/* * Agere Systems Inc. * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs * * Copyright © 2005 Agere Systems Inc. * All rights reserved. * http://www.agere.com * *------------------------------------------------------------------------------ * * et1310_phy.h - Defines, structs, enums, prototypes, etc. pertaining to the * PHY. * *------------------------------------------------------------------------------ * * SOFTWARE LICENSE * * This software is provided subject to the following terms and conditions, * which you should read carefully before using the software. Using this * software indicates your acceptance of these terms and conditions. If you do * not agree with these terms and conditions, do not use the software. * * Copyright © 2005 Agere Systems Inc. * All rights reserved. * * Redistribution and use in source or binary forms, with or without * modifications, are permitted provided that the following conditions are met: * * . Redistributions of source code must retain the above copyright notice, this * list of conditions and the following Disclaimer as comments in the code as * well as in the documentation and/or other materials provided with the * distribution. * * . Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following Disclaimer in the documentation * and/or other materials provided with the distribution. * * . Neither the name of Agere Systems Inc. nor the names of the contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * Disclaimer * * THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * DAMAGE. * */ #ifndef _ET1310_PHY_H_ #define _ET1310_PHY_H_ #include "et1310_address_map.h" #define TRUEPHY_SUCCESS 0 #define TRUEPHY_FAILURE 1 typedef void *TRUEPHY_HANDLE; typedef void *TRUEPHY_PLATFORM_HANDLE; typedef void *TRUEPHY_OSAL_HANDLE; /* MI Register Addresses */ #define MI_CONTROL_REG 0 #define MI_STATUS_REG 1 #define MI_PHY_IDENTIFIER_1_REG 2 #define MI_PHY_IDENTIFIER_2_REG 3 #define MI_AUTONEG_ADVERTISEMENT_REG 4 #define MI_AUTONEG_LINK_PARTNER_ABILITY_REG 5 #define MI_AUTONEG_EXPANSION_REG 6 #define MI_AUTONEG_NEXT_PAGE_TRANSMIT_REG 7 #define MI_LINK_PARTNER_NEXT_PAGE_REG 8 #define MI_1000BASET_CONTROL_REG 9 #define MI_1000BASET_STATUS_REG 10 #define MI_RESERVED11_REG 11 #define MI_RESERVED12_REG 12 #define MI_RESERVED13_REG 13 #define MI_RESERVED14_REG 14 #define MI_EXTENDED_STATUS_REG 15 /* VMI Register Addresses */ #define VMI_RESERVED16_REG 16 #define VMI_RESERVED17_REG 17 #define VMI_RESERVED18_REG 18 #define VMI_LOOPBACK_CONTROL_REG 19 #define VMI_RESERVED20_REG 20 #define VMI_MI_CONTROL_REG 21 #define VMI_PHY_CONFIGURATION_REG 22 #define VMI_PHY_CONTROL_REG 23 #define VMI_INTERRUPT_MASK_REG 24 #define VMI_INTERRUPT_STATUS_REG 25 #define VMI_PHY_STATUS_REG 26 #define VMI_LED_CONTROL_1_REG 27 #define VMI_LED_CONTROL_2_REG 28 #define VMI_RESERVED29_REG 29 #define VMI_RESERVED30_REG 30 #define VMI_RESERVED31_REG 31 /* PHY Register Mapping(MI) Management Interface Regs */ typedef struct _MI_REGS_t { u8 bmcr; // Basic mode control reg(Reg 0x00) u8 bmsr; // Basic mode status reg(Reg 0x01) u8 idr1; // Phy identifier reg 1(Reg 