/************************************************************************** * * Copyright 2000-2006 Alacritech, Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY ALACRITECH, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ALACRITECH, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The views and conclusions contained in the software and documentation * are those of the authors and should not be interpreted as representing * official policies, either expressed or implied, of Alacritech, Inc. * **************************************************************************/ /* * FILENAME: slicoss.c * * The SLICOSS driver for Alacritech's IS-NIC products. * * This driver is supposed to support: * * Mojave cards (single port PCI Gigabit) both copper and fiber * Oasis cards (single and dual port PCI-x Gigabit) copper and fiber * Kalahari cards (dual and quad port PCI-e Gigabit) copper and fiber * * The driver was acutally tested on Oasis and Kalahari cards. * * * NOTE: This is the standard, non-accelerated version of Alacritech's * IS-NIC driver. */ #define SLIC_DUMP_ENABLED 0 #define KLUDGE_FOR_4GB_BOUNDARY 1 #define DEBUG_MICROCODE 1 #define SLIC_PRODUCTION_BUILD 1 #define SLIC_FAILURE_RESET 1 #define DBG 1 #define SLIC_ASSERT_ENABLED 1 #define SLIC_GET_STATS_ENABLED 1 #define SLIC_GET_STATS_TIMER_ENABLED 0 #define SLIC_PING_TIMER_ENABLED 1 #define SLIC_POWER_MANAGEMENT_ENABLED 0 #define SLIC_INTERRUPT_PROCESS_LIMIT 1 #define LINUX_FREES_ADAPTER_RESOURCES 1 #define SLIC_OFFLOAD_IP_CHECKSUM 1 #define STATS_TIMER_INTERVAL 2 #define PING_TIMER_INTERVAL 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SLIC_ETHTOOL_SUPPORT 1 #include #include "slicinc.h" #if SLIC_DUMP_ENABLED #include "slicdump.h" #endif #define SLIC_POWER_MANAGEMENT 0 static uint slic_first_init = 1; static char *slic_banner = "Alacritech SLIC Technology(tm) Server "\ "and Storage Accelerator (Non-Accelerated)\n"; static char *slic_proc_version = "2.0.351 2006/07/14 12:26:00"; static char *slic_product_name = "SLIC Technology(tm) Server "\ "and Storage Accelerator (Non-Accelerated)"; static char *slic_vendor = "Alacritech, Inc."; static int slic_debug = 1; static int debug = -1; static struct net_device *head_netdevice; static struct base_driver slic_global = { {}, 0, 0, 0, 1, NULL, NULL }; static int intagg_delay = 100; static u32 dynamic_intagg; static int errormsg; static int goodmsg; static unsigned int rcv_count; static struct dentry *slic_debugfs; #define DRV_NAME "slicoss" #define DRV_VERSION "2.0.1" #define DRV_AUTHOR "Alacritech, Inc. Engineering" #define DRV_DESCRIPTION "Alacritech SLIC Techonology(tm) "\ "Non-Accelerated Driver" #define DRV_COPYRIGHT "Copyright 2000-2006 Alacritech, Inc. "\ "All rights reserved." #define PFX DRV_NAME " " MODULE_AUTHOR(DRV_AUTHOR); MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_LICENSE("Dual BSD/GPL"); module_param(dynamic_intagg, int, 0); MODULE_PARM_DESC(dynamic_intagg, "Dynamic Interrupt Aggregation Setting"); module_param(intagg_delay, int, 0); MODULE_PARM_DESC(intagg_delay, "uSec Interrupt Aggregation Delay"); static struct pci_device_id slic_pci_tbl[] __devinitdata = { {PCI_VENDOR_ID_ALACRITECH, SLIC_1GB_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, {PCI_VENDOR_ID_ALACRITECH, SLIC_2GB_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,}, {0,} }; MODULE_DEVICE_TABLE(pci, slic_pci_tbl); #define SLIC_GET_SLIC_HANDLE(_adapter, _pslic_handle) \ { \ spin_lock_irqsave(&_adapter->handle_lock.lock, \ _adapter->handle_lock.flags); \ _pslic_handle = _adapter->pfree_slic_handles; \ if (_pslic_handle) { \ ASSERT(_pslic_handle->type == SLIC_HANDLE_FREE); \ _adapter->pfree_slic_handles = _pslic_handle->next; \ } \ spin_unlock_irqrestore(&_adapter->handle_lock.lock, \ _adapter->handle_lock.flags); \ } #define SLIC_FREE_SLIC_HANDLE(_adapter, _pslic_handle) \ { \ _pslic_handle->type = SLIC_HANDLE_FREE; \ spin_lock_irqsave(&_adapter->handle_lock.lock, \ _adapter->handle_lock.flags); \ _pslic_handle->next = _adapter->pfree_slic_handles; \ _adapter->pfree_slic_handles = _pslic_handle; \ spin_unlock_irqrestore(&_adapter->handle_lock.lock, \ _adapter->handle_lock.flags); \ } static void slic_debug_init(void); static void slic_debug_cleanup(void); static void slic_debug_adapter_create(struct adapter *adapter); static void slic_debug_adapter_destroy(struct adapter *adapter); static void slic_debug_card_create(struct sliccard *card); static void slic_debug_card_destroy(struct sliccard *card); static inline void slic_reg32_write(void __iomem *reg, u32 value, uint flush) { writel(value, reg); if (flush) mb(); } static inline void slic_reg64_write(struct adapter *adapter, void __iomem *reg, u32 value, void __iomem *regh, u32 paddrh, uint flush) { spin_lock_irqsave(&adapter->bit64reglock.lock, adapter->bit64reglock.flags); if (paddrh != adapter->curaddrupper) { adapter->curaddrupper = paddrh; writel(paddrh, regh); } writel(value, reg); if (flush) mb(); spin_unlock_irqrestore(&adapter->bit64reglock.lock, adapter->bit64reglock.flags); } static void slic_init_driver(void) { if (slic_first_init) { DBG_MSG("slicoss: %s slic_first_init set jiffies[%lx]\n", __func__, jiffies); slic_first_init = 0; spin_lock_init(&slic_global.driver_lock.lock); slic_debug_init(); } } static void slic_dbg_macaddrs(struct adapter *adapter) { DBG_MSG(" (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n", adapter->netdev->name, adapter->currmacaddr[0], adapter->currmacaddr[1], adapter->currmacaddr[2], adapter->currmacaddr[3], adapter->currmacaddr[4], adapter->currmacaddr[5]); DBG_MSG(" (%s) mac %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n", adapter->netdev->name, adapter->macaddr[0], adapter->macaddr[1], adapter->macaddr[2], adapter->macaddr[3], adapter->macaddr[4], adapter->macaddr[5]); return; } #ifdef DEBUG_REGISTER_TRACE static void slic_dbg_register_trace(struct adapter *adapter, struct sliccard *card) { uint i; DBG_ERROR("Dump Register Write Trace: curr_ix == %d\n", card->debug_ix); for (i = 0; i < 32; i++) { DBG_ERROR("%2d %d %4x %x %x\n", i, card->reg_type[i], card->reg_offset[i], card->reg_value[i], card->reg_valueh[i]); } } #endif static void slic_init_adapter(struct net_device *netdev, struct pci_dev *pcidev, const struct pci_device_id *pci_tbl_entry, void __iomem *memaddr, int chip_idx) { ushort index; struct slic_handle *pslic_handle; struct adapter *adapter = (struct adapter *)netdev_priv(netdev); /* DBG_MSG("slicoss: %s (%s)\n netdev [%p]\n adapter[%p]\n " "pcidev [%p]\n", __func__, netdev->name, netdev, adapter, pcidev);*/ /* adapter->pcidev = pcidev;*/ adapter->vendid = pci_tbl_entry->vendor; adapter->devid = pci_tbl_entry->device; adapter->subsysid = pci_tbl_entry->subdevice; adapter->busnumber = pcidev->bus->number; adapter->slotnumber = ((pcidev->devfn >> 3) & 0x1F); adapter->functionnumber = (pcidev->devfn & 0x7); adapter->memorylength = pci_resource_len(pcidev, 0); adapter->slic_regs = (__iomem struct slic_regs *)memaddr; adapter->irq = pcidev->irq; /* adapter->netdev = netdev;*/ adapter->next_netdevice = head_netdevice; head_netdevice = netdev; adapter->chipid = chip_idx; adapter->port = 0; /*adapter->functionnumber;*/ adapter->cardindex = adapter->port; adapter->memorybase = memaddr; spin_lock_init(&adapter->upr_lock.lock); spin_lock_init(&adapter->bit64reglock.lock); spin_lock_init(&adapter->adapter_lock.lock); spin_lock_init(&adapter->reset_lock.lock); spin_lock_init(&adapter->handle_lock.lock); adapter->card_size = 1; /* Initialize slic_handle array */ ASSERT(SLIC_CMDQ_MAXCMDS <= 0xFFFF); /* Start with 1. 0 is an invalid host handle. */ for (index = 1, pslic_handle = &adapter->slic_handles[1]; index < SLIC_CMDQ_MAXCMDS; index++, pslic_handle++) { pslic_handle->token.handle_index = index; pslic_handle->type = SLIC_HANDLE_FREE; pslic_handle->next = adapter->pfree_slic_handles; adapter->pfree_slic_handles = pslic_handle; } /* DBG_MSG(".........\nix[%d] phandle[%p] pfree[%p] next[%p]\n", index, pslic_handle, adapter->pfree_slic_handles, pslic_handle->next);*/ adapter->pshmem = (struct slic_shmem *) pci_alloc_consistent(adapter->pcidev, sizeof(struct slic_shmem), &adapter-> phys_shmem); /* DBG_MSG("slicoss: %s (%s)\n pshmem [%p]\n phys_shmem[%p]\n"\ "slic_regs [%p]\n", __func__, netdev->name, adapter->pshmem, (void *)adapter->phys_shmem, adapter->slic_regs); */ ASSERT(adapter->pshmem); memset(adapter->pshmem, 0, sizeof(struct slic_shmem)); return; } static int __devinit slic_entry_probe(struct pci_dev *pcidev, const struct pci_device_id *pci_tbl_entry) { static int cards_found; static int did_version; int err; struct net_device *netdev; struct adapter *adapter; void __iomem *memmapped_ioaddr = NULL; u32 status = 0; ulong mmio_start = 0; ulong mmio_len = 0; struct sliccard *card = NULL; DBG_MSG("slicoss: %s 2.6 VERSION ENTER jiffies[%lx] cpu %d\n", __func__, jiffies, smp_processor_id()); slic_global.dynamic_intagg = dynamic_intagg; err = pci_enable_device(pcidev); DBG_MSG("Call pci_enable_device(%p) status[%x]\n", pcidev, err); if (err) return err; if (slic_debug > 0 && did_version++ == 0) { printk(slic_banner); printk(slic_proc_version); } err = pci_set_dma_mask(pcidev, DMA_64BIT_MASK); if (!err) { DBG_MSG("pci_set_dma_mask(DMA_64BIT_MASK) successful\n"); } else { err = pci_set_dma_mask(pcidev, DMA_32BIT_MASK); if (err) { DBG_MSG ("No usable DMA configuration, aborting err[%x]\n", err); return err; } DBG_MSG("pci_set_dma_mask(DMA_32BIT_MASK) successful\n"); } DBG_MSG("Call pci_request_regions\n"); err = pci_request_regions(pcidev, DRV_NAME); if (err) { DBG_MSG("pci_request_regions FAILED err[%x]\n", err); return err; } DBG_MSG("call pci_set_master\n"); pci_set_master(pcidev); DBG_MSG("call alloc_etherdev\n"); netdev = alloc_etherdev(sizeof(struct adapter)); if (!netdev) { err = -ENOMEM; goto err_out_exit_slic_probe; } DBG_MSG("alloc_etherdev for slic netdev[%p]\n", netdev); SET_NETDEV_DEV(netdev, &pcidev->dev); pci_set_drvdata(pcidev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pcidev = pcidev; mmio_start = pci_resource_start(pcidev, 0); mmio_len = pci_resource_len(pcidev, 0); DBG_MSG("slicoss: call ioremap(mmio_start[%lx], mmio_len[%lx])\n", mmio_start, mmio_len); /* memmapped_ioaddr = (u32)ioremap_nocache(mmio_start, mmio_len);*/ memmapped_ioaddr = ioremap(mmio_start, mmio_len); DBG_MSG("slicoss: %s MEMMAPPED_IOADDR [%p]\n", __func__, memmapped_ioaddr); if (!memmapped_ioaddr) { DBG_ERROR("%s cannot remap MMIO region %lx @ %lx\n", __func__, mmio_len, mmio_start); goto err_out_free_mmio_region; } DBG_MSG ("slicoss: %s found Alacritech SLICOSS PCI, MMIO at %p, "\ "start[%lx] len[%lx], IRQ %d.\n", __func__, memmapped_ioaddr, mmio_start, mmio_len, pcidev->irq); slic_config_pci(pcidev); slic_init_driver(); slic_init_adapter(netdev, pcidev, pci_tbl_entry, memmapped_ioaddr, cards_found); status = slic_card_locate(adapter); if (status) { DBG_ERROR("%s cannot locate card\n", __func__); goto err_out_free_mmio_region; } card = adapter->card; if (!adapter->allocated) { card->adapters_allocated++; adapter->allocated = 1; } DBG_MSG("slicoss: %s card: %p\n", __func__, adapter->card); DBG_MSG("slicoss: %s card->adapter[%d] == [%p]\n", __func__, (uint) adapter->port, adapter); DBG_MSG("slicoss: %s card->adapters_allocated [%d]\n", __func__, card->adapters_allocated); DBG_MSG("slicoss: %s card->adapters_activated [%d]\n", __func__, card->adapters_activated); status = slic_card_init(card, adapter); if (status != STATUS_SUCCESS) { card->state = CARD_FAIL; adapter->state = ADAPT_FAIL; adapter->linkstate = LINK_DOWN; DBG_ERROR("slic_card_init FAILED status[%x]\n", status); } else { slic_adapter_set_hwaddr(adapter); } netdev->base_addr = (unsigned long)adapter->memorybase; netdev->irq = adapter->irq; netdev->open = slic_entry_open; netdev->stop = slic_entry_halt; netdev->hard_start_xmit = slic_xmit_start; netdev->do_ioctl = slic_ioctl; netdev->set_mac_address = slic_mac_set_address; #if SLIC_GET_STATS_ENABLED netdev->get_stats = slic_get_stats; #endif netdev->set_multicast_list = slic_mcast_set_list; slic_debug_adapter_create(adapter); strcpy(netdev->name, "eth%d"); err = register_netdev(netdev); if (err) { DBG_ERROR("Cannot register net device, aborting.\n"); goto err_out_unmap; } DBG_MSG ("slicoss: addr 0x%lx, irq %d, MAC addr "\ "%02X:%02X:%02X:%02X:%02X:%02X\n", mmio_start, /*pci_resource_start(pcidev, 0), */ pcidev->irq, netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); cards_found++; DBG_MSG("slicoss: %s EXIT status[%x] jiffies[%lx] cpu %d\n", __func__, status, jiffies, smp_processor_id()); return status; err_out_unmap: iounmap(memmapped_ioaddr); err_out_free_mmio_region: release_mem_region(mmio_start, mmio_len); err_out_exit_slic_probe: pci_release_regions(pcidev); DBG_ERROR("%s EXIT jiffies[%lx] cpu %d\n", __func__, jiffies, smp_processor_id()); return -ENODEV; } static int slic_entry_open(struct net_device *dev) { struct adapter *adapter = (struct adapter *) netdev_priv(dev); struct sliccard *card = adapter->card; u32 locked = 0; int status; ASSERT(adapter); ASSERT(card); DBG_MSG ("slicoss: %s adapter->activated[%d] card->adapters[%x] "\ "allocd[%x]\n", __func__, adapter->activated, card->adapters_activated, card->adapters_allocated); DBG_MSG ("slicoss: %s (%s): [jiffies[%lx] cpu %d] dev[%p] adapt[%p] "\ "port[%d] card[%p]\n", __func__, adapter->netdev->name, jiffies, smp_processor_id(), adapter->netdev, adapter, adapter->port, card); netif_stop_queue(adapter->netdev); spin_lock_irqsave(&slic_global.driver_lock.lock, slic_global.driver_lock.flags); locked = 1; if (!adapter->activated) { card->adapters_activated++; slic_global.num_slic_ports_active++; adapter->activated = 1; } status = slic_if_init(adapter); if (status != STATUS_SUCCESS) { if (adapter->activated) { card->adapters_activated--; slic_global.num_slic_ports_active--; adapter->activated = 0; } if (locked) { spin_unlock_irqrestore(&slic_global.driver_lock.lock, slic_global.driver_lock.flags); locked = 0; } return status; } DBG_MSG("slicoss: %s set card->master[%p] adapter[%p]\n", __func__, card->master, adapter); if (!card->master) card->master = adapter; #if SLIC_DUMP_ENABLED if (!(card->dumpthread_running)) init_waitqueue_head(&card->dump_wq); #endif if (locked) { spin_unlock_irqrestore(&slic_global.driver_lock.lock, slic_global.driver_lock.flags); locked = 0; } #if SLIC_DUMP_ENABLED if (!(card->dumpthread_running)) { DBG_MSG("attempt to initialize dump thread\n"); status = slic_init_dump_thread(card); /* Even if the dump thread fails, we will continue at this point */ } #endif return STATUS_SUCCESS; } static void __devexit slic_entry_remove(struct pci_dev *pcidev) { struct net_device *dev = pci_get_drvdata(pcidev); u32 mmio_start = 0; uint mmio_len = 0; struct adapter *adapter = (struct adapter *) netdev_priv(dev); struct sliccard *card; struct mcast_address *mcaddr, *mlist; ASSERT(adapter); DBG_MSG("slicoss: %s ENTER dev[%p] adapter[%p]\n", __func__, dev, adapter); slic_adapter_freeresources(adapter); slic_unmap_mmio_space(adapter); DBG_MSG("slicoss: %s unregister_netdev\n", __func__); unregister_netdev(dev); mmio_start = pci_resource_start(pcidev, 0); mmio_len = pci_resource_len(pcidev, 0); DBG_MSG("slicoss: %s rel_region(0) start[%x] len[%x]\n", __func__, mmio_start, mmio_len); release_mem_region(mmio_start, mmio_len); DBG_MSG("slicoss: %s iounmap dev->base_addr[%x]\n", __func__, (uint) dev->base_addr); iounmap((void __iomem *)dev->base_addr); /* free multicast addresses */ mlist = adapter->mcastaddrs; while (mlist) { mcaddr = mlist; mlist = mlist->next; kfree(mcaddr); } ASSERT(adapter->card); card = adapter->card; ASSERT(card->adapters_allocated); card->adapters_allocated--; adapter->allocated = 0; DBG_MSG ("slicoss: %s init[%x] alloc[%x] card[%p] adapter[%p]\n", __func__, card->adapters_activated, card->adapters_allocated, card, adapter); if (!card->adapters_allocated) { struct sliccard *curr_card = slic_global.slic_card; if (curr_card == card) { slic_global.slic_card = card->next; } else { while (curr_card->next != card) curr_card = curr_card->next; ASSERT(curr_card); curr_card->next = card->next; } ASSERT(slic_global.num_slic_cards); slic_global.num_slic_cards--; slic_card_cleanup(card); } DBG_MSG("slicoss: %s deallocate device\n", __func__); kfree(dev); pci_release_regions(pcidev); DBG_MSG("slicoss: %s EXIT\n", __func__); } static int slic_entry_halt(struct net_device *dev) { struct adapter *adapter = (struct adapter *)netdev_priv(dev); struct sliccard *card = adapter->card; __iomem struct slic_regs *slic_regs = adapter->slic_regs; spin_lock_irqsave(&slic_global.driver_lock.lock, slic_global.driver_lock.flags); ASSERT(card); DBG_MSG("slicoss: %s (%s) ENTER\n", __func__, dev->name); DBG_MSG("slicoss: %s (%s) actvtd[%d] alloc[%d] state[%x] adapt[%p]\n", __func__, dev->name, card->adapters_activated, card->adapters_allocated, card->state, adapter); slic_if_stop_queue(adapter); adapter->state = ADAPT_DOWN; adapter->linkstate = LINK_DOWN; adapter->upr_list = NULL; adapter->upr_busy = 0; adapter->devflags_prev = 0; DBG_MSG("slicoss: %s (%s) set adapter[%p] state to ADAPT_DOWN(%d)\n", __func__, dev->name, adapter, adapter->state); ASSERT(card->adapter[adapter->cardindex] == adapter); WRITE_REG(slic_regs->slic_icr, ICR_INT_OFF, FLUSH); adapter->all_reg_writes++; adapter->icr_reg_writes++; slic_config_clear(adapter); DBG_MSG("slicoss: %s (%s) dev[%p] adapt[%p] card[%p]\n", __func__, dev->name, dev, adapter, card); if (adapter->activated) { card->adapters_activated--; slic_global.num_slic_ports_active--; adapter->activated = 0; } #ifdef AUTOMATIC_RESET WRITE_REG(slic_regs->slic_reset_iface, 0, FLUSH); #endif /* * Reset the adapter's rsp, cmd, and rcv queues */ slic_cmdq_reset(adapter); slic_rspqueue_reset(adapter); slic_rcvqueue_reset(adapter); #ifdef AUTOMATIC_RESET if (!card->adapters_activated) { #if SLIC_DUMP_ENABLED if (card->dumpthread_running) { uint status; DBG_MSG("attempt to terminate dump thread pid[%x]\n", card->dump_task_id); status = kill_proc(card->dump_task_id->pid, SIGKILL, 1); if (!status) { int count = 10 * 