/* ************************************************************************* * Ralink Tech Inc. * 5F., No.36, Taiyuan St., Jhubei City, * Hsinchu County 302, * Taiwan, R.O.C. * * (c) Copyright 2002-2007, Ralink Technology, Inc. * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * ************************************************************************* */ #include "../rt_config.h" #define MAX_TX_IN_TBTT (16) UCHAR SNAP_802_1H[] = {0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00}; UCHAR SNAP_BRIDGE_TUNNEL[] = {0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8}; // Add Cisco Aironet SNAP heade for CCX2 support UCHAR SNAP_AIRONET[] = {0xaa, 0xaa, 0x03, 0x00, 0x40, 0x96, 0x00, 0x00}; UCHAR CKIP_LLC_SNAP[] = {0xaa, 0xaa, 0x03, 0x00, 0x40, 0x96, 0x00, 0x02}; UCHAR EAPOL_LLC_SNAP[]= {0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e}; UCHAR EAPOL[] = {0x88, 0x8e}; UCHAR TPID[] = {0x81, 0x00}; /* VLAN related */ UCHAR IPX[] = {0x81, 0x37}; UCHAR APPLE_TALK[] = {0x80, 0xf3}; UCHAR RateIdToPlcpSignal[12] = { 0, /* RATE_1 */ 1, /* RATE_2 */ 2, /* RATE_5_5 */ 3, /* RATE_11 */ // see BBP spec 11, /* RATE_6 */ 15, /* RATE_9 */ 10, /* RATE_12 */ 14, /* RATE_18 */ // see IEEE802.11a-1999 p.14 9, /* RATE_24 */ 13, /* RATE_36 */ 8, /* RATE_48 */ 12 /* RATE_54 */ }; // see IEEE802.11a-1999 p.14 UCHAR OfdmSignalToRateId[16] = { RATE_54, RATE_54, RATE_54, RATE_54, // OFDM PLCP Signal = 0, 1, 2, 3 respectively RATE_54, RATE_54, RATE_54, RATE_54, // OFDM PLCP Signal = 4, 5, 6, 7 respectively RATE_48, RATE_24, RATE_12, RATE_6, // OFDM PLCP Signal = 8, 9, 10, 11 respectively RATE_54, RATE_36, RATE_18, RATE_9, // OFDM PLCP Signal = 12, 13, 14, 15 respectively }; UCHAR OfdmRateToRxwiMCS[12] = { 0, 0, 0, 0, 0, 1, 2, 3, // OFDM rate 6,9,12,18 = rxwi mcs 0,1,2,3 4, 5, 6, 7, // OFDM rate 24,36,48,54 = rxwi mcs 4,5,6,7 }; UCHAR RxwiMCSToOfdmRate[12] = { RATE_6, RATE_9, RATE_12, RATE_18, RATE_24, RATE_36, RATE_48, RATE_54, // OFDM rate 6,9,12,18 = rxwi mcs 0,1,2,3 4, 5, 6, 7, // OFDM rate 24,36,48,54 = rxwi mcs 4,5,6,7 }; char* MCSToMbps[] = {"1Mbps","2Mbps","5.5Mbps","11Mbps","06Mbps","09Mbps","12Mbps","18Mbps","24Mbps","36Mbps","48Mbps","54Mbps","MM-0","MM-1","MM-2","MM-3","MM-4","MM-5","MM-6","MM-7","MM-8","MM-9","MM-10","MM-11","MM-12","MM-13","MM-14","MM-15","MM-32","ee1","ee2","ee3"}; UCHAR default_cwmin[]={CW_MIN_IN_BITS, CW_MIN_IN_BITS, CW_MIN_IN_BITS-1, CW_MIN_IN_BITS-2}; //UCHAR default_cwmax[]={CW_MAX_IN_BITS, CW_MAX_IN_BITS, CW_MIN_IN_BITS, CW_MIN_IN_BITS-1}; UCHAR default_sta_aifsn[]={3,7,2,2}; UCHAR MapUserPriorityToAccessCategory[8] = {QID_AC_BE, QID_AC_BK, QID_AC_BK, QID_AC_BE, QID_AC_VI, QID_AC_VI, QID_AC_VO, QID_AC_VO}; /* ======================================================================== Routine Description: API for MLME to transmit management frame to AP (BSS Mode) or station (IBSS Mode) Arguments: pAd Pointer to our adapter pData Pointer to the outgoing 802.11 frame Length Size of outgoing management frame Return Value: NDIS_STATUS_FAILURE NDIS_STATUS_PENDING NDIS_STATUS_SUCCESS IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL Note: ======================================================================== */ NDIS_STATUS MiniportMMRequest( IN PRTMP_ADAPTER pAd, IN UCHAR QueIdx, IN PUCHAR pData, IN UINT Length) { PNDIS_PACKET pPacket; NDIS_STATUS Status = NDIS_STATUS_SUCCESS; ULONG FreeNum; UCHAR IrqState; UCHAR rtmpHwHdr[TXINFO_SIZE + TXWI_SIZE]; //RTMP_HW_HDR_LEN]; ASSERT(Length <= MGMT_DMA_BUFFER_SIZE); QueIdx=3; // 2860C use Tx Ring IrqState = pAd->irq_disabled; do { // Reset is in progress, stop immediately if ( RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_RESET_IN_PROGRESS) || RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_HALT_IN_PROGRESS | fRTMP_ADAPTER_NIC_NOT_EXIST)|| !RTMP_TEST_FLAG(pAd, fRTMP_ADAPTER_START_UP)) { Status = NDIS_STATUS_FAILURE; break; } // Check Free priority queue // Since we use PBF Queue2 for management frame. Its corresponding DMA ring should be using TxRing. // 2860C use Tx Ring if (pAd->MACVersion == 0x28600100) { FreeNum = GET_TXRING_FREENO(pAd, QueIdx); } else { FreeNum = GET_MGMTRING_FREENO(pAd); } if ((FreeNum > 0)) { // We need to reserve space for rtmp hardware header. i.e., TxWI for RT2860 and TxInfo+TxWI for RT2870 NdisZeroMemory(&rtmpHwHdr, (TXINFO_SIZE + TXWI_SIZE)); Status = RTMPAllocateNdisPacket(pAd, &pPacket, (PUCHAR)&rtmpHwHdr, (TXINFO_SIZE + TXWI_SIZE), pData, Length); if (Status != NDIS_STATUS_SUCCESS) { DBGPRINT(RT_DEBUG_WARN, ("MiniportMMRequest (error:: can't allocate NDIS PACKET)\n")); break; } //pAd->CommonCfg.MlmeTransmit.field.MODE = MODE_CCK; //pAd->CommonCfg.MlmeRate = RATE_2; Status = MlmeHardTransmit(pAd, QueIdx, pPacket); if (Status != NDIS_STATUS_SUCCESS) RTMPFreeNdisPacket(pAd, pPacket); } else { pAd->RalinkCounters.MgmtRingFullCount++; DBGPRINT(RT_DEBUG_ERROR, ("Qidx(%d), not enough space in MgmtRing, MgmtRingFullCount=%ld!\n", QueIdx, pAd->RalinkCounters.MgmtRingFullCount)); } } while (FALSE); return Status; } /* ======================================================================== Routine Description: Copy frame from waiting queue into relative ring buffer and set appropriate ASIC register to kick hardware transmit function Arguments: pAd Pointer to our adapter pBuffer Pointer to memory of outgoing frame Length Size of outgoing management frame Return Value: NDIS_STATUS_FAILURE NDIS_STATUS_PENDING NDIS_STATUS_SUCCESS IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL Note: ======================================================================== */ NDIS_STATUS MlmeHardTransmit( IN PRTMP_ADAPTER pAd, IN UCHAR QueIdx, IN PNDIS_PACKET pPacket) { if ((pAd->CommonCfg.RadarDetect.RDMode != RD_NORMAL_MODE) #ifdef CARRIER_DETECTION_SUPPORT #endif // CARRIER_DETECTION_SUPPORT // ) { return NDIS_STATUS_FAILURE; } return MlmeHardTransmitMgmtRing(pAd,QueIdx,pPacket); } NDIS_STATUS MlmeHardTransmitMgmtRing( IN PRTMP_ADAPTER pAd, IN UCHAR QueIdx, IN PNDIS_PACKET pPacket) { PACKET_INFO PacketInfo; PUCHAR pSrcBufVA; UINT SrcBufLen; PHEADER_802_11 pHeader_802_11; BOOLEAN bAckRequired, bInsertTimestamp; UCHAR MlmeRate; PTXWI_STRUC pFirstTxWI; MAC_TABLE_ENTRY *pMacEntry = NULL; RTMP_QueryPacketInfo(pPacket, &PacketInfo, &pSrcBufVA, &SrcBufLen); // Make sure MGMT ring resource won't be used by other threads // sample, for IRQ LOCK -> SEM LOCK // IrqState = pAd->irq_disabled; // if (!IrqState) RTMP_SEM_LOCK(&pAd->MgmtRingLock); if (pSrcBufVA == NULL) { // The buffer shouldn't be NULL // if (!IrqState) RTMP_SEM_UNLOCK(&pAd->MgmtRingLock); return NDIS_STATUS_FAILURE; } #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) { // outgoing frame always wakeup PHY to prevent frame lost if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_DOZE)) AsicForceWakeup(pAd, TRUE); } #endif // CONFIG_STA_SUPPORT // pFirstTxWI = (PTXWI_STRUC)(pSrcBufVA + TXINFO_SIZE); pHeader_802_11 = (PHEADER_802_11) (pSrcBufVA + TXINFO_SIZE + TXWI_SIZE); //TXWI_SIZE); if (pHeader_802_11->Addr1[0] & 0x01) { MlmeRate = pAd->CommonCfg.BasicMlmeRate; } else { MlmeRate = pAd->CommonCfg.MlmeRate; } // Verify Mlme rate for a / g bands. if ((pAd->LatchRfRegs.Channel > 14) && (MlmeRate < RATE_6)) // 11A band MlmeRate = RATE_6; if ((pHeader_802_11->FC.Type == BTYPE_DATA) && (pHeader_802_11->FC.SubType == SUBTYPE_QOS_NULL)) { pMacEntry = MacTableLookup(pAd, pHeader_802_11->Addr1); } #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) { // Fixed W52 with Activity scan issue in ABG_MIXED and ABGN_MIXED mode. if (pAd->CommonCfg.PhyMode == PHY_11ABG_MIXED #ifdef DOT11_N_SUPPORT || pAd->CommonCfg.PhyMode == PHY_11ABGN_MIXED #endif // DOT11_N_SUPPORT // ) { if (pAd->LatchRfRegs.Channel > 14) pAd->CommonCfg.MlmeTransmit.field.MODE = 1; else pAd->CommonCfg.MlmeTransmit.field.MODE = 0; } } #endif // CONFIG_STA_SUPPORT // // // Should not be hard code to set PwrMgmt to 0 (PWR_ACTIVE) // Snice it's been set to 0 while on MgtMacHeaderInit // By the way this will cause frame to be send on PWR_SAVE failed. // // pHeader_802_11->FC.PwrMgmt = 0; // (pAd->StaCfg.Psm == PWR_SAVE); // // In WMM-UAPSD, mlme frame should be set psm as power saving but probe request frame #ifdef CONFIG_STA_SUPPORT // Data-Null packets alse pass through MMRequest in RT2860, however, we hope control the psm bit to pass APSD if ((pHeader_802_11->FC.Type != BTYPE_DATA) && (pHeader_802_11->FC.Type != BTYPE_CNTL)) { if ((pAd->StaCfg.Psm == PWR_SAVE) && (pHeader_802_11->FC.SubType == SUBTYPE_ACTION)) pHeader_802_11->FC.PwrMgmt = PWR_SAVE; else pHeader_802_11->FC.PwrMgmt = PWR_ACTIVE; } #endif // CONFIG_STA_SUPPORT // bInsertTimestamp = FALSE; if (pHeader_802_11->FC.Type == BTYPE_CNTL) // must be PS-POLL { #ifdef CONFIG_STA_SUPPORT //Set PM bit in ps-poll, to fix WLK 1.2 PowerSaveMode_ext failure issue. if ((pAd->OpMode == OPMODE_STA) && (pHeader_802_11->FC.SubType == SUBTYPE_PS_POLL)) { pHeader_802_11->FC.PwrMgmt = PWR_SAVE; } #endif // CONFIG_STA_SUPPORT // bAckRequired = FALSE; } else // BTYPE_MGMT or BTYPE_DATA(must be NULL frame) { //pAd->Sequence++; //pHeader_802_11->Sequence = pAd->Sequence; if (pHeader_802_11->Addr1[0] & 0x01) // MULTICAST, BROADCAST { bAckRequired = FALSE; pHeader_802_11->Duration = 0; } else { bAckRequired = TRUE; pHeader_802_11->Duration = RTMPCalcDuration(pAd, MlmeRate, 14); if (pHeader_802_11->FC.SubType == SUBTYPE_PROBE_RSP) { bInsertTimestamp = TRUE; } } } pHeader_802_11->Sequence = pAd->Sequence++; if (pAd->Sequence >0xfff) pAd->Sequence = 0; // Before radar detection done, mgmt frame can not be sent but probe req // Because we need to use probe req to trigger driver to send probe req in passive scan if ((pHeader_802_11->FC.SubType != SUBTYPE_PROBE_REQ) && (pAd->CommonCfg.bIEEE80211H == 1) && (pAd->CommonCfg.RadarDetect.RDMode != RD_NORMAL_MODE)) { DBGPRINT(RT_DEBUG_ERROR,("MlmeHardTransmit --> radar detect not in normal mode !!!\n")); // if (!IrqState) RTMP_SEM_UNLOCK(&pAd->MgmtRingLock); return (NDIS_STATUS_FAILURE); } #ifdef RT_BIG_ENDIAN RTMPFrameEndianChange(pAd, (PUCHAR)pHeader_802_11, DIR_WRITE, FALSE); #endif // // fill scatter-and-gather buffer list into TXD. Internally created NDIS PACKET // should always has only one ohysical buffer, and the whole frame size equals // to the first scatter buffer size // // Initialize TX Descriptor // For inter-frame gap, the number is for this frame and next frame // For MLME rate, we will fix as 2Mb to match other vendor's implement // pAd->CommonCfg.MlmeTransmit.field.MODE = 1; // management frame doesn't need encryption. so use RESERVED_WCID no matter u are sending to specific wcid or not. if (pMacEntry == NULL) { RTMPWriteTxWI(pAd, pFirstTxWI, FALSE, FALSE, bInsertTimestamp, FALSE, bAckRequired, FALSE, 0, RESERVED_WCID, (SrcBufLen - TXINFO_SIZE - TXWI_SIZE), PID_MGMT, 0, (UCHAR)pAd->CommonCfg.MlmeTransmit.field.MCS, IFS_BACKOFF, FALSE, &pAd->CommonCfg.MlmeTransmit); } else { RTMPWriteTxWI(pAd, pFirstTxWI, FALSE, FALSE, bInsertTimestamp, FALSE, bAckRequired, FALSE, 0, pMacEntry->Aid, (SrcBufLen - TXINFO_SIZE - TXWI_SIZE), pMacEntry->MaxHTPhyMode.field.MCS, 0, (UCHAR)pMacEntry->MaxHTPhyMode.field.MCS, IFS_BACKOFF, FALSE, &pMacEntry->MaxHTPhyMode); } #ifdef RT_BIG_ENDIAN RTMPWIEndianChange((PUCHAR)pFirstTxWI, TYPE_TXWI); #endif // Now do hardware-depened kick out. HAL_KickOutMgmtTx(pAd, QueIdx, pPacket, pSrcBufVA, SrcBufLen); // Make sure to release MGMT ring resource // if (!IrqState) RTMP_SEM_UNLOCK(&pAd->MgmtRingLock); return NDIS_STATUS_SUCCESS; } /******************************************************************************** New DeQueue Procedures. ********************************************************************************/ #define DEQUEUE_LOCK(lock, bIntContext, IrqFlags) \ do{ \ if (bIntContext == FALSE) \ RTMP_IRQ_LOCK((lock), IrqFlags); \ }while(0) #define DEQUEUE_UNLOCK(lock, bIntContext, IrqFlags) \ do{ \ if (bIntContext == FALSE) \ RTMP_IRQ_UNLOCK((lock), IrqFlags); \ }while(0) #if 0 static VOID dumpTxBlk(TX_BLK *pTxBlk) { NDIS_PACKET *pPacket; int i, frameNum; PQUEUE_ENTRY pQEntry; printk("Dump TX_BLK Structure:\n"); printk("\tTxFrameType=%d!\n", pTxBlk->TxFrameType); printk("\tTotalFrameLen=%d\n", pTxBlk->TotalFrameLen); printk("\tTotalFrameNum=%ld!\n", pTxBlk->TxPacketList.Number); printk("\tTotalFragNum=%d!\n", pTxBlk->TotalFragNum); printk("\tpPacketList=\n"); frameNum = pTxBlk->TxPacketList.Number; for(i=0; i < frameNum; i++) { int j; UCHAR *pBuf; pQEntry = RemoveHeadQueue(&pTxBlk->TxPacketList); pPacket = QUEUE_ENTRY_TO_PACKET(pQEntry); if (pPacket) { pBuf = GET_OS_PKT_DATAPTR(pPacket); printk("\t\t[%d]:ptr=0x%x, Len=%d!\n", i, (UINT32)(GET_OS_PKT_DATAPTR(pPacket)), GET_OS_PKT_LEN(pPacket)); printk("\t\t"); for (j =0 ; j < GET_OS_PKT_LEN(pPacket); j++) { printk("%02x ", (pBuf[j] & 0xff)); if (j == 16) break; } InsertTailQueue(&pTxBlk->TxPacketList, PACKET_TO_QUEUE_ENTRY(pPacket)); } } printk("\tWcid=%d!\n", pTxBlk->Wcid); printk("\tapidx=%d!\n", pTxBlk->apidx); printk("----EndOfDump\n"); } #endif /* ======================================================================== Tx Path design algorithm: Basically, we divide the packets into four types, Broadcast/Multicast, 11N Rate(AMPDU, AMSDU, Normal), B/G Rate(ARALINK, Normal), Specific Packet Type. Following show the classification rule and policy for each kinds of packets. Classification Rule=> Multicast: (*addr1 & 0x01) == 0x01 Specific : bDHCPFrame, bARPFrame, bEAPOLFrame, etc. 11N Rate : If peer support HT (1).AMPDU -- If TXBA is negotiated. (2).AMSDU -- If AMSDU is capable for both peer and ourself. *). AMSDU can embedded in a AMPDU, but now we didn't support it. (3).Normal -- Other packets which send as 11n rate. B/G Rate : If peer is b/g only. (1).ARALINK-- If both of peer/us supprot Ralink proprietary Aggregation and the TxRate is large than RATE_6 (2).Normal -- Other packets which send as b/g rate. Fragment: The packet must be unicast, NOT A-RALINK, NOT A-MSDU, NOT 11n, then can consider about fragment. Classified Packet Handle Rule=> Multicast: No ACK, //pTxBlk->bAckRequired = FALSE; No WMM, //pTxBlk->bWMM = FALSE; No piggyback, //pTxBlk->bPiggyBack = FALSE; Force LowRate, //pTxBlk->bForceLowRate = TRUE; Specific : Basically, for specific packet, we should handle it specifically, but now all specific packets are use the same policy to handle it. Force LowRate, //pTxBlk->bForceLowRate = TRUE; 11N Rate : No piggyback, //pTxBlk->bPiggyBack = FALSE; (1).AMSDU pTxBlk->bWMM = TRUE; (2).AMPDU pTxBlk->bWMM = TRUE; (3).Normal B/G Rate : (1).ARALINK (2).Normal ======================================================================== */ static UCHAR TxPktClassification( IN RTMP_ADAPTER *pAd, IN PNDIS_PACKET pPacket) { UCHAR TxFrameType = TX_UNKOWN_FRAME; UCHAR Wcid; MAC_TABLE_ENTRY *pMacEntry = NULL; #ifdef DOT11_N_SUPPORT BOOLEAN bHTRate = FALSE; #endif // DOT11_N_SUPPORT // Wcid = RTMP_GET_PACKET_WCID(pPacket); if (Wcid == MCAST_WCID) { // Handle for RA is Broadcast/Multicast Address. return TX_MCAST_FRAME; } // Handle for unicast packets pMacEntry = &pAd->MacTab.Content[Wcid]; if (RTMP_GET_PACKET_LOWRATE(pPacket)) { // It's a specific packet need to force low rate, i.e., bDHCPFrame, bEAPOLFrame, bWAIFrame TxFrameType = TX_LEGACY_FRAME; } #ifdef DOT11_N_SUPPORT else if (IS_HT_RATE(pMacEntry)) { // it's a 11n capable packet // Depends on HTPhyMode to check if the peer support the HTRate transmission. // Currently didn't support A-MSDU embedded in A-MPDU bHTRate = TRUE; if (RTMP_GET_PACKET_MOREDATA(pPacket) || (pMacEntry->PsMode == PWR_SAVE)) TxFrameType = TX_LEGACY_FRAME; #ifdef UAPSD_AP_SUPPORT else if (RTMP_GET_PACKET_EOSP(pPacket)) TxFrameType = TX_LEGACY_FRAME; #endif // UAPSD_AP_SUPPORT // else if((pMacEntry->TXBAbitmap & (1<<(RTMP_GET_PACKET_UP(pPacket)))) != 0) return TX_AMPDU_FRAME; else if(CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_AMSDU_INUSED)) return TX_AMSDU_FRAME; else TxFrameType = TX_LEGACY_FRAME; } #endif // DOT11_N_SUPPORT // else { // it's a legacy b/g packet. if ((CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_AGGREGATION_CAPABLE) && pAd->CommonCfg.bAggregationCapable) && (RTMP_GET_PACKET_TXRATE(pPacket) >= RATE_6) && (!(OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_WMM_INUSED) && CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_WMM_CAPABLE)))) { // if peer support Ralink Aggregation, we use it. TxFrameType = TX_RALINK_FRAME; } else { TxFrameType = TX_LEGACY_FRAME; } } // Currently, our fragment only support when a unicast packet send as NOT-ARALINK, NOT-AMSDU and NOT-AMPDU. if ((RTMP_GET_PACKET_FRAGMENTS(pPacket) > 1) && (TxFrameType == TX_LEGACY_FRAME)) TxFrameType = TX_FRAG_FRAME; return TxFrameType; } BOOLEAN RTMP_FillTxBlkInfo( IN RTMP_ADAPTER *pAd, IN TX_BLK *pTxBlk) { PACKET_INFO PacketInfo; PNDIS_PACKET pPacket; PMAC_TABLE_ENTRY pMacEntry = NULL; pPacket = pTxBlk->pPacket; RTMP_QueryPacketInfo(pPacket, &PacketInfo, &pTxBlk->pSrcBufHeader, &pTxBlk->SrcBufLen); pTxBlk->Wcid = RTMP_GET_PACKET_WCID(pPacket); pTxBlk->apidx = RTMP_GET_PACKET_IF(pPacket); pTxBlk->UserPriority = RTMP_GET_PACKET_UP(pPacket); pTxBlk->FrameGap = IFS_HTTXOP; // ASIC determine Frame Gap if (RTMP_GET_PACKET_CLEAR_EAP_FRAME(pTxBlk->pPacket)) TX_BLK_SET_FLAG(pTxBlk, fTX_bClearEAPFrame); else TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bClearEAPFrame); // Default to clear this flag TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bForceNonQoS); if (pTxBlk->Wcid == MCAST_WCID) { pTxBlk->pMacEntry = NULL; { #ifdef MCAST_RATE_SPECIFIC PUCHAR pDA = GET_OS_PKT_DATAPTR(pPacket); if (((*pDA & 0x01) == 0x01) && (*pDA != 0xff)) pTxBlk->pTransmit = &pAd->CommonCfg.MCastPhyMode; else #endif // MCAST_RATE_SPECIFIC // pTxBlk->pTransmit = &pAd->MacTab.Content[MCAST_WCID].HTPhyMode; } TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bAckRequired); // AckRequired = FALSE, when broadcast packet in Adhoc mode. //TX_BLK_SET_FLAG(pTxBlk, fTX_bForceLowRate); TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bAllowFrag); TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bWMM); if (RTMP_GET_PACKET_MOREDATA(pPacket)) { TX_BLK_SET_FLAG(pTxBlk, fTX_bMoreData); } } else { pTxBlk->pMacEntry = &pAd->MacTab.Content[pTxBlk->Wcid]; pTxBlk->pTransmit = &pTxBlk->pMacEntry->HTPhyMode; pMacEntry = pTxBlk->pMacEntry; // For all unicast packets, need Ack unless the Ack Policy is not set as NORMAL_ACK. if (pAd->CommonCfg.AckPolicy[pTxBlk->QueIdx] != NORMAL_ACK) TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bAckRequired); else TX_BLK_SET_FLAG(pTxBlk, fTX_bAckRequired); { #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) { // If support WMM, enable it. if (OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_WMM_INUSED) && CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_WMM_CAPABLE)) TX_BLK_SET_FLAG(pTxBlk, fTX_bWMM); } #endif // CONFIG_STA_SUPPORT // } if (pTxBlk->TxFrameType == TX_LEGACY_FRAME) { if ( (RTMP_GET_PACKET_LOWRATE(pPacket)) || ((pAd->OpMode == OPMODE_AP) && (pMacEntry->MaxHTPhyMode.field.MODE == MODE_CCK) && (pMacEntry->MaxHTPhyMode.field.MCS == RATE_1))) { // Specific packet, i.e., bDHCPFrame, bEAPOLFrame, bWAIFrame, need force low rate. pTxBlk->pTransmit = &pAd->MacTab.Content[MCAST_WCID].HTPhyMode; #ifdef DOT11_N_SUPPORT // Modify the WMM bit for ICV issue. If we have a packet with EOSP field need to set as 1, how to handle it??? if (IS_HT_STA(pTxBlk->pMacEntry) && (CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_RALINK_CHIPSET)) && ((pAd->CommonCfg.bRdg == TRUE) && CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_RDG_CAPABLE))) { TX_BLK_CLEAR_FLAG(pTxBlk, fTX_bWMM); TX_BLK_SET_FLAG(pTxBlk, fTX_bForceNonQoS); } #endif // DOT11_N_SUPPORT // } #ifdef DOT11_N_SUPPORT if ( (IS_HT_RATE(pMacEntry) == FALSE) && (CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_PIGGYBACK_CAPABLE))) { // Currently piggy-back only support when peer is operate in b/g mode. TX_BLK_SET_FLAG(pTxBlk, fTX_bPiggyBack); } #endif // DOT11_N_SUPPORT // if (RTMP_GET_PACKET_MOREDATA(pPacket)) { TX_BLK_SET_FLAG(pTxBlk, fTX_bMoreData); } #ifdef UAPSD_AP_SUPPORT if (RTMP_GET_PACKET_EOSP(pPacket)) { TX_BLK_SET_FLAG(pTxBlk, fTX_bWMM_UAPSD_EOSP); } #endif // UAPSD_AP_SUPPORT // } else if (pTxBlk->TxFrameType == TX_FRAG_FRAME) { TX_BLK_SET_FLAG(pTxBlk, fTX_bAllowFrag); } pMacEntry->DebugTxCount++; } return TRUE; FillTxBlkErr: return FALSE; } BOOLEAN CanDoAggregateTransmit( IN RTMP_ADAPTER *pAd, IN NDIS_PACKET *pPacket, IN TX_BLK *pTxBlk) { //printk("Check if can do aggregation! TxFrameType=%d!\n", pTxBlk->TxFrameType); if (RTMP_GET_PACKET_WCID(pPacket) == MCAST_WCID) return FALSE; if (RTMP_GET_PACKET_DHCP(pPacket) || RTMP_GET_PACKET_EAPOL(pPacket) || RTMP_GET_PACKET_WAI(pPacket)) return FALSE; if ((pTxBlk->TxFrameType == TX_AMSDU_FRAME) && ((pTxBlk->TotalFrameLen + GET_OS_PKT_LEN(pPacket))> (RX_BUFFER_AGGRESIZE - 100))) { // For AMSDU, allow the packets with total length < max-amsdu size return FALSE; } if ((pTxBlk->TxFrameType == TX_RALINK_FRAME) && (pTxBlk->TxPacketList.Number == 2)) { // For RALINK-Aggregation, allow two frames in one batch. return FALSE; } #ifdef CONFIG_STA_SUPPORT if ((INFRA_ON(pAd)) && (pAd->OpMode == OPMODE_STA)) // must be unicast to AP return TRUE; else #endif // CONFIG_STA_SUPPORT // return FALSE; } /* ======================================================================== Routine Description: To do the enqueue operation and extract the first item of waiting list. If a number of available shared memory segments could meet the request of extracted item, the extracted item will be fragmented into shared memory segments. Arguments: pAd Pointer to our adapter pQueue Pointer to Waiting Queue Return Value: None IRQL = DISPATCH_LEVEL Note: ======================================================================== */ VOID RTMPDeQueuePacket( IN PRTMP_ADAPTER pAd, IN BOOLEAN bIntContext, IN UCHAR QIdx, /* BulkOutPipeId */ IN UCHAR Max_Tx_Packets) { PQUEUE_ENTRY pEntry = NULL; PNDIS_PACKET pPacket; NDIS_STATUS Status = NDIS_STATUS_SUCCESS; UCHAR Count=0; PQUEUE_HEADER pQueue; ULONG FreeNumber[NUM_OF_TX_RING]; UCHAR QueIdx, sQIdx, eQIdx; unsigned long IrqFlags = 0; BOOLEAN hasTxDesc = FALSE; TX_BLK TxBlk; TX_BLK *pTxBlk; #ifdef DBG_DIAGNOSE BOOLEAN firstRound; RtmpDiagStruct *pDiagStruct = &pAd->DiagStruct; #endif if (QIdx == NUM_OF_TX_RING) { sQIdx = 0; eQIdx = 3; // 4 ACs, start from 0. } else { sQIdx = eQIdx = QIdx; } for (QueIdx=sQIdx; QueIdx <= eQIdx; QueIdx++) { Count=0; RT28XX_START_DEQUEUE(pAd, QueIdx, IrqFlags); #ifdef DBG_DIAGNOSE firstRound = ((QueIdx == 0) ? TRUE : FALSE); #endif // DBG_DIAGNOSE // while (1) { if ((RTMP_TEST_FLAG(pAd, (fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS | fRTMP_ADAPTER_RADIO_OFF | fRTMP_ADAPTER_RESET_IN_PROGRESS | fRTMP_ADAPTER_HALT_IN_PROGRESS | fRTMP_ADAPTER_NIC_NOT_EXIST)))) { RT28XX_STOP_DEQUEUE(pAd, QueIdx, IrqFlags); return; } if (Count >= Max_Tx_Packets) break; DEQUEUE_LOCK(&pAd->irq_lock, bIntContext, IrqFlags); if (&pAd->TxSwQueue[QueIdx] == NULL) { #ifdef DBG_DIAGNOSE if (firstRound == TRUE) pDiagStruct->TxSWQueCnt[pDiagStruct->ArrayCurIdx][0]++; #endif // DBG_DIAGNOSE // DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags); break; } // probe the Queue Head pQueue = &pAd->TxSwQueue[QueIdx]; if ((pEntry = pQueue->Head) == NULL) { DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags); break; } pTxBlk = &TxBlk; NdisZeroMemory((PUCHAR)pTxBlk, sizeof(TX_BLK)); //InitializeQueueHeader(&pTxBlk->TxPacketList); // Didn't need it because we already memzero it. pTxBlk->QueIdx = QueIdx; pPacket = QUEUE_ENTRY_TO_PKT(pEntry); // Early check to make sure we have enoguh Tx Resource. hasTxDesc = RT28XX_HAS_ENOUGH_FREE_DESC(pAd, pTxBlk, FreeNumber[QueIdx], pPacket); if (!hasTxDesc) { pAd->PrivateInfo.TxRingFullCnt++; DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags); break; } pTxBlk->TxFrameType = TxPktClassification(pAd, pPacket); pEntry = RemoveHeadQueue(pQueue); pTxBlk->TotalFrameNum++; pTxBlk->TotalFragNum += RTMP_GET_PACKET_FRAGMENTS(pPacket); // The real fragment number maybe vary pTxBlk->TotalFrameLen += GET_OS_PKT_LEN(pPacket); pTxBlk->pPacket = pPacket; InsertTailQueue(&pTxBlk->TxPacketList, PACKET_TO_QUEUE_ENTRY(pPacket)); if (pTxBlk->TxFrameType == TX_RALINK_FRAME || pTxBlk->TxFrameType == TX_AMSDU_FRAME) { // Enhance SW Aggregation Mechanism if (NEED_QUEUE_BACK_FOR_AGG(pAd, QueIdx, FreeNumber[QueIdx], pTxBlk->TxFrameType)) { InsertHeadQueue(pQueue, PACKET_TO_QUEUE_ENTRY(pPacket)); DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags); break; } do{ if((pEntry = pQueue->Head) == NULL) break; // For TX_AMSDU_FRAME/TX_RALINK_FRAME, Need to check if next pakcet can do aggregation. pPacket = QUEUE_ENTRY_TO_PKT(pEntry); FreeNumber[QueIdx] = GET_TXRING_FREENO(pAd, QueIdx); hasTxDesc = RT28XX_HAS_ENOUGH_FREE_DESC(pAd, pTxBlk, FreeNumber[QueIdx], pPacket); if ((hasTxDesc == FALSE) || (CanDoAggregateTransmit(pAd, pPacket, pTxBlk) == FALSE)) break; //Remove the packet from the TxSwQueue and insert into pTxBlk pEntry = RemoveHeadQueue(pQueue); ASSERT(pEntry); pPacket = QUEUE_ENTRY_TO_PKT(pEntry); pTxBlk->TotalFrameNum++; pTxBlk->TotalFragNum += RTMP_GET_PACKET_FRAGMENTS(pPacket); // The real fragment number maybe vary pTxBlk->TotalFrameLen += GET_OS_PKT_LEN(pPacket); InsertTailQueue(&pTxBlk->TxPacketList, PACKET_TO_QUEUE_ENTRY(pPacket)); }while(1); if (pTxBlk->TxPacketList.Number == 1) pTxBlk->TxFrameType = TX_LEGACY_FRAME; } #ifdef RT2870 DEQUEUE_UNLOCK(&pAd->irq_lock, bIntContext, IrqFlags); #endif // RT2870 // Count += pTxBlk->TxPacketList.Number; // Do HardTransmit now. #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) Status = STAHardTransmit(pAd, pTxBlk, QueIdx); #endif // CONFIG_STA_SUPPORT // #if 0 // We should not break if HardTransmit failed. Well, at least now we should not! if (Status != NDIS_STATUS_SUCCESS) { DBGPRINT(RT_DEBUG_TRACE /*RT_DEBUG_INFO*/,("RTMPHardTransmit return failed!!!