0x02) u8 idr2; // Phy identifier reg 2(Reg 0x03) u8 anar; // Auto-Negotiation advertisement(Reg 0x04) u8 anlpar; // Auto-Negotiation link Partner Ability(Reg 0x05) u8 aner; // Auto-Negotiation expansion reg(Reg 0x06) u8 annptr; // Auto-Negotiation next page transmit reg(Reg 0x07) u8 lpnpr; // link partner next page reg(Reg 0x08) u8 gcr; // Gigabit basic mode control reg(Reg 0x09) u8 gsr; // Gigabit basic mode status reg(Reg 0x0A) u8 mi_res1[4]; // Future use by MI working group(Reg 0x0B - 0x0E) u8 esr; // Extended status reg(Reg 0x0F) u8 mi_res2[3]; // Future use by MI working group(Reg 0x10 - 0x12) u8 loop_ctl; // Loopback Control Reg(Reg 0x13) u8 mi_res3; // Future use by MI working group(Reg 0x14) u8 mcr; // MI Control Reg(Reg 0x15) u8 pcr; // Configuration Reg(Reg 0x16) u8 phy_ctl; // PHY Control Reg(Reg 0x17) u8 imr; // Interrupt Mask Reg(Reg 0x18) u8 isr; // Interrupt Status Reg(Reg 0x19) u8 psr; // PHY Status Reg(Reg 0x1A) u8 lcr1; // LED Control 1 Reg(Reg 0x1B) u8 lcr2; // LED Control 2 Reg(Reg 0x1C) u8 mi_res4[3]; // Future use by MI working group(Reg 0x1D - 0x1F) } MI_REGS_t, *PMI_REGS_t; /* MI Register 0: Basic mode control register */ typedef union _MI_BMCR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 reset:1; // bit 15 u16 loopback:1; // bit 14 u16 speed_sel:1; // bit 13 u16 enable_autoneg:1; // bit 12 u16 power_down:1; // bit 11 u16 isolate:1; // bit 10 u16 restart_autoneg:1; // bit 9 u16 duplex_mode:1; // bit 8 u16 col_test:1; // bit 7 u16 speed_1000_sel:1; // bit 6 u16 res1:6; // bits 0-5 #else u16 res1:6; // bits 0-5 u16 speed_1000_sel:1; // bit 6 u16 col_test:1; // bit 7 u16 duplex_mode:1; // bit 8 u16 restart_autoneg:1; // bit 9 u16 isolate:1; // bit 10 u16 power_down:1; // bit 11 u16 enable_autoneg:1; // bit 12 u16 speed_sel:1; // bit 13 u16 loopback:1; // bit 14 u16 reset:1; // bit 15 #endif } bits; } MI_BMCR_t, *PMI_BMCR_t; /* MI Register 1: Basic mode status register */ typedef union _MI_BMSR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 link_100T4:1; // bit 15 u16 link_100fdx:1; // bit 14 u16 link_100hdx:1; // bit 13 u16 link_10fdx:1; // bit 12 u16 link_10hdx:1; // bit 11 u16 link_100T2fdx:1; // bit 10 u16 link_100T2hdx:1; // bit 9 u16 extend_status:1; // bit 8 u16 res1:1; // bit 7 u16 preamble_supress:1; // bit 6 u16 auto_neg_complete:1; // bit 5 u16 remote_fault:1; // bit 4 u16 auto_neg_able:1; // bit 3 u16 link_status:1; // bit 2 u16 jabber_detect:1; // bit 1 u16 ext_cap:1; // bit 0 #else u16 ext_cap:1; // bit 0 u16 jabber_detect:1; // bit 1 u16 link_status:1; // bit 2 u16 auto_neg_able:1; // bit 3 u16 remote_fault:1; // bit 4 u16 auto_neg_complete:1; // bit 5 u16 preamble_supress:1; // bit 6 u16 res1:1; // bit 7 u16 extend_status:1; // bit 8 u16 link_100T2hdx:1; // bit 9 u16 link_100T2fdx:1; // bit 10 u16 link_10hdx:1; // bit 11 u16 link_10fdx:1; // bit 12 u16 link_100hdx:1; // bit 13 u16 link_100fdx:1; // bit 14 u16 link_100T4:1; // bit 15 #endif } bits; } MI_BMSR_t, *PMI_BMSR_t; /* MI Register 2: Physical Identifier 1 */ typedef union _MI_IDR1_t { u16 value; struct { u16 ieee_address:16; // 0x0282 default(bits 