uart_port *port) { return "jsm"; } static void jsm_tty_release_port(struct uart_port *port) { } static int jsm_tty_request_port(struct uart_port *port) { return 0; } static void jsm_config_port(struct uart_port *port, int flags) { port->type = PORT_JSM; } static struct uart_ops jsm_ops = { .tx_empty = jsm_tty_tx_empty, .set_mctrl = jsm_tty_set_mctrl, .get_mctrl = jsm_tty_get_mctrl, .stop_tx = jsm_tty_stop_tx, .start_tx = jsm_tty_start_tx, .send_xchar = jsm_tty_send_xchar, .stop_rx = jsm_tty_stop_rx, .break_ctl = jsm_tty_break, .startup = jsm_tty_open, .shutdown = jsm_tty_close, .set_termios = jsm_tty_set_termios, .type = jsm_tty_type, .release_port = jsm_tty_release_port, .request_port = jsm_tty_request_port, .config_port = jsm_config_port, }; /* * jsm_tty_init() * * Init the tty subsystem. Called once per board after board has been * downloaded and init'ed. */ int jsm_tty_init(struct jsm_board *brd) { int i; void __iomem *vaddr; struct jsm_channel *ch; if (!brd) return -ENXIO; jsm_printk(INIT, INFO, &brd->pci_dev, "start\n"); /* * Initialize board structure elements. */ brd->nasync = brd->maxports; /* * Allocate channel memory that might not have been allocated * when the driver was first loaded. */ for (i = 0; i < brd->nasync; i++) { if (!brd->channels[i]) { /* * Okay to malloc with GFP_KERNEL, we are not at * interrupt context, and there are no locks held. */ brd->channels[i] = kmalloc(sizeof(struct jsm_channel), GFP_KERNEL); if (!brd->channels[i]) { jsm_printk(CORE, ERR, &brd->pci_dev, "%s:%d Unable to allocate memory for channel struct\n", __FILE__, __LINE__); } memset(brd->channels[i], 0, sizeof(struct jsm_channel)); } } ch = brd->channels[0]; vaddr = brd->re_map_membase; /* Set up channel variables */ for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) { if (!brd->channels[i]) continue; spin_lock_init(&ch->ch_lock); if (brd->bd_uart_offset == 0x200) ch->ch_neo_uart = vaddr + (brd->bd_uart_offset * i); ch->ch_bd = brd; ch->ch_portnum = i; /* .25 second delay */ ch->ch_close_delay = 250; init_waitqueue_head(&ch->ch_flags_wait); } jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n"); return 0; } int jsm_uart_port_init(struct jsm_board *brd) { int i; struct jsm_channel *ch; if (!brd) return -ENXIO; jsm_printk(INIT, INFO, &brd->pci_dev, "start\n"); /* * Initialize board structure elements. */ brd->nasync = brd->maxports; /* Set up channel variables */ for (i = 0; i < brd->nasync; i++, ch = brd->channels[i]) { if (!brd->channels[i]) continue; brd->channels[i]->uart_port.irq = brd->irq; brd->channels[i]->uart_port.type = PORT_JSM; brd->channels[i]->uart_port.iotype = UPIO_MEM; brd->channels[i]->uart_port.membase = brd->re_map_membase; brd->channels[i]->uart_port.fifosize = 16; brd->channels[i]->uart_port.ops = &jsm_ops; brd->channels[i]->uart_port.line = brd->channels[i]->ch_portnum + brd->boardnum * 2; if (uart_add_one_port (&jsm_uart_driver, &brd->channels[i]->uart_port)) printk(KERN_INFO "Added device failed\n"); else printk(KERN_INFO "Added device \n"); } jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n"); return 0; } int jsm_remove_uart_port(struct jsm_board *brd) { int i; struct jsm_channel *ch; if (!brd) return -ENXIO; jsm_printk(INIT, INFO, &brd->pci_dev, "start\n"); /* * Initialize board structure elements. */ brd->nasync = brd->maxports; /* Set up channel variables */ for (i = 0; i < brd->nasync; i++) { if (!brd->channels[i]) continue; ch = brd->channels[i]; uart_remove_one_port(&jsm_uart_driver, &brd->channels[i]->uart_port); } jsm_printk(INIT, INFO, &brd->pci_dev, "finish\n"); return 0; } void jsm_input(struct jsm_channel *ch) { struct jsm_board *bd; struct tty_struct *tp; u32 rmask; u16 head; u16 tail; int data_len; unsigned long lock_flags; int flip_len; int len = 0; int n = 0; char *buf = NULL; char *buf2 = NULL; int s = 0; int i = 0; jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n"); if (!ch) return; tp = ch->uart_port.info->tty; bd = ch->ch_bd; if(!bd) return; spin_lock_irqsave(&ch->ch_lock, lock_flags); /* *Figure the number of characters in the buffer. *Exit immediately if none. */ rmask = RQUEUEMASK; head = ch->ch_r_head & rmask; tail = ch->ch_r_tail & rmask; data_len = (head - tail) & rmask; if (data_len == 0) { spin_unlock_irqrestore(&ch->ch_lock, lock_flags); return; } jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start\n"); /* *If the device is not open, or CREAD is off, flush *input data and return immediately. */ if (!tp || !