/* * linux/drivers/char/sa1100.c * * Driver for SA11x0 serial ports * * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. * * Copyright (C) 2000 Deep Blue Solutions Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: sa1100.c,v 1.50 2002/07/29 14:41:04 rmk Exp $ * */ #if defined(CONFIG_SERIAL_SA1100_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) #define SUPPORT_SYSRQ #endif #include <linux/module.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/console.h> #include <linux/sysrq.h> #include <linux/platform_device.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial_core.h> #include <linux/serial.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/hardware.h> #include <asm/mach/serial_sa1100.h> /* We've been assigned a range on the "Low-density serial ports" major */ #define SERIAL_SA1100_MAJOR 204 #define MINOR_START 5 #define NR_PORTS 3 #define SA1100_ISR_PASS_LIMIT 256 /* * Convert from ignore_status_mask or read_status_mask to UTSR[01] */ #define SM_TO_UTSR0(x) ((x) & 0xff) #define SM_TO_UTSR1(x) ((x) >> 8) #define UTSR0_TO_SM(x) ((x)) #define UTSR1_TO_SM(x) ((x) << 8) #define UART_GET_UTCR0(sport) __raw_readl((sport)->port.membase + UTCR0) #define UART_GET_UTCR1(sport) __raw_readl((sport)->port.membase + UTCR1) #define UART_GET_UTCR2(sport) __raw_readl((sport)->port.membase + UTCR2) #define UART_GET_UTCR3(sport) __raw_readl((sport)->port.membase + UTCR3) #define UART_GET_UTSR0(sport) __raw_readl((sport)->port.membase + UTSR0) #define UART_GET_UTSR1(sport) __raw_readl((sport)->port.membase + UTSR1) #define UART_GET_CHAR(sport) __raw_readl((sport)->port.membase + UTDR) #define UART_PUT_UTCR0(sport,v) __raw_writel((v),(sport)->port.membase + UTCR0) #define UART_PUT_UTCR1(sport,v) __raw_writel((v),(sport)->port.membase + UTCR1) #define UART_PUT_UTCR2(sport,v) __raw_writel((v),(sport)->port.membase + UTCR2) #define UART_PUT_UTCR3(sport,v) __raw_writel((v),(sport)->port.membase + UTCR3) #define UART_PUT_UTSR0(sport,v) __raw_writel((v),(sport)->port.membase + UTSR0) #define UART_PUT_UTSR1(sport,v) __raw_writel((v),(sport)->port.membase + UTSR1) #define UART_PUT_CHAR(sport,v) __raw_writel((v),(sport)->port.membase + UTDR) /* * This is the size of our serial port register set. */ #define UART_PORT_SIZE 0x24 /* * This determines how often we check the modem status signals * for any change. They generally aren't connected to an IRQ * so we have to poll them. We also check immediately before * filling the TX fifo incase CTS has been dropped. */ #define MCTRL_TIMEOUT (250*HZ/1000) struct sa1100_port { struct uart_port port; struct timer_list timer; unsigned int old_status; }; /* * Handle any change of modem status signal since we were last called. */ static void sa1100_mctrl_check(struct sa1100_port *sport) { unsigned int status, changed; status = sport->port.ops->get_mctrl(&sport->port); changed = status ^ sport->old_status; if (changed == 0) return; sport->old_status = status; if (changed & TIOCM_RI) sport->port.icount.rng++; if (changed & TIOCM_DSR) sport->port.icount.dsr++; if (changed & TIOCM_CAR) uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); if (changed & TIOCM_CTS) uart_handle_cts_change(&sport->port, status & TIOCM_CTS); wake_up_interruptible(&sport->port.info->delta_msr_wait); } /* * This is our per-port timeout handler, for checking the * modem status signals. */ static void sa1100_timeout(unsigned long data) { struct sa1100_port *sport = (struct sa1100_port *)data; unsigned long flags; if (sport->port.info) { spin_lock_irqsave(&sport->port.lock, flags); sa1100_mctrl_check(sport); spin_unlock_irqrestore(&sport->port.lock, flags); mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); } } /* * interrupts disabled on entry */ static void sa1100_stop_tx(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; u32 utcr3; utcr3 = UART_GET_UTCR3(sport); UART_PUT_UTCR3(sport, utcr3 & ~UTCR3_TIE); sport->port.read_status_mask &= ~UTSR0_TO_SM(UTSR0_TFS); } /* * port locked and interrupts disabled */ static void sa1100_start_tx(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; u32 utcr3; utcr3 = UART_GET_UTCR3(sport); sport->port.read_status_mask |= UTSR0_TO_SM(UTSR0_TFS); UART_PUT_UTCR3(sport, utcr3 | UTCR3_TIE); } /* * Interrupts enabled */ static void sa1100_stop_rx(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; u32 utcr3; utcr3 = UART_GET_UTCR3(sport); UART_PUT_UTCR3(sport, utcr3 & ~UTCR3_RIE); } /* * Set the modem control timer to fire immediately. */ static void sa1100_enable_ms(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; mod_timer(&sport->timer, jiffies); } static void sa1100_rx_chars(struct sa1100_port *sport) { struct tty_struct *tty = sport->port.info->tty; unsigned int status, ch, flg; status = UTSR1_TO_SM(UART_GET_UTSR1(sport)) | UTSR0_TO_SM(UART_GET_UTSR0(sport)); while (status & UTSR1_TO_SM(UTSR1_RNE)) { ch = UART_GET_CHAR(sport); sport->port.icount.rx++; flg = TTY_NORMAL; /* * note that the error handling code is * out of the main execution path */ if (status & UTSR1_TO_SM(UTSR1_PRE | UTSR1_FRE | UTSR1_ROR)) { if (status & UTSR1_TO_SM(UTSR1_PRE)) sport->port.icount.parity++; else if (status & UTSR1_TO_SM(UTSR1_FRE)) sport->port.icount.frame++; if (status & UTSR1_TO_SM(UTSR1_ROR)) sport->port.icount.overrun++; status &= sport->port.read_status_mask; if (status & UTSR1_TO_SM(UTSR1_PRE)) flg = TTY_PARITY; else if (status & UTSR1_TO_SM(UTSR1_FRE)) flg = TTY_FRAME; #ifdef SUPPORT_SYSRQ sport->port.sysrq = 0; #endif } if (uart_handle_sysrq_char(&sport->port, ch)) goto ignore_char; uart_insert_char(&sport->port, status, UTSR1_TO_SM(UTSR1_ROR), ch, flg); ignore_char: status = UTSR1_TO_SM(UART_GET_UTSR1(sport)) | UTSR0_TO_SM(UART_GET_UTSR0(sport)); } tty_flip_buffer_push(tty); } static void sa1100_tx_chars(struct sa1100_port *sport) { struct circ_buf *xmit = &sport->port.info->xmit; if (sport->port.x_char) { UART_PUT_CHAR(sport, sport->port.x_char); sport->port.icount.tx++; sport->port.x_char = 0; return; } /* * Check the modem control lines before * transmitting anything. */ sa1100_mctrl_check(sport); if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { sa1100_stop_tx(&sport->port); return; } /* * Tried using FIFO (not checking TNF) for fifo fill: * still had the '4 bytes repeated' problem. */ while (UART_GET_UTSR1(sport) & UTSR1_TNF) { UART_PUT_CHAR(sport, xmit->buf[xmit->tail]); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); sport->port.icount.tx++; if (uart_circ_empty(xmit)) break; } if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) uart_write_wakeup(&sport->port); if (uart_circ_empty(xmit)) sa1100_stop_tx(&sport->port); } static irqreturn_t sa1100_int(int irq, void *dev_id) { struct sa1100_port *sport = dev_id; unsigned int status, pass_counter = 0; spin_lock(&sport->port.lock); status = UART_GET_UTSR0(sport); status &= SM_TO_UTSR0(sport->port.read_status_mask) | ~UTSR0_TFS; do { if (status & (UTSR0_RFS | UTSR0_RID)) { /* Clear the receiver idle bit, if set */ if (status & UTSR0_RID) UART_PUT_UTSR0(sport, UTSR0_RID); sa1100_rx_chars(sport); } /* Clear the relevant break bits */ if (status & (UTSR0_RBB | UTSR0_REB)) UART_PUT_UTSR0(sport, status & (UTSR0_RBB | UTSR0_REB)); if (status & UTSR0_RBB) sport->port.icount.brk++; if (status & UTSR0_REB) uart_handle_break(&sport->port); if (status & UTSR0_TFS) sa1100_tx_chars(sport); if (pass_counter++ > SA1100_ISR_PASS_LIMIT) break; status = UART_GET_UTSR0(sport); status &= SM_TO_UTSR0(sport->port.read_status_mask) | ~UTSR0_TFS; } while (status & (UTSR0_TFS | UTSR0_RFS | UTSR0_RID)); spin_unlock(&sport->port.lock); return IRQ_HANDLED; } /* * Return TIOCSER_TEMT when transmitter is not busy. */ static unsigned int sa1100_tx_empty(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; return UART_GET_UTSR1(sport) & UTSR1_TBY ? 0 : TIOCSER_TEMT; } static unsigned int sa1100_get_mctrl(struct uart_port *port) { return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR; } static void sa1100_set_mctrl(struct uart_port *port, unsigned int mctrl) { } /* * Interrupts always disabled. */ static void sa1100_break_ctl(struct uart_port *port, int break_state) { struct sa1100_port *sport = (struct sa1100_port *)port; unsigned long flags; unsigned int utcr3; spin_lock_irqsave(&sport->port.lock, flags); utcr3 = UART_GET_UTCR3(sport); if (break_state == -1) utcr3 |= UTCR3_BRK; else utcr3 &= ~UTCR3_BRK; UART_PUT_UTCR3(sport, utcr3); spin_unlock_irqrestore(&sport->port.lock, flags); } static int sa1100_startup(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; int retval; /* * Allocate the IRQ */ retval = request_irq(sport->port.irq, sa1100_int, 0, "sa11x0-uart", sport); if (retval) return retval; /* * Finally, clear and enable interrupts */ UART_PUT_UTSR0(sport, -1); UART_PUT_UTCR3(sport, UTCR3_RXE | UTCR3_TXE | UTCR3_RIE); /* * Enable modem status interrupts */ spin_lock_irq(&sport->port.lock); sa1100_enable_ms(&sport->port); spin_unlock_irq(&sport->port.lock); return 0; } static void sa1100_shutdown(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; /* * Stop our timer. */ del_timer_sync(&sport->timer); /* * Free the interrupt */ free_irq(sport->port.irq, sport); /* * Disable all interrupts, port and break condition. */ UART_PUT_UTCR3(sport, 0); } static void sa1100_set_termios(struct uart_port *port, struct termios *termios, struct termios *old) { struct sa1100_port *sport = (struct sa1100_port *)port; unsigned long flags; unsigned int utcr0, old_utcr3, baud, quot; unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; /* * We only support CS7 and CS8. */ while ((termios->c_cflag & CSIZE) != CS7 && (termios->c_cflag & CSIZE) != CS8) { termios->c_cflag &= ~CSIZE; termios->c_cflag |= old_csize; old_csize = CS8; } if ((termios->c_cflag & CSIZE) == CS8) utcr0 = UTCR0_DSS; else utcr0 = 0; if (termios->c_cflag & CSTOPB) utcr0 |= UTCR0_SBS; if (termios->c_cflag & PARENB) { utcr0 |= UTCR0_PE; if (!(termios->c_cflag & PARODD)) utcr0 |= UTCR0_OES; } /* * Ask the core to calculate the divisor for us. */ baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/16); quot = uart_get_divisor(port, baud); spin_lock_irqsave(&sport->port.lock, flags); sport->port.read_status_mask &= UTSR0_TO_SM(UTSR0_TFS); sport->port.read_status_mask |= UTSR1_TO_SM(UTSR1_ROR); if (termios->c_iflag & INPCK) sport->port.read_status_mask |= UTSR1_TO_SM(UTSR1_FRE | UTSR1_PRE); if (termios->c_iflag & (BRKINT | PARMRK)) sport->port.read_status_mask |= UTSR0_TO_SM(UTSR0_RBB | UTSR0_REB); /* * Characters to ignore */ sport->port.ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) sport->port.ignore_status_mask |= UTSR1_TO_SM(UTSR1_FRE | UTSR1_PRE); if (termios->c_iflag & IGNBRK) { sport->port.ignore_status_mask |= UTSR0_TO_SM(UTSR0_RBB | UTSR0_REB); /* * If we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (termios->c_iflag & IGNPAR) sport->port.ignore_status_mask |= UTSR1_TO_SM(UTSR1_ROR); } del_timer_sync(&sport->timer); /* * Update the per-port timeout. */ uart_update_timeout(port, termios->c_cflag, baud); /* * disable interrupts and drain transmitter */ old_utcr3 = UART_GET_UTCR3(sport); UART_PUT_UTCR3(sport, old_utcr3 & ~(UTCR3_RIE | UTCR3_TIE)); while (UART_GET_UTSR1(sport) & UTSR1_TBY) barrier(); /* then, disable everything */ UART_PUT_UTCR3(sport, 0); /* set the parity, stop bits and data size */ UART_PUT_UTCR0(sport, utcr0); /* set the baud rate */ quot -= 1; UART_PUT_UTCR1(sport, ((quot & 0xf00) >> 8)); UART_PUT_UTCR2(sport, (quot & 0xff)); UART_PUT_UTSR0(sport, -1); UART_PUT_UTCR3(sport, old_utcr3); if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) sa1100_enable_ms(&sport->port); spin_unlock_irqrestore(&sport->port.lock, flags); } static const char *sa1100_type(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; return sport->port.type == PORT_SA1100 ? "SA1100" : NULL; } /* * Release the memory region(s) being used by 'port'. */ static void sa1100_release_port(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; release_mem_region(sport->port.mapbase, UART_PORT_SIZE); } /* * Request the memory region(s) being used by 'port'. */ static int sa1100_request_port(struct uart_port *port) { struct sa1100_port *sport = (struct sa1100_port *)port; return request_mem_region(sport->port.mapbase, UART_PORT_SIZE, "sa11x0-uart") != NULL ? 0 : -EBUSY; } /* * Configure/autoconfigure the port. */ static void sa1100_config_port(struct uart_port *port, int flags) { struct sa1100_port *sport = (struct sa1100_port *)port; if (flags & UART_CONFIG_TYPE && sa1100_request_port(&sport->port) == 0) sport->port.type = PORT_SA1100; } /* * Verify the new serial_struct (for TIOCSSERIAL). * The only change we allow are to the flags and type, and * even then only between PORT_SA1100 and PORT_UNKNOWN */ static int sa1100_verify_port(struct uart_port *port, struct serial_struct *ser) { struct sa1100_port *sport = (struct sa1100_port *)port; int ret = 0; if (ser->type != PORT_UNKNOWN && ser->type != PORT_SA1100) ret = -EINVAL; if (sport->port.irq != ser->irq) ret = -EINVAL; if (ser->io_type != SERIAL_IO_MEM) ret = -EINVAL; if (sport->port.uartclk / 16 != ser->baud_base) ret = -EINVAL; if ((void *)sport->port.mapbase != ser->iomem_base) ret = -EINVAL; if (sport->port.iobase != ser->port) ret = -EINVAL; if (ser->hub6 != 0) ret = -EINVAL; return ret; } static struct uart_ops sa1100_pops = { .tx_empty = sa1100_tx_empty, .set_mctrl = sa1100_set_mctrl, .get_mctrl = sa1100_get_mctrl, .stop_tx = sa1100_stop_tx, .start_tx = sa1100_start_tx, .stop_rx = sa1100_stop_rx, .enable_ms = sa1100_enable_ms, .break_ctl = sa1100_break_ctl, .startup = sa1100_startup, .shutdown = sa1100_shutdown, .set_termios = sa1100_set_termios, .type = sa1100_type, .release_port = sa1100_release_port, .request_port = sa1100_request_port, .config_port = sa1100_config_port, .verify_port = sa1100_verify_port, }; static struct sa1100_port sa1100_ports[NR_PORTS]; /* * Setup the SA1100 serial ports. Note that we don't include the IrDA * port here since we