0-15) } bits; } MI_IDR1_t, *PMI_IDR1_t; /* MI Register 3: Physical Identifier 2 */ typedef union _MI_IDR2_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 ieee_address:6; // 111100 default(bits 10-15) u16 model_no:6; // 000001 default(bits 4-9) u16 rev_no:4; // 0010 default(bits 0-3) #else u16 rev_no:4; // 0010 default(bits 0-3) u16 model_no:6; // 000001 default(bits 4-9) u16 ieee_address:6; // 111100 default(bits 10-15) #endif } bits; } MI_IDR2_t, *PMI_IDR2_t; /* MI Register 4: Auto-negotiation advertisement register */ typedef union _MI_ANAR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 np_indication:1; // bit 15 u16 res2:1; // bit 14 u16 remote_fault:1; // bit 13 u16 res1:1; // bit 12 u16 cap_asmpause:1; // bit 11 u16 cap_pause:1; // bit 10 u16 cap_100T4:1; // bit 9 u16 cap_100fdx:1; // bit 8 u16 cap_100hdx:1; // bit 7 u16 cap_10fdx:1; // bit 6 u16 cap_10hdx:1; // bit 5 u16 selector:5; // bits 0-4 #else u16 selector:5; // bits 0-4 u16 cap_10hdx:1; // bit 5 u16 cap_10fdx:1; // bit 6 u16 cap_100hdx:1; // bit 7 u16 cap_100fdx:1; // bit 8 u16 cap_100T4:1; // bit 9 u16 cap_pause:1; // bit 10 u16 cap_asmpause:1; // bit 11 u16 res1:1; // bit 12 u16 remote_fault:1; // bit 13 u16 res2:1; // bit 14 u16 np_indication:1; // bit 15 #endif } bits; } MI_ANAR_t, *PMI_ANAR_t; /* MI Register 5: Auto-negotiation link partner advertisement register */ typedef struct _MI_ANLPAR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 np_indication:1; // bit 15 u16 acknowledge:1; // bit 14 u16 remote_fault:1; // bit 13 u16 res1:1; // bit 12 u16 cap_asmpause:1; // bit 11 u16 cap_pause:1; // bit 10 u16 cap_100T4:1; // bit 9 u16 cap_100fdx:1; // bit 8 u16 cap_100hdx:1; // bit 7 u16 cap_10fdx:1; // bit 6 u16 cap_10hdx:1; // bit 5 u16 selector:5; // bits 0-4 #else u16 selector:5; // bits 0-4 u16 cap_10hdx:1; // bit 5 u16 cap_10fdx:1; // bit 6 u16 cap_100hdx:1; // bit 7 u16 cap_100fdx:1; // bit 8 u16 cap_100T4:1; // bit 9 u16 cap_pause:1; // bit 10 u16 cap_asmpause:1; // bit 11 u16 res1:1; // bit 12 u16 remote_fault:1; // bit 13 u16 acknowledge:1; // bit 14 u16 np_indication:1; // bit 15 #endif } bits; } MI_ANLPAR_t, *PMI_ANLPAR_t; /* MI Register 6: Auto-negotiation expansion register */ typedef union _MI_ANER_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 res:11; // bits 5-15 u16 pdf:1; // bit 4 u16 lp_np_able:1; // bit 3 u16 np_able:1; // bit 2 u16 page_rx:1; // bit 1 u16 lp_an_able:1; // bit 0 #else u16 lp_an_able:1; // bit 0 u16 page_rx:1; // bit 1 u16 np_able:1; // bit 2 u16 lp_np_able:1; // bit 3 u16 pdf:1; // bit 4 u16 res:11; // bits 5-15 #endif } bits; } MI_ANER_t, *PMI_ANER_t; /* MI Register 7: Auto-negotiation next page transmit reg(0x07) */ typedef union _MI_ANNPTR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 np:1; // bit 15 u16 res1:1; // bit 14 u16 msg_page:1; // bit 13 u16 ack2:1; // bit 12 u16 toggle:1; // bit 11 u16 msg:11; // bits 0-10 #else u16 msg:11; // bits 0-10 u16 toggle:1; // bit 11 u16 ack2:1; // bit 12 u16 msg_page:1; // bit 13 u16 res1:1; // bit 14 u16 np:1; // bit 15 #endif } bits; } MI_ANNPTR_t, *PMI_ANNPTR_t; /* MI Register 