100; while (card->dumpthread_running && --count) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(1); } if (!count) { DBG_MSG ("slicmon thread cleanup FAILED \ pid[%x]\n", card->dump_task_id->pid); } } } #endif DBG_MSG("slicoss: %s (%s) initiate CARD_HALT\n", __func__, dev->name); slic_card_init(card, adapter); } #endif DBG_MSG("slicoss: %s (%s) EXIT\n", __func__, dev->name); DBG_MSG("slicoss: %s EXIT\n", __func__); spin_unlock_irqrestore(&slic_global.driver_lock.lock, slic_global.driver_lock.flags); return STATUS_SUCCESS; } static int slic_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { ASSERT(rq); /* DBG_MSG("slicoss: %s cmd[%x] rq[%p] dev[%p]\n", __func__, cmd, rq, dev); */ switch (cmd) { case SIOCSLICSETINTAGG: { struct adapter *adapter = (struct adapter *) netdev_priv(dev); u32 data[7]; u32 intagg; if (copy_from_user(data, rq->ifr_data, 28)) { DBG_ERROR ("copy_from_user FAILED getting initial \ params\n"); return -EFAULT; } intagg = data[0]; printk(KERN_EMERG "%s: set interrupt aggregation to %d\n", __func__, intagg); slic_intagg_set(adapter, intagg); return 0; } #ifdef SLIC_USER_REQUEST_DUMP_ENABLED case SIOCSLICDUMPCARD: { struct adapter *adapter = netdev_priv(dev); struct sliccard *card; ASSERT(adapter); ASSERT(adapter->card) card = adapter->card; DBG_IOCTL("slic_ioctl SIOCSLIC_DUMP_CARD\n"); if (card->dump_requested == SLIC_DUMP_DONE) { printk(SLICLEVEL "SLIC Card dump to be overwritten\n"); card->dump_requested = SLIC_DUMP_REQUESTED; } else if ((card->dump_requested == SLIC_DUMP_REQUESTED) || (card->dump_requested == SLIC_DUMP_IN_PROGRESS)) { printk(SLICLEVEL "SLIC Card dump Requested but already \ in progress... ignore\n"); } else { printk(SLICLEVEL "SLIC Card #%d Dump Requested\n", card->cardnum); card->dump_requested = SLIC_DUMP_REQUESTED; } return 0; } #endif #ifdef SLIC_TRACE_DUMP_ENABLED case SIOCSLICTRACEDUMP: { ulong data[7]; ulong value; DBG_IOCTL("slic_ioctl SIOCSLIC_TRACE_DUMP\n"); if (copy_from_user(data, rq->ifr_data, 28)) { PRINT_ERROR ("slic: copy_from_user FAILED getting \ initial simba param\n"); return -EFAULT; } value = data[0]; if (tracemon_request == SLIC_DUMP_DONE) { PRINT_ERROR ("ATK Diagnostic Trace Dump Requested\n"); tracemon_request = SLIC_DUMP_REQUESTED; tracemon_request_type = value; tracemon_timestamp = jiffies; } else if ((tracemon_request == SLIC_DUMP_REQUESTED) || (tracemon_request == SLIC_DUMP_IN_PROGRESS)) { PRINT_ERROR ("ATK Diagnostic Trace Dump Requested but \ already in progress... ignore\n"); } else { PRINT_ERROR ("ATK Diagnostic Trace Dump Requested\n"); tracemon_request = SLIC_DUMP_REQUESTED; tracemon_request_type = value; tracemon_timestamp = jiffies; } return 0; } #endif #if SLIC_ETHTOOL_SUPPORT case SIOCETHTOOL: { struct adapter *adapter = (struct adapter *) netdev_priv(dev); struct ethtool_cmd data; struct ethtool_cmd ecmd; ASSERT(adapter); /* DBG_MSG("slicoss: %s SIOCETHTOOL\n", __func__); */ if (copy_from_user(&ecmd, rq->ifr_data, sizeof(ecmd))) return -EFAULT; if (ecmd.cmd == ETHTOOL_GSET) { data.supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII); data.port = PORT_MII; data.transceiver = XCVR_INTERNAL; data.phy_address = 0; if (adapter->linkspeed == LINK_100MB) data.speed = SPEED_100; else if (adapter->linkspeed == LINK_10MB) data.speed = SPEED_10; else data.speed = 0; if (adapter->linkduplex == LINK_FULLD) data.duplex = DUPLEX_FULL; else data.duplex = DUPLEX_HALF; data.autoneg = AUTONEG_ENABLE; data.maxtxpkt = 1; data.maxrxpkt = 1; if (copy_to_user (rq->ifr_data, &data, sizeof(data))) return -EFAULT; } else if (ecmd.cmd == ETHTOOL_SSET) { if (!capable(CAP_NET_ADMIN)) return -EPERM; if (adapter->linkspeed == LINK_100MB) data.speed = SPEED_100; else if (adapter->linkspeed == LINK_10MB) data.speed = SPEED_10; else data.speed = 0; if (adapter->linkduplex == LINK_FULLD) data.duplex = DUPLEX_FULL; else data.duplex = DUPLEX_HALF; data.autoneg = AUTONEG_ENABLE; data.maxtxpkt = 1; data.maxrxpkt = 1; if ((ecmd.speed != data.speed) || (ecmd.duplex != data.duplex)) { u32 speed; u32 duplex; if (ecmd.speed == SPEED_10) { speed = 0; SLIC_DISPLAY ("%s: slic ETHTOOL set \ link speed==10MB", dev->name); } else { speed = PCR_SPEED_100; SLIC_DISPLAY ("%s: slic ETHTOOL set \ link speed==100MB", dev->name); } if (ecmd.duplex == DUPLEX_FULL) { duplex = PCR_DUPLEX_FULL; SLIC_DISPLAY (": duplex==FULL\n"); } else { duplex = 0; SLIC_DISPLAY (": duplex==HALF\n"); } slic_link_config(adapter, speed, duplex); slic_link_event_handler(adapter); } } return 0; } #endif default: /* DBG_MSG("slicoss: %s UNSUPPORTED[%x]\n", __func__, cmd); */ return -EOPNOTSUPP; } } #define XMIT_FAIL_LINK_STATE 1 #define XMIT_FAIL_ZERO_LENGTH 2 #define XMIT_FAIL_HOSTCMD_FAIL 3 static void slic_xmit_build_request(struct adapter *adapter, struct slic_hostcmd *hcmd, struct sk_buff *skb) { struct slic_host64_cmd *ihcmd; ulong phys_addr; ihcmd = &hcmd->cmd64; ihcmd->flags = (adapter->port << IHFLG_IFSHFT); ihcmd->command = IHCMD_XMT_REQ; ihcmd->u.slic_buffers.totlen = skb->len; phys_addr = pci_map_single(adapter->pcidev, skb->data, skb->len, PCI_DMA_TODEVICE); ihcmd->u.slic_buffers.bufs[0].paddrl = SLIC_GET_ADDR_LOW(phys_addr); ihcmd->u.slic_buffers.bufs[0].paddrh = SLIC_GET_ADDR_HIGH(phys_addr); ihcmd->u.slic_buffers.bufs[0].length = skb->len; #if defined(CONFIG_X86_64) hcmd->cmdsize = (u32) ((((u64)&ihcmd->u.slic_buffers.bufs[1] - (u64) hcmd) + 31) >> 5); #elif defined(CONFIG_X86) hcmd->cmdsize = ((((u32) &ihcmd->u.slic_buffers.bufs[1] - (u32) hcmd) + 31) >> 5); #else Stop Compilation; #endif } #define NORMAL_ETHFRAME 0 static int slic_xmit_start(struct sk_buff *skb, struct net_device *dev) { struct sliccard *card; struct adapter *adapter = (struct adapter *)netdev_priv(dev); struct slic_hostcmd *hcmd = NULL; u32 status = 0; u32 skbtype = NORMAL_ETHFRAME; void *offloadcmd = NULL; card = adapter->card; ASSERT(card); /* DBG_ERROR("xmit_start (%s) ENTER skb[%p] len[%d] linkstate[%x] state[%x]\n", adapter->netdev->name, skb, skb->len, adapter->linkstate, adapter->state); */ if ((adapter->linkstate != LINK_UP) || (adapter->state != ADAPT_UP) || (card->state != CARD_UP)) { status = XMIT_FAIL_LINK_STATE; goto xmit_fail; } else if (skb->len == 0) { status = XMIT_FAIL_ZERO_LENGTH; goto xmit_fail; } if (skbtype == NORMAL_ETHFRAME) { hcmd = slic_cmdq_getfree(adapter); if (!hcmd) { adapter->xmitq_full = 1; status = XMIT_FAIL_HOSTCMD_FAIL; goto xmit_fail; } ASSERT(hcmd->pslic_handle); ASSERT(hcmd->cmd64.hosthandle == hcmd->pslic_handle->token.handle_token); hcmd->skb = skb; hcmd->busy = 1; hcmd->type = SLIC_CMD_DUMB; if (skbtype == NORMAL_ETHFRAME) slic_xmit_build_request(adapter, hcmd, skb); } adapter->stats.tx_packets++; adapter->stats.tx_bytes += skb->len; #ifdef DEBUG_DUMP if (adapter->kill_card) { struct slic_host64_cmd ihcmd; ihcmd = &hcmd->cmd64; ihcmd->flags |= 0x40; adapter->kill_card = 0; /* only do this once */ } #endif if (hcmd->paddrh == 0) { WRITE_REG(adapter->slic_regs->slic_cbar, (hcmd->paddrl | hcmd->cmdsize), DONT_FLUSH); } else { WRITE_REG64(adapter, adapter->slic_regs->slic_cbar64, (hcmd->paddrl | hcmd->cmdsize), adapter->slic_regs->slic_addr_upper, hcmd->paddrh, DONT_FLUSH); } xmit_done: return 0; xmit_fail: slic_xmit_fail(adapter, skb, offloadcmd, skbtype, status); goto xmit_done; } static void slic_xmit_fail(struct adapter *adapter, struct sk_buff *skb, void *cmd, u32 skbtype, u32 status) { if (adapter->xmitq_full) slic_if_stop_queue(adapter); if ((cmd == NULL) && (status <= XMIT_FAIL_HOSTCMD_FAIL)) { switch (status) { case XMIT_FAIL_LINK_STATE: DBG_ERROR ("(%s) reject xmit skb[%p: %x] linkstate[%s] \ adapter[%s:%d] card[%s:%d]\n", adapter->netdev->name, skb, skb->pkt_type, SLIC_LINKSTATE(adapter->linkstate), SLIC_ADAPTER_STATE(adapter->state), adapter->state, SLIC_CARD_STATE(adapter->card->state), adapter->card->state); break; case XMIT_FAIL_ZERO_LENGTH: DBG_ERROR ("xmit_start skb->len == 0 skb[%p] type[%x]!!!! \n", skb, skb->pkt_type); break; case XMIT_FAIL_HOSTCMD_FAIL: DBG_ERROR ("xmit_start skb[%p] type[%x] No host commands \ available !!!! \n", skb, skb->pkt_type); break; default: ASSERT(0); } } dev_kfree_skb(skb); adapter->stats.tx_dropped++; } static void slic_rcv_handle_error(struct adapter *adapter, struct slic_rcvbuf *rcvbuf) { struct slic_hddr_wds *hdr = (struct slic_hddr_wds *)rcvbuf->data; if (adapter->devid != SLIC_1GB_DEVICE_ID) { if (hdr->frame_status14 & VRHSTAT_802OE) adapter->if_events.oflow802++; if (hdr->frame_status14 & VRHSTAT_TPOFLO) adapter->if_events.Tprtoflow++; if (hdr->frame_status_b14 & VRHSTATB_802UE) adapter->if_events.uflow802++; if (hdr->frame_status_b14 & VRHSTATB_RCVE) { adapter->if_events.rcvearly++; adapter->stats.rx_fifo_errors++; } if (hdr->frame_status_b14 & VRHSTATB_BUFF) { adapter->if_events.Bufov++; adapter->stats.rx_over_errors++; } if (hdr->frame_status_b14 & VRHSTATB_CARRE) { adapter->if_events.Carre++; adapter->stats.tx_carrier_errors++; } if (hdr->frame_status_b14 & VRHSTATB_LONGE) adapter->if_events.Longe++; if (hdr->frame_status_b14 & VRHSTATB_PREA) adapter->if_events.Invp++; if (hdr->frame_status_b14 & VRHSTATB_CRC) { adapter->if_events.Crc++; adapter->stats.rx_crc_errors++; } if (hdr->frame_status_b14 & VRHSTATB_DRBL) adapter->if_events.Drbl++; if (hdr->frame_status_b14 & VRHSTATB_CODE) adapter->if_events.Code++; if (hdr->frame_status_b14 & VRHSTATB_TPCSUM) adapter->if_events.TpCsum++; if (hdr->frame_status_b14 & VRHSTATB_TPHLEN) adapter->if_events.TpHlen++; if (hdr->frame_status_b14 & VRHSTATB_IPCSUM) adapter->if_events.IpCsum++; if (hdr->frame_status_b14 & VRHSTATB_IPLERR) adapter->if_events.IpLen++; if (hdr->frame_status_b14 & VRHSTATB_IPHERR) adapter->if_events.IpHlen++; } else { if (hdr->frame_statusGB & VGBSTAT_XPERR) { u32 xerr = hdr->frame_statusGB >> VGBSTAT_XERRSHFT; if (xerr == VGBSTAT_XCSERR) adapter->if_events.TpCsum++; if (xerr == VGBSTAT_XUFLOW) adapter->if_events.Tprtoflow++; if (xerr == VGBSTAT_XHLEN) adapter->if_events.TpHlen++; } if (hdr->frame_statusGB & VGBSTAT_NETERR) { u32 nerr = (hdr-> frame_statusGB >> VGBSTAT_NERRSHFT) & VGBSTAT_NERRMSK; if (nerr == VGBSTAT_NCSERR) adapter->if_events.IpCsum++; if (nerr == VGBSTAT_NUFLOW) adapter->if_events.IpLen++; if (nerr == VGBSTAT_NHLEN) adapter->if_events.IpHlen++; } if (hdr->frame_statusGB & VGBSTAT_LNKERR) { u32 lerr = hdr->frame_statusGB & VGBSTAT_LERRMSK; if (lerr == VGBSTAT_LDEARLY) adapter->if_events.rcvearly++; if (lerr == VGBSTAT_LBOFLO) adapter->if_events.Bufov++; if (lerr == VGBSTAT_LCODERR) adapter->if_events.Code++; if (lerr == VGBSTAT_LDBLNBL) adapter->if_events.Drbl++; if (lerr == VGBSTAT_LCRCERR) adapter->if_events.Crc++; if (lerr == VGBSTAT_LOFLO) adapter->if_events.oflow802++; if (lerr == VGBSTAT_LUFLO) adapter->if_events.uflow802++; } } return; } #define TCP_OFFLOAD_FRAME_PUSHFLAG 0x10000000 #define M_FAST_PATH 0x0040 static void slic_rcv_handler(struct adapter *adapter) { struct sk_buff *skb; struct slic_rcvbuf *rcvbuf; u32 frames = 0; while ((skb = slic_rcvqueue_getnext(adapter))) { u32 rx_bytes; ASSERT(skb->head); rcvbuf = (struct slic_rcvbuf *)skb->head; adapter->card->events++; if (rcvbuf->status & IRHDDR_ERR) { adapter->rx_errors++; slic_rcv_handle_error(adapter, rcvbuf); slic_rcvqueue_reinsert(adapter, skb); continue; } if (!slic_mac_filter(adapter, (struct ether_header *) rcvbuf->data)) { #if 0 DBG_MSG ("slicoss: %s (%s) drop frame due to mac filter\n", __func__, adapter->netdev->name); #endif slic_rcvqueue_reinsert(adapter, skb); continue; } skb_pull(skb, SLIC_RCVBUF_HEADSIZE); rx_bytes = (rcvbuf->length & IRHDDR_FLEN_MSK); skb_put(skb, rx_bytes); adapter->stats.rx_packets++; adapter->stats.rx_bytes += rx_bytes; #if SLIC_OFFLOAD_IP_CHECKSUM skb->ip_summed = CHECKSUM_UNNECESSARY; #endif skb->dev = adapter->netdev; skb->protocol = eth_type_trans(skb, skb->dev); netif_rx(skb); ++frames; #if SLIC_INTERRUPT_PROCESS_LIMIT if (frames >= SLIC_RCVQ_MAX_PROCESS_ISR) { adapter->rcv_interrupt_yields++; break; } #endif } adapter->max_isr_rcvs = max(adapter->max_isr_rcvs, frames); } static void slic_xmit_complete(struct adapter *adapter) { struct slic_hostcmd *hcmd; struct slic_rspbuf *rspbuf; u32 frames = 0; struct slic_handle_word slic_handle_word; do { rspbuf = slic_rspqueue_getnext(adapter); if (!rspbuf) break; adapter->xmit_completes++; adapter->card->events++; /* Get the complete host command buffer */ slic_handle_word.handle_token = rspbuf->hosthandle; ASSERT(slic_handle_word.handle_index); ASSERT(slic_handle_word.handle_index <= SLIC_CMDQ_MAXCMDS); hcmd = (struct slic_hostcmd *) adapter->slic_handles[slic_handle_word.handle_index]. address; /* hcmd = (struct slic_hostcmd *) rspbuf->hosthandle; */ ASSERT(hcmd); ASSERT(hcmd->pslic_handle == &adapter->slic_handles[slic_handle_word.handle_index]); /* DBG_ERROR("xmit_complete (%s) hcmd[%p] hosthandle[%x]\n", adapter->netdev->name, hcmd, hcmd->cmd64.hosthandle); DBG_ERROR(" skb[%p] len %d hcmdtype[%x]\n", hcmd->skb, hcmd->skb->len, hcmd->type); */ if (hcmd->type == SLIC_CMD_DUMB) { if (hcmd->skb) dev_kfree_skb_irq(hcmd->skb); slic_cmdq_putdone_irq(adapter, hcmd); } rspbuf->status = 0; rspbuf->hosthandle = 0; frames++; } while (1); adapter->max_isr_xmits = max(adapter->max_isr_xmits, frames); } static irqreturn_t slic_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct adapter *adapter = (struct adapter *)netdev_priv(dev); u32 isr; if ((adapter->pshmem) && (adapter->pshmem->isr)) { WRITE_REG(adapter->slic_regs->slic_icr, ICR_INT_MASK, FLUSH); isr = adapter->isrcopy = adapter->pshmem->isr; adapter->pshmem->isr = 0; adapter->num_isrs++; switch (adapter->card->state) { case CARD_UP: if (isr & ~ISR_IO) { if (isr & ISR_ERR) { adapter->error_interrupts++; if (isr & ISR_RMISS) { int count; int pre_count; int errors; struct slic_rcvqueue *rcvq = &adapter->rcvqueue; adapter-> error_rmiss_interrupts++; if (!rcvq->errors) rcv_count = rcvq->count; pre_count = rcvq->count; errors = rcvq->errors; while (rcvq->count < SLIC_RCVQ_FILLTHRESH) { count = slic_rcvqueue_fill (adapter); if (!count) break; } DBG_MSG ("(%s): [%x] ISR_RMISS \ initial[%x] pre[%x] \ errors[%x] \ post_count[%x]\n", adapter->netdev->name, isr, rcv_count, pre_count, errors, rcvq->count); } else if (isr & ISR_XDROP) { DBG_ERROR ("isr & ISR_ERR [%x] \ ISR_XDROP \n", isr); } else { DBG_ERROR ("isr & ISR_ERR [%x]\n", isr); } } if (isr & ISR_LEVENT) { /*DBG_MSG("%s (%s) ISR_LEVENT \n", __func__, adapter->netdev->name);*/ adapter->linkevent_interrupts++; slic_link_event_handler(adapter); } if ((isr & ISR_UPC) || (isr & ISR_UPCERR) || (isr & ISR_UPCBSY)) { adapter->upr_interrupts++; slic_upr_request_complete(adapter, isr); } } if (isr & ISR_RCV) { adapter->rcv_interrupts++; slic_rcv_handler(adapter); } if (isr & ISR_CMD) { adapter->xmit_interrupts++; slic_xmit_complete(adapter); } break; case CARD_DOWN: if ((isr & ISR_UPC) || (isr & ISR_UPCERR) || (isr & ISR_UPCBSY)) { adapter->upr_interrupts++; slic_upr_request_complete(adapter, isr); } break; default: break; } adapter->isrcopy = 0; adapter->all_reg_writes += 2; adapter->isr_reg_writes++; WRITE_REG(adapter->slic_regs->slic_isr, 0, FLUSH); } else { adapter->false_interrupts++; } return IRQ_HANDLED; } /* * slic_link_event_handler - * * Initiate a link configuration sequence. The link configuration begins * by issuing a READ_LINK_STATUS command to the Utility Processor on the * SLIC. Since the command finishes asynchronously, the slic_upr_comlete * routine will follow it up witha UP configuration write command, which * will also complete asynchronously. * */ static void slic_link_event_handler(struct adapter *adapter) { int status; struct slic_shmem *pshmem; if (adapter->state != ADAPT_UP) { /* Adapter is not operational. Ignore. */ return; } pshmem = (struct slic_shmem *)adapter->phys_shmem; #if defined(CONFIG_X86_64) /* DBG_MSG("slic_event_handler pshmem->linkstatus[%x] pshmem[%p]\n \ &linkstatus[%p] &isr[%p]\n", adapter->pshmem->linkstatus, pshmem, &pshmem->linkstatus, &pshmem->isr); */ status = slic_upr_request(adapter, SLIC_UPR_RLSR, SLIC_GET_ADDR_LOW(&pshmem->linkstatus), SLIC_GET_ADDR_HIGH(&pshmem->linkstatus), 0, 0); #elif defined(CONFIG_X86) status = slic_upr_request(adapter, SLIC_UPR_RLSR, (u32) &pshmem->linkstatus, /* no 4GB wrap guaranteed */ 0, 0, 0); #else Stop compilation; #endif ASSERT((status == STATUS_SUCCESS) || (status == STATUS_PENDING)); } static void slic_init_cleanup(struct adapter *adapter) { DBG_MSG("slicoss: %s ENTER adapter[%p] ", __func__, adapter); if (adapter->intrregistered) { DBG_MSG("FREE_IRQ "); adapter->intrregistered = 0; free_irq(adapter->netdev->irq, adapter->netdev); } if (adapter->pshmem) { DBG_MSG("FREE_SHMEM "); DBG_MSG("adapter[%p] port %d pshmem[%p] FreeShmem ", adapter, adapter->port, (void *) adapter->pshmem); pci_free_consistent(adapter->pcidev, sizeof(struct slic_shmem), adapter->pshmem, adapter->phys_shmem); adapter->pshmem = NULL; adapter->phys_shmem = (dma_addr_t) NULL; } #if SLIC_GET_STATS_TIMER_ENABLED if (adapter->statstimerset) { DBG_MSG("statstimer "); adapter->statstimerset = 0; del_timer(&adapter->statstimer); } #endif #if !SLIC_DUMP_ENABLED && SLIC_PING_TIMER_ENABLED /*#if SLIC_DUMP_ENABLED && SLIC_PING_TIMER_ENABLED*/ if (adapter->pingtimerset) { DBG_MSG("pingtimer "); adapter->pingtimerset = 0; del_timer(&adapter->pingtimer); } #endif slic_rspqueue_free(adapter); slic_cmdq_free(adapter); slic_rcvqueue_free(adapter); DBG_MSG("\n"); } #if SLIC_GET_STATS_ENABLED static struct net_device_stats *slic_get_stats(struct net_device *dev) { struct adapter *adapter = (struct adapter *)netdev_priv(dev); struct net_device_stats *stats; ASSERT(adapter); stats = &adapter->stats; stats->collisions = adapter->slic_stats.iface.xmit_collisions; stats->rx_errors = adapter->slic_stats.iface.rcv_errors; stats->tx_errors = adapter->slic_stats.iface.xmt_errors; stats->rx_missed_errors = adapter->slic_stats.iface.rcv_discards; stats->tx_heartbeat_errors = 0; stats->tx_aborted_errors = 0; stats->tx_window_errors = 0; stats->tx_fifo_errors = 0; stats->rx_frame_errors = 0; stats->rx_length_errors = 0; return &adapter->stats; } #endif /* * Allocate a mcast_address structure