/* ************************************************************************* * Ralink Tech Inc. * 5F., No.36, Taiyuan St., Jhubei City, * Hsinchu County 302, * Taiwan, R.O.C. * * (c) Copyright 2002-2007, Ralink Technology, Inc. * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * ************************************************************************* Module Name: rtmp_init.c Abstract: Miniport generic portion header file Revision History: Who When What -------- ---------- ---------------------------------------------- */ #include "../rt_config.h" UCHAR BIT8[] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80}; char* CipherName[] = {"none","wep64","wep128","TKIP","AES","CKIP64","CKIP128"}; // // BBP register initialization set // REG_PAIR BBPRegTable[] = { {BBP_R65, 0x2C}, // fix rssi issue {BBP_R66, 0x38}, // Also set this default value to pAd->BbpTuning.R66CurrentValue at initial {BBP_R69, 0x12}, {BBP_R70, 0xa}, // BBP_R70 will change to 0x8 in ApStartUp and LinkUp for rt2860C, otherwise value is 0xa {BBP_R73, 0x10}, {BBP_R81, 0x37}, {BBP_R82, 0x62}, {BBP_R83, 0x6A}, {BBP_R84, 0x99}, // 0x19 is for rt2860E and after. This is for extension channel overlapping IOT. 0x99 is for rt2860D and before {BBP_R86, 0x00}, // middle range issue, Rory @2008-01-28 {BBP_R91, 0x04}, // middle range issue, Rory @2008-01-28 {BBP_R92, 0x00}, // middle range issue, Rory @2008-01-28 {BBP_R103, 0x00}, // near range high-power issue, requested from Gary @2008-0528 {BBP_R105, 0x05}, // 0x05 is for rt2860E to turn on FEQ control. It is safe for rt2860D and before, because Bit 7:2 are reserved in rt2860D and before. {BBP_R106, 0x35}, // for ShortGI throughput }; #define NUM_BBP_REG_PARMS (sizeof(BBPRegTable) / sizeof(REG_PAIR)) // // ASIC register initialization sets // RTMP_REG_PAIR MACRegTable[] = { #if defined(HW_BEACON_OFFSET) && (HW_BEACON_OFFSET == 0x200) {BCN_OFFSET0, 0xf8f0e8e0}, /* 0x3800(e0), 0x3A00(e8), 0x3C00(f0), 0x3E00(f8), 512B for each beacon */ {BCN_OFFSET1, 0x6f77d0c8}, /* 0x3200(c8), 0x3400(d0), 0x1DC0(77), 0x1BC0(6f), 512B for each beacon */ #elif defined(HW_BEACON_OFFSET) && (HW_BEACON_OFFSET == 0x100) {BCN_OFFSET0, 0xece8e4e0}, /* 0x3800, 0x3A00, 0x3C00, 0x3E00, 512B for each beacon */ {BCN_OFFSET1, 0xfcf8f4f0}, /* 0x3800, 0x3A00, 0x3C00, 0x3E00, 512B for each beacon */ #else #error You must re-calculate new value for BCN_OFFSET0 & BCN_OFFSET1 in MACRegTable[]!!! #endif // HW_BEACON_OFFSET // {LEGACY_BASIC_RATE, 0x0000013f}, // Basic rate set bitmap {HT_BASIC_RATE, 0x00008003}, // Basic HT rate set , 20M, MCS=3, MM. Format is the same as in TXWI. {MAC_SYS_CTRL, 0x00}, // 0x1004, , default Disable RX {RX_FILTR_CFG, 0x17f97}, //0x1400 , RX filter control, {BKOFF_SLOT_CFG, 0x209}, // default set short slot time, CC_DELAY_TIME should be 2 //{TX_SW_CFG0, 0x40a06}, // Gary,2006-08-23 {TX_SW_CFG0, 0x0}, // Gary,2008-05-21 for CWC test {TX_SW_CFG1, 0x80606}, // Gary,2006-08-23 {TX_LINK_CFG, 0x1020}, // Gary,2006-08-23 //{TX_TIMEOUT_CFG, 0x00182090}, // CCK has some problem. So increase timieout value. 2006-10-09// MArvek RT {TX_TIMEOUT_CFG, 0x000a2090}, // CCK has some problem. So increase timieout value. 2006-10-09// MArvek RT , Modify for 2860E ,2007-08-01 {MAX_LEN_CFG, MAX_AGGREGATION_SIZE | 0x00001000}, // 0x3018, MAX frame length. Max PSDU = 16kbytes. {LED_CFG, 0x7f031e46}, // Gary, 2006-08-23 {PBF_MAX_PCNT, 0x1F3FBF9F}, //0x1F3f7f9f}, //Jan, 2006/04/20 {TX_RTY_CFG, 0x47d01f0f}, // Jan, 2006/11/16, Set TxWI->ACK =0 in Probe Rsp Modify for 2860E ,2007-08-03 {AUTO_RSP_CFG, 0x00000013}, // Initial Auto_Responder, because QA will turn off Auto-Responder {CCK_PROT_CFG, 0x05740003 /*0x01740003*/}, // Initial Auto_Responder, because QA will turn off Auto-Responder. And RTS threshold is enabled. {OFDM_PROT_CFG, 0x05740003 /*0x01740003*/}, // Initial Auto_Responder, because QA will turn off Auto-Responder. And RTS threshold is enabled. #ifdef RTMP_MAC_USB {PBF_CFG, 0xf40006}, // Only enable Queue 2 {MM40_PROT_CFG, 0x3F44084}, // Initial Auto_Responder, because QA will turn off Auto-Responder {WPDMA_GLO_CFG, 0x00000030}, #endif // RTMP_MAC_USB // {GF20_PROT_CFG, 0x01744004}, // set 19:18 --> Short NAV for MIMO PS {GF40_PROT_CFG, 0x03F44084}, {MM20_PROT_CFG, 0x01744004}, #ifdef RTMP_MAC_PCI {MM40_PROT_CFG, 0x03F54084}, #endif // RTMP_MAC_PCI // {TXOP_CTRL_CFG, 0x0000583f, /*0x0000243f*/ /*0x000024bf*/}, //Extension channel backoff. {TX_RTS_CFG, 0x00092b20}, {EXP_ACK_TIME, 0x002400ca}, // default value {TXOP_HLDR_ET, 0x00000002}, /* Jerry comments 2008/01/16: we use SIFS = 10us in CCK defaultly, but it seems that 10us is too small for INTEL 2200bg card, so in MBSS mode, the delta time between beacon0 and beacon1 is SIFS (10us), so if INTEL 2200bg card connects to BSS0, the ping will always lost. So we change the SIFS of CCK from 10us to 16us. */ {XIFS_TIME_CFG, 0x33a41010}, {PWR_PIN_CFG, 0x00000003}, // patch for 2880-E }; RTMP_REG_PAIR STAMACRegTable[] = { {WMM_AIFSN_CFG, 0x00002273}, {WMM_CWMIN_CFG, 0x00002344}, {WMM_CWMAX_CFG, 0x000034aa}, }; #define NUM_MAC_REG_PARMS (sizeof(MACRegTable) / sizeof(RTMP_REG_PAIR)) #define NUM_STA_MAC_REG_PARMS (sizeof(STAMACRegTable) / sizeof(RTMP_REG_PAIR)) /* ======================================================================== Routine Description: Allocate RTMP_ADAPTER data block and do some initialization Arguments: Adapter Pointer to our adapter Return Value: NDIS_STATUS_SUCCESS NDIS_STATUS_FAILURE IRQL = PASSIVE_LEVEL Note: ======================================================================== */ NDIS_STATUS RTMPAllocAdapterBlock( IN PVOID handle, OUT PRTMP_ADAPTER *ppAdapter) { PRTMP_ADAPTER pAd; NDIS_STATUS Status; INT index; UCHAR *pBeaconBuf = NULL; DBGPRINT(RT_DEBUG_TRACE, ("--> RTMPAllocAdapterBlock\n")); *ppAdapter = NULL; do { // Allocate RTMP_ADAPTER memory block pBeaconBuf = kmalloc(MAX_BEACON_SIZE, MEM_ALLOC_FLAG); if (pBeaconBuf == NULL) { Status = NDIS_STATUS_FAILURE; DBGPRINT_ERR(("Failed to allocate memory - BeaconBuf!\n")); break; } NdisZeroMemory(pBeaconBuf, MAX_BEACON_SIZE); Status = AdapterBlockAllocateMemory(handle, (PVOID *)&pAd); if (Status != NDIS_STATUS_SUCCESS) { DBGPRINT_ERR(("Failed to allocate memory - ADAPTER\n")); break; } pAd->BeaconBuf = pBeaconBuf; DBGPRINT(RT_DEBUG_OFF, ("\n\n=== pAd = %p, size = %d ===\n\n", pAd, (UINT32)sizeof(RTMP_ADAPTER))); // Init spin locks NdisAllocateSpinLock(&pAd->MgmtRingLock); #ifdef RTMP_MAC_PCI NdisAllocateSpinLock(&pAd->RxRingLock); #ifdef RT3090 NdisAllocateSpinLock(&pAd->McuCmdLock); #endif // RT3090 // #endif // RTMP_MAC_PCI // for (index =0 ; index < NUM_OF_TX_RING; index++) { NdisAllocateSpinLock(&pAd->TxSwQueueLock[index]); NdisAllocateSpinLock(&pAd->DeQueueLock[index]); pAd->DeQueueRunning[index] = FALSE; } NdisAllocateSpinLock(&pAd->irq_lock); } while (FALSE); if ((Status != NDIS_STATUS_SUCCESS) && (pBeaconBuf)) kfree(pBeaconBuf); *ppAdapter = pAd; DBGPRINT_S(Status, ("<-- RTMPAllocAdapterBlock, Status=%x\n", Status)); return Status; } /* ======================================================================== Routine Description: Read initial Tx power per MCS and BW from EEPROM Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: ======================================================================== */ VOID RTMPReadTxPwrPerRate( IN PRTMP_ADAPTER pAd) { ULONG data, Adata, Gdata; USHORT i, value, value2; INT Apwrdelta, Gpwrdelta; UCHAR t1,t2,t3,t4; BOOLEAN bApwrdeltaMinus = TRUE, bGpwrdeltaMinus = TRUE; // // Get power delta for 20MHz and 40MHz. // DBGPRINT(RT_DEBUG_TRACE, ("Txpower per Rate\n")); RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_DELTA, value2); Apwrdelta = 0; Gpwrdelta = 0; if ((value2 & 0xff) != 0xff) { if ((value2 & 0x80)) Gpwrdelta = (value2&0xf); if ((value2 & 0x40)) bGpwrdeltaMinus = FALSE; else bGpwrdeltaMinus = TRUE; } if ((value2 & 0xff00) != 0xff00) { if ((value2 & 0x8000)) Apwrdelta = ((value2&0xf00)>>8); if ((value2 & 0x4000)) bApwrdeltaMinus = FALSE; else bApwrdeltaMinus = TRUE; } DBGPRINT(RT_DEBUG_TRACE, ("Gpwrdelta = %x, Apwrdelta = %x .\n", Gpwrdelta, Apwrdelta)); // // Get Txpower per MCS for 20MHz in 2.4G. // for (i=0; i<5; i++) { RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_20MHZ_2_4G + i*4, value); data = value; if (bApwrdeltaMinus == FALSE) { t1 = (value&0xf)+(Apwrdelta); if (t1 > 0xf) t1 = 0xf; t2 = ((value&0xf0)>>4)+(Apwrdelta); if (t2 > 0xf) t2 = 0xf; t3 = ((value&0xf00)>>8)+(Apwrdelta); if (t3 > 0xf) t3 = 0xf; t4 = ((value&0xf000)>>12)+(Apwrdelta); if (t4 > 0xf) t4 = 0xf; } else { if ((value&0xf) > Apwrdelta) t1 = (value&0xf)-(Apwrdelta); else t1 = 0; if (((value&0xf0)>>4) > Apwrdelta) t2 = ((value&0xf0)>>4)-(Apwrdelta); else t2 = 0; if (((value&0xf00)>>8) > Apwrdelta) t3 = ((value&0xf00)>>8)-(Apwrdelta); else t3 = 0; if (((value&0xf000)>>12) > Apwrdelta) t4 = ((value&0xf000)>>12)-(Apwrdelta); else t4 = 0; } Adata = t1 + (t2<<4) + (t3<<8) + (t4<<12); if (bGpwrdeltaMinus == FALSE) { t1 = (value&0xf)+(Gpwrdelta); if (t1 > 0xf) t1 = 0xf; t2 = ((value&0xf0)>>4)+(Gpwrdelta); if (t2 > 0xf) t2 = 0xf; t3 = ((value&0xf00)>>8)+(Gpwrdelta); if (t3 > 0xf) t3 = 0xf; t4 = ((value&0xf000)>>12)+(Gpwrdelta); if (t4 > 0xf) t4 = 0xf; } else { if ((value&0xf) > Gpwrdelta) t1 = (value&0xf)-(Gpwrdelta); else t1 = 0; if (((value&0xf0)>>4) > Gpwrdelta) t2 = ((value&0xf0)>>4)-(Gpwrdelta); else t2 = 0; if (((value&0xf00)>>8) > Gpwrdelta) t3 = ((value&0xf00)>>8)-(Gpwrdelta); else t3 = 0; if (((value&0xf000)>>12) > Gpwrdelta) t4 = ((value&0xf000)>>12)-(Gpwrdelta); else t4 = 0; } Gdata = t1 + (t2<<4) + (t3<<8) + (t4<<12); RT28xx_EEPROM_READ16(pAd, EEPROM_TXPOWER_BYRATE_20MHZ_2_4G + i*4 + 2, value); if (bApwrdeltaMinus == FALSE) { t1 = (value&0xf)+(Apwrdelta); if (t1 > 0xf) t1 = 0xf; t2 = ((value&0xf0)>>4)+(Apwrdelta); if (t2 > 0xf) t2 = 0xf; t3 = ((value&0xf00)>>8)+(Apwrdelta); if (t3 > 0xf) t3 = 0xf; t4 = ((value&0xf000)>>12)+(Apwrdelta); if (t4 > 0xf) t4 = 0xf; } else { if ((value&0xf) > Apwrdelta) t1 = (value&0xf)-(Apwrdelta); else t1 = 0; if (((value&0xf0)>>4) > Apwrdelta) t2 = ((value&0xf0)>>4)-(Apwrdelta); else t2 = 0; if (((value&0xf00)>>8) > Apwrdelta) t3 = ((value&0xf00)>>8)-(Apwrdelta); else t3 = 0; if (((value&0xf000)>>12) > Apwrdelta) t4 = ((value&0xf000)>>12)-(Apwrdelta); else t4 = 0; } Adata |= ((t1<<16) + (t2<<20) + (t3<<24) + (t4<<28)); if (bGpwrdeltaMinus == FALSE) { t1 = (value&0xf)+(Gpwrdelta); if (t1 > 0xf) t1 = 0xf; t2 = ((value&0xf0)>>4)+(Gpwrdelta); if (t2 > 0xf) t2 = 0xf; t3 = ((value&0xf00)>>8)+(Gpwrdelta); if (t3 > 0xf) t3 = 0xf; t4 = ((value&0xf000)>>12)+(Gpwrdelta); if (t4 > 0xf) t4 = 0xf; } else { if ((value&0xf) > Gpwrdelta) t1 = (value&0xf)-(Gpwrdelta); else t1 = 0; if (((value&0xf0)>>4) > Gpwrdelta) t2 = ((value&0xf0)>>4)-(Gpwrdelta); else t2 = 0; if (((value&0xf00)>>8) > Gpwrdelta) t3 = ((value&0xf00)>>8)-(Gpwrdelta); else t3 = 0; if (((value&0xf000)>>12) > Gpwrdelta) t4 = ((value&0xf000)>>12)-(Gpwrdelta); else t4 = 0; } Gdata |= ((t1<<16) + (t2<<20) + (t3<<24) + (t4<<28)); data |= (value<<16); /* For 20M/40M Power Delta issue */ pAd->Tx20MPwrCfgABand[i] = data; pAd->Tx20MPwrCfgGBand[i] = data; pAd->Tx40MPwrCfgABand[i] = Adata; pAd->Tx40MPwrCfgGBand[i] = Gdata; if (data != 0xffffffff) RTMP_IO_WRITE32(pAd, TX_PWR_CFG_0 + i*4, data); DBGPRINT_RAW(RT_DEBUG_TRACE, ("20MHz BW, 2.4G band-%lx, Adata = %lx, Gdata = %lx \n", data, Adata, Gdata)); } } /* ======================================================================== Routine Description: Read initial channel power parameters from EEPROM Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: ======================================================================== */ VOID RTMPReadChannelPwr( IN PRTMP_ADAPTER pAd) { UCHAR i, choffset; EEPROM_TX_PWR_STRUC Power; EEPROM_TX_PWR_STRUC Power2; // Read Tx power value for all channels // Value from 1 - 0x7f. Default value is 24. // Power value : 2.4G 0x00 (0) ~ 0x1F (31) // : 5.5G 0xF9 (-7) ~ 0x0F (15) // 0. 