\n")); break; } #endif } RT28XX_STOP_DEQUEUE(pAd, QueIdx, IrqFlags); #ifdef RT2870 if (!hasTxDesc) RTUSBKickBulkOut(pAd); #endif // RT2870 // #ifdef BLOCK_NET_IF if ((pAd->blockQueueTab[QueIdx].SwTxQueueBlockFlag == TRUE) && (pAd->TxSwQueue[QueIdx].Number < 1)) { releaseNetIf(&pAd->blockQueueTab[QueIdx]); } #endif // BLOCK_NET_IF // } } /* ======================================================================== Routine Description: Calculates the duration which is required to transmit out frames with given size and specified rate. Arguments: pAd Pointer to our adapter Rate Transmit rate Size Frame size in units of byte Return Value: Duration number in units of usec IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL Note: ======================================================================== */ USHORT RTMPCalcDuration( IN PRTMP_ADAPTER pAd, IN UCHAR Rate, IN ULONG Size) { ULONG Duration = 0; if (Rate < RATE_FIRST_OFDM_RATE) // CCK { if ((Rate > RATE_1) && OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED)) Duration = 96; // 72+24 preamble+plcp else Duration = 192; // 144+48 preamble+plcp Duration += (USHORT)((Size << 4) / RateIdTo500Kbps[Rate]); if ((Size << 4) % RateIdTo500Kbps[Rate]) Duration ++; } else if (Rate <= RATE_LAST_OFDM_RATE)// OFDM rates { Duration = 20 + 6; // 16+4 preamble+plcp + Signal Extension Duration += 4 * (USHORT)((11 + Size * 4) / RateIdTo500Kbps[Rate]); if ((11 + Size * 4) % RateIdTo500Kbps[Rate]) Duration += 4; } else //mimo rate { Duration = 20 + 6; // 16+4 preamble+plcp + Signal Extension } return (USHORT)Duration; } /* ======================================================================== Routine Description: Calculates the duration which is required to transmit out frames with given size and specified rate. Arguments: pTxWI Pointer to head of each MPDU to HW. Ack Setting for Ack requirement bit Fragment Setting for Fragment bit RetryMode Setting for retry mode Ifs Setting for IFS gap Rate Setting for transmit rate Service Setting for service Length Frame length TxPreamble Short or Long preamble when using CCK rates QueIdx - 0-3, according to 802.11e/d4.4 June/2003 Return Value: None IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL See also : BASmartHardTransmit() !!! ======================================================================== */ VOID RTMPWriteTxWI( IN PRTMP_ADAPTER pAd, IN PTXWI_STRUC pOutTxWI, IN BOOLEAN FRAG, IN BOOLEAN CFACK, IN BOOLEAN InsTimestamp, IN BOOLEAN AMPDU, IN BOOLEAN Ack, IN BOOLEAN NSeq, // HW new a sequence. IN UCHAR BASize, IN UCHAR WCID, IN ULONG Length, IN UCHAR PID, IN UCHAR TID, IN UCHAR TxRate, IN UCHAR Txopmode, IN BOOLEAN CfAck, IN HTTRANSMIT_SETTING *pTransmit) { PMAC_TABLE_ENTRY pMac = NULL; TXWI_STRUC TxWI; PTXWI_STRUC pTxWI; if (WCID < MAX_LEN_OF_MAC_TABLE) pMac = &pAd->MacTab.Content[WCID]; // // Always use Long preamble before verifiation short preamble functionality works well. // Todo: remove the following line if short preamble functionality works // OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED); NdisZeroMemory(&TxWI, TXWI_SIZE); pTxWI = &TxWI; pTxWI->FRAG= FRAG; pTxWI->CFACK = CFACK; pTxWI->TS= InsTimestamp; pTxWI->AMPDU = AMPDU; pTxWI->ACK = Ack; pTxWI->txop= Txopmode; pTxWI->NSEQ = NSeq; // John tune the performace with Intel Client in 20 MHz performance #ifdef DOT11_N_SUPPORT BASize = pAd->CommonCfg.TxBASize; if( BASize >7 ) BASize =7; pTxWI->BAWinSize = BASize; pTxWI->ShortGI = pTransmit->field.ShortGI; pTxWI->STBC = pTransmit->field.STBC; #endif // DOT11_N_SUPPORT // pTxWI->WirelessCliID = WCID; pTxWI->MPDUtotalByteCount = Length; pTxWI->PacketId = PID; // If CCK or OFDM, BW must be 20 pTxWI->BW = (pTransmit->field.MODE <= MODE_OFDM) ? (BW_20) : (pTransmit->field.BW); #ifdef DOT11N_DRAFT3 if (pTxWI->BW) pTxWI->BW = (pAd->CommonCfg.AddHTInfo.AddHtInfo.RecomWidth == 0) ? (BW_20) : (pTransmit->field.BW); #endif // DOT11N_DRAFT3 // pTxWI->MCS = pTransmit->field.MCS; pTxWI->PHYMODE = pTransmit->field.MODE; pTxWI->CFACK = CfAck; #ifdef DOT11_N_SUPPORT if (pMac) { if (pAd->CommonCfg.bMIMOPSEnable) { if ((pMac->MmpsMode == MMPS_DYNAMIC) && (pTransmit->field.MCS > 7)) { // Dynamic MIMO Power Save Mode pTxWI->MIMOps = 1; } else if (pMac->MmpsMode == MMPS_STATIC) { // Static MIMO Power Save Mode if (pTransmit->field.MODE >= MODE_HTMIX && pTransmit->field.MCS > 7) { pTxWI->MCS = 7; pTxWI->MIMOps = 0; } } } //pTxWI->MIMOps = (pMac->PsMode == PWR_MMPS)? 1:0; if (pMac->bIAmBadAtheros && (pMac->WepStatus != Ndis802_11WEPDisabled)) { pTxWI->MpduDensity = 7; } else { pTxWI->MpduDensity = pMac->MpduDensity; } } #endif // DOT11_N_SUPPORT // pTxWI->PacketId = pTxWI->MCS; NdisMoveMemory(pOutTxWI, &TxWI, sizeof(TXWI_STRUC)); } VOID RTMPWriteTxWI_Data( IN PRTMP_ADAPTER pAd, IN OUT PTXWI_STRUC pTxWI, IN TX_BLK *pTxBlk) { HTTRANSMIT_SETTING *pTransmit; PMAC_TABLE_ENTRY pMacEntry; #ifdef DOT11_N_SUPPORT UCHAR BASize; #endif // DOT11_N_SUPPORT // ASSERT(pTxWI); pTransmit = pTxBlk->pTransmit; pMacEntry = pTxBlk->pMacEntry; // // Always use Long preamble before verifiation short preamble functionality works well. // Todo: remove the following line if short preamble functionality works // OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED); NdisZeroMemory(pTxWI, TXWI_SIZE); pTxWI->FRAG = TX_BLK_TEST_FLAG(pTxBlk, fTX_bAllowFrag); pTxWI->ACK = TX_BLK_TEST_FLAG(pTxBlk, fTX_bAckRequired); pTxWI->txop = pTxBlk->FrameGap; #ifdef CONFIG_STA_SUPPORT #ifdef QOS_DLS_SUPPORT if (pMacEntry && (pAd->StaCfg.BssType == BSS_INFRA) && (pMacEntry->ValidAsDls == TRUE)) pTxWI->WirelessCliID = BSSID_WCID; else #endif // QOS_DLS_SUPPORT // #endif // CONFIG_STA_SUPPORT // pTxWI->WirelessCliID = pTxBlk->Wcid; pTxWI->MPDUtotalByteCount = pTxBlk->MpduHeaderLen + pTxBlk->SrcBufLen; pTxWI->CFACK = TX_BLK_TEST_FLAG(pTxBlk, fTX_bPiggyBack); // If CCK or OFDM, BW must be 20 pTxWI->BW = (pTransmit->field.MODE <= MODE_OFDM) ? (BW_20) : (pTransmit->field.BW); #ifdef DOT11_N_SUPPORT #ifdef DOT11N_DRAFT3 if (pTxWI->BW) pTxWI->BW = (pAd->CommonCfg.AddHTInfo.AddHtInfo.RecomWidth == 0) ? (BW_20) : (pTransmit->field.BW); #endif // DOT11N_DRAFT3 // pTxWI->AMPDU = ((pTxBlk->TxFrameType == TX_AMPDU_FRAME) ? TRUE : FALSE); // John tune the performace with Intel Client in 20 MHz performance BASize = pAd->CommonCfg.TxBASize; if((pTxBlk->TxFrameType == TX_AMPDU_FRAME) && (pMacEntry)) { UCHAR RABAOriIdx = 0; //The RA's BA Originator table index. RABAOriIdx = pTxBlk->pMacEntry->BAOriWcidArray[pTxBlk->UserPriority]; BASize = pAd->BATable.BAOriEntry[RABAOriIdx].BAWinSize; } #if 0 // 3*3 if (BASize > 7) BASize = 7; #endif pTxWI->TxBF = pTransmit->field.TxBF; pTxWI->BAWinSize = BASize; pTxWI->ShortGI = pTransmit->field.ShortGI; pTxWI->STBC = pTransmit->field.STBC; #endif // DOT11_N_SUPPORT // pTxWI->MCS = pTransmit->field.MCS; pTxWI->PHYMODE = pTransmit->field.MODE; #ifdef DOT11_N_SUPPORT if (pMacEntry) { if ((pMacEntry->MmpsMode == MMPS_DYNAMIC) && (pTransmit->field.MCS > 7)) { // Dynamic MIMO Power Save Mode pTxWI->MIMOps = 1; } else if (pMacEntry->MmpsMode == MMPS_STATIC) { // Static MIMO Power Save Mode if (pTransmit->field.MODE >= MODE_HTMIX && pTransmit->field.MCS > 7) { pTxWI->MCS = 7; pTxWI->MIMOps = 0; } } if (pMacEntry->bIAmBadAtheros && (pMacEntry->WepStatus != Ndis802_11WEPDisabled)) { pTxWI->MpduDensity = 7; } else { pTxWI->MpduDensity = pMacEntry->MpduDensity; } } #endif // DOT11_N_SUPPORT // #ifdef DBG_DIAGNOSE if (pTxBlk->QueIdx== 0) { pAd->DiagStruct.TxDataCnt[pAd->DiagStruct.ArrayCurIdx]++; pAd->DiagStruct.TxMcsCnt[pAd->DiagStruct.ArrayCurIdx][pTxWI->MCS]++; } #endif // DBG_DIAGNOSE // // for rate adapation pTxWI->PacketId = pTxWI->MCS; } VOID RTMPWriteTxWI_Cache( IN PRTMP_ADAPTER pAd, IN OUT PTXWI_STRUC pTxWI, IN TX_BLK *pTxBlk) { PHTTRANSMIT_SETTING /*pTxHTPhyMode,*/ pTransmit; PMAC_TABLE_ENTRY pMacEntry; // // update TXWI // pMacEntry = pTxBlk->pMacEntry; pTransmit = pTxBlk->pTransmit; if (pMacEntry->bAutoTxRateSwitch) { pTxWI->txop = IFS_HTTXOP; // If CCK or OFDM, BW must be 20 pTxWI->BW = (pTransmit->field.MODE <= MODE_OFDM) ? (BW_20) : (pTransmit->field.BW); pTxWI->ShortGI = pTransmit->field.ShortGI; pTxWI->STBC = pTransmit->field.STBC; pTxWI->MCS = pTransmit->field.MCS; pTxWI->PHYMODE = pTransmit->field.MODE; // set PID for TxRateSwitching pTxWI->PacketId = pTransmit->field.MCS; } #ifdef DOT11_N_SUPPORT pTxWI->AMPDU = ((pMacEntry->NoBADataCountDown == 0) ? TRUE: FALSE); pTxWI->MIMOps = 0; #ifdef DOT11N_DRAFT3 if (pTxWI->BW) pTxWI->BW = (pAd->CommonCfg.AddHTInfo.AddHtInfo.RecomWidth == 0) ? (BW_20) : (pTransmit->field.BW); #endif // DOT11N_DRAFT3 // if (pAd->CommonCfg.bMIMOPSEnable) { // MIMO Power Save Mode if ((pMacEntry->MmpsMode == MMPS_DYNAMIC) && (pTransmit->field.MCS > 7)) { // Dynamic MIMO Power Save Mode pTxWI->MIMOps = 1; } else if (pMacEntry->MmpsMode == MMPS_STATIC) { // Static MIMO Power Save Mode if ((pTransmit->field.MODE >= MODE_HTMIX) && (pTransmit->field.MCS > 7)) { pTxWI->MCS = 7; pTxWI->MIMOps = 0; } } } #endif // DOT11_N_SUPPORT // #ifdef DBG_DIAGNOSE if (pTxBlk->QueIdx== 0) { pAd->DiagStruct.TxDataCnt[pAd->DiagStruct.ArrayCurIdx]++; pAd->DiagStruct.TxMcsCnt[pAd->DiagStruct.ArrayCurIdx][pTxWI->MCS]++; } #endif // DBG_DIAGNOSE // pTxWI->MPDUtotalByteCount = pTxBlk->MpduHeaderLen + pTxBlk->SrcBufLen; } /* ======================================================================== Routine Description: Calculates the duration which is required to transmit out frames with given size and specified rate. Arguments: pTxD Pointer to transmit descriptor Ack Setting for Ack requirement bit Fragment Setting for Fragment bit RetryMode Setting for retry mode Ifs Setting for IFS gap Rate Setting for transmit rate Service Setting for service Length Frame length TxPreamble Short or Long preamble when using CCK rates QueIdx - 0-3, according to 802.11e/d4.4 June/2003 Return Value: None IRQL = PASSIVE_LEVEL IRQL = DISPATCH_LEVEL ======================================================================== */ VOID RTMPWriteTxDescriptor( IN PRTMP_ADAPTER pAd, IN PTXD_STRUC pTxD, IN BOOLEAN bWIV, IN UCHAR QueueSEL) { // // Always use Long preamble before verifiation short preamble functionality works well. // Todo: remove the following line if short preamble functionality works // OPSTATUS_CLEAR_FLAG(pAd, fOP_STATUS_SHORT_PREAMBLE_INUSED); pTxD->WIV = (bWIV) ? 1: 0; pTxD->QSEL= (QueueSEL); //RT2860c?? fixed using EDCA queue for test... We doubt Queue1 has problem. 2006-09-26 Jan //pTxD->QSEL= FIFO_EDCA; if (pAd->bGenOneHCCA == TRUE) pTxD->QSEL= FIFO_HCCA; pTxD->DMADONE = 0; } // should be called only when - // 1. MEADIA_CONNECTED // 2. AGGREGATION_IN_USED // 3. Fragmentation not in used // 4. either no previous frame (pPrevAddr1=NULL) .OR. previoud frame is aggregatible BOOLEAN TxFrameIsAggregatible( IN PRTMP_ADAPTER pAd, IN PUCHAR pPrevAddr1, IN PUCHAR p8023hdr) { // can't aggregate EAPOL (802.1x) frame if ((p8023hdr[12] == 0x88) && (p8023hdr[13] == 0x8e)) return FALSE; // can't aggregate multicast/broadcast frame if (p8023hdr[0] & 0x01) return FALSE; if (INFRA_ON(pAd)) // must be unicast to AP return TRUE; else if ((pPrevAddr1 == NULL) || MAC_ADDR_EQUAL(pPrevAddr1, p8023hdr)) // unicast to same STA return TRUE; else return FALSE; } /* ======================================================================== Routine Description: Check the MSDU Aggregation policy 1.HT aggregation is A-MSDU 2.legaacy rate aggregation is software aggregation by Ralink. Arguments: Return Value: Note: ======================================================================== */ BOOLEAN PeerIsAggreOn( IN PRTMP_ADAPTER pAd, IN ULONG TxRate, IN PMAC_TABLE_ENTRY pMacEntry) { ULONG AFlags = (fCLIENT_STATUS_AMSDU_INUSED | fCLIENT_STATUS_AGGREGATION_CAPABLE); if (pMacEntry != NULL && CLIENT_STATUS_TEST_FLAG(pMacEntry, AFlags)) { #ifdef DOT11_N_SUPPORT if (pMacEntry->HTPhyMode.field.MODE >= MODE_HTMIX) { return TRUE; } #endif // DOT11_N_SUPPORT // #ifdef AGGREGATION_SUPPORT if (TxRate >= RATE_6 && pAd->CommonCfg.bAggregationCapable && (!(OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_WMM_INUSED) && CLIENT_STATUS_TEST_FLAG(pMacEntry, fCLIENT_STATUS_WMM_CAPABLE)))) { // legacy Ralink Aggregation support return TRUE; } #endif // AGGREGATION_SUPPORT // } return FALSE; } /* ======================================================================== Routine Description: Check and fine the packet waiting in SW queue with highest priority Arguments: pAd Pointer to our adapter Return Value: pQueue Pointer to Waiting Queue IRQL = DISPATCH_LEVEL Note: ======================================================================== */ PQUEUE_HEADER RTMPCheckTxSwQueue( IN PRTMP_ADAPTER pAd, OUT PUCHAR pQueIdx) { ULONG Number; // 2004-11-15 to be removed. test aggregation only // if ((OPSTATUS_TEST_FLAG(pAd, fOP_STATUS_AGGREGATION_INUSED)) && (*pNumber < 2)) // return NULL; Number = pAd->TxSwQueue[QID_AC_BK].Number + pAd->TxSwQueue[QID_AC_BE].Number + pAd->TxSwQueue[QID_AC_VI].Number + pAd->TxSwQueue[QID_AC_VO].Number + pAd->TxSwQueue[QID_HCCA].Number; if (pAd->TxSwQueue[QID_AC_VO].Head != NULL) { *pQueIdx = QID_AC_VO; return (&pAd->TxSwQueue[QID_AC_VO]); } else if (pAd->TxSwQueue[QID_AC_VI].Head != NULL) { *pQueIdx = QID_AC_VI; return (&pAd->TxSwQueue[QID_AC_VI]); } else if (pAd->TxSwQueue[QID_AC_BE].Head != NULL) { *pQueIdx = QID_AC_BE; return (&pAd->TxSwQueue[QID_AC_BE]); } else if (pAd->TxSwQueue[QID_AC_BK].Head != NULL) { *pQueIdx = QID_AC_BK; return (&pAd->TxSwQueue[QID_AC_BK]); } else if (pAd->TxSwQueue[QID_HCCA].Head != NULL) { *pQueIdx = QID_HCCA; return (&pAd->TxSwQueue[QID_HCCA]); } // No packet pending in Tx Sw queue *pQueIdx = QID_AC_BK; return (NULL); } /* ======================================================================== Routine Description: Suspend MSDU transmission Arguments: pAd Pointer to our adapter Return Value: None Note: ======================================================================== */ VOID RTMPSuspendMsduTransmission( IN PRTMP_ADAPTER pAd) { DBGPRINT(RT_DEBUG_TRACE,("SCANNING, suspend MSDU transmission ...\n")); // // Before BSS_SCAN_IN_PROGRESS, we need to keep Current R66 value and // use Lowbound as R66 value on ScanNextChannel(...) // RTMP_BBP_IO_READ8_BY_REG_ID(pAd, BBP_R66, &pAd->BbpTuning.R66CurrentValue); // set BBP_R66 to 0x30/0x40 when scanning (AsicSwitchChannel will set R66 according to channel when scanning) //RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R66, (0x26 + GET_LNA_GAIN(pAd))); RTMPSetAGCInitValue(pAd, BW_20); RTMP_SET_FLAG(pAd, fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS); //RTMP_IO_WRITE32(pAd, TX_CNTL_CSR, 0x000f0000); // abort all TX rings } /* ======================================================================== Routine Description: Resume MSDU transmission Arguments: pAd Pointer to our adapter Return Value: None IRQL = DISPATCH_LEVEL Note: ======================================================================== */ VOID RTMPResumeMsduTransmission( IN PRTMP_ADAPTER pAd) { // UCHAR IrqState; DBGPRINT(RT_DEBUG_TRACE,("SCAN done, resume MSDU transmission ...