/* * VMEbus User access driver * * Author: Martyn Welch * Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc. * * Based on work by: * Tom Armistead and Ajit Prem * Copyright 2004 Motorola Inc. * * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../vme.h" #include "vme_user.h" /* Currently Documentation/devices.txt defines the following for VME: * * 221 char VME bus * 0 = /dev/bus/vme/m0 First master image * 1 = /dev/bus/vme/m1 Second master image * 2 = /dev/bus/vme/m2 Third master image * 3 = /dev/bus/vme/m3 Fourth master image * 4 = /dev/bus/vme/s0 First slave image * 5 = /dev/bus/vme/s1 Second slave image * 6 = /dev/bus/vme/s2 Third slave image * 7 = /dev/bus/vme/s3 Fourth slave image * 8 = /dev/bus/vme/ctl Control * * It is expected that all VME bus drivers will use the * same interface. For interface documentation see * http://www.vmelinux.org/. * * However the VME driver at http://www.vmelinux.org/ is rather old and doesn't * even support the tsi148 chipset (which has 8 master and 8 slave windows). * We'll run with this or now as far as possible, however it probably makes * sense to get rid of the old mappings and just do everything dynamically. * * So for now, we'll restrict the driver to providing 4 masters and 4 slaves as * defined above and try to support at least some of the interface from * http://www.vmelinux.org/ as an alternative drive can be written providing a * saner interface later. */ #define VME_MAJOR 221 /* VME Major Device Number */ #define VME_DEVS 9 /* Number of dev entries */ #define MASTER_MINOR 0 #define MASTER_MAX 3 #define SLAVE_MINOR 4 #define SLAVE_MAX 7 #define CONTROL_MINOR 8 #define PCI_BUF_SIZE 0x20000 /* Size of one slave image buffer */ /* * Structure to handle image related parameters. */ typedef struct { void __iomem *kern_buf; /* Buffer address in kernel space */ dma_addr_t pci_buf; /* Buffer address in PCI address space */ unsigned long long size_buf; /* Buffer size */ struct semaphore sem; /* Semaphore for locking image */ struct device *device; /* Sysfs device */ struct vme_resource *resource; /* VME resource */ int users; /* Number of current users */ } image_desc_t; static image_desc_t image[VME_DEVS]; typedef struct { unsigned long reads; unsigned long writes; unsigned long ioctls; unsigned long irqs; unsigned long berrs; unsigned long dmaErrors; unsigned long timeouts; unsigned long external; } driver_stats_t; static driver_stats_t statistics; struct cdev *vme_user_cdev; /* Character device */ struct class *vme_user_sysfs_class; /* Sysfs class */ struct device *vme_user_bridge; /* Pointer to the bridge device */ static char driver_name[] = "vme_user"; static const int type[VME_DEVS] = { MASTER_MINOR, MASTER_MINOR, MASTER_MINOR, MASTER_MINOR, SLAVE_MINOR, SLAVE_MINOR, SLAVE_MINOR, SLAVE_MINOR, CONTROL_MINOR }; static int vme_user_open(struct inode *, struct file *); static int vme_user_release(struct inode *, struct file *); static ssize_t vme_user_read(struct file *, char *, size_t, loff_t *); static ssize_t vme_user_write(struct file *, const char *, size_t, loff_t *); static loff_t vme_user_llseek(struct file *, loff_t, int); static int vme_user_ioctl(struct inode *, struct file *, unsigned int, unsigned long); static int __init vme_user_probe(struct device *dev); static struct file_operations vme_user_fops = { .open = vme_user_open, .release = vme_user_release, .read = vme_user_read, .write = vme_user_write, .llseek = vme_user_llseek, .ioctl = vme_user_ioctl, }; /* * Reset all the statistic counters */ static void reset_counters(void) { statistics.reads = 0; statistics.writes = 0; statistics.ioctls = 0; statistics.irqs = 0; statistics.berrs = 0; statistics.dmaErrors = 0; statistics.timeouts = 0; } void lmcall(int monitor) { printk("Caught Location Monitor %d access\n", monitor); } static void tests(void) { struct vme_resource *dma_res; struct vme_dma_list *dma_list; struct vme_dma_attr *pattern_attr, *vme_attr; int retval; unsigned int data; printk("Running VME DMA test\n"); dma_res = vme_request_dma(vme_user_bridge); dma_list = vme_new_dma_list(dma_res); pattern_attr = vme_dma_pattern_attribute(0x0, VME_DMA_PATTERN_WORD | VME_DMA_PATTERN_INCREMENT); vme_attr = vme_dma_vme_attribute(0x10000, VME_A32, VME_SCT, VME_D32); retval = vme_dma_list_add(dma_list, pattern_attr, vme_attr, 0x10000); #if 0 vme_dma_free_attribute(vme_attr); vme_attr = vme_dma_vme_attribute(0x20000, VME_A32, VME_SCT, VME_D32); retval = vme_dma_list_add(dma_list, pattern_attr, vme_attr, 0x10000); #endif retval = vme_dma_list_exec(dma_list); vme_dma_free_attribute(pattern_attr); vme_dma_free_attribute(vme_attr); vme_dma_list_free(dma_list); #if 0 printk("Generating a VME interrupt\n"); vme_generate_irq(dma_res, 0x3, 0xaa); printk("Interrupt returned\n"); #endif vme_dma_free(dma_res); /* Attempt RMW */ data = vme_master_rmw(image[0].resource, 0x80000000, 0x00000000, 0x80000000, 0); printk("RMW returned 0x%8.8x\n", data); /* Location Monitor */ printk("vme_lm_set:%d\n", vme_lm_set(vme_user_bridge, 0x60000, VME_A32, VME_SCT | VME_USER | VME_DATA)); printk("vme_lm_attach:%d\n", vme_lm_attach(vme_user_bridge, 0, lmcall)); printk("Board in VME slot:%d\n", vme_slot_get(vme_user_bridge)); } static int vme_user_open(struct inode *inode, struct file *file) { int err; unsigned int minor = MINOR(inode->i_rdev); down(&image[minor].sem); /* Only allow device to be opened if a resource is allocated */ if (image[minor].resource == NULL) { printk(KERN_ERR "No resources allocated for device\n"); err = -EINVAL; goto err_res; } /* Increment user count */ image[minor].users++; up(&image[minor].sem); return 0; err_res: up(&image[minor].sem); return err; } static int vme_user_release(struct inode *inode, struct file *file) { unsigned int minor = MINOR(inode->i_rdev); down(&image[minor].sem); /* Decrement user count */ image[minor].users--; up(&image[minor].sem); return 0; } /* * We are going ot alloc a page during init per window for small transfers. * Small transfers will go VME -> buffer -> user space. Larger (more than a * page) transfers will lock the user space buffer into memory and then * transfer the data directly into the user space buffers. */ static ssize_t resource_to_user(int minor, char __user *buf, size_t count, loff_t *ppos) { ssize_t retval; ssize_t copied = 0; if (count <= image[minor].size_buf) { /* We copy to kernel buffer */ copied = vme_master_read(image[minor].resource, image[minor].kern_buf, count, *ppos); if (copied < 0) { return (int)copied; } retval = __copy_to_user(buf, image[minor].kern_buf, (unsigned long)copied); if (retval != 0) { copied = (copied - retval); printk("User copy failed\n"); return -EINVAL; } } else { /* XXX Need to write this */ printk("Currently don't support large transfers\n"); /* Map in pages from userspace */ /* Call vme_master_read to do the transfer */ return -EINVAL; } return copied; } /* * We are going ot alloc a page during init per window for small transfers. * Small transfers will go user space -> buffer -> VME. Larger (more than a * page) transfers will lock the user space buffer into memory and then * transfer the data directly from the user space buffers out to VME. */ static ssize_t resource_from_user(unsigned int minor, const char *buf, size_t count, loff_t *ppos) { ssize_t retval; ssize_t copied = 0; if (count <= image[minor].size_buf) { retval = __copy_from_user(image[minor].kern_buf, buf, (unsigned long)count); if (retval != 0) copied = (copied - retval); else copied = count; copied = vme_master_write(image[minor].resource, image[minor].kern_buf, copied, *ppos); } else { /* XXX Need to write this */ printk("Currently don't support large transfers\n"); /* Map in pages from userspace */ /* Call vme_master_write to do the transfer */ return -EINVAL; } return copied; } static ssize_t buffer_to_user(unsigned int minor, char __user *buf, size_t count, loff_t *ppos) { void __iomem *image_ptr; ssize_t retval; image_ptr = image[minor].kern_buf + *ppos; retval = __copy_to_user(buf, image_ptr, (unsigned long)count); if (retval != 0) { retval = (count - retval); printk(KERN_WARNING "Partial copy to userspace\n"); } else retval = count; /* Return number of bytes successfully read */ return retval; } static ssize_t