to hold the multicast address. * Link it in. */ static int slic_mcast_add_list(struct adapter *adapter, char *address) { struct mcast_address *mcaddr, *mlist; bool equaladdr; /* Check to see if it already exists */ mlist = adapter->mcastaddrs; while (mlist) { ETHER_EQ_ADDR(mlist->address, address, equaladdr); if (equaladdr) return STATUS_SUCCESS; mlist = mlist->next; } /* Doesn't already exist. Allocate a structure to hold it */ mcaddr = kmalloc(sizeof(struct mcast_address), GFP_ATOMIC); if (mcaddr == NULL) return 1; memcpy(mcaddr->address, address, 6); mcaddr->next = adapter->mcastaddrs; adapter->mcastaddrs = mcaddr; return STATUS_SUCCESS; } /* * Functions to obtain the CRC corresponding to the destination mac address. * This is a standard ethernet CRC in that it is a 32-bit, reflected CRC using * the polynomial: * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + * x^4 + x^2 + x^1. * * After the CRC for the 6 bytes is generated (but before the value is * complemented), * we must then transpose the value and return bits 30-23. * */ static u32 slic_crc_table[256]; /* Table of CRCs for all possible byte values */ static u32 slic_crc_init; /* Is table initialized */ /* * Contruct the CRC32 table */ static void slic_mcast_init_crc32(void) { u32 c; /* CRC shit reg */ u32 e = 0; /* Poly X-or pattern */ int i; /* counter */ int k; /* byte being shifted into crc */ static int p[] = { 0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26 }; for (i = 0; i < sizeof(p) / sizeof(int); i++) e |= 1L << (31 - p[i]); for (i = 1; i < 256; i++) { c = i; for (k = 8; k; k--) c = c & 1 ? (c >> 1) ^ e : c >> 1; slic_crc_table[i] = c; } } /* * Return the MAC hast as described above. */ static unsigned char slic_mcast_get_mac_hash(char *macaddr) { u32 crc; char *p; int i; unsigned char machash = 0; if (!slic_crc_init) { slic_mcast_init_crc32(); slic_crc_init = 1; } crc = 0xFFFFFFFF; /* Preload shift register, per crc-32 spec */ for (i = 0, p = macaddr; i < 6; ++p, ++i) crc = (crc >> 8) ^ slic_crc_table[(crc ^ *p) & 0xFF]; /* Return bits 1-8, transposed */ for (i = 1; i < 9; i++) machash |= (((crc >> i) & 1) << (8 - i)); return machash; } static void slic_mcast_set_bit(struct adapter *adapter, char *address) { unsigned char crcpoly; /* Get the CRC polynomial for the mac address */ crcpoly = slic_mcast_get_mac_hash(address); /* We only have space on the SLIC for 64 entries. Lop * off the top two bits. (2^6 = 64) */ crcpoly &= 0x3F; /* OR in the new bit into our 64 bit mask. */ adapter->mcastmask |= (u64) 1 << crcpoly; } static void slic_mcast_set_list(struct net_device *dev) { struct adapter *adapter = (struct adapter *)netdev_priv(dev); int status = STATUS_SUCCESS; int i; char *addresses; struct dev_mc_list *mc_list = dev->mc_list; int mc_count = dev->mc_count; ASSERT(adapter); for (i = 1; i <= mc_count; i++) { addresses = (char *) &mc_list->dmi_addr; if (mc_list->dmi_addrlen == 6) { status = slic_mcast_add_list(adapter, addresses); if (status != STATUS_SUCCESS) break; } else { status = -EINVAL; break; } slic_mcast_set_bit(adapter, addresses); mc_list = mc_list->next; } DBG_MSG("%s a->devflags_prev[%x] dev->flags[%x] status[%x]\n", __func__, adapter->devflags_prev, dev->flags, status); if (adapter->devflags_prev != dev->flags) { adapter->macopts = MAC_DIRECTED; if (dev->flags) { if (dev->flags & IFF_BROADCAST) adapter->macopts |= MAC_BCAST; if (dev->flags & IFF_PROMISC) adapter->macopts |= MAC_PROMISC; if (dev->flags & IFF_ALLMULTI) adapter->macopts |= MAC_ALLMCAST; if (dev->flags & IFF_MULTICAST) adapter->macopts |= MAC_MCAST; } adapter->devflags_prev = dev->flags; DBG_MSG("%s call slic_config_set adapter->macopts[%x]\n", __func__, adapter->macopts); slic_config_set(adapter, TRUE); } else { if (status == STATUS_SUCCESS) slic_mcast_set_mask(adapter); } return; } static void slic_mcast_set_mask(struct adapter *adapter) { __iomem struct slic_regs *slic_regs = adapter->slic_regs; DBG_MSG("%s ENTER (%s) macopts[%x] mask[%llx]\n", __func__, adapter->netdev->name, (uint) adapter->macopts, adapter->mcastmask); if (adapter->macopts & (MAC_ALLMCAST | MAC_PROMISC)) { /* Turn on all multicast addresses. We have to do this for * promiscuous mode as well as ALLMCAST mode. It saves the * Microcode from having to keep state about the MAC * configuration. */ /* DBG_MSG("slicoss: %s macopts = MAC_ALLMCAST | MAC_PROMISC\n\ SLUT MODE!!!\n",__func__); */ WRITE_REG(slic_regs->slic_mcastlow, 0xFFFFFFFF, FLUSH); WRITE_REG(slic_regs->slic_mcasthigh, 0xFFFFFFFF, FLUSH); /* DBG_MSG("%s (%s) WRITE to slic_regs slic_mcastlow&high 0xFFFFFFFF\n", _func__, adapter->netdev->name); */ } else { /* Commit our multicast mast to the SLIC by writing to the * multicast address mask registers */ DBG_MSG("%s (%s) WRITE mcastlow[%x] mcasthigh[%x]\n", __func__, adapter->netdev->name, ((ulong) (adapter->mcastmask & 0xFFFFFFFF)), ((ulong) ((adapter->mcastmask >> 32) & 0xFFFFFFFF))); WRITE_REG(slic_regs->slic_mcastlow, (u32) (adapter->mcastmask & 0xFFFFFFFF), FLUSH); WRITE_REG(slic_regs->slic_mcasthigh, (u32) ((adapter->mcastmask >> 32) & 0xFFFFFFFF), FLUSH); } } static void slic_timer_ping(ulong dev) { struct adapter *adapter; struct sliccard *card; ASSERT(dev); adapter = netdev_priv((struct net_device *)dev); ASSERT(adapter); card = adapter->card; ASSERT(card); #if !SLIC_DUMP_ENABLED /*#if SLIC_DUMP_ENABLED*/ if ((adapter->state == ADAPT_UP) && (card->state == CARD_UP)) { int status; if (card->pingstatus != ISR_PINGMASK) { if (errormsg++ < 5) { DBG_MSG ("%s (%s) CARD HAS CRASHED PING_status == \ %x ERRORMSG# %d\n", __func__, adapter->netdev->name, card->pingstatus, errormsg); } /* ASSERT(card->pingstatus == ISR_PINGMASK); */ } else { if (goodmsg++ < 5) { DBG_MSG ("slicoss: %s (%s) PING_status == %x \ GOOD!!!!!!!! msg# %d\n", __func__, adapter->netdev->name, card->pingstatus, errormsg); } } card->pingstatus = 0; status = slic_upr_request(adapter, SLIC_UPR_PING, 0, 0, 0, 0); ASSERT(status == 0); } else { DBG_MSG("slicoss %s (%s) adapter[%p] NOT UP!!!!\n", __func__, adapter->netdev->name, adapter); } #endif adapter->pingtimer.expires = jiffies + SLIC_SECS_TO_JIFFS(PING_TIMER_INTERVAL); add_timer(&adapter->pingtimer); } static void slic_if_stop_queue(struct adapter *adapter) { netif_stop_queue(adapter->netdev); } static void slic_if_start_queue(struct adapter *adapter) { netif_start_queue(adapter->netdev); } /* * slic_if_init * * Perform initialization of our slic interface. * */ static int slic_if_init(struct adapter *adapter) { struct sliccard *card = adapter->card; struct net_device *dev = adapter->netdev; __iomem struct slic_regs *slic_regs = adapter->slic_regs; struct slic_shmem *pshmem; int status = 0; ASSERT(card); DBG_MSG("slicoss: %s (%s) ENTER states[%d:%d:%d:%d] flags[%x]\n", __func__, adapter->netdev->name, adapter->queues_initialized, adapter->state, adapter->linkstate, card->state, dev->flags); /* adapter should be down at this point */ if (adapter->state != ADAPT_DOWN) { DBG_ERROR("slic_if_init adapter->state != ADAPT_DOWN\n"); return -EIO; } ASSERT(adapter->linkstate == LINK_DOWN); adapter->devflags_prev = dev->flags; adapter->macopts = MAC_DIRECTED; if (dev->flags) { DBG_MSG("slicoss: %s (%s) Set MAC options: ", __func__, adapter->netdev->name); if (dev->flags & IFF_BROADCAST) { adapter->macopts |= MAC_BCAST; DBG_MSG("BCAST "); } if (dev->flags & IFF_PROMISC) { adapter->macopts |= MAC_PROMISC; DBG_MSG("PROMISC "); } if (dev->flags & IFF_ALLMULTI) { adapter->macopts |= MAC_ALLMCAST; DBG_MSG("ALL_MCAST "); } if (dev->flags & IFF_MULTICAST) { adapter->macopts |= MAC_MCAST; DBG_MSG("MCAST "); } DBG_MSG("\n"); } status = slic_adapter_allocresources(adapter); if (status != STATUS_SUCCESS) { DBG_ERROR ("slic_if_init: slic_adapter_allocresources FAILED %x\n", status); slic_adapter_freeresources(adapter); return status; } if (!adapter->queues_initialized) { DBG_MSG("slicoss: %s call slic_rspqueue_init\n", __func__); if (slic_rspqueue_init(adapter)) return -ENOMEM; DBG_MSG ("slicoss: %s call slic_cmdq_init adapter[%p] port %d \n", __func__, adapter, adapter->port); if (slic_cmdq_init(adapter)) return -ENOMEM; DBG_MSG ("slicoss: %s call slic_rcvqueue_init adapter[%p] \ port %d \n", __func__, adapter, adapter->port); if (slic_rcvqueue_init(adapter)) return -ENOMEM; adapter->queues_initialized = 1; } DBG_MSG("slicoss: %s disable interrupts(slic)\n", __func__); WRITE_REG(slic_regs->slic_icr, ICR_INT_OFF, FLUSH); mdelay(1); if (!adapter->isp_initialized) { pshmem = (struct slic_shmem *)adapter->phys_shmem; spin_lock_irqsave(&adapter->bit64reglock.lock, adapter->bit64reglock.flags); #if defined(CONFIG_X86_64) WRITE_REG(slic_regs->slic_addr_upper, SLIC_GET_ADDR_HIGH(&pshmem->isr), DONT_FLUSH); WRITE_REG(slic_regs->slic_isp, SLIC_GET_ADDR_LOW(&pshmem->isr), FLUSH); #elif defined(CONFIG_X86) WRITE_REG(slic_regs->slic_addr_upper, (u32) 0, DONT_FLUSH); WRITE_REG(slic_regs->slic_isp, (u32) &pshmem->isr, FLUSH); #else Stop Compilations #endif spin_unlock_irqrestore(&adapter->bit64reglock.lock, adapter->bit64reglock.flags); adapter->isp_initialized = 1; } adapter->state = ADAPT_UP; if (!card->loadtimerset) { init_timer(&card->loadtimer); card->loadtimer.expires = jiffies + SLIC_SECS_TO_JIFFS(SLIC_LOADTIMER_PERIOD); card->loadtimer.data = (ulong) card; card->loadtimer.function = &slic_timer_load_check; add_timer(&card->loadtimer); card->loadtimerset = 1; } #if SLIC_GET_STATS_TIMER_ENABLED if (!adapter->statstimerset) { DBG_MSG("slicoss: %s start getstats_timer(slic)\n", __func__); init_timer(&adapter->statstimer); adapter->statstimer.expires = jiffies + SLIC_SECS_TO_JIFFS(STATS_TIMER_INTERVAL); adapter->statstimer.data = (ulong) adapter->netdev; adapter->statstimer.function = &slic_timer_get_stats; add_timer(&adapter->statstimer); adapter->statstimerset = 1; } #endif #if !SLIC_DUMP_ENABLED && SLIC_PING_TIMER_ENABLED /*#if SLIC_DUMP_ENABLED && SLIC_PING_TIMER_ENABLED*/ if (!adapter->pingtimerset) { DBG_MSG("slicoss: %s start card_ping_timer(slic)\n", __func__); init_timer(&adapter->pingtimer); adapter->pingtimer.expires = jiffies + SLIC_SECS_TO_JIFFS(PING_TIMER_INTERVAL); adapter->pingtimer.data = (ulong) dev; adapter->pingtimer.function = &slic_timer_ping; add_timer(&adapter->pingtimer); adapter->pingtimerset = 1; adapter->card->pingstatus = ISR_PINGMASK; } #endif /* * clear any pending events, then enable interrupts */ DBG_MSG("slicoss: %s ENABLE interrupts(slic)\n", __func__); adapter->isrcopy = 0; adapter->pshmem->isr = 0; WRITE_REG(slic_regs->slic_isr, 0, FLUSH); WRITE_REG(slic_regs->slic_icr, ICR_INT_ON, FLUSH); DBG_MSG("slicoss: %s call slic_link_config(slic)\n", __func__); slic_link_config(adapter, LINK_AUTOSPEED, LINK_AUTOD); slic_link_event_handler(adapter); DBG_MSG("slicoss: %s EXIT\n", __func__); return STATUS_SUCCESS; } static void slic_unmap_mmio_space(struct adapter *adapter) { #if LINUX_FREES_ADAPTER_RESOURCES if (adapter->slic_regs) iounmap(adapter->slic_regs); adapter->slic_regs = NULL; #endif } static int slic_adapter_allocresources(struct adapter *adapter) { if (!adapter->intrregistered) { int retval; DBG_MSG ("slicoss: %s AllocAdaptRsrcs adapter[%p] shmem[%p] \ phys_shmem[%p] dev->irq[%x] %x\n", __func__, adapter, adapter->pshmem, (void *)adapter->phys_shmem, adapter->netdev->irq, NR_IRQS); spin_unlock_irqrestore(&slic_global.driver_lock.lock, slic_global.driver_lock.flags); retval = request_irq(adapter->netdev->irq, &slic_interrupt, IRQF_SHARED, adapter->netdev->name, adapter->netdev); spin_lock_irqsave(&slic_global.driver_lock.lock, slic_global.driver_lock.flags); if (retval) { DBG_ERROR("slicoss: request_irq (%s) FAILED [%x]\n", adapter->netdev->name, retval); return retval; } adapter->intrregistered = 1; DBG_MSG ("slicoss: %s AllocAdaptRsrcs adapter[%p] shmem[%p] \ pshmem[%p] dev->irq[%x]\n", __func__, adapter, adapter->pshmem, (void *)adapter->pshmem, adapter->netdev->irq); } return STATUS_SUCCESS; } static void slic_config_pci(struct pci_dev *pcidev) { u16 pci_command; u16 new_command; pci_read_config_word(pcidev, PCI_COMMAND, &pci_command); DBG_MSG("slicoss: %s PCI command[%4.4x]\n", __func__, pci_command); new_command = pci_command | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_INVALIDATE | PCI_COMMAND_PARITY | PCI_COMMAND_SERR | PCI_COMMAND_FAST_BACK; if (pci_command != new_command) { DBG_MSG("%s -- Updating PCI COMMAND register %4.4x->%4.4x.\n", __func__, pci_command, new_command); pci_write_config_word(pcidev, PCI_COMMAND, new_command); } } static void slic_adapter_freeresources(struct adapter *adapter) { DBG_MSG("slicoss: %s ENTER adapter[%p]\n", __func__, adapter); slic_init_cleanup(adapter); memset(&adapter->stats, 0, sizeof(struct net_device_stats)); adapter->error_interrupts = 0; adapter->rcv_interrupts = 0; adapter->xmit_interrupts = 0; adapter->linkevent_interrupts = 0; adapter->upr_interrupts = 0; adapter->num_isrs = 0; adapter->xmit_completes = 0; adapter->rcv_broadcasts = 0; adapter->rcv_multicasts = 0; adapter->rcv_unicasts = 0; DBG_MSG("slicoss: %s EXIT\n", __func__); } /* * slic_link_config * * Write phy control to configure link duplex/speed * */ static void slic_link_config(struct adapter *adapter, u32 linkspeed, u32 linkduplex) { u32 speed; u32 duplex; u32 phy_config; u32 phy_advreg; u32 phy_gctlreg; if (adapter->state != ADAPT_UP) { DBG_MSG ("%s (%s) ADAPT Not up yet, Return! speed[%x] duplex[%x]\n", __func__, adapter->netdev->name, linkspeed, linkduplex); return; } DBG_MSG("slicoss: %s (%s) slic_link_config: speed[%x] duplex[%x]\n", __func__, adapter->netdev->name, linkspeed, linkduplex); ASSERT((adapter->devid == SLIC_1GB_DEVICE_ID) || (adapter->devid == SLIC_2GB_DEVICE_ID)); if (linkspeed > LINK_1000MB) linkspeed = LINK_AUTOSPEED; if (linkduplex > LINK_AUTOD) linkduplex = LINK_AUTOD; if ((linkspeed == LINK_AUTOSPEED) || (linkspeed == LINK_1000MB)) { if (adapter->flags & ADAPT_FLAGS_FIBERMEDIA) { /* We've got a fiber gigabit interface, and register * 4 is different in fiber mode than in copper mode */ /* advertise FD only @1000 Mb */ phy_advreg = (MIICR_REG_4 | (PAR_ADV1000XFD)); /* enable PAUSE frames */ phy_advreg |= PAR_ASYMPAUSE_FIBER; WRITE_REG(adapter->slic_regs->slic_wphy, phy_advreg, FLUSH); if (linkspeed == LINK_AUTOSPEED) { /* reset phy, enable auto-neg */ phy_config = (MIICR_REG_PCR | (PCR_RESET | PCR_AUTONEG | PCR_AUTONEG_RST)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); } else { /* forced 1000 Mb FD*/ /* power down phy to break link this may not work) */ phy_config = (MIICR_REG_PCR | PCR_POWERDOWN); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); /* wait, Marvell says 1 sec, try to get away with 10 ms */ mdelay(10); /* disable auto-neg, set speed/duplex, soft reset phy, powerup */ phy_config = (MIICR_REG_PCR | (PCR_RESET | PCR_SPEED_1000 | PCR_DUPLEX_FULL)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); } } else { /* copper gigabit */ /* Auto-Negotiate or 1000 Mb must be auto negotiated * We've got a copper gigabit interface, and * register 4 is different in copper mode than * in fiber mode */ if (linkspeed == LINK_AUTOSPEED) { /* advertise 10/100 Mb modes */ phy_advreg = (MIICR_REG_4 | (PAR_ADV100FD | PAR_ADV100HD | PAR_ADV10FD | PAR_ADV10HD)); } else { /* linkspeed == LINK_1000MB - don't advertise 10/100 Mb modes */ phy_advreg = MIICR_REG_4; } /* enable PAUSE frames */ phy_advreg |= PAR_ASYMPAUSE; /* required by the Cicada PHY */ phy_advreg |= PAR_802_3; WRITE_REG(adapter->slic_regs->slic_wphy, phy_advreg, FLUSH); /* advertise FD only @1000 Mb */ phy_gctlreg = (MIICR_REG_9 | (PGC_ADV1000FD)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_gctlreg, FLUSH); if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) { /* if a Marvell PHY enable auto crossover */ phy_config = (MIICR_REG_16 | (MRV_REG16_XOVERON)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); /* reset phy, enable auto-neg */ phy_config = (MIICR_REG_PCR | (PCR_RESET | PCR_AUTONEG | PCR_AUTONEG_RST)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); } else { /* it's a Cicada PHY */ /* enable and restart auto-neg (don't reset) */ phy_config = (MIICR_REG_PCR | (PCR_AUTONEG | PCR_AUTONEG_RST)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); } } } else { /* Forced 10/100 */ if (linkspeed == LINK_10MB) speed = 0; else speed = PCR_SPEED_100; if (linkduplex == LINK_HALFD) duplex = 0; else duplex = PCR_DUPLEX_FULL; if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) { /* if a Marvell PHY disable auto crossover */ phy_config = (MIICR_REG_16 | (MRV_REG16_XOVEROFF)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); } /* power down phy to break link (this may not work) */ phy_config = (MIICR_REG_PCR | (PCR_POWERDOWN | speed | duplex)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); /* wait, Marvell says 1 sec, try to get away with 10 ms */ mdelay(10); if (adapter->subsysid != SLIC_1GB_CICADA_SUBSYS_ID) { /* if a Marvell PHY disable auto-neg, set speed, soft reset phy, powerup */ phy_config = (MIICR_REG_PCR | (PCR_RESET | speed | duplex)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); } else { /* it's a Cicada PHY */ /* disable auto-neg, set speed, powerup */ phy_config = (MIICR_REG_PCR | (speed | duplex)); WRITE_REG(adapter->slic_regs->slic_wphy, phy_config, FLUSH); } } DBG_MSG ("slicoss: %s (%s) EXIT slic_link_config : state[%d] \ phy_config[%x]\n", __func__, adapter->netdev->name, adapter->state, phy_config); } static void slic_card_cleanup(struct sliccard *card) { DBG_MSG("slicoss: %s ENTER\n", __func__); #if SLIC_DUMP_ENABLED if (card->dumpbuffer) { card->dumpbuffer_phys = 0; card->dumpbuffer_physl = 0; card->dumpbuffer_physh = 0; kfree(card->dumpbuffer); card->dumpbuffer = NULL; } if (card->cmdbuffer) { card->cmdbuffer_phys = 0; card->cmdbuffer_physl = 0; card->cmdbuffer_physh = 0; kfree(card->cmdbuffer); card->cmdbuffer = NULL; } #endif if (card->loadtimerset) { card->loadtimerset = 0; del_timer(&card->loadtimer); } slic_debug_card_destroy(card); kfree(card); DBG_MSG("slicoss: %s EXIT\n", __func__); } static int slic_card_download_gbrcv(struct adapter *adapter) { const struct firmware *fw; const