8: Link Partner Next Page Reg(0x08) */ typedef union _MI_LPNPR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 np:1; // bit 15 u16 ack:1; // bit 14 u16 msg_page:1; // bit 13 u16 ack2:1; // bit 12 u16 toggle:1; // bit 11 u16 msg:11; // bits 0-10 #else u16 msg:11; // bits 0-10 u16 toggle:1; // bit 11 u16 ack2:1; // bit 12 u16 msg_page:1; // bit 13 u16 ack:1; // bit 14 u16 np:1; // bit 15 #endif } bits; } MI_LPNPR_t, *PMI_LPNPR_t; /* MI Register 9: 1000BaseT Control Reg(0x09) */ typedef union _MI_GCR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 test_mode:3; // bits 13-15 u16 ms_config_en:1; // bit 12 u16 ms_value:1; // bit 11 u16 port_type:1; // bit 10 u16 link_1000fdx:1; // bit 9 u16 link_1000hdx:1; // bit 8 u16 res:8; // bit 0-7 #else u16 res:8; // bit 0-7 u16 link_1000hdx:1; // bit 8 u16 link_1000fdx:1; // bit 9 u16 port_type:1; // bit 10 u16 ms_value:1; // bit 11 u16 ms_config_en:1; // bit 12 u16 test_mode:3; // bits 13-15 #endif } bits; } MI_GCR_t, *PMI_GCR_t; /* MI Register 10: 1000BaseT Status Reg(0x0A) */ typedef union _MI_GSR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 ms_config_fault:1; // bit 15 u16 ms_resolve:1; // bit 14 u16 local_rx_status:1; // bit 13 u16 remote_rx_status:1; // bit 12 u16 link_1000fdx:1; // bit 11 u16 link_1000hdx:1; // bit 10 u16 res:2; // bits 8-9 u16 idle_err_cnt:8; // bits 0-7 #else u16 idle_err_cnt:8; // bits 0-7 u16 res:2; // bits 8-9 u16 link_1000hdx:1; // bit 10 u16 link_1000fdx:1; // bit 11 u16 remote_rx_status:1; // bit 12 u16 local_rx_status:1; // bit 13 u16 ms_resolve:1; // bit 14 u16 ms_config_fault:1; // bit 15 #endif } bits; } MI_GSR_t, *PMI_GSR_t; /* MI Register 11 - 14: Reserved Regs(0x0B - 0x0E) */ typedef union _MI_RES_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 res15:1; // bit 15 u16 res14:1; // bit 14 u16 res13:1; // bit 13 u16 res12:1; // bit 12 u16 res11:1; // bit 11 u16 res10:1; // bit 10 u16 res9:1; // bit 9 u16 res8:1; // bit 8 u16 res7:1; // bit 7 u16 res6:1; // bit 6 u16 res5:1; // bit 5 u16 res4:1; // bit 4 u16 res3:1; // bit 3 u16 res2:1; // bit 2 u16 res1:1; // bit 1 u16 res0:1; // bit 0 #else u16 res0:1; // bit 0 u16 res1:1; // bit 1 u16 res2:1; // bit 2 u16 res3:1; // bit 3 u16 res4:1; // bit 4 u16 res5:1; // bit 5 u16 res6:1; // bit 6 u16 res7:1; // bit 7 u16 res8:1; // bit 8 u16 res9:1; // bit 9 u16 res10:1; // bit 10 u16 res11:1; // bit 11 u16 res12:1; // bit 12 u16 res13:1; // bit 13 u16 res14:1; // bit 14 u16 res15:1; // bit 15 #endif } bits; } MI_RES_t, *PMI_RES_t; /* MI Register 15: Extended status Reg(0x0F) */ typedef union _MI_ESR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 link_1000Xfdx:1; // bit 15 u16 link_1000Xhdx:1; // bit 14 u16 link_1000fdx:1; // bit 13 u16 link_1000hdx:1; // bit 12 u16 res:12; // bit 0-11 #else u16 res:12; // bit 0-11 u16 link_1000hdx:1; // bit 12 u16 link_1000fdx:1; // bit 13 u16 link_1000Xhdx:1; // bit 14 u16 link_1000Xfdx:1; // bit 15 #endif } bits; } MI_ESR_t, *PMI_ESR_t; /* MI Register 16 - 18: Reserved Reg(0x10-0x12) */ /* MI Register 19: Loopback Control Reg(0x13) */ typedef union _MI_LCR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 