11b/g, ch1 - ch 14 for (i = 0; i < 7; i++) { RT28xx_EEPROM_READ16(pAd, EEPROM_G_TX_PWR_OFFSET + i * 2, Power.word); RT28xx_EEPROM_READ16(pAd, EEPROM_G_TX2_PWR_OFFSET + i * 2, Power2.word); pAd->TxPower[i * 2].Channel = i * 2 + 1; pAd->TxPower[i * 2 + 1].Channel = i * 2 + 2; if ((Power.field.Byte0 > 31) || (Power.field.Byte0 < 0)) pAd->TxPower[i * 2].Power = DEFAULT_RF_TX_POWER; else pAd->TxPower[i * 2].Power = Power.field.Byte0; if ((Power.field.Byte1 > 31) || (Power.field.Byte1 < 0)) pAd->TxPower[i * 2 + 1].Power = DEFAULT_RF_TX_POWER; else pAd->TxPower[i * 2 + 1].Power = Power.field.Byte1; if ((Power2.field.Byte0 > 31) || (Power2.field.Byte0 < 0)) pAd->TxPower[i * 2].Power2 = DEFAULT_RF_TX_POWER; else pAd->TxPower[i * 2].Power2 = Power2.field.Byte0; if ((Power2.field.Byte1 > 31) || (Power2.field.Byte1 < 0)) pAd->TxPower[i * 2 + 1].Power2 = DEFAULT_RF_TX_POWER; else pAd->TxPower[i * 2 + 1].Power2 = Power2.field.Byte1; } // 1. U-NII lower/middle band: 36, 38, 40; 44, 46, 48; 52, 54, 56; 60, 62, 64 (including central frequency in BW 40MHz) // 1.1 Fill up channel choffset = 14; for (i = 0; i < 4; i++) { pAd->TxPower[3 * i + choffset + 0].Channel = 36 + i * 8 + 0; pAd->TxPower[3 * i + choffset + 0].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 0].Power2 = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 1].Channel = 36 + i * 8 + 2; pAd->TxPower[3 * i + choffset + 1].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 1].Power2 = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 2].Channel = 36 + i * 8 + 4; pAd->TxPower[3 * i + choffset + 2].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 2].Power2 = DEFAULT_RF_TX_POWER; } // 1.2 Fill up power for (i = 0; i < 6; i++) { RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX_PWR_OFFSET + i * 2, Power.word); RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX2_PWR_OFFSET + i * 2, Power2.word); if ((Power.field.Byte0 < 16) && (Power.field.Byte0 >= -7)) pAd->TxPower[i * 2 + choffset + 0].Power = Power.field.Byte0; if ((Power.field.Byte1 < 16) && (Power.field.Byte1 >= -7)) pAd->TxPower[i * 2 + choffset + 1].Power = Power.field.Byte1; if ((Power2.field.Byte0 < 16) && (Power2.field.Byte0 >= -7)) pAd->TxPower[i * 2 + choffset + 0].Power2 = Power2.field.Byte0; if ((Power2.field.Byte1 < 16) && (Power2.field.Byte1 >= -7)) pAd->TxPower[i * 2 + choffset + 1].Power2 = Power2.field.Byte1; } // 2. HipperLAN 2 100, 102 ,104; 108, 110, 112; 116, 118, 120; 124, 126, 128; 132, 134, 136; 140 (including central frequency in BW 40MHz) // 2.1 Fill up channel choffset = 14 + 12; for (i = 0; i < 5; i++) { pAd->TxPower[3 * i + choffset + 0].Channel = 100 + i * 8 + 0; pAd->TxPower[3 * i + choffset + 0].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 0].Power2 = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 1].Channel = 100 + i * 8 + 2; pAd->TxPower[3 * i + choffset + 1].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 1].Power2 = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 2].Channel = 100 + i * 8 + 4; pAd->TxPower[3 * i + choffset + 2].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 2].Power2 = DEFAULT_RF_TX_POWER; } pAd->TxPower[3 * 5 + choffset + 0].Channel = 140; pAd->TxPower[3 * 5 + choffset + 0].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * 5 + choffset + 0].Power2 = DEFAULT_RF_TX_POWER; // 2.2 Fill up power for (i = 0; i < 8; i++) { RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX_PWR_OFFSET + (choffset - 14) + i * 2, Power.word); RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX2_PWR_OFFSET + (choffset - 14) + i * 2, Power2.word); if ((Power.field.Byte0 < 16) && (Power.field.Byte0 >= -7)) pAd->TxPower[i * 2 + choffset + 0].Power = Power.field.Byte0; if ((Power.field.Byte1 < 16) && (Power.field.Byte1 >= -7)) pAd->TxPower[i * 2 + choffset + 1].Power = Power.field.Byte1; if ((Power2.field.Byte0 < 16) && (Power2.field.Byte0 >= -7)) pAd->TxPower[i * 2 + choffset + 0].Power2 = Power2.field.Byte0; if ((Power2.field.Byte1 < 16) && (Power2.field.Byte1 >= -7)) pAd->TxPower[i * 2 + choffset + 1].Power2 = Power2.field.Byte1; } // 3. U-NII upper band: 149, 151, 153; 157, 159, 161; 165, 167, 169; 171, 173 (including central frequency in BW 40MHz) // 3.1 Fill up channel choffset = 14 + 12 + 16; /*for (i = 0; i < 2; i++)*/ for (i = 0; i < 3; i++) { pAd->TxPower[3 * i + choffset + 0].Channel = 149 + i * 8 + 0; pAd->TxPower[3 * i + choffset + 0].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 0].Power2 = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 1].Channel = 149 + i * 8 + 2; pAd->TxPower[3 * i + choffset + 1].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 1].Power2 = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 2].Channel = 149 + i * 8 + 4; pAd->TxPower[3 * i + choffset + 2].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * i + choffset + 2].Power2 = DEFAULT_RF_TX_POWER; } pAd->TxPower[3 * 3 + choffset + 0].Channel = 171; pAd->TxPower[3 * 3 + choffset + 0].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * 3 + choffset + 0].Power2 = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * 3 + choffset + 1].Channel = 173; pAd->TxPower[3 * 3 + choffset + 1].Power = DEFAULT_RF_TX_POWER; pAd->TxPower[3 * 3 + choffset + 1].Power2 = DEFAULT_RF_TX_POWER; // 3.2 Fill up power /*for (i = 0; i < 4; i++)*/ for (i = 0; i < 6; i++) { RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX_PWR_OFFSET + (choffset - 14) + i * 2, Power.word); RT28xx_EEPROM_READ16(pAd, EEPROM_A_TX2_PWR_OFFSET + (choffset - 14) + i * 2, Power2.word); if ((Power.field.Byte0 < 16) && (Power.field.Byte0 >= -7)) pAd->TxPower[i * 2 + choffset + 0].Power = Power.field.Byte0; if ((Power.field.Byte1 < 16) && (Power.field.Byte1 >= -7)) pAd->TxPower[i * 2 + choffset + 1].Power = Power.field.Byte1; if ((Power2.field.Byte0 < 16) && (Power2.field.Byte0 >= -7)) pAd->TxPower[i * 2 + choffset + 0].Power2 = Power2.field.Byte0; if ((Power2.field.Byte1 < 16) && (Power2.field.Byte1 >= -7)) pAd->TxPower[i * 2 + choffset + 1].Power2 = Power2.field.Byte1; } // 4. Print and Debug /*choffset = 14 + 12 + 16 + 7;*/ choffset = 14 + 12 + 16 + 11; } /* ======================================================================== Routine Description: Read the following from the registry 1. All the parameters 2. NetworkAddres Arguments: Adapter Pointer to our adapter WrapperConfigurationContext For use by NdisOpenConfiguration Return Value: NDIS_STATUS_SUCCESS NDIS_STATUS_FAILURE NDIS_STATUS_RESOURCES IRQL = PASSIVE_LEVEL Note: ======================================================================== */ NDIS_STATUS NICReadRegParameters( IN PRTMP_ADAPTER pAd, IN NDIS_HANDLE WrapperConfigurationContext ) { NDIS_STATUS Status = NDIS_STATUS_SUCCESS; DBGPRINT_S(Status, ("<-- NICReadRegParameters, Status=%x\n", Status)); return Status; } /* ======================================================================== Routine Description: Read initial parameters from EEPROM Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: ======================================================================== */ VOID NICReadEEPROMParameters( IN PRTMP_ADAPTER pAd, IN PUCHAR mac_addr) { UINT32 data = 0; USHORT i, value, value2; UCHAR TmpPhy; EEPROM_TX_PWR_STRUC Power; EEPROM_VERSION_STRUC Version; EEPROM_ANTENNA_STRUC Antenna; EEPROM_NIC_CONFIG2_STRUC NicConfig2; DBGPRINT(RT_DEBUG_TRACE, ("--> NICReadEEPROMParameters\n")); if (pAd->chipOps.eeinit) pAd->chipOps.eeinit(pAd); #ifdef RTMP_EFUSE_SUPPORT #ifdef RT30xx if(!pAd->bFroceEEPROMBuffer && pAd->bEEPROMFile) { DBGPRINT(RT_DEBUG_TRACE, ("--> NICReadEEPROMParameters::(Efuse)Load to EEPROM Buffer Mode\n")); eFuseLoadEEPROM(pAd); } #endif // RT30xx // #endif // RTMP_EFUSE_SUPPORT // // Init EEPROM Address Number, before access EEPROM; if 93c46, EEPROMAddressNum=6, else if 93c66, EEPROMAddressNum=8 RTMP_IO_READ32(pAd, E2PROM_CSR, &data); DBGPRINT(RT_DEBUG_TRACE, ("--> E2PROM_CSR = 0x%x\n", data)); if((data & 0x30) == 0) pAd->EEPROMAddressNum = 6; // 93C46 else if((data & 0x30) == 0x10) pAd->EEPROMAddressNum = 8; // 93C66 else pAd->EEPROMAddressNum = 8; // 93C86 DBGPRINT(RT_DEBUG_TRACE, ("--> EEPROMAddressNum = %d\n", pAd->EEPROMAddressNum )); // RT2860 MAC no longer auto load MAC address from E2PROM. Driver has to intialize // MAC address registers according to E2PROM setting if (mac_addr == NULL || strlen((PSTRING) mac_addr) != 17 || mac_addr[2] != ':' || mac_addr[5] != ':' || mac_addr[8] != ':' || mac_addr[11] != ':' || mac_addr[14] != ':') { USHORT Addr01,Addr23,Addr45 ; RT28xx_EEPROM_READ16(pAd, 0x04, Addr01); RT28xx_EEPROM_READ16(pAd, 0x06, Addr23); RT28xx_EEPROM_READ16(pAd, 0x08, Addr45); pAd->PermanentAddress[0] = (UCHAR)(Addr01 & 0xff); pAd->PermanentAddress[1] = (UCHAR)(Addr01 >> 8); pAd->PermanentAddress[2] = (UCHAR)(Addr23 & 0xff); pAd->PermanentAddress[3] = (UCHAR)(Addr23 >> 8); pAd->PermanentAddress[4] = (UCHAR)(Addr45 & 0xff); pAd->PermanentAddress[5] = (UCHAR)(Addr45 >> 8); DBGPRINT(RT_DEBUG_TRACE, ("Initialize MAC Address from E2PROM \n")); } else { INT j; PSTRING macptr; macptr = (PSTRING) mac_addr; for (j=0; jPermanentAddress[j], 1); macptr=macptr+3; } DBGPRINT(RT_DEBUG_TRACE, ("Initialize MAC Address from module parameter \n")); } { //more conveninet to test mbssid, so ap's bssid &0xf1 if (pAd->PermanentAddress[0] == 0xff) pAd->PermanentAddress[0] = RandomByte(pAd)&0xf8; //if (pAd->PermanentAddress[5] == 0xff) // pAd->PermanentAddress[5] = RandomByte(pAd)&0xf8; DBGPRINT_RAW(RT_DEBUG_TRACE,("E2PROM MAC: =%02x:%02x:%02x:%02x:%02x:%02x\n", pAd->PermanentAddress[0], pAd->PermanentAddress[1], pAd->PermanentAddress[2], pAd->PermanentAddress[3], pAd->PermanentAddress[4], pAd->PermanentAddress[5])); if (pAd->bLocalAdminMAC == FALSE) { MAC_DW0_STRUC csr2; MAC_DW1_STRUC csr3; COPY_MAC_ADDR(pAd->CurrentAddress, pAd->PermanentAddress); csr2.field.Byte0 = pAd->CurrentAddress[0]; csr2.field.Byte1 = pAd->CurrentAddress[1]; csr2.field.Byte2 = pAd->CurrentAddress[2]; csr2.field.Byte3 = pAd->CurrentAddress[3]; RTMP_IO_WRITE32(pAd, MAC_ADDR_DW0, csr2.word); csr3.word = 0; csr3.field.Byte4 = pAd->CurrentAddress[4]; csr3.field.Byte5 = pAd->CurrentAddress[5]; csr3.field.U2MeMask = 0xff; RTMP_IO_WRITE32(pAd, MAC_ADDR_DW1, csr3.word); DBGPRINT_RAW(RT_DEBUG_TRACE,("E2PROM MAC: =%02x:%02x:%02x:%02x:%02x:%02x\n", PRINT_MAC(pAd->PermanentAddress))); } } // if not return early. cause fail at emulation. // Init the channel number for TX channel power RTMPReadChannelPwr(pAd); // if E2PROM version mismatch with driver's expectation, then skip // all subsequent E2RPOM retieval and set a system error bit to notify GUI RT28xx_EEPROM_READ16(pAd, EEPROM_VERSION_OFFSET, Version.word); pAd->EepromVersion = Version.field.Version + Version.field.FaeReleaseNumber * 256; DBGPRINT(RT_DEBUG_TRACE, ("E2PROM: Version = %d, FAE release #%d\n", Version.field.Version, Version.field.FaeReleaseNumber)); if (Version.field.Version > VALID_EEPROM_VERSION) { DBGPRINT_ERR(("E2PROM: WRONG VERSION 0x%x, should be %d\n",Version.field.Version, VALID_EEPROM_VERSION)); /*pAd->SystemErrorBitmap |= 0x00000001; // hard-code default value when no proper E2PROM installed pAd->bAutoTxAgcA = FALSE; pAd->bAutoTxAgcG = FALSE; // Default the channel power for (i = 0; i < MAX_NUM_OF_CHANNELS; i++) pAd->TxPower[i].Power = DEFAULT_RF_TX_POWER; // Default the channel power for (i = 0; i < MAX_NUM_OF_11JCHANNELS; i++) pAd->TxPower11J[i].Power = DEFAULT_RF_TX_POWER; for(i = 0; i < NUM_EEPROM_BBP_PARMS; i++) pAd->EEPROMDefaultValue[i] = 0xffff; return; */ } // Read BBP default value from EEPROM and store to array(EEPROMDefaultValue) in pAd RT28xx_EEPROM_READ16(pAd, EEPROM_NIC1_OFFSET, value); pAd->EEPROMDefaultValue[0] = value; RT28xx_EEPROM_READ16(pAd, EEPROM_NIC2_OFFSET, value); pAd->EEPROMDefaultValue[1] = value; RT28xx_EEPROM_READ16(pAd, 0x38, value); // Country Region pAd->EEPROMDefaultValue[2] = value; for(i = 0; i < 8; i++) { RT28xx_EEPROM_READ16(pAd, EEPROM_BBP_BASE_OFFSET + i*2, value); pAd->EEPROMDefaultValue[i+3] = value; } // We have to parse NIC configuration 0 at here. // If TSSI did not have preloaded value, it should reset the TxAutoAgc to false // Therefore, we have to read TxAutoAgc