char *file = ""; int ret; __iomem struct slic_regs *slic_regs = adapter->slic_regs; u32 codeaddr; unsigned char *instruction = NULL; u32 rcvucodelen = 0; switch (adapter->devid) { case SLIC_2GB_DEVICE_ID: file = "oasis_rcv.bin"; break; case SLIC_1GB_DEVICE_ID: file = "gb_rcv.bin"; break; default: ASSERT(0); break; } ret = request_firmware(&fw, file, &adapter->pcidev->dev); if (ret) { printk(KERN_ERR "SLICOSS: Failed to load firmware %s\n", file); return ret; } instruction = (unsigned char *)fw->data; rcvucodelen = fw->size; switch (adapter->devid) { case SLIC_2GB_DEVICE_ID: if (rcvucodelen != OasisRcvUCodeLen) return -EINVAL; break; case SLIC_1GB_DEVICE_ID: if (rcvucodelen != GBRcvUCodeLen) return -EINVAL; break; default: ASSERT(0); break; } /* start download */ WRITE_REG(slic_regs->slic_rcv_wcs, SLIC_RCVWCS_BEGIN, FLUSH); /* download the rcv sequencer ucode */ for (codeaddr = 0; codeaddr < rcvucodelen; codeaddr++) { /* write out instruction address */ WRITE_REG(slic_regs->slic_rcv_wcs, codeaddr, FLUSH); /* write out the instruction data low addr */ WRITE_REG(slic_regs->slic_rcv_wcs, (u32) *(u32 *) instruction, FLUSH); instruction += 4; /* write out the instruction data high addr */ WRITE_REG(slic_regs->slic_rcv_wcs, (u32) *instruction, FLUSH); instruction += 1; } /* download finished */ release_firmware(fw); WRITE_REG(slic_regs->slic_rcv_wcs, SLIC_RCVWCS_FINISH, FLUSH); return 0; } static int slic_card_download(struct adapter *adapter) { const struct firmware *fw; const char *file = ""; int ret; u32 section; int thissectionsize; int codeaddr; __iomem struct slic_regs *slic_regs = adapter->slic_regs; u32 *instruction = NULL; u32 *lastinstruct = NULL; u32 *startinstruct = NULL; unsigned char *nextinstruct; u32 baseaddress; u32 failure; u32 i; u32 numsects = 0; u32 sectsize[3]; u32 sectstart[3]; /* DBG_MSG ("slicoss: %s (%s) adapter[%p] card[%p] devid[%x] \ jiffies[%lx] cpu %d\n", __func__, adapter->netdev->name, adapter, adapter->card, adapter->devid,jiffies, smp_processor_id()); */ switch (adapter->devid) { case SLIC_2GB_DEVICE_ID: /* DBG_MSG ("slicoss: %s devid==SLIC_2GB_DEVICE_ID sections[%x]\n", __func__, (uint) ONumSections); */ file = "slic_oasis.bin"; numsects = ONumSections; for (i = 0; i < numsects; i++) { sectsize[i] = OSectionSize[i]; sectstart[i] = OSectionStart[i]; } break; case SLIC_1GB_DEVICE_ID: /* DBG_MSG ("slicoss: %s devid==SLIC_1GB_DEVICE_ID sections[%x]\n", __func__, (uint) MNumSections); */ file = "slic_mojave.bin"; numsects = MNumSections; for (i = 0; i < numsects; i++) { sectsize[i] = MSectionSize[i]; sectstart[i] = MSectionStart[i]; } break; default: ASSERT(0); break; } ret = request_firmware(&fw, file, &adapter->pcidev->dev); if (ret) { printk(KERN_ERR "SLICOSS: Failed to load firmware %s\n", file); return ret; } ASSERT(numsects <= 3); for (section = 0; section < numsects; section++) { switch (adapter->devid) { case SLIC_2GB_DEVICE_ID: instruction = (u32 *)(fw->data + (SECTION_SIZE * section)); baseaddress = sectstart[section]; thissectionsize = sectsize[section] >> 3; lastinstruct = (u32 *)(fw->data + (SECTION_SIZE * section) + sectsize[section] - 8); break; case SLIC_1GB_DEVICE_ID: instruction = (u32 *)(fw->data + (SECTION_SIZE * section)); baseaddress = sectstart[section]; thissectionsize = sectsize[section] >> 3; lastinstruct = (u32 *)(fw->data + (SECTION_SIZE * section) + sectsize[section] - 8); break; default: ASSERT(0); break; } baseaddress = sectstart[section]; thissectionsize = sectsize[section] >> 3; for (codeaddr = 0; codeaddr < thissectionsize; codeaddr++) { startinstruct = instruction; nextinstruct = ((unsigned char *)instruction) + 8; /* Write out instruction address */ WRITE_REG(slic_regs->slic_wcs, baseaddress + codeaddr, FLUSH); /* Write out instruction to low addr */ WRITE_REG(slic_regs->slic_wcs, *instruction, FLUSH); #ifdef CONFIG_X86_64 instruction = (u32 *)((unsigned char *)instruction + 4); #else instruction++; #endif /* Write out instruction to high addr */ WRITE_REG(slic_regs->slic_wcs, *instruction, FLUSH); #ifdef CONFIG_X86_64 instruction = (u32 *)((unsigned char *)instruction + 4); #else instruction++; #endif } } for (section = 0; section < numsects; section++) { switch (adapter->devid) { case SLIC_2GB_DEVICE_ID: instruction = (u32 *)fw->data + (SECTION_SIZE * section); break; case SLIC_1GB_DEVICE_ID: instruction = (u32 *)fw->data + (SECTION_SIZE * section); break; default: ASSERT(0); break; } baseaddress = sectstart[section]; if (baseaddress < 0x8000) continue; thissectionsize = sectsize[section] >> 3; /* DBG_MSG ("slicoss: COMPARE secton[%x] baseaddr[%x] sectnsize[%x]\n", (uint)section,baseaddress,thissectionsize);*/ for (codeaddr = 0; codeaddr < thissectionsize; codeaddr++) { /* Write out instruction address */ WRITE_REG(slic_regs->slic_wcs, SLIC_WCS_COMPARE | (baseaddress + codeaddr), FLUSH); /* Write out instruction to low addr */ WRITE_REG(slic_regs->slic_wcs, *instruction, FLUSH); #ifdef CONFIG_X86_64 instruction = (u32 *)((unsigned char *)instruction + 4); #else instruction++; #endif /* Write out instruction to high addr */ WRITE_REG(slic_regs->slic_wcs, *instruction, FLUSH); #ifdef CONFIG_X86_64 instruction = (u32 *)((unsigned char *)instruction + 4); #else instruction++; #endif /* Check SRAM location zero. If it is non-zero. Abort.*/ failure = readl((u32 __iomem *)&slic_regs->slic_reset); if (failure) { DBG_MSG ("slicoss: %s FAILURE EXIT codeaddr[%x] \ thissectionsize[%x] failure[%x]\n", __func__, codeaddr, thissectionsize, failure); release_firmware(fw); return -EIO; } } } /* DBG_MSG ("slicoss: Compare done\n");*/ release_firmware(fw); /* Everything OK, kick off the card */ mdelay(10); WRITE_REG(slic_regs->slic_wcs, SLIC_WCS_START, FLUSH); /* stall for 20 ms, long enough for ucode to init card and reach mainloop */ mdelay(20); DBG_MSG("slicoss: %s (%s) EXIT adapter[%p] card[%p]\n", __func__, adapter->netdev->name, adapter, adapter->card); return STATUS_SUCCESS; } static void slic_adapter_set_hwaddr(struct adapter *adapter) { struct sliccard *card = adapter->card; /* DBG_MSG ("%s ENTER card->config_set[%x] port[%d] physport[%d] funct#[%d]\n", __func__, card->config_set, adapter->port, adapter->physport, adapter->functionnumber); slic_dbg_macaddrs(adapter); */ if ((adapter->card) && (card->config_set)) { memcpy(adapter->macaddr, card->config.MacInfo[adapter->functionnumber].macaddrA, sizeof(struct slic_config_mac)); /* DBG_MSG ("%s AFTER copying from config.macinfo into currmacaddr\n", __func__); slic_dbg_macaddrs(adapter);*/ if (!(adapter->currmacaddr[0] || adapter->currmacaddr[1] || adapter->currmacaddr[2] || adapter->currmacaddr[3] || adapter->currmacaddr[4] || adapter->currmacaddr[5])) { memcpy(adapter->currmacaddr, adapter->macaddr, 6); } if (adapter->netdev) { memcpy(adapter->netdev->dev_addr, adapter->currmacaddr, 6); } } /* DBG_MSG ("%s EXIT port %d\n", __func__, adapter->port); slic_dbg_macaddrs(adapter); */ } static void slic_intagg_set(struct adapter *adapter, u32 value) { __iomem struct slic_regs *slic_regs = adapter->slic_regs; WRITE_REG(slic_regs->slic_intagg, value, FLUSH); adapter->card->loadlevel_current = value; } static int slic_card_init(struct sliccard *card, struct adapter *adapter) { __iomem struct slic_regs *slic_regs = adapter->slic_regs; struct slic_eeprom *peeprom; struct oslic_eeprom *pOeeprom; dma_addr_t phys_config; u32 phys_configh; u32 phys_configl; u32 i = 0; struct slic_shmem *pshmem; int status; uint macaddrs = card->card_size; ushort eecodesize; ushort dramsize; ushort ee_chksum; ushort calc_chksum; struct slic_config_mac *pmac; unsigned char fruformat; unsigned char oemfruformat; struct atk_fru *patkfru; union oemfru *poemfru; DBG_MSG ("slicoss: %s ENTER card[%p] adapter[%p] card->state[%x] \ size[%d]\n", __func__, card, adapter, card->state, card->card_size); /* Reset everything except PCI configuration space */ slic_soft_reset(adapter); /* Download the microcode */ status = slic_card_download(adapter); if (status != STATUS_SUCCESS) { DBG_ERROR("SLIC download failed bus %d slot %d\n", (uint) adapter->busnumber, (uint) adapter->slotnumber); return status; } if (!card->config_set) { peeprom = pci_alloc_consistent(adapter->pcidev, sizeof(struct slic_eeprom), &phys_config); phys_configl = SLIC_GET_ADDR_LOW(phys_config); phys_configh = SLIC_GET_ADDR_HIGH(phys_config); DBG_MSG("slicoss: %s Eeprom info adapter [%p]\n " "size [%x]\n peeprom [%p]\n " "phys_config [%p]\n phys_configl[%x]\n " "phys_configh[%x]\n", __func__, adapter, (u32)sizeof(struct slic_eeprom), peeprom, (void *) phys_config, phys_configl, phys_configh); if (!peeprom) { DBG_ERROR ("SLIC eeprom read failed to get memory bus %d \ slot %d\n", (uint) adapter->busnumber, (uint) adapter->slotnumber); return -ENOMEM; } else { memset(peeprom, 0, sizeof(struct slic_eeprom)); } WRITE_REG(slic_regs->slic_icr, ICR_INT_OFF, FLUSH); mdelay(1); pshmem = (struct slic_shmem *)adapter->phys_shmem; spin_lock_irqsave(&adapter->bit64reglock.lock, adapter->bit64reglock.flags); WRITE_REG(slic_regs->slic_addr_upper, 0, DONT_FLUSH); WRITE_REG(slic_regs->slic_isp, SLIC_GET_ADDR_LOW(&pshmem->isr), FLUSH); spin_unlock_irqrestore(&adapter->bit64reglock.lock, adapter->bit64reglock.flags); slic_config_get(adapter, phys_configl, phys_configh); for (;;) { if (adapter->pshmem->isr) { DBG_MSG("%s shmem[%p] shmem->isr[%x]\n", __func__, adapter->pshmem, adapter->pshmem->isr); if (adapter->pshmem->isr & ISR_UPC) { adapter->pshmem->isr = 0; WRITE_REG64(adapter, slic_regs->slic_isp, 0, slic_regs->slic_addr_upper, 0, FLUSH); WRITE_REG(slic_regs->slic_isr, 0, FLUSH); slic_upr_request_complete(adapter, 0); break; } else { adapter->pshmem->isr = 0; WRITE_REG(slic_regs->slic_isr, 0, FLUSH); } } else { mdelay(1); i++; if (i > 5000) { DBG_ERROR ("SLIC: %d config data fetch timed\ out!\n", adapter->port); DBG_MSG("%s shmem[%p] shmem->isr[%x]\n", __func__, adapter->pshmem, adapter->pshmem->isr); WRITE_REG64(adapter, slic_regs->slic_isp, 0, slic_regs->slic_addr_upper, 0, FLUSH); return -EINVAL; } } } switch (adapter->devid) { /* Oasis card */ case SLIC_2GB_DEVICE_ID: /* extract EEPROM data and pointers to EEPROM data */ pOeeprom = (struct oslic_eeprom *) peeprom; eecodesize = pOeeprom->EecodeSize; dramsize = pOeeprom->DramSize; pmac = pOeeprom->MacInfo; fruformat = pOeeprom->FruFormat; patkfru = &pOeeprom->AtkFru; oemfruformat = pOeeprom->OemFruFormat; poemfru = &pOeeprom->OemFru; macaddrs = 2; /* Minor kludge for Oasis card get 2 MAC addresses from the EEPROM to ensure that function 1 gets the Port 1 MAC address */ break; default: /* extract EEPROM data and pointers to EEPROM data */ eecodesize = peeprom->EecodeSize; dramsize = peeprom->DramSize; pmac = peeprom->u2.mac.MacInfo; fruformat = peeprom->FruFormat; patkfru = &peeprom->AtkFru; oemfruformat = peeprom->OemFruFormat; poemfru = &peeprom->OemFru; break; } card->config.EepromValid = FALSE; /* see if the EEPROM is valid by checking it's checksum */ if ((eecodesize <= MAX_EECODE_SIZE) && (eecodesize >= MIN_EECODE_SIZE)) { ee_chksum = *(u16 *) ((char *) peeprom + (eecodesize - 2)); /* calculate the EEPROM checksum */ calc_chksum = ~slic_eeprom_cksum((char *) peeprom, (eecodesize - 2)); /* if the ucdoe chksum flag bit worked, we wouldn't need this shit */ if (ee_chksum == calc_chksum) card->config.EepromValid = TRUE; } /* copy in the DRAM size */ card->config.DramSize = dramsize; /* copy in the MAC address(es) */ for (i = 0; i < macaddrs; i++) { memcpy(&card->config.MacInfo[i], &pmac[i], sizeof(struct slic_config_mac)); } /* DBG_MSG ("%s EEPROM Checksum Good? %d MacAddress\n",__func__, card->config.EepromValid); */ /* copy the Alacritech FRU information */ card->config.FruFormat = fruformat; memcpy(&card->config.AtkFru, patkfru, sizeof(struct atk_fru)); pci_free_consistent(adapter->pcidev, sizeof(struct slic_eeprom), peeprom, phys_config); DBG_MSG ("slicoss: %s adapter%d [%p] size[%x] FREE peeprom[%p] \ phys_config[%p]\n", __func__, adapter->port, adapter, (u32) sizeof(struct slic_eeprom), peeprom, (void *) phys_config); if ((!card->config.EepromValid) && (adapter->reg_params.fail_on_bad_eeprom)) { WRITE_REG64(adapter, slic_regs->slic_isp, 0, slic_regs->slic_addr_upper, 0, FLUSH); DBG_ERROR ("unsupported CONFIGURATION EEPROM invalid\n"); return -EINVAL; } card->config_set = 1; } if (slic_card_download_gbrcv(adapter)) { DBG_ERROR("%s unable to download GB receive microcode\n", __func__); return -EINVAL; } if (slic_global.dynamic_intagg) { DBG_MSG ("Dynamic Interrupt Aggregation[ENABLED]: slic%d \ SET intagg to %d\n", card->cardnum, 0); slic_intagg_set(adapter, 0); } else { slic_intagg_set(adapter, intagg_delay); DBG_MSG ("Dynamic Interrupt Aggregation[DISABLED]: slic%d \ SET intagg to %d\n", card->cardnum, intagg_delay); } /* * Initialize ping status to "ok" */ card->pingstatus = ISR_PINGMASK; #if SLIC_DUMP_ENABLED if (!card->dumpbuffer) { card->dumpbuffer = kmalloc(DUMP_PAGE_SIZE, GFP_ATOMIC); ASSERT(card->dumpbuffer); if (card->dumpbuffer == NULL) return -ENOMEM; } /* * Smear the shared memory structure and then obtain * the PHYSICAL address of this structure */ memset(card->dumpbuffer, 0, DUMP_PAGE_SIZE); card->dumpbuffer_phys = virt_to_bus(card->dumpbuffer); card->dumpbuffer_physh = SLIC_GET_ADDR_HIGH(card->dumpbuffer_phys); card->dumpbuffer_physl = SLIC_GET_ADDR_LOW(card->dumpbuffer_phys); /* * Allocate COMMAND BUFFER */ if (!card->cmdbuffer) { card->cmdbuffer = kmalloc(sizeof(struct dump_cmd), GFP_ATOMIC); ASSERT(card->cmdbuffer); if (card->cmdbuffer == NULL) return -ENOMEM; } /* * Smear the shared memory structure and then obtain * the PHYSICAL address of this structure */ memset(card->cmdbuffer, 0, sizeof(struct dump_cmd)); card->cmdbuffer_phys = virt_to_bus(card->cmdbuffer); card->cmdbuffer_physh = SLIC_GET_ADDR_HIGH(card->cmdbuffer_phys); card->cmdbuffer_physl = SLIC_GET_ADDR_LOW(card->cmdbuffer_phys); #endif /* * Lastly, mark our card state as up and return success */ card->state = CARD_UP; card->reset_in_progress = 0; DBG_MSG("slicoss: %s EXIT card[%p] adapter[%p] card->state[%x]\n", __func__, card, adapter, card->state); return STATUS_SUCCESS; } static u32 slic_card_locate(struct adapter *adapter) { struct sliccard *card = slic_global.slic_card; struct physcard *physcard = slic_global.phys_card; ushort card_hostid; u16 __iomem *hostid_reg; uint i; uint rdhostid_offset = 0; DBG_MSG("slicoss: %s adapter[%p] slot[%x] bus[%x] port[%x]\n", __func__, adapter, adapter->slotnumber, adapter->busnumber, adapter->port); switch (adapter->devid) { case SLIC_2GB_DEVICE_ID: rdhostid_offset = SLIC_RDHOSTID_2GB; break; case SLIC_1GB_DEVICE_ID: rdhostid_offset = SLIC_RDHOSTID_1GB; break; default: ASSERT(0); break; } hostid_reg = (u16 __iomem *) (((u8 __iomem *) (adapter->slic_regs)) + rdhostid_offset); DBG_MSG("slicoss: %s *hostid_reg[%p] == ", __func__, hostid_reg); /* read the 16 bit hostid from SRAM */ card_hostid = (ushort) readw(hostid_reg); DBG_MSG(" card_hostid[%x]\n", card_hostid); /* Initialize a new card structure if need be */ if (card_hostid == SLIC_HOSTID_DEFAULT) { card = kzalloc(sizeof(struct sliccard), GFP_KERNEL); if (card == NULL) return -ENOMEM; card->next = slic_global.slic_card; slic_global.slic_card = card; #if DBG if (adapter->devid == SLIC_2GB_DEVICE_ID) { DBG_MSG ("SLICOSS ==> Initialize 2 Port Gigabit Server \ and Storage Accelerator\n"); } else { DBG_MSG ("SLICOSS ==> Initialize 1 Port Gigabit Server \ and Storage Accelerator\n"); } #endif card->busnumber = adapter->busnumber; card->slotnumber = adapter->slotnumber; /* Find an available cardnum */ for (i = 0; i < SLIC_MAX_CARDS; i++) { if (slic_global.cardnuminuse[i] == 0) { slic_global.cardnuminuse[i] = 1; card->cardnum = i; break; } } slic_global.num_slic_cards++; DBG_MSG("\nCARDNUM == %d Total %d Card[%p]\n\n", card->cardnum, slic_global.num_slic_cards, card); slic_debug_card_create(card); } else { DBG_MSG ("slicoss: %s CARD already allocated, find the \ correct card\n", __func__); /* Card exists, find the card this adapter belongs to */ while (card) { DBG_MSG ("slicoss: %s card[%p] slot[%x] bus[%x] \ adaptport[%p] hostid[%x] cardnum[%x]\n", __func__, card, card->slotnumber, card->busnumber, card->adapter[adapter->port], card_hostid, card->cardnum); if (card->cardnum == card_hostid) break; card = card->next; } } ASSERT(card); if (!card) return STATUS_FAILURE; /* Put the adapter in the card's adapter list */ ASSERT(card->adapter[adapter->port] == NULL); if (!card->adapter[adapter->port]) { card->adapter[adapter->port] = adapter; adapter->card = card; } card->card_size = 1; /* one port per *logical* card */ while (physcard) { for (i = 0; i < SLIC_MAX_PORTS; i++) { if (!physcard->adapter[i]) continue; else break; } ASSERT(i != SLIC_MAX_PORTS); if (physcard->adapter[i]->slotnumber == adapter->slotnumber) break; physcard = physcard->next; } if (!physcard) { /* no structure allocated for this physical card yet */ physcard = kzalloc(sizeof(struct physcard), GFP_ATOMIC); ASSERT(physcard); DBG_MSG ("\n%s Allocate a PHYSICALcard:\n PHYSICAL_Card[%p]\n\ LogicalCard [%p]\n adapter [%p]\n", __func__, physcard, card, adapter); physcard->next = slic_global.phys_card; slic_global.phys_card = physcard; physcard->adapters_allocd = 1; } else { physcard->adapters_allocd++; } /* Note - this is ZERO relative */ adapter->physport = physcard->adapters_allocd - 1; ASSERT(physcard->adapter[adapter->physport] == NULL); physcard->adapter[adapter->physport] = adapter; adapter->physcard = physcard; DBG_MSG(" PHYSICAL_Port %d Logical_Port %d\n", adapter->physport, adapter->port); return 0; } static void slic_soft_reset(struct adapter *adapter) { if (adapter->card->state == CARD_UP) { DBG_MSG("slicoss: %s QUIESCE adapter[%p] card[%p] devid[%x]\n", __func__, adapter, adapter->card, adapter->devid); WRITE_REG(adapter->slic_regs->slic_quiesce, 0, FLUSH); mdelay(1); } /* DBG_MSG ("slicoss: %s (%s) adapter[%p] card[%p] devid[%x]\n", __func__, adapter->netdev->name, adapter, adapter->card, adapter->devid); */ WRITE_REG(adapter->slic_regs->slic_reset, SLIC_RESET_MAGIC, FLUSH); mdelay(1); } static void slic_config_set(struct