mii_en:1; // bit 15 u16 pcs_en:1; // bit 14 u16 pmd_en:1; // bit 13 u16 all_digital_en:1; // bit 12 u16 replica_en:1; // bit 11 u16 line_driver_en:1; // bit 10 u16 res:10; // bit 0-9 #else u16 res:10; // bit 0-9 u16 line_driver_en:1; // bit 10 u16 replica_en:1; // bit 11 u16 all_digital_en:1; // bit 12 u16 pmd_en:1; // bit 13 u16 pcs_en:1; // bit 14 u16 mii_en:1; // bit 15 #endif } bits; } MI_LCR_t, *PMI_LCR_t; /* MI Register 20: Reserved Reg(0x14) */ /* MI Register 21: Management Interface Control Reg(0x15) */ typedef union _MI_MICR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 res1:5; // bits 11-15 u16 mi_error_count:7; // bits 4-10 u16 res2:1; // bit 3 u16 ignore_10g_fr:1; // bit 2 u16 res3:1; // bit 1 u16 preamble_supress_en:1; // bit 0 #else u16 preamble_supress_en:1; // bit 0 u16 res3:1; // bit 1 u16 ignore_10g_fr:1; // bit 2 u16 res2:1; // bit 3 u16 mi_error_count:7; // bits 4-10 u16 res1:5; // bits 11-15 #endif } bits; } MI_MICR_t, *PMI_MICR_t; /* MI Register 22: PHY Configuration Reg(0x16) */ typedef union _MI_PHY_CONFIG_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 crs_tx_en:1; // bit 15 u16 res1:1; // bit 14 u16 tx_fifo_depth:2; // bits 12-13 u16 speed_downshift:2; // bits 10-11 u16 pbi_detect:1; // bit 9 u16 tbi_rate:1; // bit 8 u16 alternate_np:1; // bit 7 u16 group_mdio_en:1; // bit 6 u16 tx_clock_en:1; // bit 5 u16 sys_clock_en:1; // bit 4 u16 res2:1; // bit 3 u16 mac_if_mode:3; // bits 0-2 #else u16 mac_if_mode:3; // bits 0-2 u16 res2:1; // bit 3 u16 sys_clock_en:1; // bit 4 u16 tx_clock_en:1; // bit 5 u16 group_mdio_en:1; // bit 6 u16 alternate_np:1; // bit 7 u16 tbi_rate:1; // bit 8 u16 pbi_detect:1; // bit 9 u16 speed_downshift:2; // bits 10-11 u16 tx_fifo_depth:2; // bits 12-13 u16 res1:1; // bit 14 u16 crs_tx_en:1; // bit 15 #endif } bits; } MI_PHY_CONFIG_t, *PMI_PHY_CONFIG_t; /* MI Register 23: PHY CONTROL Reg(0x17) */ typedef union _MI_PHY_CONTROL_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 res1:1; // bit 15 u16 tdr_en:1; // bit 14 u16 res2:1; // bit 13 u16 downshift_attempts:2; // bits 11-12 u16 res3:5; // bit 6-10 u16 jabber_10baseT:1; // bit 5 u16 sqe_10baseT:1; // bit 4 u16 tp_loopback_10baseT:1; // bit 3 u16 preamble_gen_en:1; // bit 2 u16 res4:1; // bit 1 u16 force_int:1; // bit 0 #else u16 force_int:1; // bit 0 u16 res4:1; // bit 1 u16 preamble_gen_en:1; // bit 2 u16 tp_loopback_10baseT:1; // bit 3 u16 sqe_10baseT:1; // bit 4 u16 jabber_10baseT:1; // bit 5 u16 res3:5; // bit 6-10 u16 downshift_attempts:2; // bits 11-12 u16 res2:1; // bit 13 u16 tdr_en:1; // bit 14 u16 res1:1; // bit 15 #endif } bits; } MI_PHY_CONTROL_t, *PMI_PHY_CONTROL_t; /* MI Register 24: Interrupt Mask Reg(0x18) */ typedef union _MI_IMR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 res1:6; // bits 10-15 u16 mdio_sync_lost:1; // bit 9 u16 autoneg_status:1; // bit 8 u16 hi_bit_err:1; // bit 7 u16 np_rx:1; // bit 6 u16 err_counter_full:1; // bit 5 u16 fifo_over_underflow:1; // bit 4 u16 rx_status:1; // bit 3 u16 link_status:1; // bit 2 u16 automatic_speed:1; // bit 1 u16 int_en:1; // bit 0 #else u16 