(tp->termios->c_cflag & CREAD) ) { jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "input. dropping %d bytes on port %d...\n", data_len, ch->ch_portnum); ch->ch_r_head = tail; /* Force queue flow control to be released, if needed */ jsm_check_queue_flow_control(ch); spin_unlock_irqrestore(&ch->ch_lock, lock_flags); return; } /* * If we are throttled, simply don't read any data. */ if (ch->ch_flags & CH_STOPI) { spin_unlock_irqrestore(&ch->ch_lock, lock_flags); jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Port %d throttled, not reading any data. head: %x tail: %x\n", ch->ch_portnum, head, tail); return; } jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "start 2\n"); /* * If the rxbuf is empty and we are not throttled, put as much * as we can directly into the linux TTY flip buffer. * The jsm_rawreadok case takes advantage of carnal knowledge that * the char_buf and the flag_buf are next to each other and * are each of (2 * TTY_FLIPBUF_SIZE) size. * * NOTE: if(!tty->real_raw), the call to ldisc.receive_buf *actually still uses the flag buffer, so you can't *use it for input data */ if (jsm_rawreadok) { if (tp->real_raw) flip_len = MYFLIPLEN; else flip_len = 2 * TTY_FLIPBUF_SIZE; } else flip_len = TTY_FLIPBUF_SIZE - tp->flip.count; len = min(data_len, flip_len); len = min(len, (N_TTY_BUF_SIZE - 1) - tp->read_cnt); if (len <= 0) { spin_unlock_irqrestore(&ch->ch_lock, lock_flags); jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input 1\n"); return; } /* * If we're bypassing flip buffers on rx, we can blast it * right into the beginning of the buffer. */ if (jsm_rawreadok) { if (tp->real_raw) { if (ch->ch_flags & CH_FLIPBUF_IN_USE) { jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "JSM - FLIPBUF in use. delaying input\n"); spin_unlock_irqrestore(&ch->ch_lock, lock_flags); return; } ch->ch_flags |= CH_FLIPBUF_IN_USE; buf = ch->ch_bd->flipbuf; buf2 = NULL; } else { buf = tp->flip.char_buf; buf2 = tp->flip.flag_buf; } } else { buf = tp->flip.char_buf_ptr; buf2 = tp->flip.flag_buf_ptr; } n = len; /* * n now contains the most amount of data we can copy, * bounded either by the flip buffer size or the amount * of data the card actually has pending... */ while (n) { s = ((head >= tail) ? head : RQUEUESIZE) - tail; s = min(s, n); if (s <= 0) break; memcpy(buf, ch->ch_rqueue + tail, s); /* buf2 is only set when port isn't raw */ if (buf2) memcpy(buf2, ch->ch_equeue + tail, s); tail += s; buf += s; if (buf2) buf2 += s; n -= s; /* Flip queue if needed */ tail &= rmask; } /* * In high performance mode, we don't have to update * flag_buf or any of the counts or pointers into flip buf. */ if (!jsm_rawreadok) { if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) { for (i = 0; i < len; i++) { /* * Give the Linux ld the flags in the * format it likes. */ if (tp->flip.flag_buf_ptr[i] & UART_LSR_BI) tp->flip.flag_buf_ptr[i] = TTY_BREAK; else if (tp->flip.flag_buf_ptr[i] & UART_LSR_PE) tp->flip.flag_buf_ptr[i] = TTY_PARITY; else if (tp->flip.flag_buf_ptr[i] & UART_LSR_FE) tp->flip.flag_buf_ptr[i] = TTY_FRAME; else tp->flip.flag_buf_ptr[i] = TTY_NORMAL; } } else { memset(tp->flip.flag_buf_ptr, 0, len); } tp->flip.char_buf_ptr += len; tp->flip.flag_buf_ptr += len; tp->flip.count += len; } else if (!tp->real_raw) { if (I_PARMRK(tp) || I_BRKINT(tp) || I_INPCK(tp)) { for (i = 0; i < len; i++) { /* * Give the Linux ld the flags in the * format it likes. */ if (tp->flip.flag_buf_ptr[i] & UART_LSR_BI) tp->flip.flag_buf_ptr[i] = TTY_BREAK; else if (tp->flip.flag_buf_ptr[i] & UART_LSR_PE) tp->flip.flag_buf_ptr[i] = TTY_PARITY; else if (tp->flip.flag_buf_ptr[i] & UART_LSR_FE) tp->flip.flag_buf_ptr[i] = TTY_FRAME; else tp->flip.flag_buf_ptr[i] = TTY_NORMAL; } } else memset(tp->flip.flag_buf, 0, len); } /* * If we're doing raw reads, jam it right into the * line disc bypassing the flip buffers. */ if (jsm_rawreadok) { if (tp->real_raw) { ch->ch_r_tail = tail & rmask; ch->ch_e_tail = tail & rmask; jsm_check_queue_flow_control(ch); /* !!! WE *MUST* LET GO OF ALL LOCKS BEFORE CALLING RECEIVE BUF !!! */ spin_unlock_irqrestore(&ch->ch_lock, lock_flags); jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input. %d real_raw len:%d calling receive_buf for board %d\n", __LINE__, len, ch->ch_bd->boardnum); tp->ldisc.receive_buf(tp, ch->ch_bd->flipbuf, NULL, len); /* Allow use of channel flip buffer again */ spin_lock_irqsave(&ch->ch_lock, lock_flags); ch->ch_flags &= ~CH_FLIPBUF_IN_USE; spin_unlock_irqrestore(&ch->ch_lock, lock_flags); } else { ch->ch_r_tail = tail & rmask; ch->ch_e_tail = tail & rmask; jsm_check_queue_flow_control(ch); /* !!! WE *MUST* LET GO OF ALL LOCKS BEFORE CALLING RECEIVE BUF !!! */ spin_unlock_irqrestore(&ch->ch_lock, lock_flags); jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input. %d not real_raw len:%d calling receive_buf for board %d\n", __LINE__, len, ch->ch_bd->boardnum); tp->ldisc.receive_buf(tp, tp->flip.char_buf, tp->flip.flag_buf, len); } } else { ch->ch_r_tail = tail & rmask; ch->ch_e_tail = tail & rmask; jsm_check_queue_flow_control(ch); spin_unlock_irqrestore(&ch->ch_lock, lock_flags); jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "jsm_input. %d not jsm_read raw okay scheduling flip\n", __LINE__); tty_schedule_flip(tp); } jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, "finish\n"); } static void jsm_carrier(struct jsm_channel *ch) { struct jsm_board *bd; int virt_carrier = 0; int phys_carrier = 0; jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "start\n"); if (!ch) return; bd = ch->ch_bd; if (!bd) return; if (ch->ch_mistat & UART_MSR_DCD) { jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "mistat: %x D_CD: %x\n", ch->ch_mistat, ch->ch_mistat & UART_MSR_DCD); phys_carrier = 1; } if (ch->ch_c_cflag & CLOCAL) virt_carrier = 1; jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "DCD: physical: %d virt: %d\n", phys_carrier, virt_carrier); /* * Test for a VIRTUAL carrier transition to HIGH. */ if (((ch->ch_flags & CH_FCAR) == 0) && (virt_carrier == 1)) { /* * When carrier rises, wake any threads waiting * for carrier in the open routine. */ jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "carrier: virt DCD rose\n"); if (waitqueue_active(&(ch->ch_flags_wait))) wake_up_interruptible(&ch->ch_flags_wait); } /* * Test for a PHYSICAL carrier transition to HIGH. */ if (((ch->ch_flags & CH_CD) == 0) && (phys_carrier == 1)) { /* * When carrier rises, wake any threads waiting * for carrier in the open routine. */ jsm_printk(CARR, INFO, &ch->ch_bd->pci_dev, "carrier: physical DCD rose\n"); if (waitqueue_active(&(ch->ch_flags_wait))) wake_up_interruptible(&ch->ch_flags_wait); } /* * Test for a PHYSICAL transition to low, so long as we aren't * currently ignoring physical transitions (which is what "virtual * carrier" indicates). * * The transition of the virtual carrier to low really doesn't * matter... it really only means "ignore carrier state", not * "make pretend that carrier is there". */ if ((virt_carrier == 0) && ((ch->ch_flags & CH_CD) != 0) && (phys_carrier == 0)) { /* * When carrier drops: * * Drop carrier on all open units. * * Flush queues, waking up any task waiting in the * line discipline. * * Send a hangup to the control terminal. * * Enable all select calls. */ if (waitqueue_active(&(ch->ch_flags_wait))) wake_up_interruptible(&ch->ch_flags_wait); } /* * Make sure that our cached values reflect the current reality. */ if (virt_carrier == 1) ch->ch_flags |= CH_FCAR; else ch->ch_flags &= ~CH_FCAR; if (phys_carrier == 1) ch->ch_flags |= CH_CD; else ch->ch_flags &= ~CH_CD; } void jsm_check_queue_flow_control(struct jsm_channel *ch) { int qleft = 0; /* Store how much space we have left in the queue */ if ((qleft = ch->ch_r_tail - ch->ch_r_head - 1) < 0) qleft += RQUEUEMASK + 1; /* * Check to see if we should enforce flow control on our queue because * the ld (or user) isn't reading data out of our queue fast enuf. * * NOTE: This is done based on what the current flow control of the * port is set for. * * 1) HWFLOW (RTS) - Turn off the UART's Receive interrupt. * This will cause the UART's FIFO to back up, and force * the RTS signal to be dropped. * 2) SWFLOW (IXOFF) - Keep trying to send a stop character to * the other side, in hopes it will stop sending data to us. * 3) NONE - Nothing we can do. We will simply drop any extra data * that gets sent into us when the queue fills up. */ if (qleft < 256) { /* HWFLOW */ if (ch->ch_c_cflag & CRTSCTS) { if(!(ch->ch_flags & CH_RECEIVER_OFF)) { ch->ch_bd->bd_ops->disable_receiver(ch); ch->ch_flags |= (CH_RECEIVER_OFF); jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Internal queue hit hilevel mark (%d)! Turning off interrupts.\n", qleft); } } /* SWFLOW */ else if (ch->ch_c_iflag & IXOFF) { if (ch->ch_stops_sent <= MAX_STOPS_SENT) { ch->ch_bd->bd_ops->send_stop_character(ch); ch->ch_stops_sent++; jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending stop char! Times sent: %x\n", ch->ch_stops_sent); } } } /* * Check to see if we should unenforce flow control because * ld (or user) finally read enuf data out of our queue. * * NOTE: This is done based on what the current flow control of the * port is set for. * * 1) HWFLOW (RTS) - Turn back on the UART's Receive interrupt. * This will cause the UART's FIFO to raise RTS back up, * which will allow the other side to start sending data again. * 2) SWFLOW (IXOFF) - Send a start character to * the other side, so it will start sending data to us again. * 3) NONE - Do nothing. Since we didn't do anything to turn off the * other side, we don't need to do anything now. */ if (qleft > (RQUEUESIZE / 2)) { /* HWFLOW */ if (ch->ch_c_cflag & CRTSCTS) { if (ch->ch_flags & CH_RECEIVER_OFF) { ch->ch_bd->bd_ops->enable_receiver(ch); ch->ch_flags &= ~(CH_RECEIVER_OFF); jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Internal queue hit lowlevel mark (%d)! Turning on interrupts.\n", qleft); } } /* SWFLOW */ else if (ch->ch_c_iflag & IXOFF && ch->ch_stops_sent) { ch->ch_stops_sent = 0; ch->ch_bd->bd_ops->send_start_character(ch); jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, "Sending start char!\n"); } } } /* * jsm_tty_write() * * Take data from the user or kernel and send it out to the FEP. * In here exists all the Transparent Print magic as well. */ int jsm_tty_write(struct uart_port *port) { int bufcount = 0, n = 0; int data_count = 0,data_count1 =0; u16 head; u16 tail; u16 tmask; u32 remain; int temp_tail = port->info->xmit.tail; struct jsm_channel *channel = (struct jsm_channel *)port; tmask = WQUEUEMASK; head = (channel->ch_w_head) & tmask; tail = (channel->ch_w_tail) & tmask; if ((bufcount = tail - head - 1) < 0) bufcount += WQUEUESIZE; n = bufcount; n = min(n, 56); remain = WQUEUESIZE - head; data_count = 0; if (n >= remain) { n -= remain; while ((port->info->xmit.head != temp_tail) && (data_count < remain)) { channel->ch_wqueue[head++] = port->info->xmit.buf[temp_tail]; temp_tail++; temp_tail &= (UART_XMIT_SIZE - 1); data_count++; } if (data_count == remain) head = 0; } data_count1 = 0; if (n > 0) { remain = n; while ((port->info->xmit.head != temp_tail) && (data_count1 < remain)) { channel->ch_wqueue[head++] = port->info->xmit.buf[temp_tail]; temp_tail++; temp_tail &= (UART_XMIT_SIZE - 1); data_count1++; } } port->info->xmit.tail = temp_tail; data_count += data_count1; if (data_count) { head &= tmask; channel->ch_w_head = head; } if (data_count) { channel->ch_bd->bd_ops->copy_data_from_queue_to_uart(channel); } return data_count; }