#include "sysdef.h" extern void phy_calibration_winbond(hw_data_t *phw_data, u32 frequency); // TRUE : read command process successfully // FALSE : register not support // RegisterNo : start base // pRegisterData : data point // NumberOfData : number of register data // Flag : AUTO_INCREMENT - RegisterNo will auto increment 4 // NO_INCREMENT - Function will write data into the same register unsigned char Wb35Reg_BurstWrite(phw_data_t pHwData, u16 RegisterNo, u32 * pRegisterData, u8 NumberOfData, u8 Flag) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; PURB pUrb = NULL; PREG_QUEUE pRegQueue = NULL; u16 UrbSize; struct usb_ctrlrequest *dr; u16 i, DataSize = NumberOfData*4; // Module shutdown if (pHwData->SurpriseRemove) return FALSE; // Trying to use burst write function if use new hardware UrbSize = sizeof(REG_QUEUE) + DataSize + sizeof(struct usb_ctrlrequest); OS_MEMORY_ALLOC( (void* *)&pRegQueue, UrbSize ); pUrb = wb_usb_alloc_urb(0); if( pUrb && pRegQueue ) { pRegQueue->DIRECT = 2;// burst write register pRegQueue->INDEX = RegisterNo; pRegQueue->pBuffer = (u32 *)((u8 *)pRegQueue + sizeof(REG_QUEUE)); memcpy( pRegQueue->pBuffer, pRegisterData, DataSize ); //the function for reversing register data from little endian to big endian for( i=0; ipBuffer[i] = cpu_to_le32( pRegQueue->pBuffer[i] ); dr = (struct usb_ctrlrequest *)((u8 *)pRegQueue + sizeof(REG_QUEUE) + DataSize); dr->bRequestType = USB_TYPE_VENDOR | USB_DIR_OUT | USB_RECIP_DEVICE; dr->bRequest = 0x04; // USB or vendor-defined request code, burst mode dr->wValue = cpu_to_le16( Flag ); // 0: Register number auto-increment, 1: No auto increment dr->wIndex = cpu_to_le16( RegisterNo ); dr->wLength = cpu_to_le16( DataSize ); pRegQueue->Next = NULL; pRegQueue->pUsbReq = dr; pRegQueue->pUrb = pUrb; spin_lock_irq( &pWb35Reg->EP0VM_spin_lock ); if (pWb35Reg->pRegFirst == NULL) pWb35Reg->pRegFirst = pRegQueue; else pWb35Reg->pRegLast->Next = pRegQueue; pWb35Reg->pRegLast = pRegQueue; spin_unlock_irq( &pWb35Reg->EP0VM_spin_lock ); // Start EP0VM Wb35Reg_EP0VM_start(pHwData); return TRUE; } else { if (pUrb) usb_free_urb(pUrb); if (pRegQueue) kfree(pRegQueue); return FALSE; } return FALSE; } void Wb35Reg_Update(phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; switch (RegisterNo) { case 0x3b0: pWb35Reg->U1B0 = RegisterValue; break; case 0x3bc: pWb35Reg->U1BC_LEDConfigure = RegisterValue; break; case 0x400: pWb35Reg->D00_DmaControl = RegisterValue; break; case 0x800: pWb35Reg->M00_MacControl = RegisterValue; break; case 0x804: pWb35Reg->M04_MulticastAddress1 = RegisterValue; break; case 0x808: pWb35Reg->M08_MulticastAddress2 = RegisterValue; break; case 0x824: pWb35Reg->M24_MacControl = RegisterValue; break; case 0x828: pWb35Reg->M28_MacControl = RegisterValue; break; case 0x82c: pWb35Reg->M2C_MacControl = RegisterValue; break; case 0x838: pWb35Reg->M38_MacControl = RegisterValue; break; case 0x840: pWb35Reg->M40_MacControl = RegisterValue; break; case 0x844: pWb35Reg->M44_MacControl = RegisterValue; break; case 0x848: pWb35Reg->M48_MacControl = RegisterValue; break; case 0x84c: pWb35Reg->M4C_MacStatus = RegisterValue; break; case 0x860: pWb35Reg->M60_MacControl = RegisterValue; break; case 0x868: pWb35Reg->M68_MacControl = RegisterValue; break; case 0x870: pWb35Reg->M70_MacControl = RegisterValue; break; case 0x874: pWb35Reg->M74_MacControl = RegisterValue; break; case 0x878: pWb35Reg->M78_ERPInformation = RegisterValue; break; case 0x87C: pWb35Reg->M7C_MacControl = RegisterValue; break; case 0x880: pWb35Reg->M80_MacControl = RegisterValue; break; case 0x884: pWb35Reg->M84_MacControl = RegisterValue; break; case 0x888: pWb35Reg->M88_MacControl = RegisterValue; break; case 0x898: pWb35Reg->M98_MacControl = RegisterValue; break; case 0x100c: pWb35Reg->BB0C = RegisterValue; break; case 0x102c: pWb35Reg->BB2C = RegisterValue; break; case 0x1030: pWb35Reg->BB30 = RegisterValue; break; case 0x103c: pWb35Reg->BB3C = RegisterValue; break; case 0x1048: pWb35Reg->BB48 = RegisterValue; break; case 0x104c: pWb35Reg->BB4C = RegisterValue; break; case 0x1050: pWb35Reg->BB50 = RegisterValue; break; case 0x1054: pWb35Reg->BB54 = RegisterValue; break; case 0x1058: pWb35Reg->BB58 = RegisterValue; break; case 0x105c: pWb35Reg->BB5C = RegisterValue; break; case 0x1060: pWb35Reg->BB60 = RegisterValue; break; } } // TRUE : read command process successfully // FALSE : register not support unsigned char Wb35Reg_WriteSync( phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; int ret = -1; // Module shutdown if (pHwData->SurpriseRemove) return FALSE; RegisterValue = cpu_to_le32(RegisterValue); // update the register by send usb message------------------------------------ pWb35Reg->SyncIoPause = 1; // 20060717.5 Wait until EP0VM stop while (pWb35Reg->EP0vm_state != VM_STOP) OS_SLEEP(10000); // Sync IoCallDriver pWb35Reg->EP0vm_state = VM_RUNNING; ret = usb_control_msg( pHwData->WbUsb.udev, usb_sndctrlpipe( pHwData->WbUsb.udev, 0 ), 0x03, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, 0x0,RegisterNo, &RegisterValue, 4, HZ*100 ); pWb35Reg->EP0vm_state = VM_STOP; pWb35Reg->SyncIoPause = 0; Wb35Reg_EP0VM_start(pHwData); if (ret < 0) { #ifdef _PE_REG_DUMP_ WBDEBUG(("EP0 Write register usb message sending error\n")); #endif pHwData->SurpriseRemove = 1; // 20060704.2 return FALSE; } return TRUE; } // TRUE : read command process successfully // FALSE : register not support unsigned char Wb35Reg_Write( phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; struct usb_ctrlrequest *dr; PURB pUrb = NULL; PREG_QUEUE pRegQueue = NULL; u16 UrbSize; // Module shutdown if (pHwData->SurpriseRemove) return FALSE; // update the register by send urb request------------------------------------ UrbSize = sizeof(REG_QUEUE) + sizeof(struct usb_ctrlrequest); OS_MEMORY_ALLOC( (void* *)&pRegQueue, UrbSize ); pUrb = wb_usb_alloc_urb(0); if (pUrb && pRegQueue) { pRegQueue->DIRECT = 1;// burst write register pRegQueue->INDEX = RegisterNo; pRegQueue->VALUE = cpu_to_le32(RegisterValue); pRegQueue->RESERVED_VALID = FALSE; dr = (struct usb_ctrlrequest *)((u8 *)pRegQueue + sizeof(REG_QUEUE)); dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE; dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode dr->wValue = cpu_to_le16(0x0); dr->wIndex = cpu_to_le16(RegisterNo); dr->wLength = cpu_to_le16(4); // Enter