control beforehand. // Read Tx AGC control bit Antenna.word = pAd->EEPROMDefaultValue[0]; if (Antenna.word == 0xFFFF) { #ifdef RT30xx if(IS_RT3090(pAd)|| IS_RT3390(pAd)) { Antenna.word = 0; Antenna.field.RfIcType = RFIC_3020; Antenna.field.TxPath = 1; Antenna.field.RxPath = 1; } else #endif // RT30xx // { Antenna.word = 0; Antenna.field.RfIcType = RFIC_2820; Antenna.field.TxPath = 1; Antenna.field.RxPath = 2; DBGPRINT(RT_DEBUG_WARN, ("E2PROM error, hard code as 0x%04x\n", Antenna.word)); } } // Choose the desired Tx&Rx stream. if ((pAd->CommonCfg.TxStream == 0) || (pAd->CommonCfg.TxStream > Antenna.field.TxPath)) pAd->CommonCfg.TxStream = Antenna.field.TxPath; if ((pAd->CommonCfg.RxStream == 0) || (pAd->CommonCfg.RxStream > Antenna.field.RxPath)) { pAd->CommonCfg.RxStream = Antenna.field.RxPath; if ((pAd->MACVersion < RALINK_2883_VERSION) && (pAd->CommonCfg.RxStream > 2)) { // only 2 Rx streams for RT2860 series pAd->CommonCfg.RxStream = 2; } } // 3*3 // read value from EEPROM and set them to CSR174 ~ 177 in chain0 ~ chain2 // yet implement for(i=0; i<3; i++) { } NicConfig2.word = pAd->EEPROMDefaultValue[1]; { if ((NicConfig2.word & 0x00ff) == 0xff) { NicConfig2.word &= 0xff00; } if ((NicConfig2.word >> 8) == 0xff) { NicConfig2.word &= 0x00ff; } } if (NicConfig2.field.DynamicTxAgcControl == 1) pAd->bAutoTxAgcA = pAd->bAutoTxAgcG = TRUE; else pAd->bAutoTxAgcA = pAd->bAutoTxAgcG = FALSE; DBGPRINT_RAW(RT_DEBUG_TRACE, ("NICReadEEPROMParameters: RxPath = %d, TxPath = %d\n", Antenna.field.RxPath, Antenna.field.TxPath)); // Save the antenna for future use pAd->Antenna.word = Antenna.word; // Set the RfICType here, then we can initialize RFIC related operation callbacks pAd->Mlme.RealRxPath = (UCHAR) Antenna.field.RxPath; pAd->RfIcType = (UCHAR) Antenna.field.RfIcType; #ifdef RTMP_RF_RW_SUPPORT RtmpChipOpsRFHook(pAd); #endif // RTMP_RF_RW_SUPPORT // #ifdef RTMP_MAC_PCI sprintf((PSTRING) pAd->nickname, "RT2860STA"); #endif // RTMP_MAC_PCI // // // Reset PhyMode if we don't support 802.11a // Only RFIC_2850 & RFIC_2750 support 802.11a // if ((Antenna.field.RfIcType != RFIC_2850) && (Antenna.field.RfIcType != RFIC_2750) && (Antenna.field.RfIcType != RFIC_3052)) { if ((pAd->CommonCfg.PhyMode == PHY_11ABG_MIXED) || (pAd->CommonCfg.PhyMode == PHY_11A)) pAd->CommonCfg.PhyMode = PHY_11BG_MIXED; else if ((pAd->CommonCfg.PhyMode == PHY_11ABGN_MIXED) || (pAd->CommonCfg.PhyMode == PHY_11AN_MIXED) || (pAd->CommonCfg.PhyMode == PHY_11AGN_MIXED) || (pAd->CommonCfg.PhyMode == PHY_11N_5G)) pAd->CommonCfg.PhyMode = PHY_11BGN_MIXED; } // Read TSSI reference and TSSI boundary for temperature compensation. This is ugly // 0. 11b/g { /* these are tempature reference value (0x00 ~ 0xFE) ex: 0x00 0x15 0x25 0x45 0x88 0xA0 0xB5 0xD0 0xF0 TssiPlusBoundaryG [4] [3] [2] [1] [0] (smaller) + TssiMinusBoundaryG[0] [1] [2] [3] [4] (larger) */ RT28xx_EEPROM_READ16(pAd, 0x6E, Power.word); pAd->TssiMinusBoundaryG[4] = Power.field.Byte0; pAd->TssiMinusBoundaryG[3] = Power.field.Byte1; RT28xx_EEPROM_READ16(pAd, 0x70, Power.word); pAd->TssiMinusBoundaryG[2] = Power.field.Byte0; pAd->TssiMinusBoundaryG[1] = Power.field.Byte1; RT28xx_EEPROM_READ16(pAd, 0x72, Power.word); pAd->TssiRefG = Power.field.Byte0; /* reference value [0] */ pAd->TssiPlusBoundaryG[1] = Power.field.Byte1; RT28xx_EEPROM_READ16(pAd, 0x74, Power.word); pAd->TssiPlusBoundaryG[2] = Power.field.Byte0; pAd->TssiPlusBoundaryG[3] = Power.field.Byte1; RT28xx_EEPROM_READ16(pAd, 0x76, Power.word); pAd->TssiPlusBoundaryG[4] = Power.field.Byte0; pAd->TxAgcStepG = Power.field.Byte1; pAd->TxAgcCompensateG = 0; pAd->TssiMinusBoundaryG[0] = pAd->TssiRefG; pAd->TssiPlusBoundaryG[0] = pAd->TssiRefG; // Disable TxAgc if the based value is not right if (pAd->TssiRefG == 0xff) pAd->bAutoTxAgcG = FALSE; DBGPRINT(RT_DEBUG_TRACE,("E2PROM: G Tssi[-4 .. +4] = %d %d %d %d - %d -%d %d %d %d, step=%d, tuning=%d\n", pAd->TssiMinusBoundaryG[4], pAd->TssiMinusBoundaryG[3], pAd->TssiMinusBoundaryG[2], pAd->TssiMinusBoundaryG[1], pAd->TssiRefG, pAd->TssiPlusBoundaryG[1], pAd->TssiPlusBoundaryG[2], pAd->TssiPlusBoundaryG[3], pAd->TssiPlusBoundaryG[4], pAd->TxAgcStepG, pAd->bAutoTxAgcG)); } // 1. 11a { RT28xx_EEPROM_READ16(pAd, 0xD4, Power.word); pAd->TssiMinusBoundaryA[4] = Power.field.Byte0; pAd->TssiMinusBoundaryA[3] = Power.field.Byte1; RT28xx_EEPROM_READ16(pAd, 0xD6, Power.word); pAd->TssiMinusBoundaryA[2] = Power.field.Byte0; pAd->TssiMinusBoundaryA[1] = Power.field.Byte1; RT28xx_EEPROM_READ16(pAd, 0xD8, Power.word); pAd->TssiRefA = Power.field.Byte0; pAd->TssiPlusBoundaryA[1] = Power.field.Byte1; RT28xx_EEPROM_READ16(pAd, 0xDA, Power.word); pAd->TssiPlusBoundaryA[2] = Power.field.Byte0; pAd->TssiPlusBoundaryA[3] = Power.field.Byte1; RT28xx_EEPROM_READ16(pAd, 0xDC, Power.word); pAd->TssiPlusBoundaryA[4] = Power.field.Byte0; pAd->TxAgcStepA = Power.field.Byte1; pAd->TxAgcCompensateA = 0; pAd->TssiMinusBoundaryA[0] = pAd->TssiRefA; pAd->TssiPlusBoundaryA[0] = pAd->TssiRefA; // Disable TxAgc if the based value is not right if (pAd->TssiRefA == 0xff) pAd->bAutoTxAgcA = FALSE; DBGPRINT(RT_DEBUG_TRACE,("E2PROM: A Tssi[-4 .. +4] = %d %d %d %d - %d -%d %d %d %d, step=%d, tuning=%d\n", pAd->TssiMinusBoundaryA[4], pAd->TssiMinusBoundaryA[3], pAd->TssiMinusBoundaryA[2], pAd->TssiMinusBoundaryA[1], pAd->TssiRefA, pAd->TssiPlusBoundaryA[1], pAd->TssiPlusBoundaryA[2], pAd->TssiPlusBoundaryA[3], pAd->TssiPlusBoundaryA[4], pAd->TxAgcStepA, pAd->bAutoTxAgcA)); } pAd->BbpRssiToDbmDelta = 0x0; // Read frequency offset setting for RF RT28xx_EEPROM_READ16(pAd, EEPROM_FREQ_OFFSET, value); if ((value & 0x00FF) != 0x00FF) pAd->RfFreqOffset = (ULONG) (value & 0x00FF); else pAd->RfFreqOffset = 0; DBGPRINT(RT_DEBUG_TRACE, ("E2PROM: RF FreqOffset=0x%lx \n", pAd->RfFreqOffset)); //CountryRegion byte offset (38h) value = pAd->EEPROMDefaultValue[2] >> 8; // 2.4G band value2 = pAd->EEPROMDefaultValue[2] & 0x00FF; // 5G band if ((value <= REGION_MAXIMUM_BG_BAND) && (value2 <= REGION_MAXIMUM_A_BAND)) { pAd->CommonCfg.CountryRegion = ((UCHAR) value) | 0x80; pAd->CommonCfg.CountryRegionForABand = ((UCHAR) value2) | 0x80; TmpPhy = pAd->CommonCfg.PhyMode; pAd->CommonCfg.PhyMode = 0xff; RTMPSetPhyMode(pAd, TmpPhy); SetCommonHT(pAd); } // // Get RSSI Offset on EEPROM 0x9Ah & 0x9Ch. // The valid value are (-10 ~ 10) // RT28xx_EEPROM_READ16(pAd, EEPROM_RSSI_BG_OFFSET, value); pAd->BGRssiOffset0 = value & 0x00ff; pAd->BGRssiOffset1 = (value >> 8); RT28xx_EEPROM_READ16(pAd, EEPROM_RSSI_BG_OFFSET+2, value); pAd->BGRssiOffset2 = value & 0x00ff; pAd->ALNAGain1 = (value >> 8); RT28xx_EEPROM_READ16(pAd, EEPROM_LNA_OFFSET, value); pAd->BLNAGain = value & 0x00ff; pAd->ALNAGain0 = (value >> 8); // Validate 11b/g RSSI_0 offset. if ((pAd->BGRssiOffset0 < -10) || (pAd->BGRssiOffset0 > 10)) pAd->BGRssiOffset0 = 0; // Validate 11b/g RSSI_1 offset. if ((pAd->BGRssiOffset1 < -10) || (pAd->BGRssiOffset1 > 10)) pAd->BGRssiOffset1 = 0; // Validate 11b/g RSSI_2 offset. if ((pAd->BGRssiOffset2 < -10) || (pAd->BGRssiOffset2 > 10)) pAd->BGRssiOffset2 = 0; RT28xx_EEPROM_READ16(pAd, EEPROM_RSSI_A_OFFSET, value); pAd->ARssiOffset0 = value & 0x00ff; pAd->ARssiOffset1 = (value >> 8); RT28xx_EEPROM_READ16(pAd, (EEPROM_RSSI_A_OFFSET+2), value); pAd->ARssiOffset2 = value & 0x00ff; pAd->ALNAGain2 = (value >> 8); if (((UCHAR)pAd->ALNAGain1 == 0xFF) || (pAd->ALNAGain1 == 0x00)) pAd->ALNAGain1 = pAd->ALNAGain0; if (((UCHAR)pAd->ALNAGain2 == 0xFF) || (pAd->ALNAGain2 == 0x00)) pAd->ALNAGain2 = pAd->ALNAGain0; // Validate 11a RSSI_0 offset. if ((pAd->ARssiOffset0 < -10) || (pAd->ARssiOffset0 > 10)) pAd->ARssiOffset0 = 0; // Validate 11a RSSI_1 offset. if ((pAd->ARssiOffset1 < -10) || (pAd->ARssiOffset1 > 10)) pAd->ARssiOffset1 = 0; //Validate 11a RSSI_2 offset. if ((pAd->ARssiOffset2 < -10) || (pAd->ARssiOffset2 > 10)) pAd->ARssiOffset2 = 0; #ifdef RT30xx // // Get TX mixer gain setting // 0xff are invalid value // Note: RT30xX default value is 0x00 and will program to RF_R17 only when this value is not zero. // RT359X default value is 0x02 // if (IS_RT30xx(pAd) || IS_RT3572(pAd)) { RT28xx_EEPROM_READ16(pAd, EEPROM_TXMIXER_GAIN_2_4G, value); pAd->TxMixerGain24G = 0; value &= 0x00ff; if (value != 0xff) { value &= 0x07; pAd->TxMixerGain24G = (UCHAR)value; } } #endif // RT30xx // // // Get LED Setting. // RT28xx_EEPROM_READ16(pAd, 0x3a, value); pAd->LedCntl.word = (value>>8); RT28xx_EEPROM_READ16(pAd, EEPROM_LED1_OFFSET, value); pAd->Led1 = value; RT28xx_EEPROM_READ16(pAd, EEPROM_LED2_OFFSET, value); pAd->Led2 = value; RT28xx_EEPROM_READ16(pAd, EEPROM_LED3_OFFSET, value); pAd->Led3 = value; RTMPReadTxPwrPerRate(pAd); #ifdef RT30xx #ifdef RTMP_EFUSE_SUPPORT RtmpEfuseSupportCheck(pAd); #endif // RTMP_EFUSE_SUPPORT // #endif // RT30xx // DBGPRINT(RT_DEBUG_TRACE, ("<-- NICReadEEPROMParameters\n")); } /* ======================================================================== Routine Description: Set default value from EEPROM Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: ======================================================================== */ VOID NICInitAsicFromEEPROM( IN PRTMP_ADAPTER pAd) { UINT32 data = 0; UCHAR BBPR1 = 0; USHORT i; // EEPROM_ANTENNA_STRUC Antenna; EEPROM_NIC_CONFIG2_STRUC NicConfig2; UCHAR BBPR3 = 0; DBGPRINT(RT_DEBUG_TRACE, ("--> NICInitAsicFromEEPROM\n")); for(i = 3; i < NUM_EEPROM_BBP_PARMS; i++) { UCHAR BbpRegIdx, BbpValue; if ((pAd->EEPROMDefaultValue[i] != 0xFFFF) && (pAd->EEPROMDefaultValue[i] != 0)) { BbpRegIdx = (UCHAR)(pAd->EEPROMDefaultValue[i] >> 8); BbpValue = (UCHAR)(pAd->EEPROMDefaultValue[i] & 0xff); RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BbpRegIdx, BbpValue); } } NicConfig2.word = pAd->EEPROMDefaultValue[1]; { if ((NicConfig2.word & 0x00ff) == 0xff) { NicConfig2.word &= 0xff00; } if ((NicConfig2.word >> 8) == 0xff) { NicConfig2.word &= 0x00ff; } } // Save the antenna for future use pAd->NicConfig2.word = NicConfig2.word; #ifdef RT30xx // set default antenna as main if (pAd->RfIcType == RFIC_3020) AsicSetRxAnt(pAd, pAd->RxAnt.Pair1PrimaryRxAnt); #endif // RT30xx // // // Send LED Setting to MCU. // if (pAd->LedCntl.word == 0xFF) { pAd->LedCntl.word = 0x01; pAd->Led1 = 0x5555; pAd->Led2 = 0x2221; #ifdef RTMP_MAC_PCI pAd->Led3 = 0xA9F8; #endif // RTMP_MAC_PCI // #ifdef RTMP_MAC_USB pAd->Led3 = 0x5627; #endif // RTMP_MAC_USB // } AsicSendCommandToMcu(pAd, 0x52, 0xff, (UCHAR)pAd->Led1, (UCHAR)(pAd->Led1 >> 8)); AsicSendCommandToMcu(pAd, 0x53, 0xff, (UCHAR)pAd->Led2, (UCHAR)(pAd->Led2 >> 8)); AsicSendCommandToMcu(pAd, 0x54, 0xff, (UCHAR)pAd->Led3, (UCHAR)(pAd->Led3 >> 8)); AsicSendCommandToMcu(pAd, 0x51, 0xff, 0, pAd->LedCntl.field.Polarity); pAd->LedIndicatorStrength = 0xFF; RTMPSetSignalLED(pAd, -100); // Force signal strength Led to be turned off, before link up { // Read Hardware controlled Radio state enable bit if (NicConfig2.field.HardwareRadioControl == 1) { pAd->StaCfg.bHardwareRadio = TRUE; // Read GPIO pin2 as Hardware controlled radio state RTMP_IO_READ32(pAd, GPIO_CTRL_CFG, &data); if ((data & 0x04) == 0) { pAd->StaCfg.bHwRadio = FALSE; pAd->StaCfg.bRadio = FALSE; // RTMP_IO_WRITE32(pAd, PWR_PIN_CFG, 0x00001818); RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_RADIO_OFF); } } else pAd->StaCfg.bHardwareRadio = FALSE; if (pAd->StaCfg.bRadio == FALSE) { RTMPSetLED(pAd, LED_RADIO_OFF); } else { RTMPSetLED(pAd, LED_RADIO_ON); #ifdef RTMP_MAC_PCI #ifdef RT3090 AsicSendCommandToMcu(pAd, 0x30, PowerRadioOffCID, 0xff, 0x02); AsicCheckCommanOk(pAd, PowerRadioOffCID); #endif // RT3090 // #ifndef RT3090 AsicSendCommandToMcu(pAd, 0x30, 0xff, 0xff, 0x02); #endif // RT3090 // AsicSendCommandToMcu(pAd, 0x31, PowerWakeCID, 0x00, 0x00); // 2-1. wait command ok. AsicCheckCommanOk(pAd, PowerWakeCID); #endif // RTMP_MAC_PCI // } } #ifdef RTMP_MAC_PCI #ifdef RT30xx if (IS_RT3090(pAd)|| IS_RT3572(pAd) || IS_RT3390(pAd)) { RTMP_CHIP_OP *pChipOps = &pAd->chipOps; if (pChipOps->AsicReverseRfFromSleepMode) pChipOps->AsicReverseRfFromSleepMode(pAd); } // 3090 MCU Wakeup command needs more time to be stable. // Before stable, don't