\n")); RTMP_BBP_IO_WRITE8_BY_REG_ID(pAd, BBP_R66, pAd->BbpTuning.R66CurrentValue); RTMP_CLEAR_FLAG(pAd, fRTMP_ADAPTER_BSS_SCAN_IN_PROGRESS); // sample, for IRQ LOCK to SEM LOCK // IrqState = pAd->irq_disabled; // if (IrqState) // RTMPDeQueuePacket(pAd, TRUE, NUM_OF_TX_RING, MAX_TX_PROCESS); // else RTMPDeQueuePacket(pAd, FALSE, NUM_OF_TX_RING, MAX_TX_PROCESS); } UINT deaggregate_AMSDU_announce( IN PRTMP_ADAPTER pAd, PNDIS_PACKET pPacket, IN PUCHAR pData, IN ULONG DataSize) { USHORT PayloadSize; USHORT SubFrameSize; PHEADER_802_3 pAMSDUsubheader; UINT nMSDU; UCHAR Header802_3[14]; PUCHAR pPayload, pDA, pSA, pRemovedLLCSNAP; PNDIS_PACKET pClonePacket; nMSDU = 0; while (DataSize > LENGTH_802_3) { nMSDU++; //hex_dump("subheader", pData, 64); pAMSDUsubheader = (PHEADER_802_3)pData; //pData += LENGTH_802_3; PayloadSize = pAMSDUsubheader->Octet[1] + (pAMSDUsubheader->Octet[0]<<8); SubFrameSize = PayloadSize + LENGTH_802_3; if ((DataSize < SubFrameSize) || (PayloadSize > 1518 )) { break; } //printk("%d subframe: Size = %d\n", nMSDU, PayloadSize); pPayload = pData + LENGTH_802_3; pDA = pData; pSA = pData + MAC_ADDR_LEN; // convert to 802.3 header CONVERT_TO_802_3(Header802_3, pDA, pSA, pPayload, PayloadSize, pRemovedLLCSNAP); #ifdef CONFIG_STA_SUPPORT if ((Header802_3[12] == 0x88) && (Header802_3[13] == 0x8E) ) { // avoid local heap overflow, use dyanamic allocation MLME_QUEUE_ELEM *Elem = (MLME_QUEUE_ELEM *) kmalloc(sizeof(MLME_QUEUE_ELEM), MEM_ALLOC_FLAG); memmove(Elem->Msg+(LENGTH_802_11 + LENGTH_802_1_H), pPayload, PayloadSize); Elem->MsgLen = LENGTH_802_11 + LENGTH_802_1_H + PayloadSize; WpaEAPOLKeyAction(pAd, Elem); kfree(Elem); } #endif // CONFIG_STA_SUPPORT // #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) { if (pRemovedLLCSNAP) { pPayload -= LENGTH_802_3; PayloadSize += LENGTH_802_3; NdisMoveMemory(pPayload, &Header802_3[0], LENGTH_802_3); } } #endif // CONFIG_STA_SUPPORT // pClonePacket = ClonePacket(pAd, pPacket, pPayload, PayloadSize); if (pClonePacket) { #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) ANNOUNCE_OR_FORWARD_802_3_PACKET(pAd, pClonePacket, RTMP_GET_PACKET_IF(pPacket)); #endif // CONFIG_STA_SUPPORT // } // A-MSDU has padding to multiple of 4 including subframe header. // align SubFrameSize up to multiple of 4 SubFrameSize = (SubFrameSize+3)&(~0x3); if (SubFrameSize > 1528 || SubFrameSize < 32) { break; } if (DataSize > SubFrameSize) { pData += SubFrameSize; DataSize -= SubFrameSize; } else { // end of A-MSDU DataSize = 0; } } // finally release original rx packet RELEASE_NDIS_PACKET(pAd, pPacket, NDIS_STATUS_SUCCESS); return nMSDU; } UINT BA_Reorder_AMSDU_Annnounce( IN PRTMP_ADAPTER pAd, IN PNDIS_PACKET pPacket) { PUCHAR pData; USHORT DataSize; UINT nMSDU = 0; pData = (PUCHAR) GET_OS_PKT_DATAPTR(pPacket); DataSize = (USHORT) GET_OS_PKT_LEN(pPacket); nMSDU = deaggregate_AMSDU_announce(pAd, pPacket, pData, DataSize); return nMSDU; } /* ========================================================================== Description: Look up the MAC address in the MAC table. Return NULL if not found. Return: pEntry - pointer to the MAC entry; NULL is not found ========================================================================== */ MAC_TABLE_ENTRY *MacTableLookup( IN PRTMP_ADAPTER pAd, PUCHAR pAddr) { ULONG HashIdx; MAC_TABLE_ENTRY *pEntry = NULL; HashIdx = MAC_ADDR_HASH_INDEX(pAddr); pEntry = pAd->MacTab.Hash[HashIdx]; while (pEntry && (pEntry->ValidAsCLI || pEntry->ValidAsWDS || pEntry->ValidAsApCli || pEntry->ValidAsMesh)) { if (MAC_ADDR_EQUAL(pEntry->Addr, pAddr)) { break; } else pEntry = pEntry->pNext; } return pEntry; } MAC_TABLE_ENTRY *MacTableInsertEntry( IN PRTMP_ADAPTER pAd, IN PUCHAR pAddr, IN UCHAR apidx, IN BOOLEAN CleanAll) { UCHAR HashIdx; int i, FirstWcid; MAC_TABLE_ENTRY *pEntry = NULL, *pCurrEntry; // if FULL, return if (pAd->MacTab.Size >= MAX_LEN_OF_MAC_TABLE) return NULL; FirstWcid = 1; #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) if (pAd->StaCfg.BssType == BSS_INFRA) FirstWcid = 2; #endif // CONFIG_STA_SUPPORT // // allocate one MAC entry NdisAcquireSpinLock(&pAd->MacTabLock); for (i = FirstWcid; i< MAX_LEN_OF_MAC_TABLE; i++) // skip entry#0 so that "entry index == AID" for fast lookup { // pick up the first available vacancy if ((pAd->MacTab.Content[i].ValidAsCLI == FALSE) && (pAd->MacTab.Content[i].ValidAsWDS == FALSE) && (pAd->MacTab.Content[i].ValidAsApCli== FALSE) && (pAd->MacTab.Content[i].ValidAsMesh == FALSE) #ifdef CONFIG_STA_SUPPORT #ifdef QOS_DLS_SUPPORT && (pAd->MacTab.Content[i].ValidAsDls == FALSE) #endif // QOS_DLS_SUPPORT // #endif // CONFIG_STA_SUPPORT // ) { pEntry = &pAd->MacTab.Content[i]; if (CleanAll == TRUE) { pEntry->MaxSupportedRate = RATE_11; pEntry->CurrTxRate = RATE_11; NdisZeroMemory(pEntry, sizeof(MAC_TABLE_ENTRY)); pEntry->PairwiseKey.KeyLen = 0; pEntry->PairwiseKey.CipherAlg = CIPHER_NONE; } #ifdef CONFIG_STA_SUPPORT #ifdef QOS_DLS_SUPPORT if (apidx >= MIN_NET_DEVICE_FOR_DLS) { pEntry->ValidAsCLI = FALSE; pEntry->ValidAsWDS = FALSE; pEntry->ValidAsApCli = FALSE; pEntry->ValidAsMesh = FALSE; pEntry->ValidAsDls = TRUE; pEntry->isCached = FALSE; } else #endif // QOS_DLS_SUPPORT // #endif // CONFIG_STA_SUPPORT // { #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) { pEntry->ValidAsCLI = TRUE; pEntry->ValidAsWDS = FALSE; pEntry->ValidAsApCli = FALSE; pEntry->ValidAsMesh = FALSE; pEntry->ValidAsDls = FALSE; } #endif // CONFIG_STA_SUPPORT // } pEntry->bIAmBadAtheros = FALSE; pEntry->pAd = pAd; pEntry->CMTimerRunning = FALSE; pEntry->EnqueueEapolStartTimerRunning = EAPOL_START_DISABLE; pEntry->RSNIE_Len = 0; NdisZeroMemory(pEntry->R_Counter, sizeof(pEntry->R_Counter)); pEntry->ReTryCounter = PEER_MSG1_RETRY_TIMER_CTR; if (pEntry->ValidAsMesh) pEntry->apidx = (apidx - MIN_NET_DEVICE_FOR_MESH); else if (pEntry->ValidAsApCli) pEntry->apidx = (apidx - MIN_NET_DEVICE_FOR_APCLI); else if (pEntry->ValidAsWDS) pEntry->apidx = (apidx - MIN_NET_DEVICE_FOR_WDS); #ifdef CONFIG_STA_SUPPORT #ifdef QOS_DLS_SUPPORT else if (pEntry->ValidAsDls) pEntry->apidx = (apidx - MIN_NET_DEVICE_FOR_DLS); #endif // QOS_DLS_SUPPORT // #endif // CONFIG_STA_SUPPORT // else pEntry->apidx = apidx; { #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) { pEntry->AuthMode = pAd->StaCfg.AuthMode; pEntry->WepStatus = pAd->StaCfg.WepStatus; pEntry->PrivacyFilter = Ndis802_11PrivFilterAcceptAll; } #endif // CONFIG_STA_SUPPORT // } pEntry->GTKState = REKEY_NEGOTIATING; pEntry->PairwiseKey.KeyLen = 0; pEntry->PairwiseKey.CipherAlg = CIPHER_NONE; #ifdef CONFIG_STA_SUPPORT #ifdef QOS_DLS_SUPPORT if (pEntry->ValidAsDls == TRUE) pEntry->PortSecured = WPA_802_1X_PORT_SECURED; #endif //QOS_DLS_SUPPORT #endif // CONFIG_STA_SUPPORT // pEntry->PortSecured = WPA_802_1X_PORT_NOT_SECURED; pEntry->PMKID_CacheIdx = ENTRY_NOT_FOUND; COPY_MAC_ADDR(pEntry->Addr, pAddr); pEntry->Sst = SST_NOT_AUTH; pEntry->AuthState = AS_NOT_AUTH; pEntry->Aid = (USHORT)i; //0; pEntry->CapabilityInfo = 0; pEntry->PsMode = PWR_ACTIVE; pEntry->PsQIdleCount = 0; pEntry->NoDataIdleCount = 0; pEntry->ContinueTxFailCnt = 0; InitializeQueueHeader(&pEntry->PsQueue); pAd->MacTab.Size ++; // Add this entry into ASIC RX WCID search table RT28XX_STA_ENTRY_ADD(pAd, pEntry); DBGPRINT(RT_DEBUG_TRACE, ("MacTableInsertEntry - allocate entry #%d, Total= %d\n",i, pAd->MacTab.Size)); break; } } // add this MAC entry into HASH table if (pEntry) { HashIdx = MAC_ADDR_HASH_INDEX(pAddr); if (pAd->MacTab.Hash[HashIdx] == NULL) { pAd->MacTab.Hash[HashIdx] = pEntry; } else { pCurrEntry = pAd->MacTab.Hash[HashIdx]; while (pCurrEntry->pNext != NULL) pCurrEntry = pCurrEntry->pNext; pCurrEntry->pNext = pEntry; } } NdisReleaseSpinLock(&pAd->MacTabLock); return pEntry; } /* ========================================================================== Description: Delete a specified client from MAC table ========================================================================== */ BOOLEAN MacTableDeleteEntry( IN PRTMP_ADAPTER pAd, IN USHORT wcid, IN PUCHAR pAddr) { USHORT HashIdx; MAC_TABLE_ENTRY *pEntry, *pPrevEntry, *pProbeEntry; BOOLEAN Cancelled; //USHORT offset; // unused variable //UCHAR j; // unused variable if (wcid >= MAX_LEN_OF_MAC_TABLE) return FALSE; NdisAcquireSpinLock(&pAd->MacTabLock); HashIdx = MAC_ADDR_HASH_INDEX(pAddr); //pEntry = pAd->MacTab.Hash[HashIdx]; pEntry = &pAd->MacTab.Content[wcid]; if (pEntry && (pEntry->ValidAsCLI || pEntry->ValidAsApCli || pEntry->ValidAsWDS || pEntry->ValidAsMesh #ifdef CONFIG_STA_SUPPORT #ifdef QOS_DLS_SUPPORT || pEntry->ValidAsDls #endif // QOS_DLS_SUPPORT // #endif // CONFIG_STA_SUPPORT // )) { if (MAC_ADDR_EQUAL(pEntry->Addr, pAddr)) { // Delete this entry from ASIC on-chip WCID Table RT28XX_STA_ENTRY_MAC_RESET(pAd, wcid); #ifdef DOT11_N_SUPPORT // free resources of BA BASessionTearDownALL(pAd, pEntry->Aid); #endif // DOT11_N_SUPPORT // pPrevEntry = NULL; pProbeEntry = pAd->MacTab.Hash[HashIdx]; ASSERT(pProbeEntry); // update Hash list do { if (pProbeEntry == pEntry) { if (pPrevEntry == NULL) { pAd->MacTab.Hash[HashIdx] = pEntry->pNext; } else { pPrevEntry->pNext = pEntry->pNext; } break; } pPrevEntry = pProbeEntry; pProbeEntry = pProbeEntry->pNext; } while (pProbeEntry); // not found !!! ASSERT(pProbeEntry != NULL); RT28XX_STA_ENTRY_KEY_DEL(pAd, BSS0, wcid); if (pEntry->EnqueueEapolStartTimerRunning != EAPOL_START_DISABLE) { RTMPCancelTimer(&pEntry->EnqueueStartForPSKTimer, &Cancelled); pEntry->EnqueueEapolStartTimerRunning = EAPOL_START_DISABLE; } NdisZeroMemory(pEntry, sizeof(MAC_TABLE_ENTRY)); pAd->MacTab.Size --; DBGPRINT(RT_DEBUG_TRACE, ("MacTableDeleteEntry1 - Total= %d\n", pAd->MacTab.Size)); } else { printk("\n%s: Impossible Wcid = %d !!!!!