int_en:1; // bit 0 u16 automatic_speed:1; // bit 1 u16 link_status:1; // bit 2 u16 rx_status:1; // bit 3 u16 fifo_over_underflow:1; // bit 4 u16 err_counter_full:1; // bit 5 u16 np_rx:1; // bit 6 u16 hi_bit_err:1; // bit 7 u16 autoneg_status:1; // bit 8 u16 mdio_sync_lost:1; // bit 9 u16 res1:6; // bits 10-15 #endif } bits; } MI_IMR_t, *PMI_IMR_t; /* MI Register 25: Interrupt Status Reg(0x19) */ typedef union _MI_ISR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 res1:6; // bits 10-15 u16 mdio_sync_lost:1; // bit 9 u16 autoneg_status:1; // bit 8 u16 hi_bit_err:1; // bit 7 u16 np_rx:1; // bit 6 u16 err_counter_full:1; // bit 5 u16 fifo_over_underflow:1; // bit 4 u16 rx_status:1; // bit 3 u16 link_status:1; // bit 2 u16 automatic_speed:1; // bit 1 u16 int_en:1; // bit 0 #else u16 int_en:1; // bit 0 u16 automatic_speed:1; // bit 1 u16 link_status:1; // bit 2 u16 rx_status:1; // bit 3 u16 fifo_over_underflow:1; // bit 4 u16 err_counter_full:1; // bit 5 u16 np_rx:1; // bit 6 u16 hi_bit_err:1; // bit 7 u16 autoneg_status:1; // bit 8 u16 mdio_sync_lost:1; // bit 9 u16 res1:6; // bits 10-15 #endif } bits; } MI_ISR_t, *PMI_ISR_t; /* MI Register 26: PHY Status Reg(0x1A) */ typedef union _MI_PSR_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 res1:1; // bit 15 u16 autoneg_fault:2; // bit 13-14 u16 autoneg_status:1; // bit 12 u16 mdi_x_status:1; // bit 11 u16 polarity_status:1; // bit 10 u16 speed_status:2; // bits 8-9 u16 duplex_status:1; // bit 7 u16 link_status:1; // bit 6 u16 tx_status:1; // bit 5 u16 rx_status:1; // bit 4 u16 collision_status:1; // bit 3 u16 autoneg_en:1; // bit 2 u16 pause_en:1; // bit 1 u16 asymmetric_dir:1; // bit 0 #else u16 asymmetric_dir:1; // bit 0 u16 pause_en:1; // bit 1 u16 autoneg_en:1; // bit 2 u16 collision_status:1; // bit 3 u16 rx_status:1; // bit 4 u16 tx_status:1; // bit 5 u16 link_status:1; // bit 6 u16 duplex_status:1; // bit 7 u16 speed_status:2; // bits 8-9 u16 polarity_status:1; // bit 10 u16 mdi_x_status:1; // bit 11 u16 autoneg_status:1; // bit 12 u16 autoneg_fault:2; // bit 13-14 u16 res1:1; // bit 15 #endif } bits; } MI_PSR_t, *PMI_PSR_t; /* MI Register 27: LED Control Reg 1(0x1B) */ typedef union _MI_LCR1_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 res1:2; // bits 14-15 u16 led_dup_indicate:2; // bits 12-13 u16 led_10baseT:2; // bits 10-11 u16 led_collision:2; // bits 8-9 u16 res2:2; // bits 6-7 u16 res3:2; // bits 4-5 u16 pulse_dur:2; // bits 2-3 u16 pulse_stretch1:1; // bit 1 u16 pulse_stretch0:1; // bit 0 #else u16 pulse_stretch0:1; // bit 0 u16 pulse_stretch1:1; // bit 1 u16 pulse_dur:2; // bits 2-3 u16 res3:2; // bits 4-5 u16 res2:2; // bits 6-7 u16 led_collision:2; // bits 8-9 u16 led_10baseT:2; // bits 10-11 u16 led_dup_indicate:2; // bits 12-13 u16 res1:2; // bits 14-15 #endif } bits; } MI_LCR1_t, *PMI_LCR1_t; /* MI Register 28: LED Control Reg 2(0x1C) */ typedef union _MI_LCR2_t { u16 value; struct { #ifdef _BIT_FIELDS_HTOL u16 led_link:4; // bits 12-15 u16 led_tx_rx:4; // bits 8-11 u16 led_100BaseTX:4; // bits 4-7 u16 led_1000BaseT:4; // bits 0-3 #else u16 led_1000BaseT:4; // bits 0-3 