issue other MCU command to prevent from firmware error. if ((IS_RT3090(pAd)|| IS_RT3572(pAd) || IS_RT3390(pAd)) && IS_VERSION_AFTER_F(pAd) && (pAd->StaCfg.PSControl.field.rt30xxPowerMode == 3) && (pAd->StaCfg.PSControl.field.EnableNewPS == TRUE)) { DBGPRINT(RT_DEBUG_TRACE,("%s::%d,release Mcu Lock\n",__FUNCTION__,__LINE__)); RTMP_SEM_LOCK(&pAd->McuCmdLock); pAd->brt30xxBanMcuCmd = FALSE; RTMP_SEM_UNLOCK(&pAd->McuCmdLock); } #endif // RT30xx // #endif // RTMP_MAC_PCI // // Turn off patching for cardbus controller if (NicConfig2.field.CardbusAcceleration == 1) { // pAd->bTest1 = TRUE; } if (NicConfig2.field.DynamicTxAgcControl == 1) pAd->bAutoTxAgcA = pAd->bAutoTxAgcG = TRUE; else pAd->bAutoTxAgcA = pAd->bAutoTxAgcG = FALSE; // // Since BBP has been progamed, to make sure BBP setting will be // upate inside of AsicAntennaSelect, so reset to UNKNOWN_BAND!! // pAd->CommonCfg.BandState = UNKNOWN_BAND; RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R3, &BBPR3); BBPR3 &= (~0x18); if(pAd->Antenna.field.RxPath == 3) { BBPR3 |= (0x10); } else if(pAd->Antenna.field.RxPath == 2) { BBPR3 |= (0x8); } else if(pAd->Antenna.field.RxPath == 1) { BBPR3 |= (0x0); } RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R3, BBPR3); { // Handle the difference when 1T RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R1, &BBPR1); if(pAd->Antenna.field.TxPath == 1) { BBPR1 &= (~0x18); } RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R1, BBPR1); DBGPRINT(RT_DEBUG_TRACE, ("Use Hw Radio Control Pin=%d; if used Pin=%d;\n", pAd->CommonCfg.bHardwareRadio, pAd->CommonCfg.bHardwareRadio)); } #ifdef RTMP_MAC_USB #ifdef RT30xx // update registers from EEPROM for RT3071 or later(3572/3592). if (IS_RT3090(pAd) || IS_RT3572(pAd) || IS_RT3390(pAd)) { UCHAR RegIdx, RegValue; USHORT value; // after RT3071, write BBP from EEPROM 0xF0 to 0x102 for (i = 0xF0; i <= 0x102; i = i+2) { value = 0xFFFF; RT28xx_EEPROM_READ16(pAd, i, value); if ((value != 0xFFFF) && (value != 0)) { RegIdx = (UCHAR)(value >> 8); RegValue = (UCHAR)(value & 0xff); RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, RegIdx, RegValue); DBGPRINT(RT_DEBUG_TRACE, ("Update BBP Registers from EEPROM(0x%0x), BBP(0x%x) = 0x%x\n", i, RegIdx, RegValue)); } } // after RT3071, write RF from EEPROM 0x104 to 0x116 for (i = 0x104; i <= 0x116; i = i+2) { value = 0xFFFF; RT28xx_EEPROM_READ16(pAd, i, value); if ((value != 0xFFFF) && (value != 0)) { RegIdx = (UCHAR)(value >> 8); RegValue = (UCHAR)(value & 0xff); RT30xxWriteRFRegister(pAd, RegIdx, RegValue); DBGPRINT(RT_DEBUG_TRACE, ("Update RF Registers from EEPROM0x%x), BBP(0x%x) = 0x%x\n", i, RegIdx, RegValue)); } } } #endif // RT30xx // #endif // RTMP_MAC_USB // DBGPRINT(RT_DEBUG_TRACE, ("TxPath = %d, RxPath = %d, RFIC=%d, Polar+LED mode=%x\n", pAd->Antenna.field.TxPath, pAd->Antenna.field.RxPath, pAd->RfIcType, pAd->LedCntl.word)); DBGPRINT(RT_DEBUG_TRACE, ("<-- NICInitAsicFromEEPROM\n")); } /* ======================================================================== Routine Description: Initialize NIC hardware Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: ======================================================================== */ NDIS_STATUS NICInitializeAdapter( IN PRTMP_ADAPTER pAd, IN BOOLEAN bHardReset) { NDIS_STATUS Status = NDIS_STATUS_SUCCESS; WPDMA_GLO_CFG_STRUC GloCfg; #ifdef RTMP_MAC_PCI UINT32 Value; DELAY_INT_CFG_STRUC IntCfg; #endif // RTMP_MAC_PCI // // INT_MASK_CSR_STRUC IntMask; ULONG i =0, j=0; AC_TXOP_CSR0_STRUC csr0; DBGPRINT(RT_DEBUG_TRACE, ("--> NICInitializeAdapter\n")); // 3. Set DMA global configuration except TX_DMA_EN and RX_DMA_EN bits: retry: i = 0; do { RTMP_IO_READ32(pAd, WPDMA_GLO_CFG, &GloCfg.word); if ((GloCfg.field.TxDMABusy == 0) && (GloCfg.field.RxDMABusy == 0)) break; RTMPusecDelay(1000); i++; }while ( i<100); DBGPRINT(RT_DEBUG_TRACE, ("<== DMA offset 0x208 = 0x%x\n", GloCfg.word)); GloCfg.word &= 0xff0; GloCfg.field.EnTXWriteBackDDONE =1; RTMP_IO_WRITE32(pAd, WPDMA_GLO_CFG, GloCfg.word); // Record HW Beacon offset pAd->BeaconOffset[0] = HW_BEACON_BASE0; pAd->BeaconOffset[1] = HW_BEACON_BASE1; pAd->BeaconOffset[2] = HW_BEACON_BASE2; pAd->BeaconOffset[3] = HW_BEACON_BASE3; pAd->BeaconOffset[4] = HW_BEACON_BASE4; pAd->BeaconOffset[5] = HW_BEACON_BASE5; pAd->BeaconOffset[6] = HW_BEACON_BASE6; pAd->BeaconOffset[7] = HW_BEACON_BASE7; // // write all shared Ring's base address into ASIC // // asic simulation sequence put this ahead before loading firmware. // pbf hardware reset #ifdef RTMP_MAC_PCI RTMP_IO_WRITE32(pAd, WPDMA_RST_IDX, 0x1003f); // 0x10000 for reset rx, 0x3f resets all 6 tx rings. RTMP_IO_WRITE32(pAd, PBF_SYS_CTRL, 0xe1f); RTMP_IO_WRITE32(pAd, PBF_SYS_CTRL, 0xe00); #endif // RTMP_MAC_PCI // // Initialze ASIC for TX & Rx operation if (NICInitializeAsic(pAd , bHardReset) != NDIS_STATUS_SUCCESS) { if (j++ == 0) { NICLoadFirmware(pAd); goto retry; } return NDIS_STATUS_FAILURE; } #ifdef RTMP_MAC_PCI // Write AC_BK base address register Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_AC_BK].Cell[0].AllocPa); RTMP_IO_WRITE32(pAd, TX_BASE_PTR1, Value); DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR1 : 0x%x\n", Value)); // Write AC_BE base address register Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_AC_BE].Cell[0].AllocPa); RTMP_IO_WRITE32(pAd, TX_BASE_PTR0, Value); DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR0 : 0x%x\n", Value)); // Write AC_VI base address register Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_AC_VI].Cell[0].AllocPa); RTMP_IO_WRITE32(pAd, TX_BASE_PTR2, Value); DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR2 : 0x%x\n", Value)); // Write AC_VO base address register Value = RTMP_GetPhysicalAddressLow(pAd->TxRing[QID_AC_VO].Cell[0].AllocPa); RTMP_IO_WRITE32(pAd, TX_BASE_PTR3, Value); DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR3 : 0x%x\n", Value)); // Write MGMT_BASE_CSR register Value = RTMP_GetPhysicalAddressLow(pAd->MgmtRing.Cell[0].AllocPa); RTMP_IO_WRITE32(pAd, TX_BASE_PTR5, Value); DBGPRINT(RT_DEBUG_TRACE, ("--> TX_BASE_PTR5 : 0x%x\n", Value)); // Write RX_BASE_CSR register Value = RTMP_GetPhysicalAddressLow(pAd->RxRing.Cell[0].AllocPa); RTMP_IO_WRITE32(pAd, RX_BASE_PTR, Value); DBGPRINT(RT_DEBUG_TRACE, ("--> RX_BASE_PTR : 0x%x\n", Value)); // Init RX Ring index pointer pAd->RxRing.RxSwReadIdx = 0; pAd->RxRing.RxCpuIdx = RX_RING_SIZE-1; RTMP_IO_WRITE32(pAd, RX_CRX_IDX, pAd->RxRing.RxCpuIdx); // Init TX rings index pointer { for (i=0; iTxRing[i].TxSwFreeIdx = 0; pAd->TxRing[i].TxCpuIdx = 0; RTMP_IO_WRITE32(pAd, (TX_CTX_IDX0 + i * 0x10) , pAd->TxRing[i].TxCpuIdx); } } // init MGMT ring index pointer pAd->MgmtRing.TxSwFreeIdx = 0; pAd->MgmtRing.TxCpuIdx = 0; RTMP_IO_WRITE32(pAd, TX_MGMTCTX_IDX, pAd->MgmtRing.TxCpuIdx); // // set each Ring's SIZE into ASIC. Descriptor Size is fixed by design. // // Write TX_RING_CSR0 register Value = TX_RING_SIZE; RTMP_IO_WRITE32(pAd, TX_MAX_CNT0, Value); RTMP_IO_WRITE32(pAd, TX_MAX_CNT1, Value); RTMP_IO_WRITE32(pAd, TX_MAX_CNT2, Value); RTMP_IO_WRITE32(pAd, TX_MAX_CNT3, Value); RTMP_IO_WRITE32(pAd, TX_MAX_CNT4, Value); Value = MGMT_RING_SIZE; RTMP_IO_WRITE32(pAd, TX_MGMTMAX_CNT, Value); // Write RX_RING_CSR register Value = RX_RING_SIZE; RTMP_IO_WRITE32(pAd, RX_MAX_CNT, Value); #endif // RTMP_MAC_PCI // // WMM parameter csr0.word = 0; RTMP_IO_WRITE32(pAd, WMM_TXOP0_CFG, csr0.word); if (pAd->CommonCfg.PhyMode == PHY_11B) { csr0.field.Ac0Txop = 192; // AC_VI: 192*32us ~= 6ms csr0.field.Ac1Txop = 96; // AC_VO: 96*32us ~= 3ms } else { csr0.field.Ac0Txop = 96; // AC_VI: 96*32us ~= 3ms csr0.field.Ac1Txop = 48; // AC_VO: 48*32us ~= 1.5ms } RTMP_IO_WRITE32(pAd, WMM_TXOP1_CFG, csr0.word); #ifdef RTMP_MAC_PCI // 3. Set DMA global configuration except TX_DMA_EN and RX_DMA_EN bits: i = 0; do { RTMP_IO_READ32(pAd, WPDMA_GLO_CFG, &GloCfg.word); if ((GloCfg.field.TxDMABusy == 0) && (GloCfg.field.RxDMABusy == 0)) break; RTMPusecDelay(1000); i++; }while ( i < 100); GloCfg.word &= 0xff0; GloCfg.field.EnTXWriteBackDDONE =1; RTMP_IO_WRITE32(pAd, WPDMA_GLO_CFG, GloCfg.word); IntCfg.word = 0; RTMP_IO_WRITE32(pAd, DELAY_INT_CFG, IntCfg.word); #endif // RTMP_MAC_PCI // // reset action // Load firmware // Status = NICLoadFirmware(pAd); DBGPRINT(RT_DEBUG_TRACE, ("<-- NICInitializeAdapter\n")); return Status; } /* ======================================================================== Routine Description: Initialize ASIC Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: ======================================================================== */ NDIS_STATUS NICInitializeAsic( IN PRTMP_ADAPTER pAd, IN BOOLEAN bHardReset) { ULONG Index = 0; UCHAR R0 = 0xff; UINT32 MacCsr12 = 0, Counter = 0; #ifdef RTMP_MAC_USB UINT32 MacCsr0 = 0; NTSTATUS Status; UCHAR Value = 0xff; #endif // RTMP_MAC_USB // #ifdef RT30xx UCHAR bbpreg=0; UCHAR RFValue=0; #endif // RT30xx // USHORT KeyIdx; INT i,apidx; DBGPRINT(RT_DEBUG_TRACE, ("--> NICInitializeAsic\n")); #ifdef RTMP_MAC_PCI RTMP_IO_WRITE32(pAd, PWR_PIN_CFG, 0x3); // To fix driver disable/enable hang issue when radio off if (bHardReset == TRUE) { RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x3); } else RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x1); RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x0); // Initialize MAC register to default value for (Index = 0; Index < NUM_MAC_REG_PARMS; Index++) { RTMP_IO_WRITE32(pAd, MACRegTable[Index].Register, MACRegTable[Index].Value); } { for (Index = 0; Index < NUM_STA_MAC_REG_PARMS; Index++) { RTMP_IO_WRITE32(pAd, STAMACRegTable[Index].Register, STAMACRegTable[Index].Value); } } #endif // RTMP_MAC_PCI // #ifdef RTMP_MAC_USB // // Make sure MAC gets ready after NICLoadFirmware(). // Index = 0; //To avoid hang-on issue when interface up in kernel 2.4, //we use a local variable "MacCsr0" instead of using "pAd->MACVersion" directly. do { RTMP_IO_READ32(pAd, MAC_CSR0, &MacCsr0); if ((MacCsr0 != 0x00) && (MacCsr0 != 0xFFFFFFFF)) break; RTMPusecDelay(10); } while (Index++ < 100); pAd->MACVersion = MacCsr0; DBGPRINT(RT_DEBUG_TRACE, ("MAC_CSR0 [ Ver:Rev=0x%08x]\n", pAd->MACVersion)); // turn on bit13 (set to zero) after rt2860D. This is to solve high-current issue. RTMP_IO_READ32(pAd, PBF_SYS_CTRL, &MacCsr12); MacCsr12 &= (~0x2000); RTMP_IO_WRITE32(pAd, PBF_SYS_CTRL, MacCsr12); RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x3); RTMP_IO_WRITE32(pAd, USB_DMA_CFG, 0x0); Status = RTUSBVenderReset(pAd); RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x0); // Initialize MAC register to default value for(Index=0; IndexMACVersion & 0xffff) < 0x0211) { if (pAd->NicConfig2.field.DACTestBit == 1) { RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x2C); // To fix throughput drop drastically } else { RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x0F); // To fix throughput drop drastically } } else { RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x0); } } else if (IS_RT3070(pAd)) { if (((pAd->MACVersion & 0xffff) < 0x0201)) { RTMP_IO_WRITE32(pAd, TX_SW_CFG1, 0); RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0x2C); // To fix throughput drop drastically } else { RTMP_IO_WRITE32(pAd, TX_SW_CFG2, 0); } } #endif // RT30xx // // // Before program BBP, we need to wait BBP/RF get wake up. // Index = 0; do { RTMP_IO_READ32(pAd, MAC_STATUS_CFG, &MacCsr12); if ((MacCsr12 & 0x03) == 0) // if BB.RF is stable break; DBGPRINT(RT_DEBUG_TRACE, ("Check MAC_STATUS_CFG = Busy = %x\n", MacCsr12)); RTMPusecDelay(1000); } while (Index++ < 100); // The commands to firmware should be after these commands, these commands will init firmware // PCI and USB are not the same because PCI driver needs to wait for PCI bus ready RTMP_IO_WRITE32(pAd, H2M_BBP_AGENT, 0); // initialize BBP R/W access agent RTMP_IO_WRITE32(pAd, H2M_MAILBOX_CSR, 0); #ifdef RT3090 //2008/11/28:KH add to fix the dead rf frequency offset bug<-- AsicSendCommandToMcu(pAd, 0x72, 0, 0, 0); //2008/11/28:KH add to fix the dead rf frequency offset bug--> #endif // RT3090 // RTMPusecDelay(1000); // Read BBP register, make sure BBP is up and running before write new data Index = 0; do { RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R0, &R0); DBGPRINT(RT_DEBUG_TRACE, ("BBP version = %x\n", R0)); } while ((++Index < 20) && ((R0 == 0xff) || (R0 == 0x00))); //ASSERT(Index < 20); //this will cause BSOD on Check-build driver if ((R0 == 0xff) || (R0 == 0x00)) return NDIS_STATUS_FAILURE; // Initialize BBP register to default value for (Index = 0; Index < NUM_BBP_REG_PARMS; Index++) { RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBPRegTable[Index].Register, BBPRegTable[Index].Value); } #ifdef RTMP_MAC_PCI // TODO: shiang, check MACVersion, currently, rbus-based chip use this. if (pAd->MACVersion == 0x28720200) { //UCHAR value; ULONG value2; //disable MLD by Bruce 20080704 //BBP_IO_READ8_BY_REG_ID(pAd, BBP_R105, &value); //BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R105, value | 4); //Maximum PSDU length from 16K to 32K bytes RTMP_IO_READ32(pAd, MAX_LEN_CFG, &value2); value2 &= ~(0x3<<12); value2 |= (0x2<<12); RTMP_IO_WRITE32(pAd, MAX_LEN_CFG, value2); } #endif // RTMP_MAC_PCI // // for rt2860E and after, init BBP_R84 with 0x19. This is for extension channel overlapping IOT. // RT3090 should not program BBP R84 to 0x19, otherwise TX will block. //3070/71/72,3090,3090A( are included in RT30xx),3572,3390 if (((pAd->MACVersion & 0xffff) != 0x0101) && !