\n", __func__, wcid); } } NdisReleaseSpinLock(&pAd->MacTabLock); //Reset operating mode when no Sta. if (pAd->MacTab.Size == 0) { #ifdef DOT11_N_SUPPORT pAd->CommonCfg.AddHTInfo.AddHtInfo2.OperaionMode = 0; #endif // DOT11_N_SUPPORT // AsicUpdateProtect(pAd, 0 /*pAd->CommonCfg.AddHTInfo.AddHtInfo2.OperaionMode*/, (ALLN_SETPROTECT), TRUE, 0 /*pAd->MacTab.fAnyStationNonGF*/); } return TRUE; } /* ========================================================================== Description: This routine reset the entire MAC table. All packets pending in the power-saving queues are freed here. ========================================================================== */ VOID MacTableReset( IN PRTMP_ADAPTER pAd) { int i; DBGPRINT(RT_DEBUG_TRACE, ("MacTableReset\n")); //NdisAcquireSpinLock(&pAd->MacTabLock); for (i=1; iMacTab.Content[i].ValidAsCLI == TRUE) { #ifdef DOT11_N_SUPPORT // free resources of BA BASessionTearDownALL(pAd, i); #endif // DOT11_N_SUPPORT // pAd->MacTab.Content[i].ValidAsCLI = FALSE; #ifdef RT2870 NdisZeroMemory(pAd->MacTab.Content[i].Addr, 6); RT28XX_STA_ENTRY_MAC_RESET(pAd, i); #endif // RT2870 // //AsicDelWcidTab(pAd, i); } } return; } /* ========================================================================== Description: IRQL = DISPATCH_LEVEL ========================================================================== */ VOID AssocParmFill( IN PRTMP_ADAPTER pAd, IN OUT MLME_ASSOC_REQ_STRUCT *AssocReq, IN PUCHAR pAddr, IN USHORT CapabilityInfo, IN ULONG Timeout, IN USHORT ListenIntv) { COPY_MAC_ADDR(AssocReq->Addr, pAddr); // Add mask to support 802.11b mode only AssocReq->CapabilityInfo = CapabilityInfo & SUPPORTED_CAPABILITY_INFO; // not cf-pollable, not cf-poll-request AssocReq->Timeout = Timeout; AssocReq->ListenIntv = ListenIntv; } /* ========================================================================== Description: IRQL = DISPATCH_LEVEL ========================================================================== */ VOID DisassocParmFill( IN PRTMP_ADAPTER pAd, IN OUT MLME_DISASSOC_REQ_STRUCT *DisassocReq, IN PUCHAR pAddr, IN USHORT Reason) { COPY_MAC_ADDR(DisassocReq->Addr, pAddr); DisassocReq->Reason = Reason; } /* ======================================================================== Routine Description: Check the out going frame, if this is an DHCP or ARP datagram will be duplicate another frame at low data rate transmit. Arguments: pAd Pointer to our adapter pPacket Pointer to outgoing Ndis frame Return Value: TRUE To be duplicate at Low data rate transmit. (1mb) FALSE Do nothing. IRQL = DISPATCH_LEVEL Note: MAC header + IP Header + UDP Header 14 Bytes 20 Bytes UDP Header 00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15| Source Port 16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31| Destination Port port 0x43 means Bootstrap Protocol, server. Port 0x44 means Bootstrap Protocol, client. ======================================================================== */ BOOLEAN RTMPCheckDHCPFrame( IN PRTMP_ADAPTER pAd, IN PNDIS_PACKET pPacket) { PACKET_INFO PacketInfo; ULONG NumberOfBytesRead = 0; ULONG CurrentOffset = 0; PVOID pVirtualAddress = NULL; UINT NdisBufferLength; PUCHAR pSrc; USHORT Protocol; UCHAR ByteOffset36 = 0; UCHAR ByteOffset38 = 0; BOOLEAN ReadFirstParm = TRUE; RTMP_QueryPacketInfo(pPacket, &PacketInfo, (PUCHAR *)&pVirtualAddress, &NdisBufferLength); NumberOfBytesRead += NdisBufferLength; pSrc = (PUCHAR) pVirtualAddress; Protocol = *(pSrc + 12) * 256 + *(pSrc + 13); // // Check DHCP & BOOTP protocol // while (NumberOfBytesRead <= PacketInfo.TotalPacketLength) { if ((NumberOfBytesRead >= 35) && (ReadFirstParm == TRUE)) { CurrentOffset = 35 - (NumberOfBytesRead - NdisBufferLength); ByteOffset36 = *(pSrc + CurrentOffset); ReadFirstParm = FALSE; } if (NumberOfBytesRead >= 37) { CurrentOffset = 37 - (NumberOfBytesRead - NdisBufferLength); ByteOffset38 = *(pSrc + CurrentOffset); //End of Read break; } return FALSE; } // Check for DHCP & BOOTP protocol if ((ByteOffset36 != 0x44) || (ByteOffset38 != 0x43)) { // // 2054 (hex 0806) for ARP datagrams // if this packet is not ARP datagrams, then do nothing // ARP datagrams will also be duplicate at 1mb broadcast frames // if (Protocol != 0x0806 ) return FALSE; } return TRUE; } BOOLEAN RTMPCheckEtherType( IN PRTMP_ADAPTER pAd, IN PNDIS_PACKET pPacket) { USHORT TypeLen; UCHAR Byte0, Byte1; PUCHAR pSrcBuf; UINT32 pktLen; UINT16 srcPort, dstPort; BOOLEAN status = TRUE; pSrcBuf = GET_OS_PKT_DATAPTR(pPacket); pktLen = GET_OS_PKT_LEN(pPacket); ASSERT(pSrcBuf); RTMP_SET_PACKET_SPECIFIC(pPacket, 0); // get Ethernet protocol field TypeLen = (pSrcBuf[12] << 8) + pSrcBuf[13]; pSrcBuf += LENGTH_802_3; // Skip the Ethernet Header. if (TypeLen <= 1500) { // 802.3, 802.3 LLC /* DestMAC(6) + SrcMAC(6) + Lenght(2) + DSAP(1) + SSAP(1) + Control(1) + if the DSAP = 0xAA, SSAP=0xAA, Contorl = 0x03, it has a 5-bytes SNAP header. => + SNAP (5, OriginationID(3) + etherType(2)) */ if (pSrcBuf[0] == 0xAA && pSrcBuf[1] == 0xAA && pSrcBuf[2] == 0x03) { Sniff2BytesFromNdisBuffer(pSrcBuf, 6, &Byte0, &Byte1); RTMP_SET_PACKET_LLCSNAP(pPacket, 1); TypeLen = (USHORT)((Byte0 << 8) + Byte1); pSrcBuf += 8; // Skip this LLC/SNAP header } else { //It just has 3-byte LLC header, maybe a legacy ether type frame. we didn't handle it. } } // If it's a VLAN packet, get the real Type/Length field. if (TypeLen == 0x8100) { /* 0x8100 means VLAN packets */ /* Dest. MAC Address (6-bytes) + Source MAC Address (6-bytes) + Length/Type = 802.1Q Tag Type (2-byte) + Tag Control Information (2-bytes) + Length / Type (2-bytes) + data payload (0-n bytes) + Pad (0-p bytes) + Frame Check Sequence (4-bytes) */ RTMP_SET_PACKET_VLAN(pPacket, 1); Sniff2BytesFromNdisBuffer(pSrcBuf, 2, &Byte0, &Byte1); TypeLen = (USHORT)((Byte0 << 8) + Byte1); pSrcBuf += 4; // Skip the VLAN Header. } switch (TypeLen) { case 0x0800: { ASSERT((pktLen > 34)); if (*(pSrcBuf + 9) == 0x11) { // udp packet ASSERT((pktLen > 34)); // 14 for ethernet header, 20 for IP header pSrcBuf += 20; // Skip the IP header srcPort = OS_NTOHS(*((UINT16 *)pSrcBuf)); dstPort = OS_NTOHS(*((UINT16 *)(pSrcBuf +2))); if ((srcPort==0x44 && dstPort==0x43) || (srcPort==0x43 && dstPort==0x44)) { //It's a BOOTP/DHCP packet RTMP_SET_PACKET_DHCP(pPacket, 1); } } } break; case 0x0806: { //ARP Packet. RTMP_SET_PACKET_DHCP(pPacket, 1); } break; case 0x888e: { // EAPOL Packet. RTMP_SET_PACKET_EAPOL(pPacket, 1); } break; default: status = FALSE; break; } return status; } VOID Update_Rssi_Sample( IN PRTMP_ADAPTER pAd, IN RSSI_SAMPLE *pRssi, IN PRXWI_STRUC pRxWI) { CHAR rssi0 = pRxWI->RSSI0; CHAR rssi1 = pRxWI->RSSI1; CHAR rssi2 = pRxWI->RSSI2; if (rssi0 != 0) { pRssi->LastRssi0 = ConvertToRssi(pAd, (CHAR)rssi0, RSSI_0); pRssi->AvgRssi0X8 = (pRssi->AvgRssi0X8 - pRssi->AvgRssi0) + pRssi->LastRssi0; pRssi->AvgRssi0 = pRssi->AvgRssi0X8 >> 3; } if (rssi1 != 0) { pRssi->LastRssi1 = ConvertToRssi(pAd, (CHAR)rssi1, RSSI_1); pRssi->AvgRssi1X8 = (pRssi->AvgRssi1X8 - pRssi->AvgRssi1) + pRssi->LastRssi1; pRssi->AvgRssi1 = pRssi->AvgRssi1X8 >> 3; } if (rssi2 != 0) { pRssi->LastRssi2 = ConvertToRssi(pAd, (CHAR)rssi2, RSSI_2); pRssi->AvgRssi2X8 = (pRssi->AvgRssi2X8 - pRssi->AvgRssi2) + pRssi->LastRssi2; pRssi->AvgRssi2 = pRssi->AvgRssi2X8 >> 3; } } // Normal legacy Rx packet indication VOID Indicate_Legacy_Packet( IN PRTMP_ADAPTER pAd, IN RX_BLK *pRxBlk, IN UCHAR FromWhichBSSID) { PNDIS_PACKET pRxPacket = pRxBlk->pRxPacket; UCHAR Header802_3[LENGTH_802_3]; // 1. get 802.3 Header // 2. remove LLC // a. pointer pRxBlk->pData to payload // b. modify pRxBlk->DataSize #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) RTMP_802_11_REMOVE_LLC_AND_CONVERT_TO_802_3(pRxBlk, Header802_3); #endif // CONFIG_STA_SUPPORT // if (pRxBlk->DataSize > MAX_RX_PKT_LEN) { #if 0 // sample take off, for multiple card design static int err_size; err_size++; if (err_size > 20) { printk("Legacy DataSize = %d\n", pRxBlk->DataSize); hex_dump("802.3 Header", Header802_3, LENGTH_802_3); hex_dump("Payload", pRxBlk->pData, 64); err_size = 0; } #endif // release packet RELEASE_NDIS_PACKET(pAd, pRxPacket, NDIS_STATUS_FAILURE); return; } STATS_INC_RX_PACKETS(pAd, FromWhichBSSID); #ifdef RT2870 #ifdef DOT11_N_SUPPORT if (pAd->CommonCfg.bDisableReordering == 0) { PBA_REC_ENTRY pBAEntry; ULONG Now32; UCHAR Wcid = pRxBlk->pRxWI->WirelessCliID; UCHAR TID = pRxBlk->pRxWI->TID; USHORT Idx; #define REORDERING_PACKET_TIMEOUT ((100 * HZ)/1000) // system ticks -- 100 ms if (Wcid < MAX_LEN_OF_MAC_TABLE) { Idx = pAd->MacTab.Content[Wcid].BARecWcidArray[TID]; if (Idx != 0) { pBAEntry = &pAd->BATable.BARecEntry[Idx]; // update last rx time NdisGetSystemUpTime(&Now32); if ((pBAEntry->list.qlen > 0) && RTMP_TIME_AFTER((unsigned long)Now32, (unsigned long)(pBAEntry->LastIndSeqAtTimer+(REORDERING_PACKET_TIMEOUT))) ) { printk("Indicate_Legacy_Packet():flush reordering_timeout_mpdus! RxWI->Flags=%d, pRxWI.TID=%d, RxD->AMPDU=%d!