buffer_from_user(unsigned int minor, const char *buf, size_t count, loff_t *ppos) { void __iomem *image_ptr; size_t retval; image_ptr = image[minor].kern_buf + *ppos; retval = __copy_from_user(image_ptr, buf, (unsigned long)count); if (retval != 0) { retval = (count - retval); printk(KERN_WARNING "Partial copy to userspace\n"); } else retval = count; /* Return number of bytes successfully read */ return retval; } static ssize_t vme_user_read(struct file *file, char *buf, size_t count, loff_t * ppos) { unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev); ssize_t retval; size_t image_size; size_t okcount; down(&image[minor].sem); /* XXX Do we *really* want this helper - we can use vme_*_get ? */ image_size = vme_get_size(image[minor].resource); /* Ensure we are starting at a valid location */ if ((*ppos < 0) || (*ppos > (image_size - 1))) { up(&image[minor].sem); return 0; } /* Ensure not reading past end of the image */ if (*ppos + count > image_size) okcount = image_size - *ppos; else okcount = count; switch (type[minor]){ case MASTER_MINOR: retval = resource_to_user(minor, buf, okcount, ppos); break; case SLAVE_MINOR: retval = buffer_to_user(minor, buf, okcount, ppos); break; default: retval = -EINVAL; } up(&image[minor].sem); if (retval > 0) *ppos += retval; return retval; } static ssize_t vme_user_write(struct file *file, const char *buf, size_t count, loff_t *ppos) { unsigned int minor = MINOR(file->f_dentry->d_inode->i_rdev); ssize_t retval; size_t image_size; size_t okcount; down(&image[minor].sem); image_size = vme_get_size(image[minor].resource); /* Ensure we are starting at a valid location */ if ((*ppos < 0) || (*ppos > (image_size - 1))) { up(&image[minor].sem); return 0; } /* Ensure not reading past end of the image */ if (*ppos + count > image_size) okcount = image_size - *ppos; else okcount = count; switch (type[minor]){ case MASTER_MINOR: retval = resource_from_user(minor, buf, okcount, ppos); break; case SLAVE_MINOR: retval = buffer_from_user(minor, buf, okcount, ppos); break; default: retval = -EINVAL; } up(&image[minor].sem); if (retval > 0) *ppos += retval; return retval; } static loff_t vme_user_llseek(struct file *file, loff_t off, int whence) { printk(KERN_ERR "Llseek currently incomplete\n"); return -EINVAL; } static int vme_user_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { unsigned int minor = MINOR(inode->i_rdev); #if 0 int ret_val; #endif unsigned long copyRet; vme_slave_t slave; statistics.ioctls++; switch (type[minor]) { case CONTROL_MINOR: break; case MASTER_MINOR: break; case SLAVE_MINOR: switch (cmd) { case VME_SET_SLAVE: copyRet = copy_from_user(&slave, (char *)arg, sizeof(slave)); if (copyRet != 0) { printk(KERN_WARNING "Partial copy from " "userspace\n"); return -EFAULT; } return vme_slave_set(image[minor].resource, slave.enable, slave.vme_addr, slave.size, image[minor].pci_buf, slave.aspace, slave.cycle); break; #if 0 case VME_GET_SLAVE: vme_slave_t slave; ret_val = vme_slave_get(minor, &iRegs); copyRet = copy_to_user((char *)arg, &slave, sizeof(slave)); if (copyRet != 0) { printk(KERN_WARNING "Partial copy to " "userspace\n"); return -EFAULT; } return ret_val; break; #endif } break; } return -EINVAL; } /* * Unallocate a previously allocated buffer */ static void buf_unalloc (int num) { if (image[num].kern_buf) { #ifdef VME_DEBUG printk(KERN_DEBUG "UniverseII:Releasing buffer at %p\n", image[num].pci_buf); #endif vme_free_consistent(image[num].resource, image[num].size_buf, image[num].kern_buf, image[num].pci_buf); image[num].kern_buf = NULL; image[num].pci_buf = 0; image[num].size_buf = 0; #ifdef VME_DEBUG } else { printk(KERN_DEBUG "UniverseII: Buffer not allocated\n"); #endif } } static struct vme_driver vme_user_driver = { .name = driver_name, .probe = vme_user_probe, }; /* * In this simple access driver, the old behaviour is being preserved as much * as practical. We will therefore reserve the buffers and request the images * here so that we don't have to do it later. */ static int __init vme_bridge_init(void) { int retval; printk(KERN_INFO "VME User Space Access