(IS_RT30xx(pAd)|| IS_RT3572(pAd) || IS_RT3390(pAd))) RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R84, 0x19); #ifdef RT30xx // add by johnli, RF power sequence setup if (IS_RT30xx(pAd) || IS_RT3572(pAd) || IS_RT3390(pAd)) { //update for RT3070/71/72/90/91/92,3572,3390. RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R79, 0x13); RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R80, 0x05); RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R81, 0x33); } if (IS_RT3090(pAd)||IS_RT3390(pAd)) // RT309x, RT3071/72 { // enable DC filter if ((pAd->MACVersion & 0xffff) >= 0x0211) { RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R103, 0xc0); } // improve power consumption RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R138, &bbpreg); if (pAd->Antenna.field.TxPath == 1) { // turn off tx DAC_1 bbpreg = (bbpreg | 0x20); } if (pAd->Antenna.field.RxPath == 1) { // turn off tx ADC_1 bbpreg &= (~0x2); } RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R138, bbpreg); // improve power consumption in RT3071 Ver.E if ((pAd->MACVersion & 0xffff) >= 0x0211) { RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R31, &bbpreg); bbpreg &= (~0x3); RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R31, bbpreg); } } else if (IS_RT3070(pAd)) { if ((pAd->MACVersion & 0xffff) >= 0x0201) { // enable DC filter RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R103, 0xc0); // improve power consumption in RT3070 Ver.F RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R31, &bbpreg); bbpreg &= (~0x3); RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R31, bbpreg); } // TX_LO1_en, RF R17 register Bit 3 to 0 RT30xxReadRFRegister(pAd, RF_R17, &RFValue); RFValue &= (~0x08); // to fix rx long range issue if (pAd->NicConfig2.field.ExternalLNAForG == 0) { RFValue |= 0x20; } // set RF_R17_bit[2:0] equal to EEPROM setting at 0x48h if (pAd->TxMixerGain24G >= 1) { RFValue &= (~0x7); // clean bit [2:0] RFValue |= pAd->TxMixerGain24G; } RT30xxWriteRFRegister(pAd, RF_R17, RFValue); } // end johnli #endif // RT30xx // if (pAd->MACVersion == 0x28600100) { RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R69, 0x16); RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R73, 0x12); } if (pAd->MACVersion >= RALINK_2880E_VERSION && pAd->MACVersion < RALINK_3070_VERSION) // 3*3 { // enlarge MAX_LEN_CFG UINT32 csr; RTMP_IO_READ32(pAd, MAX_LEN_CFG, &csr); csr &= 0xFFF; csr |= 0x2000; RTMP_IO_WRITE32(pAd, MAX_LEN_CFG, csr); } #ifdef RTMP_MAC_USB { UCHAR MAC_Value[]={0xff,0xff,0xff,0xff,0xff,0xff,0xff,0,0}; //Initialize WCID table Value = 0xff; for(Index =0 ;Index < 254;Index++) { RTUSBMultiWrite(pAd, (USHORT)(MAC_WCID_BASE + Index * 8), MAC_Value, 8); } } #endif // RTMP_MAC_USB // // Add radio off control { if (pAd->StaCfg.bRadio == FALSE) { // RTMP_IO_WRITE32(pAd, PWR_PIN_CFG, 0x00001818); RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_RADIO_OFF); DBGPRINT(RT_DEBUG_TRACE, ("Set Radio Off\n")); } } // Clear raw counters RTMP_IO_READ32(pAd, RX_STA_CNT0, &Counter); RTMP_IO_READ32(pAd, RX_STA_CNT1, &Counter); RTMP_IO_READ32(pAd, RX_STA_CNT2, &Counter); RTMP_IO_READ32(pAd, TX_STA_CNT0, &Counter); RTMP_IO_READ32(pAd, TX_STA_CNT1, &Counter); RTMP_IO_READ32(pAd, TX_STA_CNT2, &Counter); // ASIC will keep garbage value after boot // Clear all shared key table when initial // This routine can be ignored in radio-ON/OFF operation. if (bHardReset) { for (KeyIdx = 0; KeyIdx < 4; KeyIdx++) { RTMP_IO_WRITE32(pAd, SHARED_KEY_MODE_BASE + 4*KeyIdx, 0); } // Clear all pairwise key table when initial for (KeyIdx = 0; KeyIdx < 256; KeyIdx++) { RTMP_IO_WRITE32(pAd, MAC_WCID_ATTRIBUTE_BASE + (KeyIdx * HW_WCID_ATTRI_SIZE), 1); } } // assert HOST ready bit // RTMP_IO_WRITE32(pAd, MAC_CSR1, 0x0); // 2004-09-14 asked by Mark // RTMP_IO_WRITE32(pAd, MAC_CSR1, 0x4); // It isn't necessary to clear this space when not hard reset. if (bHardReset == TRUE) { // clear all on-chip BEACON frame space for (apidx = 0; apidx < HW_BEACON_MAX_COUNT; apidx++) { for (i = 0; i < HW_BEACON_OFFSET>>2; i+=4) RTMP_IO_WRITE32(pAd, pAd->BeaconOffset[apidx] + i, 0x00); } } #ifdef RTMP_MAC_USB AsicDisableSync(pAd); // Clear raw counters RTMP_IO_READ32(pAd, RX_STA_CNT0, &Counter); RTMP_IO_READ32(pAd, RX_STA_CNT1, &Counter); RTMP_IO_READ32(pAd, RX_STA_CNT2, &Counter); RTMP_IO_READ32(pAd, TX_STA_CNT0, &Counter); RTMP_IO_READ32(pAd, TX_STA_CNT1, &Counter); RTMP_IO_READ32(pAd, TX_STA_CNT2, &Counter); // Default PCI clock cycle per ms is different as default setting, which is based on PCI. RTMP_IO_READ32(pAd, USB_CYC_CFG, &Counter); Counter&=0xffffff00; Counter|=0x000001e; RTMP_IO_WRITE32(pAd, USB_CYC_CFG, Counter); #endif // RTMP_MAC_USB // { // for rt2860E and after, init TXOP_CTRL_CFG with 0x583f. This is for extension channel overlapping IOT. if ((pAd->MACVersion&0xffff) != 0x0101) RTMP_IO_WRITE32(pAd, TXOP_CTRL_CFG, 0x583f); } DBGPRINT(RT_DEBUG_TRACE, ("<-- NICInitializeAsic\n")); return NDIS_STATUS_SUCCESS; } /* ======================================================================== Routine Description: Reset NIC Asics Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: Reset NIC to initial state AS IS system boot up time. ======================================================================== */ VOID NICIssueReset( IN PRTMP_ADAPTER pAd) { UINT32 Value = 0; DBGPRINT(RT_DEBUG_TRACE, ("--> NICIssueReset\n")); // Abort Tx, prevent ASIC from writing to Host memory //RTMP_IO_WRITE32(pAd, TX_CNTL_CSR, 0x001f0000); // Disable Rx, register value supposed will remain after reset RTMP_IO_READ32(pAd, MAC_SYS_CTRL, &Value); Value &= (0xfffffff3); RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, Value); // Issue reset and clear from reset state RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x03); // 2004-09-17 change from 0x01 RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x00); DBGPRINT(RT_DEBUG_TRACE, ("<-- NICIssueReset\n")); } /* ======================================================================== Routine Description: Check ASIC registers and find any reason the system might hang Arguments: Adapter Pointer to our adapter Return Value: None IRQL = DISPATCH_LEVEL ======================================================================== */ BOOLEAN NICCheckForHang( IN PRTMP_ADAPTER pAd) { return (FALSE); } VOID NICUpdateFifoStaCounters( IN PRTMP_ADAPTER pAd) { TX_STA_FIFO_STRUC StaFifo; MAC_TABLE_ENTRY *pEntry; UCHAR i = 0; UCHAR pid = 0, wcid = 0; CHAR reTry; UCHAR succMCS; do { RTMP_IO_READ32(pAd, TX_STA_FIFO, &StaFifo.word); if (StaFifo.field.bValid == 0) break; wcid = (UCHAR)StaFifo.field.wcid; /* ignore NoACK and MGMT frame use 0xFF as WCID */ if ((StaFifo.field.TxAckRequired == 0) || (wcid >= MAX_LEN_OF_MAC_TABLE)) { i++; continue; } /* PID store Tx MCS Rate */ pid = (UCHAR)StaFifo.field.PidType; pEntry = &pAd->MacTab.Content[wcid]; pEntry->DebugFIFOCount++; if (StaFifo.field.TxBF) // 3*3 pEntry->TxBFCount++; if (!StaFifo.field.TxSuccess) { pEntry->FIFOCount++; pEntry->OneSecTxFailCount++; if (pEntry->FIFOCount >= 1) { DBGPRINT(RT_DEBUG_TRACE, ("#")); pEntry->NoBADataCountDown = 64; if(pEntry->PsMode == PWR_ACTIVE) { int tid; for (tid=0; tidAid, tid, FALSE, FALSE); } // Update the continuous transmission counter except PS mode pEntry->ContinueTxFailCnt++; } else { // Clear the FIFOCount when sta in Power Save mode. Basically we assume // this tx error happened due to sta just go to sleep. pEntry->FIFOCount = 0; pEntry->ContinueTxFailCnt = 0; } //pEntry->FIFOCount = 0; } //pEntry->bSendBAR = TRUE; } else { if ((pEntry->PsMode != PWR_SAVE) && (pEntry->NoBADataCountDown > 0)) { pEntry->NoBADataCountDown--; if (pEntry->NoBADataCountDown==0) { DBGPRINT(RT_DEBUG_TRACE, ("@\n")); } } pEntry->FIFOCount = 0; pEntry->OneSecTxNoRetryOkCount++; // update NoDataIdleCount when sucessful send packet to STA. pEntry->NoDataIdleCount = 0; pEntry->ContinueTxFailCnt = 0; } succMCS = StaFifo.field.SuccessRate & 0x7F; reTry = pid - succMCS; if (StaFifo.field.TxSuccess) { pEntry->TXMCSExpected[pid]++; if (pid == succMCS) { pEntry->TXMCSSuccessful[pid]++; } else { pEntry->TXMCSAutoFallBack[pid][succMCS]++; } } else { pEntry->TXMCSFailed[pid]++; } if (reTry > 0) { if ((pid >= 12) && succMCS <=7) { reTry -= 4; } pEntry->OneSecTxRetryOkCount += reTry; } i++; // ASIC store 16 stack } while ( i < (2*TX_RING_SIZE) ); } /* ======================================================================== Routine Description: Read statistical counters from hardware registers and record them in software variables for later on query Arguments: pAd Pointer to our adapter Return Value: None IRQL = DISPATCH_LEVEL ======================================================================== */ VOID NICUpdateRawCounters( IN PRTMP_ADAPTER pAd) { UINT32 OldValue;//, Value2; //ULONG PageSum, OneSecTransmitCount; //ULONG TxErrorRatio, Retry, Fail; RX_STA_CNT0_STRUC RxStaCnt0; RX_STA_CNT1_STRUC RxStaCnt1; RX_STA_CNT2_STRUC RxStaCnt2; TX_STA_CNT0_STRUC TxStaCnt0; TX_STA_CNT1_STRUC StaTx1; TX_STA_CNT2_STRUC StaTx2; TX_AGG_CNT_STRUC TxAggCnt; TX_AGG_CNT0_STRUC TxAggCnt0; TX_AGG_CNT1_STRUC TxAggCnt1; TX_AGG_CNT2_STRUC TxAggCnt2; TX_AGG_CNT3_STRUC TxAggCnt3; TX_AGG_CNT4_STRUC TxAggCnt4; TX_AGG_CNT5_STRUC TxAggCnt5; TX_AGG_CNT6_STRUC TxAggCnt6; TX_AGG_CNT7_STRUC TxAggCnt7; COUNTER_RALINK *pRalinkCounters; pRalinkCounters = &pAd->RalinkCounters; RTMP_IO_READ32(pAd, RX_STA_CNT0, &RxStaCnt0.word); RTMP_IO_READ32(pAd, RX_STA_CNT2, &RxStaCnt2.word); { RTMP_IO_READ32(pAd, RX_STA_CNT1, &RxStaCnt1.word); // Update RX PLCP error counter pAd->PrivateInfo.PhyRxErrCnt += RxStaCnt1.field.PlcpErr; // Update False CCA counter pAd->RalinkCounters.OneSecFalseCCACnt += RxStaCnt1.field.FalseCca; } // Update FCS counters OldValue= pAd->WlanCounters.FCSErrorCount.u.LowPart; pAd->WlanCounters.FCSErrorCount.u.LowPart += (RxStaCnt0.field.CrcErr); // >> 7); if (pAd->WlanCounters.FCSErrorCount.u.LowPart < OldValue) pAd->WlanCounters.FCSErrorCount.u.HighPart++; // Add FCS error count to private counters pRalinkCounters->OneSecRxFcsErrCnt += RxStaCnt0.field.CrcErr; OldValue = pRalinkCounters->RealFcsErrCount.u.LowPart; pRalinkCounters->RealFcsErrCount.u.LowPart += RxStaCnt0.field.CrcErr; if (pRalinkCounters->RealFcsErrCount.u.LowPart < OldValue) pRalinkCounters->RealFcsErrCount.u.HighPart++; // Update Duplicate Rcv check pRalinkCounters->DuplicateRcv += RxStaCnt2.field.RxDupliCount; pAd->WlanCounters.FrameDuplicateCount.u.LowPart += RxStaCnt2.field.RxDupliCount; // Update RX Overflow counter pAd->Counters8023.RxNoBuffer += (RxStaCnt2.field.RxFifoOverflowCount); //pAd->RalinkCounters.RxCount = 0; #ifdef RTMP_MAC_USB if (pRalinkCounters->RxCount != pAd->watchDogRxCnt) { pAd->watchDogRxCnt = pRalinkCounters->RxCount; pAd->watchDogRxOverFlowCnt = 0; } else { if (RxStaCnt2.field.RxFifoOverflowCount) pAd->watchDogRxOverFlowCnt++; else pAd->watchDogRxOverFlowCnt = 0; } #endif // RTMP_MAC_USB // //if (!OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_TX_RATE_SWITCH_ENABLED) || // (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_TX_RATE_SWITCH_ENABLED) && (pAd->MacTab.Size != 1))) if (!pAd->bUpdateBcnCntDone) { // Update BEACON sent count RTMP_IO_READ32(pAd, TX_STA_CNT0, &TxStaCnt0.word); RTMP_IO_READ32(pAd, TX_STA_CNT1, &StaTx1.word); RTMP_IO_READ32(pAd, TX_STA_CNT2, &StaTx2.word); pRalinkCounters->OneSecBeaconSentCnt += TxStaCnt0.field.TxBeaconCount; pRalinkCounters->OneSecTxRetryOkCount += StaTx1.field.TxRetransmit; pRalinkCounters->OneSecTxNoRetryOkCount += StaTx1.field.TxSuccess; pRalinkCounters->OneSecTxFailCount += TxStaCnt0.field.TxFailCount; pAd->WlanCounters.TransmittedFragmentCount.u.LowPart += StaTx1.field.TxSuccess; pAd->WlanCounters.RetryCount.u.LowPart += StaTx1.field.TxRetransmit; pAd->WlanCounters.FailedCount.u.LowPart += TxStaCnt0.field.TxFailCount; } //if (pAd->bStaFifoTest == TRUE) { RTMP_IO_READ32(pAd, TX_AGG_CNT, &TxAggCnt.word); RTMP_IO_READ32(pAd, TX_AGG_CNT0, &TxAggCnt0.word); RTMP_IO_READ32(pAd, TX_AGG_CNT1, &TxAggCnt1.word); RTMP_IO_READ32(pAd, TX_AGG_CNT2, &TxAggCnt2.word); RTMP_IO_READ32(pAd, TX_AGG_CNT3, &TxAggCnt3.word); RTMP_IO_READ32(pAd, TX_AGG_CNT4, &TxAggCnt4.word); RTMP_IO_READ32(pAd, TX_AGG_CNT5, &TxAggCnt5.word); RTMP_IO_READ32(pAd, TX_AGG_CNT6, &TxAggCnt6.word); RTMP_IO_READ32(pAd, TX_AGG_CNT7, &TxAggCnt7.word); pRalinkCounters->TxAggCount += TxAggCnt.field.AggTxCount; pRalinkCounters->TxNonAggCount += TxAggCnt.field.NonAggTxCount; pRalinkCounters->TxAgg1MPDUCount += TxAggCnt0.field.AggSize1Count; pRalinkCounters->TxAgg2MPDUCount += TxAggCnt0.field.AggSize2Count; pRalinkCounters->TxAgg3MPDUCount += TxAggCnt1.field.AggSize3Count; pRalinkCounters->TxAgg4MPDUCount += TxAggCnt1.field.AggSize4Count; pRalinkCounters->TxAgg5MPDUCount += TxAggCnt2.field.AggSize5Count; pRalinkCounters->TxAgg6MPDUCount += TxAggCnt2.field.AggSize6Count; pRalinkCounters->TxAgg7MPDUCount += TxAggCnt3.field.AggSize7Count; pRalinkCounters->TxAgg8MPDUCount += TxAggCnt3.field.AggSize8Count; pRalinkCounters->TxAgg9MPDUCount += TxAggCnt4.field.AggSize9Count; pRalinkCounters->TxAgg10MPDUCount += TxAggCnt4.field.AggSize10Count; pRalinkCounters->TxAgg11MPDUCount += TxAggCnt5.field.AggSize11Count; pRalinkCounters->TxAgg12MPDUCount += TxAggCnt5.field.AggSize12Count; pRalinkCounters->TxAgg13MPDUCount += TxAggCnt6.field.AggSize13Count; pRalinkCounters->TxAgg14MPDUCount += TxAggCnt6.field.AggSize14Count; pRalinkCounters->TxAgg15MPDUCount += TxAggCnt7.field.AggSize15Count; pRalinkCounters->TxAgg16MPDUCount += TxAggCnt7.field.AggSize16Count; // Calculate the transmitted A-MPDU count pRalinkCounters->TransmittedAMPDUCount.u.LowPart += TxAggCnt0.field.AggSize1Count; pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt0.field.AggSize2Count / 2); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt1.field.AggSize3Count / 3); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt1.field.AggSize4Count / 4); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt2.field.AggSize5Count / 5); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt2.field.AggSize6Count / 6); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt3.field.AggSize7Count / 7); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt3.field.AggSize8Count / 8); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt4.field.AggSize9Count / 9); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt4.field.AggSize10Count / 10); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt5.field.AggSize11Count / 11); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt5.field.AggSize12Count / 12); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt6.field.AggSize13Count / 13); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt6.field.AggSize14Count / 14); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt7.field.AggSize15Count / 15); pRalinkCounters->TransmittedAMPDUCount.u.LowPart += (TxAggCnt7.field.AggSize16Count / 16); } } /* ======================================================================== Routine Description: Reset NIC from error Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: Reset NIC from error state ======================================================================== */ VOID NICResetFromError( IN PRTMP_ADAPTER pAd) { // Reset BBP (according to alex, reset ASIC will force reset BBP // Therefore, skip the reset BBP // RTMP_IO_WRITE32(pAd, MAC_CSR1, 0x2); RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x1); // Remove ASIC from reset state RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0x0); NICInitializeAdapter(pAd, FALSE); NICInitAsicFromEEPROM(pAd); // Switch to current channel, since during reset process, the connection should remains on. AsicSwitchChannel(pAd, pAd->CommonCfg.CentralChannel, FALSE); AsicLockChannel(pAd, pAd->CommonCfg.CentralChannel); } NDIS_STATUS NICLoadFirmware( IN PRTMP_ADAPTER pAd) { NDIS_STATUS status = NDIS_STATUS_SUCCESS; if (pAd->chipOps.loadFirmware) status = pAd->chipOps.loadFirmware(pAd); return status; } /* ======================================================================== Routine Description: erase 8051 firmware image in MAC ASIC Arguments: Adapter Pointer to our adapter IRQL = PASSIVE_LEVEL ======================================================================== */ VOID NICEraseFirmware( IN PRTMP_ADAPTER pAd) { if (pAd->chipOps.eraseFirmware) pAd->chipOps.eraseFirmware(pAd); }/* End of NICEraseFirmware */ /* ======================================================================== Routine Description: Load Tx rate switching parameters Arguments: Adapter Pointer to our adapter Return Value: NDIS_STATUS_SUCCESS firmware image load ok NDIS_STATUS_FAILURE image not found IRQL = PASSIVE_LEVEL Rate Table Format: 1. (B0: Valid Item number) (B1:Initial item from zero) 2. Item Number(Dec) Mode(Hex) Current MCS(Dec) TrainUp(Dec) TrainDown(Dec) ======================================================================== */ NDIS_STATUS NICLoadRateSwitchingParams( IN PRTMP_ADAPTER pAd) { return NDIS_STATUS_SUCCESS; } /* ======================================================================== Routine Description: Compare two memory block Arguments: pSrc1 Pointer to first memory address pSrc2 Pointer to second memory address Return Value: 0: memory is equal 1: pSrc1 memory is larger 2: pSrc2 memory is larger IRQL = DISPATCH_LEVEL Note: ======================================================================== */ ULONG RTMPCompareMemory( IN PVOID pSrc1, IN PVOID pSrc2, IN ULONG Length) { PUCHAR pMem1; PUCHAR pMem2; ULONG Index = 0; pMem1 = (PUCHAR) pSrc1; pMem2 = (PUCHAR) pSrc2; for (Index = 0; Index < Length; Index++) { if (pMem1[Index] > pMem2[Index]) return (1); else if (pMem1[Index] < pMem2[Index]) return (2); } // Equal return (0); } /* ======================================================================== Routine Description: Zero out memory block Arguments: pSrc1 Pointer to memory address Length Size Return Value: None IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL Note: ======================================================================== */ VOID RTMPZeroMemory( IN PVOID pSrc, IN ULONG Length) { PUCHAR pMem; ULONG Index = 0; pMem = (PUCHAR) pSrc; for (Index = 0; Index < Length; Index++) { pMem[Index] = 0x00; } } /* ======================================================================== Routine Description: Copy data from memory block 1 to memory block 2 Arguments: pDest Pointer to destination memory address pSrc Pointer to source memory address Length Copy size Return Value: None IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL Note: ======================================================================== */ VOID RTMPMoveMemory( OUT PVOID pDest, IN PVOID pSrc, IN ULONG Length) { PUCHAR pMem1; PUCHAR pMem2; UINT Index; ASSERT((Length==0) || (pDest && pSrc)); pMem1 = (PUCHAR) pDest; pMem2 = (PUCHAR) pSrc; for (Index = 0; Index < Length; Index++) { pMem1[Index] = pMem2[Index]; } } /* ======================================================================== Routine Description: Initialize port configuration structure Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL Note: ======================================================================== */ VOID UserCfgInit( IN PRTMP_ADAPTER pAd) { UINT key_index, bss_index; DBGPRINT(RT_DEBUG_TRACE, ("--> UserCfgInit\n")); // // part I. intialize common configuration // #ifdef RTMP_MAC_USB pAd->BulkOutReq = 0; pAd->BulkOutComplete = 0; pAd->BulkOutCompleteOther = 0; pAd->BulkOutCompleteCancel = 0; pAd->BulkInReq = 0; pAd->BulkInComplete = 0; pAd->BulkInCompleteFail = 0; //pAd->QuickTimerP = 100; //pAd->TurnAggrBulkInCount = 0; pAd->bUsbTxBulkAggre = 0; // init as unsed value to ensure driver will set to MCU once. pAd->LedIndicatorStrength = 0xFF; pAd->CommonCfg.MaxPktOneTxBulk = 2; pAd->CommonCfg.TxBulkFactor = 1; pAd->CommonCfg.RxBulkFactor =1; pAd->CommonCfg.TxPower = 100; //mW NdisZeroMemory(&pAd->CommonCfg.IOTestParm, sizeof(pAd->CommonCfg.IOTestParm)); #endif // RTMP_MAC_USB // for(key_index=0; key_indexSharedKey[bss_index][key_index].KeyLen = 0; pAd->SharedKey[bss_index][key_index].CipherAlg = CIPHER_NONE; } } pAd->EepromAccess = FALSE; pAd->Antenna.word = 0; pAd->CommonCfg.BBPCurrentBW = BW_20; pAd->LedCntl.word = 0; #ifdef RTMP_MAC_PCI pAd->LedIndicatorStrength = 0; pAd->RLnkCtrlOffset = 0; pAd->HostLnkCtrlOffset = 0; pAd->StaCfg.PSControl.field.EnableNewPS=TRUE; pAd->CheckDmaBusyCount = 0; #endif // RTMP_MAC_PCI // pAd->bAutoTxAgcA = FALSE; // Default is OFF pAd->bAutoTxAgcG = FALSE; // Default is OFF pAd->RfIcType = RFIC_2820; // Init timer for reset complete event pAd->CommonCfg.CentralChannel = 1; pAd->bForcePrintTX = FALSE; pAd->bForcePrintRX = FALSE; pAd->bStaFifoTest = FALSE; pAd->bProtectionTest = FALSE; pAd->CommonCfg.Dsifs = 10; // in units of usec pAd->CommonCfg.TxPower = 100; //mW pAd->CommonCfg.TxPowerPercentage = 0xffffffff; // AUTO pAd->CommonCfg.TxPowerDefault = 0xffffffff; // AUTO pAd->CommonCfg.TxPreamble = Rt802_11PreambleAuto; // use Long preamble on TX by defaut pAd->CommonCfg.bUseZeroToDisableFragment = FALSE; pAd->CommonCfg.RtsThreshold = 2347; pAd->CommonCfg.FragmentThreshold = 2346; pAd->CommonCfg.UseBGProtection = 0; // 0: AUTO pAd->CommonCfg.bEnableTxBurst = TRUE; //0; pAd->CommonCfg.PhyMode = 0xff; // unknown pAd->CommonCfg.BandState = UNKNOWN_BAND; pAd->CommonCfg.RadarDetect.CSPeriod = 10; pAd->CommonCfg.RadarDetect.CSCount = 0; pAd->CommonCfg.RadarDetect.RDMode = RD_NORMAL_MODE; pAd->CommonCfg.RadarDetect.ChMovingTime = 65; pAd->CommonCfg.RadarDetect.LongPulseRadarTh = 3; pAd->CommonCfg.bAPSDCapable = FALSE; pAd->CommonCfg.bNeedSendTriggerFrame = FALSE; pAd->CommonCfg.TriggerTimerCount = 0; pAd->CommonCfg.bAPSDForcePowerSave = FALSE; pAd->CommonCfg.bCountryFlag = FALSE; pAd->CommonCfg.TxStream = 0; pAd->CommonCfg.RxStream = 0; NdisZeroMemory(&pAd->BeaconTxWI, sizeof(pAd->BeaconTxWI)); NdisZeroMemory(&pAd->CommonCfg.HtCapability, sizeof(pAd->CommonCfg.HtCapability)); pAd->HTCEnable = FALSE; pAd->bBroadComHT = FALSE; pAd->CommonCfg.bRdg = FALSE; NdisZeroMemory(&pAd->CommonCfg.AddHTInfo, sizeof(pAd->CommonCfg.AddHTInfo)); pAd->CommonCfg.BACapability.field.MMPSmode = MMPS_ENABLE; pAd->CommonCfg.BACapability.field.MpduDensity = 0; pAd->CommonCfg.BACapability.field.Policy = IMMED_BA; pAd->CommonCfg.BACapability.field.RxBAWinLimit = 64; //32; pAd->CommonCfg.BACapability.field.TxBAWinLimit = 64; //32; DBGPRINT(RT_DEBUG_TRACE, ("--> UserCfgInit. BACapability = 0x%x\n", pAd->CommonCfg.BACapability.word)); pAd->CommonCfg.BACapability.field.AutoBA = FALSE; BATableInit(pAd, &pAd->BATable); pAd->CommonCfg.bExtChannelSwitchAnnouncement = 1; pAd->CommonCfg.bHTProtect = 1; pAd->CommonCfg.bMIMOPSEnable = TRUE; //2008/11/05:KH add to support Antenna power-saving