\n", pRxBlk->Flags, pRxBlk->pRxWI->TID, pRxBlk->RxD.AMPDU); hex_dump("Dump the legacy Packet:", GET_OS_PKT_DATAPTR(pRxBlk->pRxPacket), 64); ba_flush_reordering_timeout_mpdus(pAd, pBAEntry, Now32); } } } } #endif // DOT11_N_SUPPORT // #endif // RT2870 // wlan_802_11_to_802_3_packet(pAd, pRxBlk, Header802_3, FromWhichBSSID); // // pass this 802.3 packet to upper layer or forward this packet to WM directly // #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) ANNOUNCE_OR_FORWARD_802_3_PACKET(pAd, pRxPacket, FromWhichBSSID); #endif // CONFIG_STA_SUPPORT // } // Normal, AMPDU or AMSDU VOID CmmRxnonRalinkFrameIndicate( IN PRTMP_ADAPTER pAd, IN RX_BLK *pRxBlk, IN UCHAR FromWhichBSSID) { #ifdef DOT11_N_SUPPORT if (RX_BLK_TEST_FLAG(pRxBlk, fRX_AMPDU) && (pAd->CommonCfg.bDisableReordering == 0)) { Indicate_AMPDU_Packet(pAd, pRxBlk, FromWhichBSSID); } else #endif // DOT11_N_SUPPORT // { #ifdef DOT11_N_SUPPORT if (RX_BLK_TEST_FLAG(pRxBlk, fRX_AMSDU)) { // handle A-MSDU Indicate_AMSDU_Packet(pAd, pRxBlk, FromWhichBSSID); } else #endif // DOT11_N_SUPPORT // { Indicate_Legacy_Packet(pAd, pRxBlk, FromWhichBSSID); } } } VOID CmmRxRalinkFrameIndicate( IN PRTMP_ADAPTER pAd, IN MAC_TABLE_ENTRY *pEntry, IN RX_BLK *pRxBlk, IN UCHAR FromWhichBSSID) { UCHAR Header802_3[LENGTH_802_3]; UINT16 Msdu2Size; UINT16 Payload1Size, Payload2Size; PUCHAR pData2; PNDIS_PACKET pPacket2 = NULL; Msdu2Size = *(pRxBlk->pData) + (*(pRxBlk->pData+1) << 8); if ((Msdu2Size <= 1536) && (Msdu2Size < pRxBlk->DataSize)) { /* skip two byte MSDU2 len */ pRxBlk->pData += 2; pRxBlk->DataSize -= 2; } else { // release packet RELEASE_NDIS_PACKET(pAd, pRxBlk->pRxPacket, NDIS_STATUS_FAILURE); return; } // get 802.3 Header and remove LLC #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) RTMP_802_11_REMOVE_LLC_AND_CONVERT_TO_802_3(pRxBlk, Header802_3); #endif // CONFIG_STA_SUPPORT // ASSERT(pRxBlk->pRxPacket); // Ralink Aggregation frame pAd->RalinkCounters.OneSecRxAggregationCount ++; Payload1Size = pRxBlk->DataSize - Msdu2Size; Payload2Size = Msdu2Size - LENGTH_802_3; pData2 = pRxBlk->pData + Payload1Size + LENGTH_802_3; #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) pPacket2 = duplicate_pkt(pAd, (pData2-LENGTH_802_3), LENGTH_802_3, pData2, Payload2Size, FromWhichBSSID); #endif // CONFIG_STA_SUPPORT // if (!pPacket2) { // release packet RELEASE_NDIS_PACKET(pAd, pRxBlk->pRxPacket, NDIS_STATUS_FAILURE); return; } // update payload size of 1st packet pRxBlk->DataSize = Payload1Size; wlan_802_11_to_802_3_packet(pAd, pRxBlk, Header802_3, FromWhichBSSID); #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) ANNOUNCE_OR_FORWARD_802_3_PACKET(pAd, pRxBlk->pRxPacket, FromWhichBSSID); #endif // CONFIG_STA_SUPPORT // if (pPacket2) { #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) ANNOUNCE_OR_FORWARD_802_3_PACKET(pAd, pPacket2, FromWhichBSSID); #endif // CONFIG_STA_SUPPORT // } } #define RESET_FRAGFRAME(_fragFrame) \ { \ _fragFrame.RxSize = 0; \ _fragFrame.Sequence = 0; \ _fragFrame.LastFrag = 0; \ _fragFrame.Flags = 0; \ } PNDIS_PACKET RTMPDeFragmentDataFrame( IN PRTMP_ADAPTER pAd, IN RX_BLK *pRxBlk) { PHEADER_802_11 pHeader = pRxBlk->pHeader; PNDIS_PACKET pRxPacket = pRxBlk->pRxPacket; UCHAR *pData = pRxBlk->pData; USHORT DataSize = pRxBlk->DataSize; PNDIS_PACKET pRetPacket = NULL; UCHAR *pFragBuffer = NULL; BOOLEAN bReassDone = FALSE; UCHAR HeaderRoom = 0; ASSERT(pHeader); HeaderRoom = pData - (UCHAR *)pHeader; // Re-assemble the fragmented packets if (pHeader->Frag == 0) // Frag. Number is 0 : First frag or only one pkt { // the first pkt of fragment, record it. if (pHeader->FC.MoreFrag) { ASSERT(pAd->FragFrame.pFragPacket); pFragBuffer = GET_OS_PKT_DATAPTR(pAd->FragFrame.pFragPacket); pAd->FragFrame.RxSize = DataSize + HeaderRoom; NdisMoveMemory(pFragBuffer, pHeader, pAd->FragFrame.RxSize); pAd->FragFrame.Sequence = pHeader->Sequence; pAd->FragFrame.LastFrag = pHeader->Frag; // Should be 0 ASSERT(pAd->FragFrame.LastFrag == 0); goto done; // end of processing this frame } } else //Middle & End of fragment { if ((pHeader->Sequence != pAd->FragFrame.Sequence) || (pHeader->Frag != (pAd->FragFrame.LastFrag + 1))) { // Fragment is not the same sequence or out of fragment number order // Reset Fragment control blk RESET_FRAGFRAME(pAd->FragFrame); DBGPRINT(RT_DEBUG_ERROR, ("Fragment is not the same sequence or out of fragment number order.\n")); goto done; // give up this frame } else if ((pAd->FragFrame.RxSize + DataSize) > MAX_FRAME_SIZE) { // Fragment frame is too large, it exeeds the maximum frame size. // Reset Fragment control blk RESET_FRAGFRAME(pAd->FragFrame); DBGPRINT(RT_DEBUG_ERROR, ("Fragment frame is too large, it exeeds the maximum frame size.\n")); goto done; // give up this frame } // // Broadcom AP(BCM94704AGR) will send out LLC in fragment's packet, LLC only can accpet at first fragment. // In this case, we will dropt it. // if (NdisEqualMemory(pData, SNAP_802_1H, sizeof(SNAP_802_1H))) { DBGPRINT(RT_DEBUG_ERROR, ("Find another LLC at Middle or End fragment(SN=%d, Frag=%d)\n", pHeader->Sequence, pHeader->Frag)); goto done; // give up this frame } pFragBuffer = GET_OS_PKT_DATAPTR(pAd->FragFrame.pFragPacket); // concatenate this fragment into the re-assembly buffer NdisMoveMemory((pFragBuffer + pAd->FragFrame.RxSize), pData, DataSize); pAd->FragFrame.RxSize += DataSize; pAd->FragFrame.LastFrag = pHeader->Frag; // Update fragment number // Last fragment if (pHeader->FC.MoreFrag == FALSE) { bReassDone = TRUE; } } done: // always release rx fragmented packet RELEASE_NDIS_PACKET(pAd, pRxPacket, NDIS_STATUS_FAILURE); // return defragmented packet if packet is reassembled completely // otherwise return NULL if (bReassDone) { PNDIS_PACKET pNewFragPacket; // allocate a new packet buffer for fragment pNewFragPacket = RTMP_AllocateFragPacketBuffer(pAd, RX_BUFFER_NORMSIZE); if (pNewFragPacket) { // update RxBlk pRetPacket = pAd->FragFrame.pFragPacket; pAd->FragFrame.pFragPacket = pNewFragPacket; pRxBlk->pHeader = (PHEADER_802_11) GET_OS_PKT_DATAPTR(pRetPacket); pRxBlk->pData = (UCHAR *)pRxBlk->pHeader + HeaderRoom; pRxBlk->DataSize = pAd->FragFrame.RxSize - HeaderRoom; pRxBlk->pRxPacket = pRetPacket; } else { RESET_FRAGFRAME(pAd->FragFrame); } } return pRetPacket; } VOID Indicate_AMSDU_Packet( IN PRTMP_ADAPTER pAd, IN RX_BLK *pRxBlk, IN UCHAR FromWhichBSSID) { UINT nMSDU; update_os_packet_info(pAd, pRxBlk, FromWhichBSSID); RTMP_SET_PACKET_IF(pRxBlk->pRxPacket, FromWhichBSSID); nMSDU = deaggregate_AMSDU_announce(pAd, pRxBlk->pRxPacket, pRxBlk->pData, pRxBlk->DataSize); } VOID Indicate_EAPOL_Packet( IN PRTMP_ADAPTER pAd, IN RX_BLK *pRxBlk, IN UCHAR FromWhichBSSID) { MAC_TABLE_ENTRY *pEntry = NULL; #ifdef CONFIG_STA_SUPPORT IF_DEV_CONFIG_OPMODE_ON_STA(pAd) { pEntry = &pAd->MacTab.Content[BSSID_WCID]; STARxEAPOLFrameIndicate(pAd, pEntry, pRxBlk, FromWhichBSSID); return; } #endif // CONFIG_STA_SUPPORT // if (pEntry == NULL) { DBGPRINT(RT_DEBUG_WARN, ("Indicate_EAPOL_Packet: drop and release the invalid packet.\n")); // release packet RELEASE_NDIS_PACKET(pAd, pRxBlk->pRxPacket, NDIS_STATUS_FAILURE); return; } } #define BCN_TBTT_OFFSET 64 //defer 64 us VOID ReSyncBeaconTime( IN PRTMP_ADAPTER pAd) { UINT32 Offset; Offset = (pAd->TbttTickCount) % (BCN_TBTT_OFFSET); pAd->TbttTickCount++; // // The updated BeaconInterval Value will affect Beacon Interval after two TBTT // beacasue the original BeaconInterval had been loaded into next TBTT_TIMER // if (Offset == (BCN_TBTT_OFFSET-2)) { BCN_TIME_CFG_STRUC csr; RTMP_IO_READ32(pAd, BCN_TIME_CFG, &csr.word); csr.field.BeaconInterval = (pAd->CommonCfg.BeaconPeriod << 4) - 1 ; // ASIC register in units of 1/16 TU = 64us RTMP_IO_WRITE32(pAd, BCN_TIME_CFG, csr.word); } else { if (Offset == (BCN_TBTT_OFFSET-1)) { BCN_TIME_CFG_STRUC csr; RTMP_IO_READ32(pAd, BCN_TIME_CFG, &csr.word); csr.field.BeaconInterval = (pAd->CommonCfg.BeaconPeriod) << 4; // ASIC register in units of 1/16 TU RTMP_IO_WRITE32(pAd, BCN_TIME_CFG, csr.word); } } }