adapter *adapter, bool linkchange) { u32 value; u32 RcrReset; __iomem struct slic_regs *slic_regs = adapter->slic_regs; DBG_MSG("slicoss: %s (%s) slic_interface_enable[%p](%d)\n", __func__, adapter->netdev->name, adapter, adapter->cardindex); if (linkchange) { /* Setup MAC */ slic_mac_config(adapter); RcrReset = GRCR_RESET; } else { slic_mac_address_config(adapter); RcrReset = 0; } if (adapter->linkduplex == LINK_FULLD) { /* setup xmtcfg */ value = (GXCR_RESET | /* Always reset */ GXCR_XMTEN | /* Enable transmit */ GXCR_PAUSEEN); /* Enable pause */ DBG_MSG("slicoss: FDX adapt[%p] set xmtcfg to [%x]\n", adapter, value); WRITE_REG(slic_regs->slic_wxcfg, value, FLUSH); /* Setup rcvcfg last */ value = (RcrReset | /* Reset, if linkchange */ GRCR_CTLEN | /* Enable CTL frames */ GRCR_ADDRAEN | /* Address A enable */ GRCR_RCVBAD | /* Rcv bad frames */ (GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT)); } else { /* setup xmtcfg */ value = (GXCR_RESET | /* Always reset */ GXCR_XMTEN); /* Enable transmit */ DBG_MSG("slicoss: HDX adapt[%p] set xmtcfg to [%x]\n", adapter, value); WRITE_REG(slic_regs->slic_wxcfg, value, FLUSH); /* Setup rcvcfg last */ value = (RcrReset | /* Reset, if linkchange */ GRCR_ADDRAEN | /* Address A enable */ GRCR_RCVBAD | /* Rcv bad frames */ (GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT)); } if (adapter->state != ADAPT_DOWN) { /* Only enable receive if we are restarting or running */ value |= GRCR_RCVEN; } if (adapter->macopts & MAC_PROMISC) value |= GRCR_RCVALL; DBG_MSG("slicoss: adapt[%p] set rcvcfg to [%x]\n", adapter, value); WRITE_REG(slic_regs->slic_wrcfg, value, FLUSH); } /* * Turn off RCV and XMT, power down PHY */ static void slic_config_clear(struct adapter *adapter) { u32 value; u32 phy_config; __iomem struct slic_regs *slic_regs = adapter->slic_regs; /* Setup xmtcfg */ value = (GXCR_RESET | /* Always reset */ GXCR_PAUSEEN); /* Enable pause */ WRITE_REG(slic_regs->slic_wxcfg, value, FLUSH); value = (GRCR_RESET | /* Always reset */ GRCR_CTLEN | /* Enable CTL frames */ GRCR_ADDRAEN | /* Address A enable */ (GRCR_HASHSIZE << GRCR_HASHSIZE_SHIFT)); WRITE_REG(slic_regs->slic_wrcfg, value, FLUSH); /* power down phy */ phy_config = (MIICR_REG_PCR | (PCR_POWERDOWN)); WRITE_REG(slic_regs->slic_wphy, phy_config, FLUSH); } static void slic_config_get(struct adapter *adapter, u32 config, u32 config_h) { int status; status = slic_upr_request(adapter, SLIC_UPR_RCONFIG, (u32) config, (u32) config_h, 0, 0); ASSERT(status == 0); } static void slic_mac_address_config(struct adapter *adapter) { u32 value; u32 value2; __iomem struct slic_regs *slic_regs = adapter->slic_regs; value = *(u32 *) &adapter->currmacaddr[2]; value = ntohl(value); WRITE_REG(slic_regs->slic_wraddral, value, FLUSH); WRITE_REG(slic_regs->slic_wraddrbl, value, FLUSH); value2 = (u32) ((adapter->currmacaddr[0] << 8 | adapter->currmacaddr[1]) & 0xFFFF); WRITE_REG(slic_regs->slic_wraddrah, value2, FLUSH); WRITE_REG(slic_regs->slic_wraddrbh, value2, FLUSH); DBG_MSG("%s value1[%x] value2[%x] Call slic_mcast_set_mask\n", __func__, value, value2); slic_dbg_macaddrs(adapter); /* Write our multicast mask out to the card. This is done */ /* here in addition to the slic_mcast_addr_set routine */ /* because ALL_MCAST may have been enabled or disabled */ slic_mcast_set_mask(adapter); } static void slic_mac_config(struct adapter *adapter) { u32 value; __iomem struct slic_regs *slic_regs = adapter->slic_regs; /* Setup GMAC gaps */ if (adapter->linkspeed == LINK_1000MB) { value = ((GMCR_GAPBB_1000 << GMCR_GAPBB_SHIFT) | (GMCR_GAPR1_1000 << GMCR_GAPR1_SHIFT) | (GMCR_GAPR2_1000 << GMCR_GAPR2_SHIFT)); } else { value = ((GMCR_GAPBB_100 << GMCR_GAPBB_SHIFT) | (GMCR_GAPR1_100 << GMCR_GAPR1_SHIFT) | (GMCR_GAPR2_100 << GMCR_GAPR2_SHIFT)); } /* enable GMII */ if (adapter->linkspeed == LINK_1000MB) value |= GMCR_GBIT; /* enable fullduplex */ if ((adapter->linkduplex == LINK_FULLD) || (adapter->macopts & MAC_LOOPBACK)) { value |= GMCR_FULLD; } /* write mac config */ WRITE_REG(slic_regs->slic_wmcfg, value, FLUSH); /* setup mac addresses */ slic_mac_address_config(adapter); } static bool slic_mac_filter(struct adapter *adapter, struct ether_header *ether_frame) { u32 opts = adapter->macopts; u32 *dhost4 = (u32 *)ðer_frame->ether_dhost[0]; u16 *dhost2 = (u16 *)ðer_frame->ether_dhost[4]; bool equaladdr; if (opts & MAC_PROMISC) { DBG_MSG("slicoss: %s (%s) PROMISCUOUS. Accept frame\n", __func__, adapter->netdev->name); return TRUE; } if ((*dhost4 == 0xFFFFFFFF) && (*dhost2 == 0xFFFF)) { if (opts & MAC_BCAST) { adapter->rcv_broadcasts++; return TRUE; } else { return FALSE; } } if (ether_frame->ether_dhost[0] & 0x01) { if (opts & MAC_ALLMCAST) { adapter->rcv_multicasts++; adapter->stats.multicast++; return TRUE; } if (opts & MAC_MCAST) { struct mcast_address *mcaddr = adapter->mcastaddrs; while (mcaddr) { ETHER_EQ_ADDR(mcaddr->address, ether_frame->ether_dhost, equaladdr); if (equaladdr) { adapter->rcv_multicasts++; adapter->stats.multicast++; return TRUE; } mcaddr = mcaddr->next; } return FALSE; } else { return FALSE; } } if (opts & MAC_DIRECTED) { adapter->rcv_unicasts++; return TRUE; } return FALSE; } static int slic_mac_set_address(struct net_device *dev, void *ptr) { struct adapter *adapter = (struct adapter *)netdev_priv(dev); struct sockaddr *addr = ptr; DBG_MSG("%s ENTER (%s)\n", __func__, adapter->netdev->name); if (netif_running(dev)) return -EBUSY; if (!adapter) return -EBUSY; DBG_MSG("slicoss: %s (%s) curr %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n", __func__, adapter->netdev->name, adapter->currmacaddr[0], adapter->currmacaddr[1], adapter->currmacaddr[2], adapter->currmacaddr[3], adapter->currmacaddr[4], adapter->currmacaddr[5]); memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); memcpy(adapter->currmacaddr, addr->sa_data, dev->addr_len); DBG_MSG("slicoss: %s (%s) new %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n", __func__, adapter->netdev->name, adapter->currmacaddr[0], adapter->currmacaddr[1], adapter->currmacaddr[2], adapter->currmacaddr[3], adapter->currmacaddr[4], adapter->currmacaddr[5]); slic_config_set(adapter, TRUE); return 0; } /* * slic_timer_get_stats * * Timer function used to suck the statistics out of the card every * 50 seconds or whatever STATS_TIMER_INTERVAL is set to. * */ #if SLIC_GET_STATS_TIMER_ENABLED static void slic_timer_get_stats(ulong dev) { struct adapter *adapter; struct sliccard *card; struct slic_shmem *pshmem; ASSERT(dev); adapter = netdev_priv((struct net_device *)dev); ASSERT(adapter); card = adapter->card; ASSERT(card); if ((card->state == CARD_UP) && (adapter->state == ADAPT_UP) && (adapter->linkstate == LINK_UP)) { pshmem = (struct slic_shmem *)adapter->phys_shmem; #ifdef CONFIG_X86_64 slic_upr_request(adapter, SLIC_UPR_STATS, SLIC_GET_ADDR_LOW(&pshmem->inicstats), SLIC_GET_ADDR_HIGH(&pshmem->inicstats), 0, 0); #elif defined(CONFIG_X86) slic_upr_request(adapter, SLIC_UPR_STATS, (u32) &pshmem->inicstats, 0, 0, 0); #else Stop compilation; #endif } else { /* DBG_MSG ("slicoss: %s adapter[%p] linkstate[%x] NOT UP!\n", __func__, adapter, adapter->linkstate); */ } adapter->statstimer.expires = jiffies + SLIC_SECS_TO_JIFFS(STATS_TIMER_INTERVAL); add_timer(&adapter->statstimer); } #endif static void slic_timer_load_check(ulong cardaddr) { struct sliccard *card = (struct sliccard *)cardaddr; struct adapter *adapter = card->master; u32 load = card->events; u32 level = 0; if ((adapter) && (adapter->state == ADAPT_UP) && (card->state == CARD_UP) && (slic_global.dynamic_intagg)) { if (adapter->devid == SLIC_1GB_DEVICE_ID) { if (adapter->linkspeed == LINK_1000MB) level = 100; else { if (load > SLIC_LOAD_5) level = SLIC_INTAGG_5; else if (load > SLIC_LOAD_4) level = SLIC_INTAGG_4; else if (load > SLIC_LOAD_3) level = SLIC_INTAGG_3; else if (load > SLIC_LOAD_2) level = SLIC_INTAGG_2; else if (load > SLIC_LOAD_1) level = SLIC_INTAGG_1; else level = SLIC_INTAGG_0; } if (card->loadlevel_current != level) { card->loadlevel_current = level; WRITE_REG(adapter->slic_regs->slic_intagg, level, FLUSH); } } else { if (load > SLIC_LOAD_5) level = SLIC_INTAGG_5; else if (load > SLIC_LOAD_4) level = SLIC_INTAGG_4; else if (load > SLIC_LOAD_3) level = SLIC_INTAGG_3; else if (load > SLIC_LOAD_2) level = SLIC_INTAGG_2; else if (load > SLIC_LOAD_1) level = SLIC_INTAGG_1; else level = SLIC_INTAGG_0; if (card->loadlevel_current != level) { card->loadlevel_current = level; WRITE_REG(adapter->slic_regs->slic_intagg, level, FLUSH); } } } card->events = 0; card->loadtimer.expires = jiffies + SLIC_SECS_TO_JIFFS(SLIC_LOADTIMER_PERIOD); add_timer(&card->loadtimer); } static void slic_assert_fail(void) { u32 cpuid; u32 curr_pid; cpuid = smp_processor_id(); curr_pid = current->pid; DBG_ERROR("%s CPU # %d ---- PID # %d\n", __func__, cpuid, curr_pid); } static int slic_upr_queue_request(struct adapter *adapter, u32 upr_request, u32 upr_data, u32 upr_data_h, u32 upr_buffer, u32 upr_buffer_h) { struct slic_upr *upr; struct slic_upr *uprqueue; upr = kmalloc(sizeof(struct slic_upr), GFP_ATOMIC); if (!upr) { DBG_MSG("%s COULD NOT ALLOCATE UPR MEM\n", __func__); return -ENOMEM; } upr->adapter = adapter->port; upr->upr_request = upr_request; upr->upr_data = upr_data; upr->upr_buffer = upr_buffer; upr->upr_data_h = upr_data_h; upr->upr_buffer_h = upr_buffer_h; upr->next = NULL; if (adapter->upr_list) { uprqueue = adapter->upr_list; while (uprqueue->next) uprqueue = uprqueue->next; uprqueue->next = upr; } else { adapter->upr_list = upr; } return STATUS_SUCCESS; } static int slic_upr_request(struct adapter *adapter, u32 upr_request, u32 upr_data, u32 upr_data_h, u32 upr_buffer, u32 upr_buffer_h) { int status; spin_lock_irqsave(&adapter->upr_lock.lock, adapter->upr_lock.flags); status = slic_upr_queue_request(adapter, upr_request, upr_data, upr_data_h, upr_buffer, upr_buffer_h); if (status != STATUS_SUCCESS) { spin_unlock_irqrestore(&adapter->upr_lock.lock, adapter->upr_lock.flags); return status; } slic_upr_start(adapter); spin_unlock_irqrestore(&adapter->upr_lock.lock, adapter->upr_lock.flags); return STATUS_PENDING; } static void slic_upr_request_complete(struct adapter *adapter, u32 isr) { struct sliccard *card = adapter->card; struct slic_upr *upr; /* if (card->dump_requested) { DBG_MSG("ENTER slic_upr_request_complete Dump in progress ISR[%x]\n", isr); } */ spin_lock_irqsave(&adapter->upr_lock.lock, adapter->upr_lock.flags); upr = adapter->upr_list; if (!upr) { ASSERT(0); spin_unlock_irqrestore(&adapter->upr_lock.lock, adapter->upr_lock.flags); return; } adapter->upr_list = upr->next; upr->next = NULL; adapter->upr_busy = 0; ASSERT(adapter->port == upr->adapter); switch (upr->upr_request) { case SLIC_UPR_STATS: { #if SLIC_GET_STATS_ENABLED struct slic_stats *slicstats = (struct slic_stats *) &adapter->pshmem->inicstats; struct slic_stats *newstats = slicstats; struct slic_stats *old = &adapter->inicstats_prev; struct slicnet_stats *stst = &adapter->slic_stats; #endif if (isr & ISR_UPCERR) { DBG_ERROR ("SLIC_UPR_STATS command failed isr[%x]\n", isr); break; } #if SLIC_GET_STATS_ENABLED /* DBG_MSG ("slicoss: %s rcv %lx:%lx:%lx:%lx:%lx %lx %lx " "xmt %lx:%lx:%lx:%lx:%lx %lx %lx\n", __func__, slicstats->rcv_unicasts100, slicstats->rcv_bytes100, slicstats->rcv_bytes100, slicstats->rcv_tcp_bytes100, slicstats->rcv_tcp_segs100, slicstats->rcv_other_error100, slicstats->rcv_drops100, slicstats->xmit_unicasts100, slicstats->xmit_bytes100, slicstats->xmit_bytes100, slicstats->xmit_tcp_bytes100, slicstats->xmit_tcp_segs100, slicstats->xmit_other_error100, slicstats->xmit_collisions100);*/ UPDATE_STATS_GB(stst->tcp.xmit_tcp_segs, newstats->xmit_tcp_segs_gb, old->xmit_tcp_segs_gb); UPDATE_STATS_GB(stst->tcp.xmit_tcp_bytes, newstats->xmit_tcp_bytes_gb, old->xmit_tcp_bytes_gb); UPDATE_STATS_GB(stst->tcp.rcv_tcp_segs, newstats->rcv_tcp_segs_gb, old->rcv_tcp_segs_gb); UPDATE_STATS_GB(stst->tcp.rcv_tcp_bytes, newstats->rcv_tcp_bytes_gb, old->rcv_tcp_bytes_gb); UPDATE_STATS_GB(stst->iface.xmt_bytes, newstats->xmit_bytes_gb, old->xmit_bytes_gb); UPDATE_STATS_GB(stst->iface.xmt_ucast, newstats->xmit_unicasts_gb, old->xmit_unicasts_gb); UPDATE_STATS_GB(stst->iface.rcv_bytes, newstats->rcv_bytes_gb, old->rcv_bytes_gb); UPDATE_STATS_GB(stst->iface.rcv_ucast, newstats->rcv_unicasts_gb, old->rcv_unicasts_gb); UPDATE_STATS_GB(stst->iface.xmt_errors, newstats->xmit_collisions_gb, old->xmit_collisions_gb); UPDATE_STATS_GB(stst->iface.xmt_errors, newstats->xmit_excess_collisions_gb, old->xmit_excess_collisions_gb); UPDATE_STATS_GB(stst->iface.xmt_errors, newstats->xmit_other_error_gb, old->xmit_other_error_gb); UPDATE_STATS_GB(stst->iface.rcv_errors, newstats->rcv_other_error_gb, old->rcv_other_error_gb); UPDATE_STATS_GB(stst->iface.rcv_discards, newstats->rcv_drops_gb, old->rcv_drops_gb); if (newstats->rcv_drops_gb > old->rcv_drops_gb) { adapter->rcv_drops += (newstats->rcv_drops_gb - old->rcv_drops_gb); } memcpy(old, newstats, sizeof(struct slic_stats)); #endif break; } case SLIC_UPR_RLSR: slic_link_upr_complete(adapter, isr); break; case SLIC_UPR_RCONFIG: break; case SLIC_UPR_RPHY: ASSERT(0); break; case SLIC_UPR_ENLB: ASSERT(0); break; case SLIC_UPR_ENCT: ASSERT(0); break; case SLIC_UPR_PDWN: ASSERT(0); break; case SLIC_UPR_PING: card->pingstatus |= (isr & ISR_PINGDSMASK); break; #if SLIC_DUMP_ENABLED case SLIC_UPR_DUMP: card->dumpstatus |= (isr & ISR_UPCMASK); break; #endif default: ASSERT(0); } kfree(upr); slic_upr_start(adapter); spin_unlock_irqrestore(&adapter->upr_lock.lock, adapter->upr_lock.flags); } static void slic_upr_start(struct adapter *adapter) { struct slic_upr *upr; __iomem struct slic_regs *slic_regs = adapter->slic_regs; /* char * ptr1; char * ptr2; uint cmdoffset; */ upr = adapter->upr_list; if (!upr) return; if (adapter->upr_busy) return; adapter->upr_busy = 1; switch (upr->upr_request) { case SLIC_UPR_STATS: if (upr->upr_data_h == 0) { WRITE_REG(slic_regs->slic_stats, upr->upr_data, FLUSH); } else { WRITE_REG64(adapter, slic_regs->slic_stats64, upr->upr_data, slic_regs->slic_addr_upper, upr->upr_data_h, FLUSH); } break; case SLIC_UPR_RLSR: WRITE_REG64(adapter, slic_regs->slic_rlsr, upr->upr_data, slic_regs->slic_addr_upper, upr->upr_data_h, FLUSH); break; case SLIC_UPR_RCONFIG: DBG_MSG("%s SLIC_UPR_RCONFIG!!!!\n", __func__); DBG_MSG("WRITE_REG64 adapter[%p]\n" " a->slic_regs[%p] slic_regs[%p]\n" " &slic_rconfig[%p] &slic_addr_upper[%p]\n" " upr[%p]\n" " uprdata[%x] uprdatah[%x]\n", adapter, adapter->slic_regs, slic_regs, &slic_regs->slic_rconfig, &slic_regs->slic_addr_upper, upr, upr->upr_data, upr->upr_data_h); WRITE_REG64(adapter, slic_regs->slic_rconfig, upr->upr_data, slic_regs->slic_addr_upper, upr->upr_data_h, FLUSH); break; #if SLIC_DUMP_ENABLED case SLIC_UPR_DUMP: #if 0 DBG_MSG("%s SLIC_UPR_DUMP!!!!\n", __func__); DBG_MSG("WRITE_REG64 adapter[%p]\n" " upr_buffer[%x] upr_bufferh[%x]\n" " upr_data[%x] upr_datah[%x]\n" " cmdbuff[%p] cmdbuffP[%p]\n" " dumpbuff[%p] dumpbuffP[%p]\n", adapter, upr->upr_buffer, upr->upr_buffer_h, upr->upr_data, upr->upr_data_h, adapter->card->cmdbuffer, (void *)adapter->card->cmdbuffer_phys, adapter->card->dumpbuffer, ( void *)adapter->card->dumpbuffer_phys); ptr1 = (char *)slic_regs; ptr2 = (char *)(&slic_regs->slic_dump_cmd); cmdoffset = ptr2 - ptr1; DBG_MSG("slic_dump_cmd register offset [%x]\n", cmdoffset); #endif if (upr->upr_buffer || upr->upr_buffer_h) { WRITE_REG64(adapter, slic_regs->slic_dump_data, upr->upr_buffer, slic_regs->slic_addr_upper, upr->upr_buffer_h, FLUSH); } WRITE_REG64(adapter, slic_regs->slic_dump_cmd, upr->upr_data, slic_regs->slic_addr_upper, upr->upr_data_h, FLUSH); break; #endif case SLIC_UPR_PING: WRITE_REG(slic_regs->slic_ping, 1, FLUSH); break; default: ASSERT(0); } } static void slic_link_upr_complete(struct adapter *adapter, u32 isr) { u32 linkstatus = adapter->pshmem->linkstatus; uint linkup; unsigned char linkspeed; unsigned char linkduplex; DBG_MSG("%s: %s ISR[%x] linkstatus[%x]\n adapter[%p](%d)\n", __func__, adapter->netdev->name, isr, linkstatus, adapter, adapter->cardindex); if ((isr & ISR_UPCERR) || (isr & ISR_UPCBSY)) { struct slic_shmem *pshmem; pshmem = (struct slic_shmem *)adapter->phys_shmem; #if defined(CONFIG_X86_64) slic_upr_queue_request(adapter, SLIC_UPR_RLSR, SLIC_GET_ADDR_LOW(&pshmem->linkstatus), SLIC_GET_ADDR_HIGH(&pshmem->linkstatus), 0, 0); #elif defined(CONFIG_X86) slic_upr_queue_request(adapter, SLIC_UPR_RLSR, (u32) &pshmem->linkstatus, SLIC_GET_ADDR_HIGH(pshmem), 0, 0); #else Stop Compilation; #endif return; } if (adapter->state != ADAPT_UP) return; ASSERT((adapter->devid == SLIC_1GB_DEVICE_ID) || (adapter->devid == SLIC_2GB_DEVICE_ID)); linkup = linkstatus & GIG_LINKUP ? LINK_UP : LINK_DOWN; if (linkstatus & GIG_SPEED_1000) { linkspeed = LINK_1000MB; DBG_MSG("slicoss: %s (%s) GIGABIT Speed==1000MB ", __func__, adapter->netdev->name); } else if (linkstatus & GIG_SPEED_100) { linkspeed = LINK_100MB; DBG_MSG("slicoss: %s (%s) GIGABIT Speed==100MB ", __func__, adapter->netdev->name); } else { linkspeed = LINK_10MB; DBG_MSG("slicoss: %s (%s) GIGABIT Speed==10MB ", __func__, adapter->netdev->name); } if (linkstatus & GIG_FULLDUPLEX) { linkduplex = LINK_FULLD; DBG_MSG(" Duplex == FULL\n"); } else { linkduplex = LINK_HALFD; DBG_MSG(" Duplex == HALF\n"); } if ((adapter->linkstate == LINK_DOWN) && (linkup == LINK_DOWN)) { DBG_MSG("slicoss: %s (%s) physport(%d) link still down\n", __func__, adapter->netdev->name, adapter->physport); return; } /* link up event, but nothing has changed */ if ((adapter->linkstate == LINK_UP) && (linkup == LINK_UP) && (adapter->linkspeed == linkspeed) && (adapter->linkduplex == linkduplex)) { DBG_MSG("slicoss: %s (%s) port(%d) link still up\n", __func__, adapter->netdev->name, adapter->physport); return; } /* link has changed at this point */ /* link has gone from up to down */ if (linkup == LINK_DOWN) { adapter->linkstate = LINK_DOWN; DBG_MSG("slicoss: %s %d LinkDown!