of AP<-- pAd->CommonCfg.bGreenAPEnable=FALSE; //2008/11/05:KH add to support Antenna power-saving of AP--> pAd->CommonCfg.bBADecline = FALSE; pAd->CommonCfg.bDisableReordering = FALSE; if (pAd->MACVersion == 0x28720200) { pAd->CommonCfg.TxBASize = 13; //by Jerry recommend }else{ pAd->CommonCfg.TxBASize = 7; } pAd->CommonCfg.REGBACapability.word = pAd->CommonCfg.BACapability.word; //pAd->CommonCfg.HTPhyMode.field.BW = BW_20; //pAd->CommonCfg.HTPhyMode.field.MCS = MCS_AUTO; //pAd->CommonCfg.HTPhyMode.field.ShortGI = GI_800; //pAd->CommonCfg.HTPhyMode.field.STBC = STBC_NONE; pAd->CommonCfg.TxRate = RATE_6; pAd->CommonCfg.MlmeTransmit.field.MCS = MCS_RATE_6; pAd->CommonCfg.MlmeTransmit.field.BW = BW_20; pAd->CommonCfg.MlmeTransmit.field.MODE = MODE_OFDM; pAd->CommonCfg.BeaconPeriod = 100; // in mSec // // part II. intialize STA specific configuration // { RX_FILTER_SET_FLAG(pAd, fRX_FILTER_ACCEPT_DIRECT); RX_FILTER_CLEAR_FLAG(pAd, fRX_FILTER_ACCEPT_MULTICAST); RX_FILTER_SET_FLAG(pAd, fRX_FILTER_ACCEPT_BROADCAST); RX_FILTER_SET_FLAG(pAd, fRX_FILTER_ACCEPT_ALL_MULTICAST); pAd->StaCfg.Psm = PWR_ACTIVE; pAd->StaCfg.OrigWepStatus = Ndis802_11EncryptionDisabled; pAd->StaCfg.PairCipher = Ndis802_11EncryptionDisabled; pAd->StaCfg.GroupCipher = Ndis802_11EncryptionDisabled; pAd->StaCfg.bMixCipher = FALSE; pAd->StaCfg.DefaultKeyId = 0; // 802.1x port control pAd->StaCfg.PrivacyFilter = Ndis802_11PrivFilter8021xWEP; pAd->StaCfg.PortSecured = WPA_802_1X_PORT_NOT_SECURED; pAd->StaCfg.LastMicErrorTime = 0; pAd->StaCfg.MicErrCnt = 0; pAd->StaCfg.bBlockAssoc = FALSE; pAd->StaCfg.WpaState = SS_NOTUSE; pAd->CommonCfg.NdisRadioStateOff = FALSE; // New to support microsoft disable radio with OID command pAd->StaCfg.RssiTrigger = 0; NdisZeroMemory(&pAd->StaCfg.RssiSample, sizeof(RSSI_SAMPLE)); pAd->StaCfg.RssiTriggerMode = RSSI_TRIGGERED_UPON_BELOW_THRESHOLD; pAd->StaCfg.AtimWin = 0; pAd->StaCfg.DefaultListenCount = 3;//default listen count; pAd->StaCfg.BssType = BSS_INFRA; // BSS_INFRA or BSS_ADHOC or BSS_MONITOR pAd->StaCfg.bScanReqIsFromWebUI = FALSE; OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_DOZE); OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_WAKEUP_NOW); pAd->StaCfg.bAutoTxRateSwitch = TRUE; pAd->StaCfg.DesiredTransmitSetting.field.MCS = MCS_AUTO; } #ifdef PCIE_PS_SUPPORT pAd->brt30xxBanMcuCmd = FALSE; pAd->b3090ESpecialChip = FALSE; //KH Debug:the following must be removed pAd->StaCfg.PSControl.field.rt30xxPowerMode=3; pAd->StaCfg.PSControl.field.rt30xxForceASPMTest=0; pAd->StaCfg.PSControl.field.rt30xxFollowHostASPM=1; #endif // PCIE_PS_SUPPORT // // global variables mXXXX used in MAC protocol state machines OPSTATUS_SET_FLAG(pAd, fOP_STATUS_RECEIVE_DTIM); OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_ADHOC_ON); OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_INFRA_ON); // PHY specification pAd->CommonCfg.PhyMode = PHY_11BG_MIXED; // default PHY mode OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED); // CCK use LONG preamble { // user desired power mode pAd->StaCfg.WindowsPowerMode = Ndis802_11PowerModeCAM; pAd->StaCfg.WindowsBatteryPowerMode = Ndis802_11PowerModeCAM; pAd->StaCfg.bWindowsACCAMEnable = FALSE; RTMPInitTimer(pAd, &pAd->StaCfg.StaQuickResponeForRateUpTimer, GET_TIMER_FUNCTION(StaQuickResponeForRateUpExec), pAd, FALSE); pAd->StaCfg.StaQuickResponeForRateUpTimerRunning = FALSE; // Patch for Ndtest pAd->StaCfg.ScanCnt = 0; pAd->StaCfg.bHwRadio = TRUE; // Default Hardware Radio status is On pAd->StaCfg.bSwRadio = TRUE; // Default Software Radio status is On pAd->StaCfg.bRadio = TRUE; // bHwRadio && bSwRadio pAd->StaCfg.bHardwareRadio = FALSE; // Default is OFF pAd->StaCfg.bShowHiddenSSID = FALSE; // Default no show // Nitro mode control pAd->StaCfg.bAutoReconnect = TRUE; // Save the init time as last scan time, the system should do scan after 2 seconds. // This patch is for driver wake up from standby mode, system will do scan right away. NdisGetSystemUpTime(&pAd->StaCfg.LastScanTime); if (pAd->StaCfg.LastScanTime > 10 * OS_HZ) pAd->StaCfg.LastScanTime -= (10 * OS_HZ); NdisZeroMemory(pAd->nickname, IW_ESSID_MAX_SIZE+1); #ifdef RTMP_MAC_PCI sprintf((PSTRING) pAd->nickname, "RT2860STA"); #endif // RTMP_MAC_PCI // #ifdef RTMP_MAC_USB sprintf((PSTRING) pAd->nickname, "RT2870STA"); #endif // RTMP_MAC_USB // RTMPInitTimer(pAd, &pAd->StaCfg.WpaDisassocAndBlockAssocTimer, GET_TIMER_FUNCTION(WpaDisassocApAndBlockAssoc), pAd, FALSE); pAd->StaCfg.IEEE8021X = FALSE; pAd->StaCfg.IEEE8021x_required_keys = FALSE; pAd->StaCfg.WpaSupplicantUP = WPA_SUPPLICANT_DISABLE; pAd->StaCfg.bRSN_IE_FromWpaSupplicant = FALSE; pAd->StaCfg.WpaSupplicantUP = WPA_SUPPLICANT_ENABLE; NdisZeroMemory(pAd->StaCfg.ReplayCounter, 8); pAd->StaCfg.bAutoConnectByBssid = FALSE; pAd->StaCfg.BeaconLostTime = BEACON_LOST_TIME; NdisZeroMemory(pAd->StaCfg.WpaPassPhrase, 64); pAd->StaCfg.WpaPassPhraseLen = 0; pAd->StaCfg.bAutoRoaming = FALSE; pAd->StaCfg.bForceTxBurst = FALSE; } // Default for extra information is not valid pAd->ExtraInfo = EXTRA_INFO_CLEAR; // Default Config change flag pAd->bConfigChanged = FALSE; // // part III. AP configurations // // // part IV. others // // dynamic BBP R66:sensibity tuning to overcome background noise pAd->BbpTuning.bEnable = TRUE; pAd->BbpTuning.FalseCcaLowerThreshold = 100; pAd->BbpTuning.FalseCcaUpperThreshold = 512; pAd->BbpTuning.R66Delta = 4; pAd->Mlme.bEnableAutoAntennaCheck = TRUE; // // Also initial R66CurrentValue, RTUSBResumeMsduTransmission might use this value. // if not initial this value, the default value will be 0. // pAd->BbpTuning.R66CurrentValue = 0x38; pAd->Bbp94 = BBPR94_DEFAULT; pAd->BbpForCCK = FALSE; // Default is FALSE for test bit 1 //pAd->bTest1 = FALSE; // initialize MAC table and allocate spin lock NdisZeroMemory(&pAd->MacTab, sizeof(MAC_TABLE)); InitializeQueueHeader(&pAd->MacTab.McastPsQueue); NdisAllocateSpinLock(&pAd->MacTabLock); //RTMPInitTimer(pAd, &pAd->RECBATimer, RECBATimerTimeout, pAd, TRUE); //RTMPSetTimer(&pAd->RECBATimer, REORDER_EXEC_INTV); pAd->CommonCfg.bWiFiTest = FALSE; #ifdef RTMP_MAC_PCI pAd->bPCIclkOff = FALSE; #endif // RTMP_MAC_PCI // RTMP_SET_PSFLAG(pAd, fRTMP_PS_CAN_GO_SLEEP); DBGPRINT(RT_DEBUG_TRACE, ("<-- UserCfgInit\n")); } // IRQL = PASSIVE_LEVEL UCHAR BtoH(STRING ch) { if (ch >= '0' && ch <= '9') return (ch - '0'); // Handle numerals if (ch >= 'A' && ch <= 'F') return (ch - 'A' + 0xA); // Handle capitol hex digits if (ch >= 'a' && ch <= 'f') return (ch - 'a' + 0xA); // Handle small hex digits return(255); } // // FUNCTION: AtoH(char *, UCHAR *, int) // // PURPOSE: Converts ascii string to network order hex // // PARAMETERS: // src - pointer to input ascii string // dest - pointer to output hex // destlen - size of dest // // COMMENTS: // // 2 ascii bytes make a hex byte so must put 1st ascii byte of pair // into upper nibble and 2nd ascii byte of pair into lower nibble. // // IRQL = PASSIVE_LEVEL void AtoH(PSTRING src, PUCHAR dest, int destlen) { PSTRING srcptr; PUCHAR destTemp; srcptr = src; destTemp = (PUCHAR) dest; while(destlen--) { *destTemp = BtoH(*srcptr++) << 4; // Put 1st ascii byte in upper nibble. *destTemp += BtoH(*srcptr++); // Add 2nd ascii byte to above. destTemp++; } } //+++Mark by shiang, not use now, need to remove after confirm //---Mark by shiang, not use now, need to remove after confirm /* ======================================================================== Routine Description: Init timer objects Arguments: pAd Pointer to our adapter pTimer Timer structure pTimerFunc Function to execute when timer expired Repeat Ture for period timer Return Value: None Note: ======================================================================== */ VOID RTMPInitTimer( IN PRTMP_ADAPTER pAd, IN PRALINK_TIMER_STRUCT pTimer, IN PVOID pTimerFunc, IN PVOID pData, IN BOOLEAN Repeat) { // // Set Valid to TRUE for later used. // It will crash if we cancel a timer or set a timer // that we haven't initialize before. // pTimer->Valid = TRUE; pTimer->PeriodicType = Repeat; pTimer->State = FALSE; pTimer->cookie = (ULONG) pData; #ifdef RTMP_TIMER_TASK_SUPPORT pTimer->pAd = pAd; #endif // RTMP_TIMER_TASK_SUPPORT // RTMP_OS_Init_Timer(pAd, &pTimer->TimerObj, pTimerFunc, (PVOID) pTimer); } /* ======================================================================== Routine Description: Init timer objects Arguments: pTimer Timer structure Value Timer value in milliseconds Return Value: None Note: To use this routine, must call RTMPInitTimer before. ======================================================================== */ VOID RTMPSetTimer( IN PRALINK_TIMER_STRUCT pTimer, IN ULONG Value) { if (pTimer->Valid) { pTimer->TimerValue = Value; pTimer->State = FALSE; if (pTimer->PeriodicType == TRUE) { pTimer->Repeat = TRUE; RTMP_SetPeriodicTimer(&pTimer->TimerObj, Value); } else { pTimer->Repeat = FALSE; RTMP_OS_Add_Timer(&pTimer->TimerObj, Value); } } else { DBGPRINT_ERR(("RTMPSetTimer failed, Timer hasn't been initialize!\n")); } } /* ======================================================================== Routine Description: Init timer objects Arguments: pTimer Timer structure Value Timer value in milliseconds Return Value: None Note: To use this routine, must call RTMPInitTimer before. ======================================================================== */ VOID RTMPModTimer( IN PRALINK_TIMER_STRUCT pTimer, IN ULONG Value) { BOOLEAN Cancel; if (pTimer->Valid) { pTimer->TimerValue = Value; pTimer->State = FALSE; if (pTimer->PeriodicType == TRUE) { RTMPCancelTimer(pTimer, &Cancel); RTMPSetTimer(pTimer, Value); } else { RTMP_OS_Mod_Timer(&pTimer->TimerObj, Value); } } else { DBGPRINT_ERR(("RTMPModTimer failed, Timer hasn't been initialize!\n")); } } /* ======================================================================== Routine Description: Cancel timer objects Arguments: Adapter Pointer to our adapter Return Value: None IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL Note: 1.) To use this routine, must call RTMPInitTimer before. 2.) Reset NIC to initial state AS IS system boot up time. ======================================================================== */ VOID RTMPCancelTimer( IN PRALINK_TIMER_STRUCT pTimer, OUT BOOLEAN *pCancelled) { if (pTimer->Valid) { if (pTimer->State == FALSE) pTimer->Repeat = FALSE; RTMP_OS_Del_Timer(&pTimer->TimerObj, pCancelled); if (*pCancelled == TRUE) pTimer->State = TRUE; #ifdef RTMP_TIMER_TASK_SUPPORT // We need to go-through the TimerQ to findout this timer handler and remove it if // it's still waiting for execution. RtmpTimerQRemove(pTimer->pAd, pTimer); #endif // RTMP_TIMER_TASK_SUPPORT // } else { DBGPRINT_ERR(("RTMPCancelTimer failed, Timer hasn't been initialize!