Driver\n"); printk("vme_user_driver:%p\n", &vme_user_driver); retval = vme_register_driver(&vme_user_driver); printk("vme_register_driver returned %d\n", retval); return retval; } /* * This structure gets passed a device, this should be the device created at * registration. */ static int __init vme_user_probe(struct device *dev) { int i, err; char name[8]; printk("Running vme_user_probe()\n"); /* Pointer to the bridge device */ vme_user_bridge = dev; /* Initialise descriptors */ for (i = 0; i < VME_DEVS; i++) { image[i].kern_buf = NULL; image[i].pci_buf = 0; init_MUTEX(&(image[i].sem)); image[i].device = NULL; image[i].resource = NULL; image[i].users = 0; } /* Initialise statistics counters */ reset_counters(); /* Assign major and minor numbers for the driver */ err = register_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS, driver_name); if (err) { printk(KERN_WARNING "%s: Error getting Major Number %d for " "driver.\n", driver_name, VME_MAJOR); goto err_region; } /* Register the driver as a char device */ vme_user_cdev = cdev_alloc(); vme_user_cdev->ops = &vme_user_fops; vme_user_cdev->owner = THIS_MODULE; err = cdev_add(vme_user_cdev, MKDEV(VME_MAJOR, 0), VME_DEVS); if (err) { printk(KERN_WARNING "%s: cdev_all failed\n", driver_name); goto err_char; } /* Request slave resources and allocate buffers (128kB wide) */ for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) { /* XXX Need to properly request attributes */ image[i].resource = vme_slave_request(vme_user_bridge, VME_A16, VME_SCT); if (image[i].resource == NULL) { printk(KERN_WARNING "Unable to allocate slave " "resource\n"); goto err_buf; } image[i].size_buf = PCI_BUF_SIZE; image[i].kern_buf = vme_alloc_consistent(image[i].resource, image[i].size_buf, &(image[i].pci_buf)); if (image[i].kern_buf == NULL) { printk(KERN_WARNING "Unable to allocate memory for " "buffer\n"); image[i].pci_buf = 0; vme_slave_free(image[i].resource); err = -ENOMEM; goto err_buf; } } /* * Request master resources allocate page sized buffers for small * reads and writes */ for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) { /* XXX Need to properly request attributes */ image[i].resource = vme_master_request(vme_user_bridge, VME_A32, VME_SCT, VME_D32); if (image[i].resource == NULL) { printk(KERN_WARNING "Unable to allocate master " "resource\n"); goto err_buf; } image[i].size_buf = PAGE_SIZE; image[i].kern_buf = vme_alloc_consistent(image[i].resource, image[i].size_buf, &(image[i].pci_buf)); if (image[i].kern_buf == NULL) { printk(KERN_WARNING "Unable to allocate memory for " "buffer\n"); image[i].pci_buf = 0; vme_master_free(image[i].resource); err = -ENOMEM; goto err_buf; } } /* Setup some debug windows */ for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) { err = vme_slave_set(image[i].resource, 1, 0x4000*(i-4), 0x4000, image[i].pci_buf, VME_A16, VME_SCT | VME_SUPER | VME_USER | VME_PROG | VME_DATA); if (err != 0) { printk(KERN_WARNING "Failed to configure window\n"); goto err_buf; } } for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) { err = vme_master_set(image[i].resource, 1, (0x10000 + (0x10000*i)), 0x10000, VME_A32, VME_SCT | VME_USER | VME_DATA, VME_D32); if (err != 0) { printk(KERN_WARNING "Failed to configure window\n"); goto err_buf; } } /* Create sysfs entries - on udev systems this creates the dev files */ vme_user_sysfs_class = class_create(THIS_MODULE, driver_name); if (IS_ERR(vme_user_sysfs_class)) { printk(KERN_ERR "Error creating vme_user class.\n"); err = PTR_ERR(vme_user_sysfs_class); goto err_class; } /* Add sysfs Entries */ for (i=0; i 0){ i--; device_destroy(vme_user_sysfs_class, MKDEV(VME_MAJOR, i)); } class_destroy(vme_user_sysfs_class); /* Ensure counter set correcty to unalloc all slave buffers */ i = SLAVE_MAX + 1; err_buf: while (i > SLAVE_MINOR){ i--; vme_slave_set(image[i].resource, 0, 0, 0, 0, VME_A32, 0); vme_slave_free(image[i].resource); buf_unalloc(i); } err_class: cdev_del(vme_user_cdev); err_char: unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS); err_region: return err; } static void __exit vme_bridge_exit(void) { int i; /* Remove sysfs Entries */ for(i=0; i