have our own SIR/FIR driver (see drivers/net/irda) * * Note also that we support "console=ttySAx" where "x" is either 0 or 1. * Which serial port this ends up being depends on the machine you're * running this kernel on. I'm not convinced that this is a good idea, * but that's the way it traditionally works. * * Note that NanoEngine UART3 becomes UART2, and UART2 is no longer * used here. */ static void __init sa1100_init_ports(void) { static int first = 1; int i; if (!first) return; first = 0; for (i = 0; i < NR_PORTS; i++) { sa1100_ports[i].port.uartclk = 3686400; sa1100_ports[i].port.ops = &sa1100_pops; sa1100_ports[i].port.fifosize = 8; sa1100_ports[i].port.line = i; sa1100_ports[i].port.iotype = UPIO_MEM; init_timer(&sa1100_ports[i].timer); sa1100_ports[i].timer.function = sa1100_timeout; sa1100_ports[i].timer.data = (unsigned long)&sa1100_ports[i]; } /* * make transmit lines outputs, so that when the port * is closed, the output is in the MARK state. */ PPDR |= PPC_TXD1 | PPC_TXD3; PPSR |= PPC_TXD1 | PPC_TXD3; } void __init sa1100_register_uart_fns(struct sa1100_port_fns *fns) { if (fns->get_mctrl) sa1100_pops.get_mctrl = fns->get_mctrl; if (fns->set_mctrl) sa1100_pops.set_mctrl = fns->set_mctrl; sa1100_pops.pm = fns->pm; sa1100_pops.set_wake = fns->set_wake; } void __init sa1100_register_uart(int idx, int port) { if (idx >= NR_PORTS) { printk(KERN_ERR "%s: bad index number %d\n", __FUNCTION__, idx); return; } switch (port) { case 1: sa1100_ports[idx].port.membase = (void __iomem *)&Ser1UTCR0; sa1100_ports[idx].port.mapbase = _Ser1UTCR0; sa1100_ports[idx].port.irq = IRQ_Ser1UART; sa1100_ports[idx].port.flags = UPF_BOOT_AUTOCONF; break; case 2: sa1100_ports[idx].port.membase = (void __iomem *)&Ser2UTCR0; sa1100_ports[idx].port.mapbase = _Ser2UTCR0; sa1100_ports[idx].port.irq = IRQ_Ser2ICP; sa1100_ports[idx].port.flags = UPF_BOOT_AUTOCONF; break; case 3: sa1100_ports[idx].port.membase = (void __iomem *)&Ser3UTCR0; sa1100_ports[idx].port.mapbase = _Ser3UTCR0; sa1100_ports[idx].port.irq = IRQ_Ser3UART; sa1100_ports[idx].port.flags = UPF_BOOT_AUTOCONF; break; default: printk(KERN_ERR "%s: bad port number %d\n", __FUNCTION__, port); } } #ifdef CONFIG_SERIAL_SA1100_CONSOLE static void sa1100_console_putchar(struct uart_port *port, int ch) { struct sa1100_port *sport = (struct sa1100_port *)port; while (!(UART_GET_UTSR1(sport) & UTSR1_TNF)) barrier(); UART_PUT_CHAR(sport, ch); } /* * Interrupts are disabled on entering */ static void sa1100_console_write(struct console *co, const char *s, unsigned int count) { struct sa1100_port *sport = &sa1100_ports[co->index]; unsigned int old_utcr3, status; /* * First, save UTCR3 and then disable interrupts */ old_utcr3 = UART_GET_UTCR3(sport); UART_PUT_UTCR3(sport, (old_utcr3 & ~(UTCR3_RIE | UTCR3_TIE)) | UTCR3_TXE); uart_console_write(&sport->port, s, count, sa1100_console_putchar); /* * Finally, wait for transmitter to become empty * and restore UTCR3 */ do { status = UART_GET_UTSR1(sport); } while (status & UTSR1_TBY); UART_PUT_UTCR3(sport, old_utcr3); } /* * If the port was already initialised (eg, by a boot loader), * try to determine the current setup. */ static void __init sa1100_console_get_options(struct sa1100_port *sport, int *baud, int *parity, int *bits) { unsigned int utcr3; utcr3 = UART_GET_UTCR3(sport) & (UTCR3_RXE | UTCR3_TXE); if (utcr3 == (UTCR3_RXE | UTCR3_TXE)) { /* ok, the port was enabled */ unsigned int utcr0, quot; utcr0 = UART_GET_UTCR0(sport); *parity = 'n'; if (utcr0 & UTCR0_PE) { if (utcr0 & UTCR0_OES) *parity = 'e'; else *parity = 'o'; } if (utcr0 & UTCR0_DSS) *bits = 8; else *bits = 7; quot = UART_GET_UTCR2(sport) | UART_GET_UTCR1(sport) << 8; quot &= 0xfff; *baud = sport->port.uartclk / (16 * (quot + 1)); } } static int __init sa1100_console_setup(struct console *co, char *options) { struct sa1100_port *sport; int baud = 9600; int bits = 8; int parity = 'n'; int flow = 'n'; /* * Check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ if (co->index == -1 || co->index >= NR_PORTS) co->index = 0; sport = &sa1100_ports[co->index]; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); else sa1100_console_get_options(sport, &baud, &parity, &bits); return uart_set_options(&sport->port, co, baud, parity, bits, flow); } static struct uart_driver sa1100_reg; static struct console sa1100_console = { .name = "ttySA", .write = sa1100_console_write, .device = uart_console_device, .setup = sa1100_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &sa1100_reg, }; static int __init sa1100_rs_console_init(void) { sa1100_init_ports(); register_console(&sa1100_console); return 0; } console_initcall(sa1100_rs_console_init); #define SA1100_CONSOLE &sa1100_console #else #define SA1100_CONSOLE NULL #endif static struct uart_driver sa1100_reg = { .owner = THIS_MODULE, .driver_name = "ttySA", .dev_name = "ttySA", .major = SERIAL_SA1100_MAJOR, .minor = MINOR_START, .nr = NR_PORTS, .cons = SA1100_CONSOLE, }; static int sa1100_serial_suspend(struct platform_device *dev, pm_message_t state) { struct sa1100_port *sport = platform_get_drvdata(dev); if (sport) uart_suspend_port(&sa1100_reg, &sport->port); return 0; } static int sa1100_serial_resume(struct platform_device *dev) { struct sa1100_port *sport = platform_get_drvdata(dev); if (sport) uart_resume_port(&sa1100_reg, &sport->port); return 0; } static int sa1100_serial_probe(struct platform_device *dev) { struct resource *res = dev->resource; int i; for (i = 0; i < dev->num_resources; i++, res++) if (res->flags & IORESOURCE_MEM) break; if (i < dev->num_resources) { for (i = 0; i < NR_PORTS; i++) { if (sa1100_ports[i].port.mapbase != res->start) continue; sa1100_ports[i].port.dev = &dev->dev; uart_add_one_port(&sa1100_reg, &sa1100_ports[i].port); platform_set_drvdata(dev, &sa1100_ports[i]); break; } } return 0; } static int sa1100_serial_remove(struct platform_device *pdev) { struct sa1100_port *sport = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); if (sport) uart_remove_one_port(&sa1100_reg, &sport->port); return 0; } static struct platform_driver sa11x0_serial_driver = { .probe = sa1100_serial_probe, .remove = sa1100_serial_remove, .suspend = sa1100_serial_suspend, .resume = sa1100_serial_resume, .driver = { .name = "sa11x0-uart", }, }; static int __init sa1100_serial_init(void) { int ret; printk(KERN_INFO "Serial: SA11x0 driver $Revision: 1.50 $\n"); sa1100_init_ports(); ret = uart_register_driver(&sa1100_reg); if (ret == 0) { ret = platform_driver_register(&sa11x0_serial_driver); if (ret) uart_unregister_driver(&sa1100_reg); } return ret; } static void __exit sa1100_serial_exit(void) { platform_driver_unregister(&sa11x0_serial_driver); uart_unregister_driver(&sa1100_reg); } module_init(sa1100_serial_init); module_exit(sa1100_serial_exit); MODULE_AUTHOR("Deep Blue Solutions Ltd"); MODULE_DESCRIPTION("SA1100 generic serial port driver $Revision: 1.50 $"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CHARDEV_MAJOR(SERIAL_SA1100_MAJOR);