\n", __func__, adapter->physport); return; } /* link has gone from down to up */ adapter->linkspeed = linkspeed; adapter->linkduplex = linkduplex; if (adapter->linkstate != LINK_UP) { /* setup the mac */ DBG_MSG("%s call slic_config_set\n", __func__); slic_config_set(adapter, TRUE); adapter->linkstate = LINK_UP; DBG_MSG("\n(%s) Link UP: CALL slic_if_start_queue", adapter->netdev->name); slic_if_start_queue(adapter); } #if 1 switch (linkspeed) { case LINK_1000MB: DBG_MSG ("\n(%s) LINK UP!: GIGABIT SPEED == 1000MB duplex[%x]\n", adapter->netdev->name, adapter->linkduplex); break; case LINK_100MB: DBG_MSG("\n(%s) LINK UP!: SPEED == 100MB duplex[%x]\n", adapter->netdev->name, adapter->linkduplex); break; default: DBG_MSG("\n(%s) LINK UP!: SPEED == 10MB duplex[%x]\n", adapter->netdev->name, adapter->linkduplex); break; } #endif } /* * this is here to checksum the eeprom, there is some ucode bug * which prevens us from using the ucode result. * remove this once ucode is fixed. */ static ushort slic_eeprom_cksum(char *m, int len) { #define ADDCARRY(x) (x > 65535 ? x -= 65535 : x) #define REDUCE {l_util.l = sum; sum = l_util.s[0] + l_util.s[1]; ADDCARRY(sum);\ } u16 *w; u32 sum = 0; u32 byte_swapped = 0; u32 w_int; union { char c[2]; ushort s; } s_util; union { ushort s[2]; int l; } l_util; l_util.l = 0; s_util.s = 0; w = (u16 *)m; #ifdef CONFIG_X86_64 w_int = (u32) ((ulong) w & 0x00000000FFFFFFFF); #else w_int = (u32) (w); #endif if ((1 & w_int) && (len > 0)) { REDUCE; sum <<= 8; s_util.c[0] = *(unsigned char *)w; w = (u16 *)((char *)w + 1); len--; byte_swapped = 1; } /* Unroll the loop to make overhead from branches &c small. */ while ((len -= 32) >= 0) { sum += w[0]; sum += w[1]; sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; sum += w[6]; sum += w[7]; sum += w[8]; sum += w[9]; sum += w[10]; sum += w[11]; sum += w[12]; sum += w[13]; sum += w[14]; sum += w[15]; w = (u16 *)((ulong) w + 16); /* verify */ } len += 32; while ((len -= 8) >= 0) { sum += w[0]; sum += w[1]; sum += w[2]; sum += w[3]; w = (u16 *)((ulong) w + 4); /* verify */ } len += 8; if (len != 0 || byte_swapped != 0) { REDUCE; while ((len -= 2) >= 0) sum += *w++; /* verify */ if (byte_swapped) { REDUCE; sum <<= 8; byte_swapped = 0; if (len == -1) { s_util.c[1] = *(char *) w; sum += s_util.s; len = 0; } else { len = -1; } } else if (len == -1) { s_util.c[0] = *(char *) w; } if (len == -1) { s_util.c[1] = 0; sum += s_util.s; } } REDUCE; return (ushort) sum; } static int slic_rspqueue_init(struct adapter *adapter) { int i; struct slic_rspqueue *rspq = &adapter->rspqueue; __iomem struct slic_regs *slic_regs = adapter->slic_regs; u32 paddrh = 0; DBG_MSG("slicoss: %s (%s) ENTER adapter[%p]\n", __func__, adapter->netdev->name, adapter); ASSERT(adapter->state == ADAPT_DOWN); memset(rspq, 0, sizeof(struct slic_rspqueue)); rspq->num_pages = SLIC_RSPQ_PAGES_GB; for (i = 0; i < rspq->num_pages; i++) { rspq->vaddr[i] = pci_alloc_consistent(adapter->pcidev, PAGE_SIZE, &rspq->paddr[i]); if (!rspq->vaddr[i]) { DBG_ERROR ("rspqueue_init_failed pci_alloc_consistent\n"); slic_rspqueue_free(adapter); return STATUS_FAILURE; } #ifndef CONFIG_X86_64 ASSERT(((u32) rspq->vaddr[i] & 0xFFFFF000) == (u32) rspq->vaddr[i]); ASSERT(((u32) rspq->paddr[i] & 0xFFFFF000) == (u32) rspq->paddr[i]); #endif memset(rspq->vaddr[i], 0, PAGE_SIZE); /* DBG_MSG("slicoss: %s UPLOAD RSPBUFF Page pageix[%x] paddr[%p] " "vaddr[%p]\n", __func__, i, (void *)rspq->paddr[i], rspq->vaddr[i]); */ if (paddrh == 0) { WRITE_REG(slic_regs->slic_rbar, (rspq->paddr[i] | SLIC_RSPQ_BUFSINPAGE), DONT_FLUSH); } else { WRITE_REG64(adapter, slic_regs->slic_rbar64, (rspq->paddr[i] | SLIC_RSPQ_BUFSINPAGE), slic_regs->slic_addr_upper, paddrh, DONT_FLUSH); } } rspq->offset = 0; rspq->pageindex = 0; rspq->rspbuf = (struct slic_rspbuf *)rspq->vaddr[0]; DBG_MSG("slicoss: %s (%s) EXIT adapter[%p]\n", __func__, adapter->netdev->name, adapter); return STATUS_SUCCESS; } static int slic_rspqueue_reset(struct adapter *adapter) { struct slic_rspqueue *rspq = &adapter->rspqueue; DBG_MSG("slicoss: %s (%s) ENTER adapter[%p]\n", __func__, adapter->netdev->name, adapter); ASSERT(adapter->state == ADAPT_DOWN); ASSERT(rspq); DBG_MSG("slicoss: Nothing to do. rspq[%p]\n" " offset[%x]\n" " pageix[%x]\n" " rspbuf[%p]\n", rspq, rspq->offset, rspq->pageindex, rspq->rspbuf); DBG_MSG("slicoss: %s (%s) EXIT adapter[%p]\n", __func__, adapter->netdev->name, adapter); return STATUS_SUCCESS; } static void slic_rspqueue_free(struct adapter *adapter) { int i; struct slic_rspqueue *rspq = &adapter->rspqueue; DBG_MSG("slicoss: %s adapter[%p] port %d rspq[%p] FreeRSPQ\n", __func__, adapter, adapter->physport, rspq); for (i = 0; i < rspq->num_pages; i++) { if (rspq->vaddr[i]) { DBG_MSG ("slicoss: pci_free_consistent rspq->vaddr[%p] \ paddr[%p]\n", rspq->vaddr[i], (void *) rspq->paddr[i]); pci_free_consistent(adapter->pcidev, PAGE_SIZE, rspq->vaddr[i], rspq->paddr[i]); } rspq->vaddr[i] = NULL; rspq->paddr[i] = 0; } rspq->offset = 0; rspq->pageindex = 0; rspq->rspbuf = NULL; } static struct slic_rspbuf *slic_rspqueue_getnext(struct adapter *adapter) { struct slic_rspqueue *rspq = &adapter->rspqueue; struct slic_rspbuf *buf; if (!(rspq->rspbuf->status)) return NULL; buf = rspq->rspbuf; #ifndef CONFIG_X86_64 ASSERT((buf->status & 0xFFFFFFE0) == 0); #endif ASSERT(buf->hosthandle); if (++rspq->offset < SLIC_RSPQ_BUFSINPAGE) { rspq->rspbuf++; #ifndef CONFIG_X86_64 ASSERT(((u32) rspq->rspbuf & 0xFFFFFFE0) == (u32) rspq->rspbuf); #endif } else { ASSERT(rspq->offset == SLIC_RSPQ_BUFSINPAGE); WRITE_REG64(adapter, adapter->slic_regs->slic_rbar64, (rspq-> paddr[rspq->pageindex] | SLIC_RSPQ_BUFSINPAGE), adapter->slic_regs->slic_addr_upper, 0, DONT_FLUSH); rspq->pageindex = (++rspq->pageindex) % rspq->num_pages; rspq->offset = 0; rspq->rspbuf = (struct slic_rspbuf *) rspq->vaddr[rspq->pageindex]; #ifndef CONFIG_X86_64 ASSERT(((u32) rspq->rspbuf & 0xFFFFF000) == (u32) rspq->rspbuf); #endif } #ifndef CONFIG_X86_64 ASSERT(((u32) buf & 0xFFFFFFE0) == (u32) buf); #endif return buf; } static void slic_cmdqmem_init(struct adapter *adapter) { struct slic_cmdqmem *cmdqmem = &adapter->cmdqmem; memset(cmdqmem, 0, sizeof(struct slic_cmdqmem)); } static void slic_cmdqmem_free(struct adapter *adapter) { struct slic_cmdqmem *cmdqmem = &adapter->cmdqmem; int i; DBG_MSG("slicoss: (%s) adapter[%p] port %d rspq[%p] Free CMDQ Memory\n", __func__, adapter, adapter->physport, cmdqmem); for (i = 0; i < SLIC_CMDQ_MAXPAGES; i++) { if (cmdqmem->pages[i]) { DBG_MSG("slicoss: %s Deallocate page CmdQPage[%p]\n", __func__, (void *) cmdqmem->pages[i]); pci_free_consistent(adapter->pcidev, PAGE_SIZE, (void *) cmdqmem->pages[i], cmdqmem->dma_pages[i]); } } memset(cmdqmem, 0, sizeof(struct slic_cmdqmem)); } static u32 *slic_cmdqmem_addpage(struct adapter *adapter) { struct slic_cmdqmem *cmdqmem = &adapter->cmdqmem; u32 *pageaddr; if (cmdqmem->pagecnt >= SLIC_CMDQ_MAXPAGES) return NULL; pageaddr = pci_alloc_consistent(adapter->pcidev, PAGE_SIZE, &cmdqmem->dma_pages[cmdqmem->pagecnt]); if (!pageaddr) return NULL; #ifndef CONFIG_X86_64 ASSERT(((u32) pageaddr & 0xFFFFF000) == (u32) pageaddr); #endif cmdqmem->pages[cmdqmem->pagecnt] = pageaddr; cmdqmem->pagecnt++; return pageaddr; } static int slic_cmdq_init(struct adapter *adapter) { int i; u32 *pageaddr; DBG_MSG("slicoss: %s ENTER adapter[%p]\n", __func__, adapter); ASSERT(adapter->state == ADAPT_DOWN); memset(&adapter->cmdq_all, 0, sizeof(struct slic_cmdqueue)); memset(&adapter->cmdq_free, 0, sizeof(struct slic_cmdqueue)); memset(&adapter->cmdq_done, 0, sizeof(struct slic_cmdqueue)); spin_lock_init(&adapter->cmdq_all.lock.lock); spin_lock_init(&adapter->cmdq_free.lock.lock); spin_lock_init(&adapter->cmdq_done.lock.lock); slic_cmdqmem_init(adapter); adapter->slic_handle_ix = 1; for (i = 0; i < SLIC_CMDQ_INITPAGES; i++) { pageaddr = slic_cmdqmem_addpage(adapter); #ifndef CONFIG_X86_64 ASSERT(((u32) pageaddr & 0xFFFFF000) == (u32) pageaddr); #endif if (!pageaddr) { slic_cmdq_free(adapter); return STATUS_FAILURE; } slic_cmdq_addcmdpage(adapter, pageaddr); } adapter->slic_handle_ix = 1; DBG_MSG("slicoss: %s reset slic_handle_ix to ONE\n", __func__); return STATUS_SUCCESS; } static void slic_cmdq_free(struct adapter *adapter) { struct slic_hostcmd *cmd; DBG_MSG("slicoss: %s adapter[%p] port %d FreeCommandsFrom CMDQ\n", __func__, adapter, adapter->physport); cmd = adapter->cmdq_all.head; while (cmd) { if (cmd->busy) { struct sk_buff *tempskb; tempskb = cmd->skb; if (tempskb) { cmd->skb = NULL; dev_kfree_skb_irq(tempskb); } } cmd = cmd->next_all; } memset(&adapter->cmdq_all, 0, sizeof(struct slic_cmdqueue)); memset(&adapter->cmdq_free, 0, sizeof(struct slic_cmdqueue)); memset(&adapter->cmdq_done, 0, sizeof(struct slic_cmdqueue)); slic_cmdqmem_free(adapter); } static void slic_cmdq_reset(struct adapter *adapter) { struct slic_hostcmd *hcmd; struct sk_buff *skb; u32 outstanding; DBG_MSG("%s ENTER adapter[%p]\n", __func__, adapter); spin_lock_irqsave(&adapter->cmdq_free.lock.lock, adapter->cmdq_free.lock.flags); spin_lock_irqsave(&adapter->cmdq_done.lock.lock, adapter->cmdq_done.lock.flags); outstanding = adapter->cmdq_all.count - adapter->cmdq_done.count; outstanding -= adapter->cmdq_free.count; hcmd = adapter->cmdq_all.head; while (hcmd) { if (hcmd->busy) { skb = hcmd->skb; ASSERT(skb); DBG_MSG("slicoss: %s hcmd[%p] skb[%p] ", __func__, hcmd, skb); hcmd->busy = 0; hcmd->skb = NULL; DBG_MSG(" Free SKB\n"); dev_kfree_skb_irq(skb); } hcmd = hcmd->next_all; } adapter->cmdq_free.count = 0; adapter->cmdq_free.head = NULL; adapter->cmdq_free.tail = NULL; adapter->cmdq_done.count = 0; adapter->cmdq_done.head = NULL; adapter->cmdq_done.tail = NULL; adapter->cmdq_free.head = adapter->cmdq_all.head; hcmd = adapter->cmdq_all.head; while (hcmd) { adapter->cmdq_free.count++; hcmd->next = hcmd->next_all; hcmd = hcmd->next_all; } if (adapter->cmdq_free.count != adapter->cmdq_all.count) { DBG_ERROR("%s free_count %d != all count %d\n", __func__, adapter->cmdq_free.count, adapter->cmdq_all.count); } spin_unlock_irqrestore(&adapter->cmdq_done.lock.lock, adapter->cmdq_done.lock.flags); spin_unlock_irqrestore(&adapter->cmdq_free.lock.lock, adapter->cmdq_free.lock.flags); DBG_MSG("%s EXIT adapter[%p]\n", __func__, adapter); } static void slic_cmdq_addcmdpage(struct adapter *adapter, u32 *page) { struct slic_hostcmd *cmd; struct slic_hostcmd *prev; struct slic_hostcmd *tail; struct slic_cmdqueue *cmdq; int cmdcnt; void *cmdaddr; ulong phys_addr; u32 phys_addrl; u32 phys_addrh; struct slic_handle *pslic_handle; cmdaddr = page; cmd = (struct slic_hostcmd *)cmdaddr; /* DBG_MSG("CMDQ Page addr[%p] ix[%d] pfree[%p]\n", cmdaddr, slic_handle_ix, adapter->pfree_slic_handles); */ cmdcnt = 0; phys_addr = virt_to_bus((void *)page); phys_addrl = SLIC_GET_ADDR_LOW(phys_addr); phys_addrh = SLIC_GET_ADDR_HIGH(phys_addr); prev = NULL; tail = cmd; while ((cmdcnt < SLIC_CMDQ_CMDSINPAGE) && (adapter->slic_handle_ix < 256)) { /* Allocate and initialize a SLIC_HANDLE for this command */ SLIC_GET_SLIC_HANDLE(adapter, pslic_handle); if (pslic_handle == NULL) ASSERT(0); ASSERT(pslic_handle == &adapter->slic_handles[pslic_handle->token. handle_index]); pslic_handle->type = SLIC_HANDLE_CMD; pslic_handle->address = (void *) cmd; pslic_handle->offset = (ushort) adapter->slic_handle_ix++; pslic_handle->other_handle = NULL; pslic_handle->next = NULL; cmd->pslic_handle = pslic_handle; cmd->cmd64.hosthandle = pslic_handle->token.handle_token; cmd->busy = FALSE; cmd->paddrl = phys_addrl; cmd->paddrh = phys_addrh; cmd->next_all = prev; cmd->next = prev; prev = cmd; phys_addrl += SLIC_HOSTCMD_SIZE; cmdaddr += SLIC_HOSTCMD_SIZE; cmd = (struct slic_hostcmd *)cmdaddr; cmdcnt++; } cmdq = &adapter->cmdq_all; cmdq->count += cmdcnt; /* SLIC_CMDQ_CMDSINPAGE; mooktodo */ tail->next_all = cmdq->head; ASSERT(VALID_ADDRESS(prev)); cmdq->head = prev; cmdq = &adapter->cmdq_free; spin_lock_irqsave(&cmdq->lock.lock, cmdq->lock.flags); cmdq->count += cmdcnt; /* SLIC_CMDQ_CMDSINPAGE; mooktodo */ tail->next = cmdq->head; ASSERT(VALID_ADDRESS(prev)); cmdq->head = prev; spin_unlock_irqrestore(&cmdq->lock.lock, cmdq->lock.flags); } static struct slic_hostcmd *slic_cmdq_getfree(struct adapter *adapter) { struct slic_cmdqueue *cmdq = &adapter->cmdq_free; struct slic_hostcmd *cmd = NULL; lock_and_retry: spin_lock_irqsave(&cmdq->lock.lock, cmdq->lock.flags); retry: cmd = cmdq->head; if (cmd) { cmdq->head = cmd->next; cmdq->count--; spin_unlock_irqrestore(&cmdq->lock.lock, cmdq->lock.flags); } else { slic_cmdq_getdone(adapter); cmd = cmdq->head; if (cmd) { goto retry; } else { u32 *pageaddr; spin_unlock_irqrestore(&cmdq->lock.lock, cmdq->lock.flags); pageaddr = slic_cmdqmem_addpage(adapter); if (pageaddr) { slic_cmdq_addcmdpage(adapter, pageaddr); goto lock_and_retry; } } } return cmd; } static void slic_cmdq_getdone(struct adapter *adapter) { struct slic_cmdqueue *done_cmdq = &adapter->cmdq_done; struct slic_cmdqueue *free_cmdq = &adapter->cmdq_free; ASSERT(free_cmdq->head == NULL); spin_lock_irqsave(&done_cmdq->lock.lock, done_cmdq->lock.flags); ASSERT(VALID_ADDRESS(done_cmdq->head)); free_cmdq->head = done_cmdq->head; free_cmdq->count = done_cmdq->count; done_cmdq->head = NULL; done_cmdq->tail = NULL; done_cmdq->count = 0; spin_unlock_irqrestore(&done_cmdq->lock.lock, done_cmdq->lock.flags); } static void slic_cmdq_putdone_irq(struct adapter *adapter, struct slic_hostcmd *cmd) { struct slic_cmdqueue *cmdq = &adapter->cmdq_done; spin_lock(&cmdq->lock.lock); cmd->busy = 0; ASSERT(VALID_ADDRESS(cmdq->head)); cmd->next = cmdq->head; ASSERT(VALID_ADDRESS(cmd)); cmdq->head = cmd; cmdq->count++; if ((adapter->xmitq_full) && (cmdq->count > 10)) netif_wake_queue(adapter->netdev); spin_unlock(&cmdq->lock.lock); } static int slic_rcvqueue_init(struct adapter *adapter) { int i, count; struct slic_rcvqueue *rcvq = &adapter->rcvqueue; DBG_MSG("slicoss: %s ENTER adapter[%p]\n", __func__, adapter); ASSERT(adapter->state == ADAPT_DOWN); rcvq->tail = NULL; rcvq->head = NULL; rcvq->size = SLIC_RCVQ_ENTRIES; rcvq->errors = 0; rcvq->count = 0; i = (SLIC_RCVQ_ENTRIES / SLIC_RCVQ_FILLENTRIES); count = 0; while (i) { count += slic_rcvqueue_fill(adapter); i--; } if (rcvq->count < SLIC_RCVQ_MINENTRIES) { slic_rcvqueue_free(adapter); return STATUS_FAILURE; } DBG_MSG("slicoss: %s EXIT adapter[%p]\n", __func__, adapter); return STATUS_SUCCESS; } static int slic_rcvqueue_reset(struct adapter *adapter) { struct slic_rcvqueue *rcvq = &adapter->rcvqueue; DBG_MSG("slicoss: %s ENTER adapter[%p]\n", __func__, adapter); ASSERT(adapter->state == ADAPT_DOWN); ASSERT(rcvq); DBG_MSG("slicoss: Nothing to do. rcvq[%p]\n" " count[%x]\n" " head[%p]\n" " tail[%p]\n", rcvq, rcvq->count, rcvq->head, rcvq->tail); DBG_MSG("slicoss: %s EXIT adapter[%p]\n", __func__, adapter); return STATUS_SUCCESS; } static void slic_rcvqueue_free(struct adapter *adapter) { struct slic_rcvqueue *rcvq = &adapter->rcvqueue; struct sk_buff *skb; while (rcvq->head) { skb = rcvq->head; rcvq->head = rcvq->head->next; dev_kfree_skb(skb); } rcvq->tail = NULL; rcvq->head = NULL; rcvq->count = 0; } static struct sk_buff *slic_rcvqueue_getnext(struct adapter *adapter) { struct slic_rcvqueue *rcvq = &adapter->rcvqueue; struct sk_buff *skb; struct slic_rcvbuf *rcvbuf; int count; if (rcvq->count) { skb = rcvq->head; rcvbuf = (struct slic_rcvbuf *)skb->head; ASSERT(rcvbuf); if (rcvbuf->status & IRHDDR_SVALID) { rcvq->head = rcvq->head->next; skb->next = NULL; rcvq->count--; } else { skb = NULL; } } else { DBG_ERROR("RcvQ Empty!! adapter[%p] rcvq[%p] count[%x]\n", adapter, rcvq, rcvq->count); skb = NULL; } while (rcvq->count < SLIC_RCVQ_FILLTHRESH) { count = slic_rcvqueue_fill(adapter); if (!count) break; } if (skb) rcvq->errors = 0; return skb; } static int slic_rcvqueue_fill(struct adapter *adapter) { void *paddr; u32 paddrl; u32 paddrh; struct slic_rcvqueue *rcvq = &adapter->rcvqueue; int i = 0; while (i < SLIC_RCVQ_FILLENTRIES) { struct slic_rcvbuf *rcvbuf; struct sk_buff *skb; #ifdef KLUDGE_FOR_4GB_BOUNDARY retry_rcvqfill: #endif skb = alloc_skb(SLIC_RCVQ_RCVBUFSIZE, GFP_ATOMIC); if (skb) { paddr = (void *)pci_map_single(adapter->pcidev, skb->data, SLIC_RCVQ_RCVBUFSIZE, PCI_DMA_FROMDEVICE); paddrl = SLIC_GET_ADDR_LOW(paddr); paddrh = SLIC_GET_ADDR_HIGH(paddr); skb->len = SLIC_RCVBUF_HEADSIZE; rcvbuf = (struct slic_rcvbuf *)skb->head; rcvbuf->status = 0; skb->next = NULL; #ifdef KLUDGE_FOR_4GB_BOUNDARY if (paddrl == 0) { DBG_ERROR ("%s: LOW 32bits PHYSICAL ADDRESS == 0 " "skb[%p] PROBLEM\n" " skbdata[%p]\n" " skblen[%x]\n" " paddr[%p]\n" " paddrl[%x]\n" " paddrh[%x]\n", __func__, skb, skb->data, skb->len, paddr, paddrl, paddrh); DBG_ERROR(" rcvq->head[%p]\n" " rcvq->tail[%p]\n" " rcvq->count[%x]\n", rcvq->head, rcvq->tail, rcvq->count); DBG_ERROR("SKIP THIS SKB!!!!!!!!