u16 led_100BaseTX:4; // bits 4-7 u16 led_tx_rx:4; // bits 8-11 u16 led_link:4; // bits 12-15 #endif } bits; } MI_LCR2_t, *PMI_LCR2_t; /* MI Register 29 - 31: Reserved Reg(0x1D - 0x1E) */ /* TruePHY headers */ typedef struct _TRUEPHY_ACCESS_MI_REGS_ { TRUEPHY_HANDLE hTruePhy; int32_t nPhyId; u8 bReadWrite; u8 *pbyRegs; u8 *pwData; int32_t nRegCount; } TRUEPHY_ACCESS_MI_REGS, *PTRUEPHY_ACCESS_MI_REGS; /* TruePHY headers */ typedef struct _TAG_TPAL_ACCESS_MI_REGS_ { u32 nPhyId; u8 bReadWrite; u32 nRegCount; u16 Data[4096]; u8 Regs[4096]; } TPAL_ACCESS_MI_REGS, *PTPAL_ACCESS_MI_REGS; typedef TRUEPHY_HANDLE TPAL_HANDLE; /* Forward declaration of the private adapter structure */ struct et131x_adapter; /* OS Specific Functions*/ void TPAL_SetPhy10HalfDuplex(struct et131x_adapter *adapter); void TPAL_SetPhy10FullDuplex(struct et131x_adapter *adapter); void TPAL_SetPhy10Force(struct et131x_adapter *pAdapter); void TPAL_SetPhy100HalfDuplex(struct et131x_adapter *adapter); void TPAL_SetPhy100FullDuplex(struct et131x_adapter *adapter); void TPAL_SetPhy100Force(struct et131x_adapter *pAdapter); void TPAL_SetPhy1000FullDuplex(struct et131x_adapter *adapter); void TPAL_SetPhyAutoNeg(struct et131x_adapter *adapter); /* Prototypes for ET1310_phy.c */ int et131x_xcvr_find(struct et131x_adapter *adapter); int et131x_setphy_normal(struct et131x_adapter *adapter); int32_t PhyMiRead(struct et131x_adapter *adapter, u8 xcvrAddr, u8 xcvrReg, u16 *value); /* static inline function does not work because et131x_adapter is not always * defined */ #define MiRead(adapter, xcvrReg, value) \ PhyMiRead((adapter), (adapter)->Stats.xcvr_addr, (xcvrReg), (value)) int32_t MiWrite(struct et131x_adapter *adapter, u8 xcvReg, u16 value); void et131x_Mii_check(struct et131x_adapter *pAdapter, MI_BMSR_t bmsr, MI_BMSR_t bmsr_ints); /* This last is not strictly required (the driver could call the TPAL * version instead), but this sets the adapter up correctly, and calls the * access routine indirectly. This protects the driver from changes in TPAL. */ void SetPhy_10BaseTHalfDuplex(struct et131x_adapter *adapter); /* Defines for PHY access routines */ // Define bit operation flags #define TRUEPHY_BIT_CLEAR 0 #define TRUEPHY_BIT_SET 1 #define TRUEPHY_BIT_READ 2 // Define read/write operation flags #ifndef TRUEPHY_READ #define TRUEPHY_READ 0 #define TRUEPHY_WRITE 1 #define TRUEPHY_MASK 2 #endif // Define speeds #define TRUEPHY_SPEED_10MBPS 0 #define TRUEPHY_SPEED_100MBPS 1 #define TRUEPHY_SPEED_1000MBPS 2 // Define duplex modes #define TRUEPHY_DUPLEX_HALF 0 #define TRUEPHY_DUPLEX_FULL 1 // Define master/slave configuration values #define TRUEPHY_CFG_SLAVE 0 #define TRUEPHY_CFG_MASTER 1 // Define MDI/MDI-X settings #define TRUEPHY_MDI 0 #define TRUEPHY_MDIX 1 #define TRUEPHY_AUTO_MDI_MDIX 2 // Define 10Base-T link polarities #define TRUEPHY_POLARITY_NORMAL 0 #define TRUEPHY_POLARITY_INVERTED 1 // Define auto-negotiation results #define TRUEPHY_ANEG_NOT_COMPLETE 0 #define TRUEPHY_ANEG_COMPLETE 1 #define TRUEPHY_ANEG_DISABLED 2 /* Define duplex advertisment flags */ #define TRUEPHY_ADV_DUPLEX_NONE 0x00 #define TRUEPHY_ADV_DUPLEX_FULL 0x01 #define TRUEPHY_ADV_DUPLEX_HALF 0x02 #define TRUEPHY_ADV_DUPLEX_BOTH \ (TRUEPHY_ADV_DUPLEX_FULL | TRUEPHY_ADV_DUPLEX_HALF) #define PHY_CONTROL 0x00 //#define TRU_MI_CONTROL_REGISTER 0 #define PHY_STATUS 0x01 //#define TRU_MI_STATUS_REGISTER 1 #define PHY_ID_1 0x02 //#define TRU_MI_PHY_IDENTIFIER_1_REGISTER 2 #define PHY_ID_2 0x03 //#define TRU_MI_PHY_IDENTIFIER_2_REGISTER 3 #define PHY_AUTO_ADVERTISEMENT 0x04 //#define TRU_MI_ADVERTISEMENT_REGISTER 4 #define PHY_AUTO_LINK_PARTNER 0x05 //#define TRU_MI_LINK_PARTNER_ABILITY_REGISTER 5 #define PHY_AUTO_EXPANSION 0x06 //#define TRU_MI_EXPANSION_REGISTER 6 #define PHY_AUTO_NEXT_PAGE_TX 0x07 //#define TRU_MI_NEXT_PAGE_TRANSMIT_REGISTER 7 #define PHY_LINK_PARTNER_NEXT_PAGE 0x08 //#define TRU_MI_LINK_PARTNER_NEXT_PAGE_REGISTER 8 #define PHY_1000_CONTROL 0x09 //#define TRU_MI_1000BASET_CONTROL_REGISTER 9 #define PHY_1000_STATUS 0x0A //#define TRU_MI_1000BASET_STATUS_REGISTER 10 #define PHY_EXTENDED_STATUS 0x0F //#define TRU_MI_EXTENDED_STATUS_REGISTER 15 // some defines for modem registers that seem to be 'reserved' #define PHY_INDEX_REG 0x10 #define PHY_DATA_REG 0x11 #define PHY_MPHY_CONTROL_REG 0x12 //#define TRU_VMI_MPHY_CONTROL_REGISTER 18 #define PHY_LOOPBACK_CONTROL 0x13 //#define TRU_VMI_LOOPBACK_CONTROL_1_REGISTER 19 //#define TRU_VMI_LOOPBACK_CONTROL_2_REGISTER 20 #define PHY_REGISTER_MGMT_CONTROL 0x15 //#define TRU_VMI_MI_SEQ_CONTROL_REGISTER 21 #define PHY_CONFIG 0x16 //#define TRU_VMI_CONFIGURATION_REGISTER 22 #define PHY_PHY_CONTROL 0x17 //#define TRU_VMI_PHY_CONTROL_REGISTER 23 #define PHY_INTERRUPT_MASK 0x18 //#define TRU_VMI_INTERRUPT_MASK_REGISTER 24 #define PHY_INTERRUPT_STATUS 0x19 //#define TRU_VMI_INTERRUPT_STATUS_REGISTER 25 #define PHY_PHY_STATUS 0x1A //#define TRU_VMI_PHY_STATUS_REGISTER 26 #define PHY_LED_1 0x1B //#define TRU_VMI_LED_CONTROL_1_REGISTER 27 #define PHY_LED_2 0x1C //#define TRU_VMI_LED_CONTROL_2_REGISTER 28 //#define TRU_VMI_LINK_CONTROL_REGISTER 29 //#define TRU_VMI_TIMING_CONTROL_REGISTER /* Prototypes for PHY access routines */ void ET1310_PhyInit(struct et131x_adapter *adapter); void ET1310_PhyReset(struct et131x_adapter *adapter); void ET1310_PhyPowerDown(struct et131x_adapter *adapter, bool down); void ET1310_PhyAutoNeg(struct et131x_adapter *adapter, bool enable); void ET1310_PhyDuplexMode(struct et131x_adapter *adapter, u16 duplex); void ET1310_PhySpeedSelect(struct et131x_adapter *adapter, u16 speed); void ET1310_PhyAdvertise1000BaseT(struct et131x_adapter *adapter, u16 duplex); void ET1310_PhyAdvertise100BaseT(struct et131x_adapter *adapter, u16 duplex); void ET1310_PhyAdvertise10BaseT(struct et131x_adapter *adapter, u16 duplex); void ET1310_PhyLinkStatus(struct et131x_adapter *adapter, u8 *ucLinkStatus, u32 *uiAutoNeg, u32 *uiLinkSpeed, u32 *uiDuplexMode, u32 *uiMdiMdix, u32 *uiMasterSlave, u32 *uiPolarity); void ET1310_PhyAndOrReg(struct et131x_adapter *adapter, u16 regnum, u16 andMask, u16 orMask); void ET1310_PhyAccessMiBit(struct et131x_adapter *adapter, u16 action, u16 regnum, u16 bitnum, u8 *value); #endif /* _ET1310_PHY_H_ */