\n")); } } /* ======================================================================== Routine Description: Set LED Status Arguments: pAd Pointer to our adapter Status LED Status Return Value: None IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL Note: ======================================================================== */ VOID RTMPSetLED( IN PRTMP_ADAPTER pAd, IN UCHAR Status) { //ULONG data; UCHAR HighByte = 0; UCHAR LowByte; LowByte = pAd->LedCntl.field.LedMode&0x7f; switch (Status) { case LED_LINK_DOWN: HighByte = 0x20; AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte); pAd->LedIndicatorStrength = 0; break; case LED_LINK_UP: if (pAd->CommonCfg.Channel > 14) HighByte = 0xa0; else HighByte = 0x60; AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte); break; case LED_RADIO_ON: HighByte = 0x20; AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte); break; case LED_HALT: LowByte = 0; // Driver sets MAC register and MAC controls LED case LED_RADIO_OFF: HighByte = 0; AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte); break; case LED_WPS: HighByte = 0x10; AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte); break; case LED_ON_SITE_SURVEY: HighByte = 0x08; AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte); break; case LED_POWER_UP: HighByte = 0x04; AsicSendCommandToMcu(pAd, 0x50, 0xff, LowByte, HighByte); break; default: DBGPRINT(RT_DEBUG_WARN, ("RTMPSetLED::Unknown Status %d\n", Status)); break; } // // Keep LED status for LED SiteSurvey mode. // After SiteSurvey, we will set the LED mode to previous status. // if ((Status != LED_ON_SITE_SURVEY) && (Status != LED_POWER_UP)) pAd->LedStatus = Status; DBGPRINT(RT_DEBUG_TRACE, ("RTMPSetLED::Mode=%d,HighByte=0x%02x,LowByte=0x%02x\n", pAd->LedCntl.field.LedMode, HighByte, LowByte)); } /* ======================================================================== Routine Description: Set LED Signal Stregth Arguments: pAd Pointer to our adapter Dbm Signal Stregth Return Value: None IRQL = PASSIVE_LEVEL Note: Can be run on any IRQL level. According to Microsoft Zero Config Wireless Signal Stregth definition as belows. <= -90 No Signal <= -81 Very Low <= -71 Low <= -67 Good <= -57 Very Good > -57 Excellent ======================================================================== */ VOID RTMPSetSignalLED( IN PRTMP_ADAPTER pAd, IN NDIS_802_11_RSSI Dbm) { UCHAR nLed = 0; if (pAd->LedCntl.field.LedMode == LED_MODE_SIGNAL_STREGTH) { if (Dbm <= -90) nLed = 0; else if (Dbm <= -81) nLed = 1; else if (Dbm <= -71) nLed = 3; else if (Dbm <= -67) nLed = 7; else if (Dbm <= -57) nLed = 15; else nLed = 31; // // Update Signal Stregth to firmware if changed. // if (pAd->LedIndicatorStrength != nLed) { AsicSendCommandToMcu(pAd, 0x51, 0xff, nLed, pAd->LedCntl.field.Polarity); pAd->LedIndicatorStrength = nLed; } } } /* ======================================================================== Routine Description: Enable RX Arguments: pAd Pointer to our adapter Return Value: None IRQL <= DISPATCH_LEVEL Note: Before Enable RX, make sure you have enabled Interrupt. ======================================================================== */ VOID RTMPEnableRxTx( IN PRTMP_ADAPTER pAd) { // WPDMA_GLO_CFG_STRUC GloCfg; // ULONG i = 0; UINT32 rx_filter_flag; DBGPRINT(RT_DEBUG_TRACE, ("==> RTMPEnableRxTx\n")); // Enable Rx DMA. RT28XXDMAEnable(pAd); // enable RX of MAC block if (pAd->OpMode == OPMODE_AP) { rx_filter_flag = APNORMAL; RTMP_IO_WRITE32(pAd, RX_FILTR_CFG, rx_filter_flag); // enable RX of DMA block } else { if (pAd->CommonCfg.PSPXlink) rx_filter_flag = PSPXLINK; else rx_filter_flag = STANORMAL; // Staion not drop control frame will fail WiFi Certification. RTMP_IO_WRITE32(pAd, RX_FILTR_CFG, rx_filter_flag); } RTMP_IO_WRITE32(pAd, MAC_SYS_CTRL, 0xc); DBGPRINT(RT_DEBUG_TRACE, ("<== RTMPEnableRxTx\n")); } //+++Add by shiang, move from os/linux/rt_main_dev.c void CfgInitHook(PRTMP_ADAPTER pAd) { pAd->bBroadComHT = TRUE; } int rt28xx_init( IN PRTMP_ADAPTER pAd, IN PSTRING pDefaultMac, IN PSTRING pHostName) { UINT index; UCHAR TmpPhy; NDIS_STATUS Status; UINT32 MacCsr0 = 0; #ifdef RTMP_MAC_PCI { // If dirver doesn't wake up firmware here, // NICLoadFirmware will hang forever when interface is up again. // RT2860 PCI if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE) && OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_PCIE_DEVICE)) { AUTO_WAKEUP_STRUC AutoWakeupCfg; AsicForceWakeup(pAd, TRUE); AutoWakeupCfg.word = 0; RTMP_IO_WRITE32(pAd, AUTO_WAKEUP_CFG, AutoWakeupCfg.word); OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_DOZE); } } #endif // RTMP_MAC_PCI // // reset Adapter flags RTMP_CLEAR_FLAGS(pAd); // Init BssTab & ChannelInfo tabbles for auto channel select. // Allocate BA Reordering memory ba_reordering_resource_init(pAd, MAX_REORDERING_MPDU_NUM); // Make sure MAC gets ready. index = 0; do { RTMP_IO_READ32(pAd, MAC_CSR0, &MacCsr0); pAd->MACVersion = MacCsr0; if ((pAd->MACVersion != 0x00) && (pAd->MACVersion != 0xFFFFFFFF)) break; RTMPusecDelay(10); } while (index++ < 100); DBGPRINT(RT_DEBUG_TRACE, ("MAC_CSR0 [ Ver:Rev=0x%08x]\n", pAd->MACVersion)); #ifdef RTMP_MAC_PCI #ifdef PCIE_PS_SUPPORT /*Iverson patch PCIE L1 issue to make sure that driver can be read,write ,BBP and RF register at pcie L.1 level */ if ((IS_RT3090(pAd) || IS_RT3572(pAd) || IS_RT3390(pAd))&&OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_PCIE_DEVICE)) { RTMP_IO_READ32(pAd, AUX_CTRL, &MacCsr0); MacCsr0 |= 0x402; RTMP_IO_WRITE32(pAd, AUX_CTRL, MacCsr0); DBGPRINT(RT_DEBUG_TRACE, ("AUX_CTRL = 0x%x\n", MacCsr0)); } #endif // PCIE_PS_SUPPORT // // To fix driver disable/enable hang issue when radio off RTMP_IO_WRITE32(pAd, PWR_PIN_CFG, 0x2); #endif // RTMP_MAC_PCI // // Disable DMA RT28XXDMADisable(pAd); // Load 8051 firmware Status = NICLoadFirmware(pAd); if (Status != NDIS_STATUS_SUCCESS) { DBGPRINT_ERR(("NICLoadFirmware failed, Status[=0x%08x]\n", Status)); goto err1; } NICLoadRateSwitchingParams(pAd); // Disable interrupts here which is as soon as possible // This statement should never be true. We might consider to remove it later #ifdef RTMP_MAC_PCI if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_ACTIVE)) { RTMP_ASIC_INTERRUPT_DISABLE(pAd); } #endif // RTMP_MAC_PCI // Status = RTMPAllocTxRxRingMemory(pAd); if (Status != NDIS_STATUS_SUCCESS) { DBGPRINT_ERR(("RTMPAllocDMAMemory failed, Status[=0x%08x]\n", Status)); goto err1; } RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE); // initialize MLME // Status = RtmpMgmtTaskInit(pAd); if (Status != NDIS_STATUS_SUCCESS) goto err2; Status = MlmeInit(pAd); if (Status != NDIS_STATUS_SUCCESS) { DBGPRINT_ERR(("MlmeInit failed, Status[=0x%08x]\n", Status)); goto err2; } // Initialize pAd->StaCfg, pAd->ApCfg, pAd->CommonCfg to manufacture default // UserCfgInit(pAd); Status = RtmpNetTaskInit(pAd); if (Status != NDIS_STATUS_SUCCESS) goto err3; // COPY_MAC_ADDR(pAd->ApCfg.MBSSID[apidx].Bssid, netif->hwaddr); // pAd->bForcePrintTX = TRUE; CfgInitHook(pAd); NdisAllocateSpinLock(&pAd->MacTabLock); MeasureReqTabInit(pAd); TpcReqTabInit(pAd); // // Init the hardware, we need to init asic before read registry, otherwise mac register will be reset // Status = NICInitializeAdapter(pAd, TRUE); if (Status != NDIS_STATUS_SUCCESS) { DBGPRINT_ERR(("NICInitializeAdapter failed, Status[=0x%08x]\n", Status)); if (Status != NDIS_STATUS_SUCCESS) goto err3; } DBGPRINT(RT_DEBUG_OFF, ("1. Phy Mode = %d\n", pAd->CommonCfg.PhyMode)); #ifdef RTMP_MAC_USB pAd->CommonCfg.bMultipleIRP = FALSE; if (pAd->CommonCfg.bMultipleIRP) pAd->CommonCfg.NumOfBulkInIRP = RX_RING_SIZE; else pAd->CommonCfg.NumOfBulkInIRP = 1; #endif // RTMP_MAC_USB // //Init Ba Capability parameters. // RT28XX_BA_INIT(pAd); pAd->CommonCfg.DesiredHtPhy.MpduDensity = (UCHAR)pAd->CommonCfg.BACapability.field.MpduDensity; pAd->CommonCfg.DesiredHtPhy.AmsduEnable = (USHORT)pAd->CommonCfg.BACapability.field.AmsduEnable; pAd->CommonCfg.DesiredHtPhy.AmsduSize = (USHORT)pAd->CommonCfg.BACapability.field.AmsduSize; pAd->CommonCfg.DesiredHtPhy.MimoPs = (USHORT)pAd->CommonCfg.BACapability.field.MMPSmode; // UPdata to HT IE pAd->CommonCfg.HtCapability.HtCapInfo.MimoPs = (USHORT)pAd->CommonCfg.BACapability.field.MMPSmode; pAd->CommonCfg.HtCapability.HtCapInfo.AMsduSize = (USHORT)pAd->CommonCfg.BACapability.field.AmsduSize; pAd->CommonCfg.HtCapability.HtCapParm.MpduDensity = (UCHAR)pAd->CommonCfg.BACapability.field.MpduDensity; // after reading Registry, we now know if in AP mode or STA mode // Load 8051 firmware; crash when FW image not existent // Status = NICLoadFirmware(pAd); // if (Status != NDIS_STATUS_SUCCESS) // break; DBGPRINT(RT_DEBUG_OFF, ("2. Phy Mode = %d\n", pAd->CommonCfg.PhyMode)); // We should read EEPROM for all cases. rt2860b NICReadEEPROMParameters(pAd, (PUCHAR)pDefaultMac); DBGPRINT(RT_DEBUG_OFF, ("3. Phy Mode = %d\n", pAd->CommonCfg.PhyMode)); NICInitAsicFromEEPROM(pAd); //rt2860b // Set PHY to appropriate mode TmpPhy = pAd->CommonCfg.PhyMode; pAd->CommonCfg.PhyMode = 0xff; RTMPSetPhyMode(pAd, TmpPhy); SetCommonHT(pAd); // No valid channels. if (pAd->ChannelListNum == 0) { DBGPRINT(RT_DEBUG_ERROR, ("Wrong configuration. No valid channel found. Check \"ContryCode\" and \"ChannelGeography\" setting.\n")); goto err4; } DBGPRINT(RT_DEBUG_OFF, ("MCS Set = %02x %02x %02x %02x %02x\n", pAd->CommonCfg.HtCapability.MCSSet[0], pAd->CommonCfg.HtCapability.MCSSet[1], pAd->CommonCfg.HtCapability.MCSSet[2], pAd->CommonCfg.HtCapability.MCSSet[3], pAd->CommonCfg.HtCapability.MCSSet[4])); #ifdef RTMP_RF_RW_SUPPORT //Init RT30xx RFRegisters after read RFIC type from EEPROM NICInitRFRegisters(pAd); #endif // RTMP_RF_RW_SUPPORT // // APInitialize(pAd); // // Initialize RF register to default value // AsicSwitchChannel(pAd, pAd->CommonCfg.Channel, FALSE); AsicLockChannel(pAd, pAd->CommonCfg.Channel); // 8051 firmware require the signal during booting time. //2008/11/28:KH marked the following codes to patch Frequency offset bug //AsicSendCommandToMcu(pAd, 0x72, 0xFF, 0x00, 0x00); if (pAd && (Status != NDIS_STATUS_SUCCESS)) { // // Undo everything if it failed // if (RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE)) { // NdisMDeregisterInterrupt(&pAd->Interrupt); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_INTERRUPT_IN_USE); } // RTMPFreeAdapter(pAd); // we will free it in disconnect() } else if (pAd) { // Microsoft HCT require driver send a disconnect event after driver initialization. OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_MEDIA_STATE_CONNECTED); // pAd->IndicateMediaState = NdisMediaStateDisconnected; RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_MEDIA_STATE_CHANGE); DBGPRINT(RT_DEBUG_TRACE, ("NDIS_STATUS_MEDIA_DISCONNECT Event B!\n")); #ifdef RTMP_MAC_USB RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_REMOVE_IN_PROGRESS); // // Support multiple BulkIn IRP, // the value on pAd->CommonCfg.NumOfBulkInIRP may be large than 1. // for(index=0; indexCommonCfg.NumOfBulkInIRP; index++) { RTUSBBulkReceive(pAd); DBGPRINT(RT_DEBUG_TRACE, ("RTUSBBulkReceive!\n" )); } #endif // RTMP_MAC_USB // }// end of else // Set up the Mac address RtmpOSNetDevAddrSet(pAd->net_dev, &pAd->CurrentAddress[0]); DBGPRINT_S(Status, ("<==== rt28xx_init, Status=%x\n", Status)); return TRUE; err4: err3: MlmeHalt(pAd); err2: RTMPFreeTxRxRingMemory(pAd); err1: os_free_mem(pAd, pAd->mpdu_blk_pool.mem); // free BA pool // shall not set priv to NULL here because the priv didn't been free yet. //net_dev->ml_priv = 0; #ifdef ST err0: #endif // ST // DBGPRINT(RT_DEBUG_ERROR, ("!!! rt28xx Initialized fail !!!\n")); return FALSE; } //---Add by shiang, move from os/linux/rt_main_dev.c static INT RtmpChipOpsRegister( IN RTMP_ADAPTER *pAd, IN INT infType) { RTMP_CHIP_OP *pChipOps = &pAd->chipOps; int status; memset(pChipOps, 0, sizeof(RTMP_CHIP_OP)); /* set eeprom related hook functions */ status = RtmpChipOpsEepromHook(pAd, infType); /* set mcu related hook functions */ switch(infType) { #ifdef RTMP_PCI_SUPPORT case RTMP_DEV_INF_PCI: pChipOps->loadFirmware = RtmpAsicLoadFirmware; pChipOps->eraseFirmware = RtmpAsicEraseFirmware; pChipOps->sendCommandToMcu = RtmpAsicSendCommandToMcu; break; #endif // RTMP_PCI_SUPPORT // #ifdef RTMP_USB_SUPPORT case RTMP_DEV_INF_USB: pChipOps->loadFirmware = RtmpAsicLoadFirmware; pChipOps->sendCommandToMcu = RtmpAsicSendCommandToMcu; break; #endif // RTMP_USB_SUPPORT // default: break; } return status; } INT RtmpRaDevCtrlInit( IN RTMP_ADAPTER *pAd, IN RTMP_INF_TYPE infType) { //VOID *handle; // Assign the interface type. We need use it when do register/EEPROM access. pAd->infType = infType; pAd->OpMode = OPMODE_STA; DBGPRINT(RT_DEBUG_TRACE, ("STA Driver version-%s\n", STA_DRIVER_VERSION)); #ifdef RTMP_MAC_USB init_MUTEX(&(pAd->UsbVendorReq_semaphore)); os_alloc_mem(pAd, (PUCHAR)&pAd->UsbVendorReqBuf, MAX_PARAM_BUFFER_SIZE - 1); if (pAd->UsbVendorReqBuf == NULL) { DBGPRINT(RT_DEBUG_ERROR, ("Allocate vendor request temp buffer failed!\n")); return FALSE; } #endif // RTMP_MAC_USB // RtmpChipOpsRegister(pAd, infType); return 0; } BOOLEAN RtmpRaDevCtrlExit(IN RTMP_ADAPTER *pAd) { RTMPFreeAdapter(pAd); return TRUE; } // not yet support MBSS PNET_DEV get_netdev_from_bssid( IN PRTMP_ADAPTER pAd, IN UCHAR FromWhichBSSID) { PNET_DEV dev_p = NULL; { dev_p = pAd->net_dev; } ASSERT(dev_p); return dev_p; /* return one of MBSS */ }