\n"); goto retry_rcvqfill; } #else if (paddrl == 0) { DBG_ERROR ("\n\n%s: LOW 32bits PHYSICAL ADDRESS == 0 " "skb[%p] GIVE TO CARD ANYWAY\n" " skbdata[%p]\n" " paddr[%p]\n" " paddrl[%x]\n" " paddrh[%x]\n", __func__, skb, skb->data, paddr, paddrl, paddrh); } #endif if (paddrh == 0) { WRITE_REG(adapter->slic_regs->slic_hbar, (u32) paddrl, DONT_FLUSH); } else { WRITE_REG64(adapter, adapter->slic_regs->slic_hbar64, (u32) paddrl, adapter->slic_regs->slic_addr_upper, (u32) paddrh, DONT_FLUSH); } if (rcvq->head) rcvq->tail->next = skb; else rcvq->head = skb; rcvq->tail = skb; rcvq->count++; i++; } else { DBG_ERROR ("%s slic_rcvqueue_fill could only get [%d] " "skbuffs\n", adapter->netdev->name, i); break; } } return i; } static u32 slic_rcvqueue_reinsert(struct adapter *adapter, struct sk_buff *skb) { struct slic_rcvqueue *rcvq = &adapter->rcvqueue; void *paddr; u32 paddrl; u32 paddrh; struct slic_rcvbuf *rcvbuf = (struct slic_rcvbuf *)skb->head; ASSERT(skb->len == SLIC_RCVBUF_HEADSIZE); paddr = (void *)pci_map_single(adapter->pcidev, skb->head, SLIC_RCVQ_RCVBUFSIZE, PCI_DMA_FROMDEVICE); rcvbuf->status = 0; skb->next = NULL; paddrl = SLIC_GET_ADDR_LOW(paddr); paddrh = SLIC_GET_ADDR_HIGH(paddr); if (paddrl == 0) { DBG_ERROR ("%s: LOW 32bits PHYSICAL ADDRESS == 0 skb[%p] PROBLEM\n" " skbdata[%p]\n" " skblen[%x]\n" " paddr[%p]\n" " paddrl[%x]\n" " paddrh[%x]\n", __func__, skb, skb->data, skb->len, paddr, paddrl, paddrh); DBG_ERROR(" rcvq->head[%p]\n" " rcvq->tail[%p]\n" " rcvq->count[%x]\n", rcvq->head, rcvq->tail, rcvq->count); } if (paddrh == 0) { WRITE_REG(adapter->slic_regs->slic_hbar, (u32) paddrl, DONT_FLUSH); } else { WRITE_REG64(adapter, adapter->slic_regs->slic_hbar64, paddrl, adapter->slic_regs->slic_addr_upper, paddrh, DONT_FLUSH); } if (rcvq->head) rcvq->tail->next = skb; else rcvq->head = skb; rcvq->tail = skb; rcvq->count++; return rcvq->count; } static int slic_debug_card_show(struct seq_file *seq, void *v) { #ifdef MOOKTODO int i; struct sliccard *card = seq->private; struct slic_config *config = &card->config; unsigned char *fru = (unsigned char *)(&card->config.atk_fru); unsigned char *oemfru = (unsigned char *)(&card->config.OemFru); #endif seq_printf(seq, "driver_version : %s", slic_proc_version); seq_printf(seq, "Microcode versions: \n"); seq_printf(seq, " Gigabit (gb) : %s %s\n", MOJAVE_UCODE_VERS_STRING, MOJAVE_UCODE_VERS_DATE); seq_printf(seq, " Gigabit Receiver : %s %s\n", GB_RCVUCODE_VERS_STRING, GB_RCVUCODE_VERS_DATE); seq_printf(seq, "Vendor : %s\n", slic_vendor); seq_printf(seq, "Product Name : %s\n", slic_product_name); #ifdef MOOKTODO seq_printf(seq, "VendorId : %4.4X\n", config->VendorId); seq_printf(seq, "DeviceId : %4.4X\n", config->DeviceId); seq_printf(seq, "RevisionId : %2.2x\n", config->RevisionId); seq_printf(seq, "Bus # : %d\n", card->busnumber); seq_printf(seq, "Device # : %d\n", card->slotnumber); seq_printf(seq, "Interfaces : %d\n", card->card_size); seq_printf(seq, " Initialized : %d\n", card->adapters_activated); seq_printf(seq, " Allocated : %d\n", card->adapters_allocated); ASSERT(card->card_size <= SLIC_NBR_MACS); for (i = 0; i < card->card_size; i++) { seq_printf(seq, " MAC%d : %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", i, config->macinfo[i].macaddrA[0], config->macinfo[i].macaddrA[1], config->macinfo[i].macaddrA[2], config->macinfo[i].macaddrA[3], config->macinfo[i].macaddrA[4], config->macinfo[i].macaddrA[5]); } seq_printf(seq, " IF Init State Duplex/Speed irq\n"); seq_printf(seq, " -------------------------------\n"); for (i = 0; i < card->adapters_allocated; i++) { struct adapter *adapter; adapter = card->adapter[i]; if (adapter) { seq_printf(seq, " %d %d %s %s %s 0x%X\n", adapter->physport, adapter->state, SLIC_LINKSTATE(adapter->linkstate), SLIC_DUPLEX(adapter->linkduplex), SLIC_SPEED(adapter->linkspeed), (uint) adapter->irq); } } seq_printf(seq, "Generation # : %4.4X\n", card->gennumber); seq_printf(seq, "RcvQ max entries : %4.4X\n", SLIC_RCVQ_ENTRIES); seq_printf(seq, "Ping Status : %8.8X\n", card->pingstatus); seq_printf(seq, "Minimum grant : %2.2x\n", config->MinGrant); seq_printf(seq, "Maximum Latency : %2.2x\n", config->MaxLat); seq_printf(seq, "PciStatus : %4.4x\n", config->Pcistatus); seq_printf(seq, "Debug Device Id : %4.4x\n", config->DbgDevId); seq_printf(seq, "DRAM ROM Function : %4.4x\n", config->DramRomFn); seq_printf(seq, "Network interface Pin 1 : %2.2x\n", config->NetIntPin1); seq_printf(seq, "Network interface Pin 2 : %2.2x\n", config->NetIntPin1); seq_printf(seq, "Network interface Pin 3 : %2.2x\n", config->NetIntPin1); seq_printf(seq, "PM capabilities : %4.4X\n", config->PMECapab); seq_printf(seq, "Network Clock Controls : %4.4X\n", config->NwClkCtrls); switch (config->FruFormat) { case ATK_FRU_FORMAT: { seq_printf(seq, "Vendor : Alacritech, Inc.\n"); seq_printf(seq, "Assembly # : %c%c%c%c%c%c\n", fru[0], fru[1], fru[2], fru[3], fru[4], fru[5]); seq_printf(seq, "Revision # : %c%c\n", fru[6], fru[7]); if (config->OEMFruFormat == VENDOR4_FRU_FORMAT) { seq_printf(seq, "Serial # : " "%c%c%c%c%c%c%c%c%c%c%c%c\n", fru[8], fru[9], fru[10], fru[11], fru[12], fru[13], fru[16], fru[17], fru[18], fru[19], fru[20], fru[21]); } else { seq_printf(seq, "Serial # : " "%c%c%c%c%c%c%c%c%c%c%c%c%c%c\n", fru[8], fru[9], fru[10], fru[11], fru[12], fru[13], fru[14], fru[15], fru[16], fru[17], fru[18], fru[19], fru[20], fru[21]); } break; } default: { seq_printf(seq, "Vendor : Alacritech, Inc.\n"); seq_printf(seq, "Serial # : Empty FRU\n"); break; } } switch (config->OEMFruFormat) { case VENDOR1_FRU_FORMAT: { seq_printf(seq, "FRU Information:\n"); seq_printf(seq, " Commodity # : %c\n", oemfru[0]); seq_printf(seq, " Assembly # : %c%c%c%c\n", oemfru[1], oemfru[2], oemfru[3], oemfru[4]); seq_printf(seq, " Revision # : %c%c\n", oemfru[5], oemfru[6]); seq_printf(seq, " Supplier # : %c%c\n", oemfru[7], oemfru[8]); seq_printf(seq, " Date : %c%c\n", oemfru[9], oemfru[10]); seq_sprintf(seq, " Sequence # : %c%c%c\n", oemfru[11], oemfru[12], oemfru[13]); break; } case VENDOR2_FRU_FORMAT: { seq_printf(seq, "FRU Information:\n"); seq_printf(seq, " Part # : " "%c%c%c%c%c%c%c%c\n", oemfru[0], oemfru[1], oemfru[2], oemfru[3], oemfru[4], oemfru[5], oemfru[6], oemfru[7]); seq_printf(seq, " Supplier # : %c%c%c%c%c\n", oemfru[8], oemfru[9], oemfru[10], oemfru[11], oemfru[12]); seq_printf(seq, " Date : %c%c%c\n", oemfru[13], oemfru[14], oemfru[15]); seq_sprintf(seq, " Sequence # : %c%c%c%c\n", oemfru[16], oemfru[17], oemfru[18], oemfru[19]); break; } case VENDOR3_FRU_FORMAT: { seq_printf(seq, "FRU Information:\n"); } case VENDOR4_FRU_FORMAT: { seq_printf(seq, "FRU Information:\n"); seq_printf(seq, " FRU Number : " "%c%c%c%c%c%c%c%c\n", oemfru[0], oemfru[1], oemfru[2], oemfru[3], oemfru[4], oemfru[5], oemfru[6], oemfru[7]); seq_sprintf(seq, " Part Number : " "%c%c%c%c%c%c%c%c\n", oemfru[8], oemfru[9], oemfru[10], oemfru[11], oemfru[12], oemfru[13], oemfru[14], oemfru[15]); seq_printf(seq, " EC Level : " "%c%c%c%c%c%c%c%c\n", oemfru[16], oemfru[17], oemfru[18], oemfru[19], oemfru[20], oemfru[21], oemfru[22], oemfru[23]); break; } default: break; } #endif return 0; } static int slic_debug_adapter_show(struct seq_file *seq, void *v) { struct adapter *adapter = seq->private; if ((adapter->netdev) && (adapter->netdev->name)) { seq_printf(seq, "info: interface : %s\n", adapter->netdev->name); } seq_printf(seq, "info: status : %s\n", SLIC_LINKSTATE(adapter->linkstate)); seq_printf(seq, "info: port : %d\n", adapter->physport); seq_printf(seq, "info: speed : %s\n", SLIC_SPEED(adapter->linkspeed)); seq_printf(seq, "info: duplex : %s\n", SLIC_DUPLEX(adapter->linkduplex)); seq_printf(seq, "info: irq : 0x%X\n", (uint) adapter->irq); seq_printf(seq, "info: Interrupt Agg Delay: %d usec\n", adapter->card->loadlevel_current); seq_printf(seq, "info: RcvQ max entries : %4.4X\n", SLIC_RCVQ_ENTRIES); seq_printf(seq, "info: RcvQ current : %4.4X\n", adapter->rcvqueue.count); seq_printf(seq, "rx stats: packets : %8.8lX\n", adapter->stats.rx_packets); seq_printf(seq, "rx stats: bytes : %8.8lX\n", adapter->stats.rx_bytes); seq_printf(seq, "rx stats: broadcasts : %8.8X\n", adapter->rcv_broadcasts); seq_printf(seq, "rx stats: multicasts : %8.8X\n", adapter->rcv_multicasts); seq_printf(seq, "rx stats: unicasts : %8.8X\n", adapter->rcv_unicasts); seq_printf(seq, "rx stats: errors : %8.8X\n", (u32) adapter->slic_stats.iface.rcv_errors); seq_printf(seq, "rx stats: Missed errors : %8.8X\n", (u32) adapter->slic_stats.iface.rcv_discards); seq_printf(seq, "rx stats: drops : %8.8X\n", (u32) adapter->rcv_drops); seq_printf(seq, "tx stats: packets : %8.8lX\n", adapter->stats.tx_packets); seq_printf(seq, "tx stats: bytes : %8.8lX\n", adapter->stats.tx_bytes); seq_printf(seq, "tx stats: errors : %8.8X\n", (u32) adapter->slic_stats.iface.xmt_errors); seq_printf(seq, "rx stats: multicasts : %8.8lX\n", adapter->stats.multicast); seq_printf(seq, "tx stats: collision errors : %8.8X\n", (u32) adapter->slic_stats.iface.xmit_collisions); seq_printf(seq, "perf: Max rcv frames/isr : %8.8X\n", adapter->max_isr_rcvs); seq_printf(seq, "perf: Rcv interrupt yields : %8.8X\n", adapter->rcv_interrupt_yields); seq_printf(seq, "perf: Max xmit complete/isr : %8.8X\n", adapter->max_isr_xmits); seq_printf(seq, "perf: error interrupts : %8.8X\n", adapter->error_interrupts); seq_printf(seq, "perf: error rmiss interrupts : %8.8X\n", adapter->error_rmiss_interrupts); seq_printf(seq, "perf: rcv interrupts : %8.8X\n", adapter->rcv_interrupts); seq_printf(seq, "perf: xmit interrupts : %8.8X\n", adapter->xmit_interrupts); seq_printf(seq, "perf: link event interrupts : %8.8X\n", adapter->linkevent_interrupts); seq_printf(seq, "perf: UPR interrupts : %8.8X\n", adapter->upr_interrupts); seq_printf(seq, "perf: interrupt count : %8.8X\n", adapter->num_isrs); seq_printf(seq, "perf: false interrupts : %8.8X\n", adapter->false_interrupts); seq_printf(seq, "perf: All register writes : %8.8X\n", adapter->all_reg_writes); seq_printf(seq, "perf: ICR register writes : %8.8X\n", adapter->icr_reg_writes); seq_printf(seq, "perf: ISR register writes : %8.8X\n", adapter->isr_reg_writes); seq_printf(seq, "ifevents: overflow 802 errors : %8.8X\n", adapter->if_events.oflow802); seq_printf(seq, "ifevents: transport overflow errors: %8.8X\n", adapter->if_events.Tprtoflow); seq_printf(seq, "ifevents: underflow errors : %8.8X\n", adapter->if_events.uflow802); seq_printf(seq, "ifevents: receive early : %8.8X\n", adapter->if_events.rcvearly); seq_printf(seq, "ifevents: buffer overflows : %8.8X\n", adapter->if_events.Bufov); seq_printf(seq, "ifevents: carrier errors : %8.8X\n", adapter->if_events.Carre); seq_printf(seq, "ifevents: Long : %8.8X\n", adapter->if_events.Longe); seq_printf(seq, "ifevents: invalid preambles : %8.8X\n", adapter->if_events.Invp); seq_printf(seq, "ifevents: CRC errors : %8.8X\n", adapter->if_events.Crc); seq_printf(seq, "ifevents: dribble nibbles : %8.8X\n", adapter->if_events.Drbl); seq_printf(seq, "ifevents: Code violations : %8.8X\n", adapter->if_events.Code); seq_printf(seq, "ifevents: TCP checksum errors : %8.8X\n", adapter->if_events.TpCsum); seq_printf(seq, "ifevents: TCP header short errors : %8.8X\n", adapter->if_events.TpHlen); seq_printf(seq, "ifevents: IP checksum errors : %8.8X\n", adapter->if_events.IpCsum); seq_printf(seq, "ifevents: IP frame incompletes : %8.8X\n", adapter->if_events.IpLen); seq_printf(seq, "ifevents: IP headers shorts : %8.8X\n", adapter->if_events.IpHlen); return 0; } static int slic_debug_adapter_open(struct inode *inode, struct file *file) { return single_open(file, slic_debug_adapter_show, inode->i_private); } static int slic_debug_card_open(struct inode *inode, struct file *file) { return single_open(file, slic_debug_card_show, inode->i_private); } static const struct file_operations slic_debug_adapter_fops = { .owner = THIS_MODULE, .open = slic_debug_adapter_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static const struct file_operations slic_debug_card_fops = { .owner = THIS_MODULE, .open = slic_debug_card_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void slic_debug_adapter_create(struct adapter *adapter) { struct dentry *d; char name[7]; struct sliccard *card = adapter->card; if (!card->debugfs_dir) return; sprintf(name, "port%d", adapter->port); d = debugfs_create_file(name, S_IRUGO, card->debugfs_dir, adapter, &slic_debug_adapter_fops); if (!d || IS_ERR(d)) pr_info(PFX "%s: debugfs create failed\n", name); else adapter->debugfs_entry = d; } static void slic_debug_adapter_destroy(struct adapter *adapter) { if (adapter->debugfs_entry) { debugfs_remove(adapter->debugfs_entry); adapter->debugfs_entry = NULL; } } static void slic_debug_card_create(struct sliccard *card) { struct dentry *d; char name[IFNAMSIZ]; snprintf(name, sizeof(name), "slic%d", card->cardnum); d = debugfs_create_dir(name, slic_debugfs); if (!d || IS_ERR(d)) pr_info(PFX "%s: debugfs create dir failed\n", name); else { card->debugfs_dir = d; d = debugfs_create_file("cardinfo", S_IRUGO, slic_debugfs, card, &slic_debug_card_fops); if (!d || IS_ERR(d)) pr_info(PFX "%s: debugfs create failed\n", name); else card->debugfs_cardinfo = d; } } static void slic_debug_card_destroy(struct sliccard *card) { int i; for (i = 0; i < card->card_size; i++) { struct adapter *adapter; adapter = card->adapter[i]; if (adapter) slic_debug_adapter_destroy(adapter); } if (card->debugfs_cardinfo) { debugfs_remove(card->debugfs_cardinfo); card->debugfs_cardinfo = NULL; } if (card->debugfs_dir) { debugfs_remove(card->debugfs_dir); card->debugfs_dir = NULL; } } static void slic_debug_init(void) { struct dentry *ent; ent = debugfs_create_dir("slic", NULL); if (!ent || IS_ERR(ent)) { pr_info(PFX "debugfs create directory failed\n"); return; } slic_debugfs = ent; } static void slic_debug_cleanup(void) { if (slic_debugfs) { debugfs_remove(slic_debugfs); slic_debugfs = NULL; } } /*============================================================================= ============================================================================= === === === SLIC DUMP MANAGEMENT SECTION === === === === === === Dump routines === === === === === ============================================================================= ============================================================================*/ #if SLIC_DUMP_ENABLED #include void *slic_dump_handle; /* thread handle */ /* * These are the only things you should do on a core-file: use only these * functions to write out all the necessary info. */ static int slic_dump_seek(struct file *SLIChandle, u32 file_offset) { if (SLIChandle->f_pos != file_offset) { /*DBG_MSG("slic_dump_seek now needed [%x : %x]\n", (u32)SLIChandle->f_pos, (u32)file_offset); */ if (SLIChandle->f_op->llseek) { if (SLIChandle->f_op-> llseek(SLIChandle, file_offset, 0) != file_offset) return 0; } else { SLIChandle->f_pos = file_offset; } } return 1; } static int slic_dump_write(struct sliccard *card, const void *addr, int size, u32 file_offset) { int r = 1; u32 result = 0; struct file *SLIChandle = card->dumphandle; #ifdef HISTORICAL /* legacy */ down(&SLIChandle->f_dentry->d_inode->i_sem); #endif if (size) { slic_dump_seek(SLIChandle, file_offset); result = SLIChandle->f_op->write(SLIChandle, addr, size, &SLIChandle->f_pos); r = result == size; } card->dumptime_complete = jiffies; card->dumptime_delta = card->dumptime_complete - card->dumptime_start; card->dumptime_start = jiffies; #ifdef HISTORICAL up(&SLIChandle->f_dentry->d_inode->i_sem); #endif if (!r) { DBG_ERROR("%s: addr[%p] size[%x] result[%x] file_offset[%x]\n", __func__, addr, size, result, file_offset); } return r; } static uint slic_init_dump_thread(struct sliccard *card) { card->dump_task_id = kthread_run(slic_dump_thread, (void *)card, 0); /* DBG_MSG("create slic_dump_thread dump_pid[%x]\n", card->dump_pid); */ if (IS_ERR(card->dump_task_id)) { DBG_MSG("create slic_dump_thread FAILED \n"); return STATUS_FAILURE; } return STATUS_SUCCESS; } static int slic_dump_thread(void *context) { struct sliccard *card = (struct sliccard *)context; struct adapter *adapter; struct adapter *dump_adapter = NULL; u32 dump_complete = 0; u32 delay = SLIC_SECS_TO_JIFFS(PING_TIMER_INTERVAL); struct slic_regs *pregs; u32 i; struct slic_upr *upr, *uprnext; u32 dump_card; ASSERT(card); card->dumpthread_running = 1; #ifdef HISTORICAL lock_kernel(); /* * This thread doesn't need any user-level access, * so get rid of all our resources */ exit_files(current); /* daemonize doesn't do exit_files */ current->files = init_task.files; atomic_inc(¤t->files->count); #endif daemonize("%s", "slicmon"); /* Setup a nice name */ strcpy(current->comm, "slicmon"); DBG_ERROR ("slic_dump_thread[slicmon] daemon is alive card[%p] pid[%x]\n", card, card->dump_task_id->pid); /* * Send me a signal to get me to die (for debugging) */ do { /* * If card state is not set to up, skip */ if (card->state != CARD_UP) { if (card->adapters_activated) goto wait; else goto end_thread; } /* * Check the results of our last ping. */ dump_card = 0; #ifdef SLIC_FAILURE_DUMP if (card->pingstatus != ISR_PINGMASK) { DBG_MSG ("\n[slicmon] CARD #%d TIMED OUT - status " "%x: DUMP THE CARD!\n", card->cardnum, card->pingstatus); dump_card = 1; } #else /* * Cause a card RESET instead? */ if (card->pingstatus != ISR_PINGMASK) { /* todo. do we want to reset the card in production */ /* DBG_MSG("\n[slicmon] CARD #%d TIMED OUT - " status %x: RESET THE CARD!\n", card->cardnum, card->pingstatus); */ DBG_ERROR ("\n[slicmon] CARD #%d TIMED OUT - status %x: " "DUMP THE CARD!\n", card->cardnum, card->pingstatus); dump_card = 1; } #endif if ((dump_card) || (card->dump_requested == SLIC_DUMP_REQUESTED)) { if (card->dump_requested == SLIC_DUMP_REQUESTED) { DBG_ERROR ("[slicmon]: Dump card Requested: Card %x\n", card->cardnum); } if (card->pingstatus != ISR_PINGMASK) { ushort cpuid = 0; ushort crashpc = 0; if (card->adapter[0]) { if ((card->adapter[0])->memorylength >= CRASH_INFO_OFFSET + sizeof(slic_crash_info)) { char *crashptr; p_slic_crash_info crashinfo; crashptr = ((char *)card->adapter[0]-> slic_regs) + CRASH_INFO_OFFSET; crashinfo = (p_slic_crash_info) crashptr; cpuid = crashinfo->cpu_id; crashpc = crashinfo->crash_pc; } } DBG_ERROR ("[slicmon]: Dump card: Card %x crashed " "and failed to answer PING. " "CPUID[%x] PC[%x]\n ", card->cardnum, cpuid, crashpc); } card->dump_requested = SLIC_DUMP_IN_PROGRESS; /* * Set the card state to DOWN and the adapter states * to RESET.They will check this in SimbaCheckForHang * and initiate interface reset (which in turn will * reinitialize the card). */ card->state = CARD_DOWN; for (i = 0; i < card->card_size; i++) { adapter = card->adapter[i]; if (adapter) { slic_if_stop_queue(adapter); if (adapter->state == ADAPT_UP) { adapter->state = ADAPT_RESET; adapter->linkstate = LINK_DOWN; DBG_ERROR ("[slicmon]: SLIC Card[%d] " "Port[%d] adapter[%p] " "down\n", (uint) card->cardnum, (uint) i, adapter); } #if SLIC_GET_STATS_TIMER_ENABLED /* free stats timer */ if (adapter->statstimerset) { adapter->statstimerset = 0; del_timer(&adapter->statstimer); } #endif } } for (i = 0; i < card->card_size; i++) { adapter = card->adapter[i]; if ((adapter) && (adapter->activated)) { pregs = adapter->slic_regs; dump_adapter = adapter; /* * If the dump status is zero, then * the utility processor has crashed. * If this is the case, any pending * utilityprocessor requests will not * complete and our dump commands will * not be issued. * * To avoid this we will clear any * pending utility processor requests * now. */ if (!card->pingstatus) { spin_lock_irqsave( &adapter->upr_lock.lock, adapter->upr_lock.flags); upr = adapter->upr_list; while (upr) { uprnext = upr->next; kfree(upr); upr = uprnext; } adapter->upr_list = 0; adapter->upr_busy = 0; spin_unlock_irqrestore( &adapter->upr_lock.lock, adapter->upr_lock.flags); } slic_dump_card(card, FALSE); dump_complete = 1; } if (dump_complete) { DBG_ERROR("SLIC Dump Complete\n"); /* Only dump the card one time */ break; } } if (dump_adapter) { DBG_ERROR ("slic dump completed. " "Reenable interfaces\n"); slic_card_init(card, dump_adapter); /* * Reenable the adapters that were reset */ for (i = 0; i < card->card_size; i++) { adapter = card->adapter[i]; if (adapter) { if (adapter->state == ADAPT_RESET) { DBG_ERROR ("slicdump: SLIC " "Card[%d] Port[%d] adapter[%p] " "bring UP\n", (uint) card-> cardnum, (uint) i, adapter); adapter->state = ADAPT_DOWN; adapter->linkstate = LINK_DOWN; slic_entry_open (adapter->netdev); } } } card->dump_requested = SLIC_DUMP_DONE; } } else { /* if pingstatus != ISR_PINGMASK) || dump_requested...ELSE * We received a valid ping response. * Clear the Pingstatus field, find a valid adapter * structure and send another ping. */ for (i = 0; i < card->card_size; i++) { adapter = card->adapter[i]; if (adapter && (adapter->state == ADAPT_UP)) { card->pingstatus = 0; slic_upr_request(adapter, SLIC_UPR_PING, 0, 0, 0, 0); break; /* Only issue one per card */ } } } wait: SLIC_INTERRUPTIBLE_SLEEP_ON_TIMEOUT(card->dump_wq, delay); } while (!signal_pending(current)); end_thread: /* DBG_MSG("[slicmon] slic_dump_thread card[%p] pid[%x] ENDING\n", card, card->dump_pid); */ card->dumpthread_running = 0; return 0; } /* * Read a single byte from our dump index file. This * value is used as our suffix for our dump path. The * value is incremented and written back to the file */ static unsigned char slic_get_dump_index(char *path) { unsigned char index = 0; #ifdef SLIC_DUMP_INDEX_SUPPORT u32 status; void *FileHandle; u32 offset; offset = 0; /* * Open the index file. If one doesn't exist, create it */ status = create_file(&FileHandle); if (status != STATUS_SUCCESS) return (unsigned char) 0; status = read_file(FileHandle, &index, 1, &offset); index++; status = write_file(FileHandle, &index, 1, &offset); close_file(FileHandle); #else index = 0; #endif return index; } static struct file *slic_dump_open_file(struct sliccard *card) { struct file *SLIChandle = NULL; struct dentry *dentry = NULL; struct inode *inode = NULL; char SLICfile[50]; card->dumpfile_fs = get_fs(); set_fs(KERNEL_DS); memset(SLICfile, 0, sizeof(SLICfile)); sprintf(SLICfile, "/var/tmp/slic%d-dump-%d", card->cardnum, (uint) card->dump_count); card->dump_count++; SLIChandle = filp_open(SLICfile, O_CREAT | O_RDWR | O_SYNC | O_LARGEFILE, 0666); DBG_MSG("[slicmon]: Dump Card #%d to file: %s \n", card->cardnum, SLICfile); /* DBG_MSG("[slicmon] filp_open %s SLIChandle[%p]\n", SLICfile, SLIChandle);*/ if (IS_ERR(SLIChandle)) goto end_slicdump; dentry = SLIChandle->f_dentry; inode = dentry->d_inode; /* DBG_MSG("[slicmon] inode[%p] i_nlink[%x] i_mode[%x] i_op[%p] i_fop[%p]\n" "f_op->write[%p]\n", inode, inode->i_nlink, inode->i_mode, inode->i_op, inode->i_fop, SLIChandle->f_op->write); */ if (inode->i_nlink > 1) goto close_slicdump; /* multiple links - don't dump */ #ifdef HISTORICAL if (!S_ISREG(inode->i_mode)) goto close_slicdump; #endif if (!inode->i_op || !inode->i_fop) goto close_slicdump; if (!SLIChandle->f_op->write) goto close_slicdump; /* * If we got here we have SUCCESSFULLY OPENED the dump file */ /* DBG_MSG("opened %s SLIChandle[%p]\n", SLICfile, SLIChandle); */ return SLIChandle; close_slicdump: DBG_MSG("[slicmon] slic_dump_open_file failed close SLIChandle[%p]\n", SLIChandle); filp_close(SLIChandle, NULL); end_slicdump: set_fs(card->dumpfile_fs); return NULL; } static void slic_dump_close_file(struct sliccard *card) { /* DBG_MSG("[slicmon] slic_dump_CLOSE_file close SLIChandle[%p]\n", card->dumphandle); */ filp_close(card->dumphandle, NULL); set_fs(card->dumpfile_fs); } static u32 slic_dump_card(struct sliccard *card, bool resume) { struct adapter *adapter = card->master; u32 status; u32 queue; u32 len, offset; u32 sram_size, dram_size, regs; struct sliccore_hdr corehdr; u32 file_offset; char *namestr; u32 i; u32 max_queues = 0; u32 result; card->dumphandle = slic_dump_open_file(card); if (card->dumphandle == NULL) { DBG_MSG("[slicmon] Cant create Dump file - dump failed\n"); return -ENOMEM; } if (!card->dumpbuffer) { DBG_MSG("[slicmon] Insufficient memory for dump\n"); return -ENOMEM; } if (!card->cmdbuffer) { DBG_MSG("[slicmon] Insufficient cmd memory for dump\n"); return -ENOMEM; } /* * Write the file version to the core header. */ namestr = slic_proc_version; for (i = 0; i < (DRIVER_NAME_SIZE - 1); i++, namestr++) { if (!namestr) break; corehdr.driver_version[i] = *namestr; } corehdr.driver_version[i] = 0; file_offset = sizeof(struct sliccore_hdr); /* * Issue the following debug commands to the SLIC: * - Halt both receive and transmit * - Dump receive registers * - Dump transmit registers * - Dump sram * - Dump dram * - Dump queues */ DBG_MSG("slicDump HALT Receive Processor\n"); card->dumptime_start = jiffies; status = slic_dump_halt(card, PROC_RECEIVE); if (status != STATUS_SUCCESS) { DBG_ERROR ("Cant halt receive sequencer - dump failed status[%x]\n", status); goto done; } DBG_MSG("slicDump HALT Transmit Processor\n"); status = slic_dump_halt(card, PROC_TRANSMIT); if (status != STATUS_SUCCESS) { DBG_ERROR("Cant halt transmit sequencer - dump failed\n"); goto done; } /* Dump receive regs */ status = slic_dump_reg(card, PROC_RECEIVE); if (status != STATUS_SUCCESS) { DBG_ERROR("Cant dump receive registers - dump failed\n"); goto done; } DBG_MSG("slicDump Write Receive REGS len[%x] offset[%x]\n", (SLIC_NUM_REG * 4), file_offset); result = slic_dump_write(card, card->dumpbuffer, SLIC_NUM_REG * 4, file_offset); if (!result) { DBG_ERROR ("Cant write rcv registers to dump file - dump failed\n"); goto done; } corehdr.RcvRegOff = file_offset; corehdr.RcvRegsize = SLIC_NUM_REG * 4; file_offset += SLIC_NUM_REG * 4; /* Dump transmit regs */ status = slic_dump_reg(card, PROC_TRANSMIT); if (status != STATUS_SUCCESS) { DBG_ERROR("Cant dump transmit registers - dump failed\n"); goto done; } DBG_MSG("slicDump Write XMIT REGS len[%x] offset[%x]\n", (SLIC_NUM_REG * 4), file_offset); result = slic_dump_write(card, card->dumpbuffer, SLIC_NUM_REG * 4, file_offset); if (!result) { DBG_ERROR ("Cant write xmt registers to dump file - dump failed\n"); goto done; } corehdr.XmtRegOff = file_offset; corehdr.XmtRegsize = SLIC_NUM_REG * 4; file_offset += SLIC_NUM_REG * 4; regs = SLIC_GBMAX_REG; corehdr.FileRegOff = file_offset; corehdr.FileRegsize = regs * 4; for (offset = 0; regs;) { len = MIN(regs, 16); /* Can only xfr 16 regs at a time */ status = slic_dump_data(card, offset, (ushort) len, DESC_RFILE); if (status != STATUS_SUCCESS) { DBG_ERROR("Cant dump register file - dump failed\n"); goto done; } DBG_MSG("slicDump Write RegisterFile len[%x] offset[%x]\n", (len * 4), file_offset); result = slic_dump_write(card, card->dumpbuffer, len * 4, file_offset); if (!result) { DBG_ERROR ("Cant write register file to dump file - " "dump failed\n"); goto done; } file_offset += len * 4; offset += len; regs -= len; } dram_size = card->config.DramSize * 0x10000; switch (adapter->devid) { case SLIC_2GB_DEVICE_ID: sram_size = SLIC_SRAM_SIZE2GB; break; case SLIC_1GB_DEVICE_ID: sram_size = SLIC_SRAM_SIZE1GB; break; default: sram_size = 0; ASSERT(0); break; } corehdr.SramOff = file_offset; corehdr.Sramsize = sram_size; for (offset = 0; sram_size;) { len = MIN(sram_size, DUMP_BUF_SIZE); status = slic_dump_data(card, offset, (ushort) len, DESC_SRAM); if (status != STATUS_SUCCESS) { DBG_ERROR ("[slicmon] Cant dump SRAM at offset %x - " "dump failed\n", (uint) offset); goto done; } DBG_MSG("[slicmon] slicDump Write SRAM len[%x] offset[%x]\n", len, file_offset); result = slic_dump_write(card, card->dumpbuffer, len, file_offset); if (!result) { DBG_ERROR ("[slicmon] Cant write SRAM to dump file - " "dump failed\n"); goto done; } file_offset += len; offset += len; sram_size -= len; } corehdr.DramOff = file_offset; corehdr.Dramsize = dram_size; for (offset = 0; dram_size;) { len = MIN(dram_size, DUMP_BUF_SIZE); status = slic_dump_data(card, offset, (ushort) len, DESC_DRAM); if (status != STATUS_SUCCESS) { DBG_ERROR ("[slicmon] Cant dump dram at offset %x - " "dump failed\n", (uint) offset); goto done; } DBG_MSG("slicDump Write DRAM len[%x] offset[%x]\n", len, file_offset); result = slic_dump_write(card, card->dumpbuffer, len, file_offset); if (!result) { DBG_ERROR ("[slicmon] Cant write DRAM to dump file - " "dump failed\n"); goto done; } file_offset += len; offset += len; dram_size -= len; } max_queues = SLIC_MAX_QUEUE; for (queue = 0; queue < max_queues; queue++) { u32 *qarray = (u32 *) card->dumpbuffer; u32 qarray_physl = card->dumpbuffer_physl; u32 qarray_physh = card->dumpbuffer_physh; u32 qstart; u32 qdelta; u32 qtotal = 0; DBG_MSG("[slicmon] Start Dump of QUEUE #0x%x\n", (uint) queue); for (offset = 0; offset < (DUMP_BUF_SIZE >> 2); offset++) { qstart = jiffies; qdelta = 0; status = slic_dump_queue(card, qarray_physl, qarray_physh, queue); qarray_physl += 4; if (status != STATUS_SUCCESS) break; if (jiffies > qstart) { qdelta = jiffies - qstart; qtotal += qdelta; } } if (offset) qdelta = qtotal / offset; else qdelta = 0; /* DBG_MSG(" slicDump Write QUEUE #0x%x len[%x] offset[%x] " "avgjiffs[%x]\n", queue, (offset*4), file_offset, qdelta); */ result = slic_dump_write(card, card->dumpbuffer, offset * 4, file_offset); if (!result) { DBG_ERROR ("[slicmon] Cant write QUEUES to dump file - " "dump failed\n"); goto done; } corehdr.queues[queue].queueOff = file_offset; corehdr.queues[queue].queuesize = offset * 4; file_offset += offset * 4; /* DBG_MSG(" Reload QUEUE #0x%x elements[%x]\n", (uint)queue, offset);*/ /* * Fill the queue back up */ for (i = 0; i < offset; i++) { qstart = jiffies; qdelta = 0; status = slic_dump_load_queue(card, qarray[i], queue); if (status != STATUS_SUCCESS) break; if (jiffies > qstart) { qdelta = jiffies - qstart; qtotal += qdelta; } } if (offset) qdelta = qtotal / offset; else qdelta = 0; /* DBG_MSG(" Reload DONE avgjiffs[%x]\n", qdelta); */ resume = 1; } len = SLIC_GB_CAMAB_SZE * 4; status = slic_dump_cam(card, 0, len, DUMP_CAM_A); if (status != STATUS_SUCCESS) { DBG_ERROR("[slicmon] Can't dump CAM_A - dump failed\n"); goto done; } result = slic_dump_write(card, card->dumpbuffer, len, file_offset); if (result) { DBG_ERROR ("[slicmon] Can't write CAM_A data to dump file - " "dump failed\n"); goto done; } corehdr.CamAMOff = file_offset; corehdr.CamASize = len; file_offset += len; len = SLIC_GB_CAMCD_SZE * 4; status = slic_dump_cam(card, 0, len, DUMP_CAM_C); if (status) { DBG_ERROR("[slicmon] Can't dump CAM_C - dump failed\n"); goto done; } result = slic_dump_write(card, card->dumpbuffer, len, file_offset); if (result) { DBG_ERROR ("[slicmon] Can't write CAM_C data to dump file - " "dump failed\n"); goto done; } corehdr.CamCMOff = file_offset; corehdr.CamCSize = len; file_offset += len; done: /* * Write out the core header */ file_offset = 0; DBG_MSG("[slicmon] Write CoreHeader len[%x] offset[%x]\n", (uint) sizeof(struct sliccore_hdr), file_offset); result = slic_dump_write(card, &corehdr, sizeof(struct sliccore_hdr), file_offset); DBG_MSG("[slicmon] corehdr xoff[%x] xsz[%x]\n" " roff[%x] rsz[%x] fileoff[%x] filesz[%x]\n" " sramoff[%x] sramsz[%x], dramoff[%x] dramsz[%x]\n" " corehdr_offset[%x]\n", corehdr.XmtRegOff, corehdr.XmtRegsize, corehdr.RcvRegOff, corehdr.RcvRegsize, corehdr.FileRegOff, corehdr.FileRegsize, corehdr.SramOff, corehdr.Sramsize, corehdr.DramOff, corehdr.Dramsize, (uint) sizeof(struct sliccore_hdr)); for (i = 0; i < max_queues; i++) { DBG_MSG("[slicmon] QUEUE 0x%x offset[%x] size[%x]\n", (uint) i, corehdr.queues[i].queueOff, corehdr.queues[i].queuesize); } slic_dump_close_file(card); if (resume) { DBG_MSG("slicDump RESTART RECEIVE and XMIT PROCESSORS\n\n"); slic_dump_resume(card, PROC_RECEIVE); slic_dump_resume(card, PROC_TRANSMIT); } return status; } static u32 slic_dump_halt(struct sliccard *card, unsigned char proc) { unsigned char *cmd = card->cmdbuffer; *cmd = COMMAND_BYTE(CMD_HALT, 0, proc); return slic_dump_send_cmd(card, card->cmdbuffer_physl, card->cmdbuffer_physh, 0, 0); } static u32 slic_dump_resume(struct sliccard *card, unsigned char proc) { unsigned char *cmd = card->cmdbuffer; *cmd = COMMAND_BYTE(CMD_RUN, 0, proc); return slic_dump_send_cmd(card, card->cmdbuffer_physl, card->cmdbuffer_physh, 0, 0); } static u32 slic_dump_reg(struct sliccard *card, unsigned char proc) { struct dump_cmd *dump = (struct dump_cmd *)card->cmdbuffer; dump->cmd = COMMAND_BYTE(CMD_DUMP, 0, proc); dump->desc = DESC_REG; dump->count = 0; dump->addr = 0; return slic_dump_send_cmd(card, card->cmdbuffer_physl, card->cmdbuffer_physh, card->dumpbuffer_physl, card->dumpbuffer_physh); } static u32 slic_dump_data(struct sliccard *card, u32 addr, ushort count, unsigned char desc) { struct dump_cmd *dump = (struct dump_cmd *)card->cmdbuffer; dump->cmd = COMMAND_BYTE(CMD_DUMP, 0, PROC_RECEIVE); dump->desc = desc; dump->count = count; dump->addr = addr; return slic_dump_send_cmd(card, card->cmdbuffer_physl, card->cmdbuffer_physh, card->dumpbuffer_physl, card->dumpbuffer_physh); } static u32 slic_dump_queue(struct sliccard *card, u32 addr, u32 buf_physh, u32 queue) { struct dump_cmd *dump = (struct dump_cmd *)card->cmdbuffer; dump->cmd = COMMAND_BYTE(CMD_DUMP, 0, PROC_RECEIVE); dump->desc = DESC_QUEUE; dump->count = 1; dump->addr = queue; return slic_dump_send_cmd(card, card->cmdbuffer_physl, card->cmdbuffer_physh, addr, card->dumpbuffer_physh); } static u32 slic_dump_load_queue(struct sliccard *card, u32 data, u32 queue) { struct dump_cmd *load = (struct dump_cmd *) card->cmdbuffer; load->cmd = COMMAND_BYTE(CMD_LOAD, 0, PROC_RECEIVE); load->desc = DESC_QUEUE; load->count = (ushort) queue; load->addr = data; return slic_dump_send_cmd(card, card->cmdbuffer_physl, card->cmdbuffer_physh, 0, 0); } static u32 slic_dump_cam(struct sliccard *card, u32 addr, u32 count, unsigned char desc) { struct dump_cmd *dump = (struct dump_cmd *)card->cmdbuffer; dump->cmd = COMMAND_BYTE(CMD_CAM_OPS, 0, PROC_NONE); dump->desc = desc; dump->count = count; dump->addr = 0; return slic_dump_send_cmd(card, card->cmdbuffer_physl, card->cmdbuffer_physh, addr, card->dumpbuffer_physh); } static u32 slic_dump_send_cmd(struct sliccard *card, u32 cmd_physl, u32 cmd_physh, u32 buf_physl, u32 buf_physh) { ulong timeout = SLIC_MS_TO_JIFFIES(500); /* 500 msec */ u32 attempts = 5; u32 delay = SLIC_MS_TO_JIFFIES(10); /* 10 msec */ struct adapter *adapter = card->master; ASSERT(adapter); do { /* * Zero the Dumpstatus field of the adapter structure */ card->dumpstatus = 0; /* * Issue the dump command via a utility processor request. * * Kludge: We use the Informationbuffer parameter to hold * the buffer address */ slic_upr_request(adapter, SLIC_UPR_DUMP, cmd_physl, cmd_physh, buf_physl, buf_physh); timeout += jiffies; /* * Spin until completion or timeout. */ while (!card->dumpstatus) { int num_sleeps = 0; if (jiffies > timeout) { /* * Complete the timed-out DUMP UPR request. */ slic_upr_request_complete(adapter, 0); DBG_ERROR ("%s: TIMED OUT num_sleeps[%x] " "status[%x]\n", __func__, num_sleeps, STATUS_FAILURE); return STATUS_FAILURE; } num_sleeps++; SLIC_INTERRUPTIBLE_SLEEP_ON_TIMEOUT(card->dump_wq, delay); } if (card->dumpstatus & ISR_UPCERR) { /* * Error (or queue empty) */ /* DBG_ERROR("[slicmon] %s: DUMP_STATUS & ISR_UPCERR status[%x]\n", __func__, STATUS_FAILURE); */ return STATUS_FAILURE; } else if (card->dumpstatus & ISR_UPCBSY) { /* * Retry */ DBG_ERROR("%s: ISR_UPCBUSY attempt[%x]\n", __func__, attempts); attempts--; } else { /* * success */ return STATUS_SUCCESS; } } while (attempts); DBG_ERROR("%s: GAVE UP AFTER SEVERAL ATTEMPTS status[%x]\n", __func__, STATUS_FAILURE); /* * Gave up after several attempts */ return STATUS_FAILURE; } #endif /*============================================================================= ============================================================================= === === === *** END **** END **** END **** END *** === === SLIC DUMP MANAGEMENT SECTION === === === === === === === ============================================================================= ============================================================================*/ /******************************************************************************/ /**************** MODULE INITIATION / TERMINATION FUNCTIONS ***************/ /******************************************************************************/ static struct pci_driver slic_driver = { .name = DRV_NAME, .id_table = slic_pci_tbl, .probe = slic_entry_probe, .remove = slic_entry_remove, #if SLIC_POWER_MANAGEMENT_ENABLED .suspend = slicpm_suspend, .resume = slicpm_resume, #endif /* .shutdown = slic_shutdown, MOOK_INVESTIGATE */ }; static int __init slic_module_init(void) { struct pci_device_id *pcidev; int ret; /* DBG_MSG("slicoss: %s ENTER cpu %d\n", __func__, smp_processor_id()); */ slic_init_driver(); if (debug >= 0 && slic_debug != debug) printk(SLICLEVEL "slicoss: debug level is %d.\n", debug); if (debug >= 0) slic_debug = debug; pcidev = (struct pci_device_id *)slic_driver.id_table; /* DBG_MSG("slicoss: %s call pci_module_init jiffies[%lx] cpu #%d\n", __func__, jiffies, smp_processor_id()); */ ret = pci_register_driver(&slic_driver); /* DBG_MSG("slicoss: %s EXIT after call pci_module_init jiffies[%lx] " "cpu #%d status[%x]\n",__func__, jiffies, smp_processor_id(), ret); */ return ret; } static void __exit slic_module_cleanup(void) { /* DBG_MSG("slicoss: %s ENTER\n", __func__); */ pci_unregister_driver(&slic_driver); slic_debug_cleanup(); /* DBG_MSG("slicoss: %s EXIT\n", __func__); */ } module_init(slic_module_init); module_exit(slic_module_cleanup);