the sending queue pRegQueue->Next = NULL; pRegQueue->pUsbReq = dr; pRegQueue->pUrb = pUrb; spin_lock_irq(&pWb35Reg->EP0VM_spin_lock ); if (pWb35Reg->pRegFirst == NULL) pWb35Reg->pRegFirst = pRegQueue; else pWb35Reg->pRegLast->Next = pRegQueue; pWb35Reg->pRegLast = pRegQueue; spin_unlock_irq( &pWb35Reg->EP0VM_spin_lock ); // Start EP0VM Wb35Reg_EP0VM_start(pHwData); return TRUE; } else { if (pUrb) usb_free_urb(pUrb); kfree(pRegQueue); return FALSE; } } //This command will be executed with a user defined value. When it completes, //this value is useful. For example, hal_set_current_channel will use it. // TRUE : read command process successfully // FALSE : register not support unsigned char Wb35Reg_WriteWithCallbackValue( phw_data_t pHwData, u16 RegisterNo, u32 RegisterValue, s8 *pValue, s8 Len) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; struct usb_ctrlrequest *dr; PURB pUrb = NULL; PREG_QUEUE pRegQueue = NULL; u16 UrbSize; // Module shutdown if (pHwData->SurpriseRemove) return FALSE; // update the register by send urb request------------------------------------ UrbSize = sizeof(REG_QUEUE) + sizeof(struct usb_ctrlrequest); OS_MEMORY_ALLOC((void* *) &pRegQueue, UrbSize ); pUrb = wb_usb_alloc_urb(0); if (pUrb && pRegQueue) { pRegQueue->DIRECT = 1;// burst write register pRegQueue->INDEX = RegisterNo; pRegQueue->VALUE = cpu_to_le32(RegisterValue); //NOTE : Users must guarantee the size of value will not exceed the buffer size. memcpy(pRegQueue->RESERVED, pValue, Len); pRegQueue->RESERVED_VALID = TRUE; dr = (struct usb_ctrlrequest *)((u8 *)pRegQueue + sizeof(REG_QUEUE)); dr->bRequestType = USB_TYPE_VENDOR|USB_DIR_OUT |USB_RECIP_DEVICE; dr->bRequest = 0x03; // USB or vendor-defined request code, burst mode dr->wValue = cpu_to_le16(0x0); dr->wIndex = cpu_to_le16(RegisterNo); dr->wLength = cpu_to_le16(4); // Enter the sending queue pRegQueue->Next = NULL; pRegQueue->pUsbReq = dr; pRegQueue->pUrb = pUrb; spin_lock_irq (&pWb35Reg->EP0VM_spin_lock ); if( pWb35Reg->pRegFirst == NULL ) pWb35Reg->pRegFirst = pRegQueue; else pWb35Reg->pRegLast->Next = pRegQueue; pWb35Reg->pRegLast = pRegQueue; spin_unlock_irq ( &pWb35Reg->EP0VM_spin_lock ); // Start EP0VM Wb35Reg_EP0VM_start(pHwData); return TRUE; } else { if (pUrb) usb_free_urb(pUrb); kfree(pRegQueue); return FALSE; } } // TRUE : read command process successfully // FALSE : register not support // pRegisterValue : It must be a resident buffer due to asynchronous read register. unsigned char Wb35Reg_ReadSync( phw_data_t pHwData, u16 RegisterNo, u32 * pRegisterValue ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; u32 * pltmp = pRegisterValue; int ret = -1; // Module shutdown if (pHwData->SurpriseRemove) return FALSE; // Read the register by send usb message------------------------------------ pWb35Reg->SyncIoPause = 1; // 20060717.5 Wait until EP0VM stop while (pWb35Reg->EP0vm_state != VM_STOP) OS_SLEEP(10000); pWb35Reg->EP0vm_state = VM_RUNNING; ret = usb_control_msg( pHwData->WbUsb.udev, usb_rcvctrlpipe(pHwData->WbUsb.udev, 0), 0x01, USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN, 0x0, RegisterNo, pltmp, 4, HZ*100 ); *pRegisterValue = cpu_to_le32(*pltmp); pWb35Reg->EP0vm_state = VM_STOP; Wb35Reg_Update( pHwData, RegisterNo, *pRegisterValue ); pWb35Reg->SyncIoPause = 0; Wb35Reg_EP0VM_start( pHwData ); if (ret < 0) { #ifdef _PE_REG_DUMP_ WBDEBUG(("EP0 Read register usb message sending error\n")); #endif pHwData->SurpriseRemove = 1; // 20060704.2 return FALSE; } return TRUE; } // TRUE : read command process successfully // FALSE : register not support // pRegisterValue : It must be a resident buffer due to asynchronous read register. unsigned char Wb35Reg_Read(phw_data_t pHwData, u16 RegisterNo, u32 * pRegisterValue ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; struct usb_ctrlrequest * dr; PURB pUrb; PREG_QUEUE pRegQueue; u16 UrbSize; // Module shutdown if (pHwData->SurpriseRemove) return FALSE; // update the variable by send Urb to read register ------------------------------------ UrbSize = sizeof(REG_QUEUE) + sizeof(struct usb_ctrlrequest); OS_MEMORY_ALLOC( (void* *)&pRegQueue, UrbSize ); pUrb = wb_usb_alloc_urb(0); if( pUrb && pRegQueue ) { pRegQueue->DIRECT = 0;// read register pRegQueue->INDEX = RegisterNo; pRegQueue->pBuffer = pRegisterValue; dr = (struct usb_ctrlrequest *)((u8 *)pRegQueue + sizeof(REG_QUEUE)); dr->bRequestType = USB_TYPE_VENDOR|USB_RECIP_DEVICE|USB_DIR_IN; dr->bRequest = 0x01; // USB or vendor-defined request code, burst mode dr->wValue = cpu_to_le16(0x0); dr->wIndex = cpu_to_le16 (RegisterNo); dr->wLength = cpu_to_le16 (4); // Enter the sending queue pRegQueue->Next = NULL; pRegQueue->pUsbReq = dr; pRegQueue->pUrb = pUrb; spin_lock_irq ( &pWb35Reg->EP0VM_spin_lock ); if( pWb35Reg->pRegFirst == NULL ) pWb35Reg->pRegFirst = pRegQueue; else pWb35Reg->pRegLast->Next = pRegQueue; pWb35Reg->pRegLast = pRegQueue; spin_unlock_irq( &pWb35Reg->EP0VM_spin_lock ); // Start EP0VM Wb35Reg_EP0VM_start( pHwData ); return TRUE; } else { if (pUrb) usb_free_urb( pUrb ); kfree(pRegQueue); return FALSE; } } void Wb35Reg_EP0VM_start( phw_data_t pHwData ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; if (OS_ATOMIC_INC( pHwData->Adapter, &pWb35Reg->RegFireCount) == 1) { pWb35Reg->EP0vm_state = VM_RUNNING; Wb35Reg_EP0VM(pHwData); } else OS_ATOMIC_DEC( pHwData->Adapter, &pWb35Reg->RegFireCount ); } void Wb35Reg_EP0VM(phw_data_t pHwData ) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; PURB pUrb; struct usb_ctrlrequest *dr; u32 * pBuffer; int ret = -1; PREG_QUEUE pRegQueue; if (pWb35Reg->SyncIoPause) goto cleanup; if (pHwData->SurpriseRemove) goto cleanup; // Get the register data and send to USB through Irp spin_lock_irq( &pWb35Reg->EP0VM_spin_lock ); pRegQueue = pWb35Reg->pRegFirst; spin_unlock_irq( &pWb35Reg->EP0VM_spin_lock ); if (!pRegQueue) goto cleanup; // Get an Urb, send it pUrb = (PURB)pRegQueue->pUrb; dr = pRegQueue->pUsbReq; pUrb = pRegQueue->pUrb; pBuffer = pRegQueue->pBuffer; if (pRegQueue->DIRECT == 1) // output pBuffer = &pRegQueue->VALUE; usb_fill_control_urb( pUrb, pHwData->WbUsb.udev, REG_DIRECTION(pHwData->WbUsb.udev,pRegQueue), (u8 *)dr,pBuffer,cpu_to_le16(dr->wLength), Wb35Reg_EP0VM_complete, (void*)pHwData); pWb35Reg->EP0vm_state = VM_RUNNING; ret = wb_usb_submit_urb( pUrb ); if (ret < 0) { #ifdef _PE_REG_DUMP_ WBDEBUG(("EP0 Irp sending error\n")); #endif goto cleanup; } return; cleanup: pWb35Reg->EP0vm_state = VM_STOP; OS_ATOMIC_DEC( pHwData->Adapter, &pWb35Reg->RegFireCount ); } void Wb35Reg_EP0VM_complete(PURB pUrb) { phw_data_t pHwData = (phw_data_t)pUrb->context; PWB35REG pWb35Reg = &pHwData->Wb35Reg; PREG_QUEUE pRegQueue; // Variable setting pWb35Reg->EP0vm_state = VM_COMPLETED; pWb35Reg->EP0VM_status = pUrb->status; if (pHwData->SurpriseRemove) { // Let WbWlanHalt to handle surprise remove pWb35Reg->EP0vm_state = VM_STOP; OS_ATOMIC_DEC( pHwData->Adapter, &pWb35Reg->RegFireCount ); } else { // Complete to send, remove the URB from the first spin_lock_irq( &pWb35Reg->EP0VM_spin_lock ); pRegQueue = pWb35Reg->pRegFirst; if (pRegQueue == pWb35Reg->pRegLast) pWb35Reg->pRegLast = NULL; pWb35Reg->pRegFirst = pWb35Reg->pRegFirst->Next; spin_unlock_irq( &pWb35Reg->EP0VM_spin_lock ); if (pWb35Reg->EP0VM_status) { #ifdef _PE_REG_DUMP_ WBDEBUG(("EP0 IoCompleteRoutine return error\n")); DebugUsbdStatusInformation( pWb35Reg->EP0VM_status ); #endif pWb35Reg->EP0vm_state = VM_STOP; pHwData->SurpriseRemove = 1; } else { // Success. Update the result // Start the next send Wb35Reg_EP0VM(pHwData); } kfree(pRegQueue); } usb_free_urb(pUrb); } void Wb35Reg_destroy(phw_data_t pHwData) { PWB35REG pWb35Reg = &pHwData->Wb35Reg; PURB pUrb; PREG_QUEUE pRegQueue; Uxx_power_off_procedure(pHwData); // Wait for Reg operation completed do { OS_SLEEP(10000); // Delay for waiting function enter 940623.1.a } while (pWb35Reg->EP0vm_state != VM_STOP); OS_SLEEP(10000); // Delay for waiting function enter 940623.1.b // Release all the data in RegQueue spin_lock_irq( &pWb35Reg->EP0VM_spin_lock ); pRegQueue = pWb35Reg->pRegFirst; while (pRegQueue) { if (pRegQueue == pWb35Reg->pRegLast) pWb35Reg->pRegLast = NULL; pWb35Reg->pRegFirst = pWb35Reg->pRegFirst->Next; pUrb = pRegQueue->pUrb; spin_unlock_irq( &pWb35Reg->EP0VM_spin_lock ); if (pUrb) { usb_free_urb(pUrb); kfree(pRegQueue); } else { #ifdef _PE_REG_DUMP_ WBDEBUG(("EP0 queue release error\n")); #endif } spin_lock_irq( &pWb35Reg->EP0VM_spin_lock ); pRegQueue = pWb35Reg->pRegFirst; } spin_unlock_irq( &pWb35Reg->EP0VM_spin_lock ); } //==================================================================================== // The function can be run in passive-level only. //==================================================================================== unsigned char Wb35Reg_initial(phw_data_t pHwData) { PWB35REG pWb35Reg=&pHwData->Wb35Reg; u32 ltmp; u32 SoftwareSet, VCO_trim, TxVga, Region_ScanInterval; // Spin lock is acquired for read and write IRP command spin_lock_init( &pWb35Reg->EP0VM_spin_lock ); // Getting RF module type from EEPROM ------------------------------------ Wb35Reg_WriteSync( pHwData, 0x03b4, 0x080d0000 ); // Start EEPROM access + Read + address(0x0d) Wb35Reg_ReadSync( pHwData, 0x03b4, <mp ); //Update RF module type and determine the PHY type by inf or EEPROM pWb35Reg->EEPROMPhyType = (u8)( ltmp & 0xff ); // 0 V MAX2825, 1 V MAX2827, 2 V MAX2828, 3 V MAX2829 // 16V AL2230, 17 - AL7230, 18 - AL2230S // 32 Reserved // 33 - W89RF242(TxVGA 0~19), 34 - W89RF242(TxVGA 0~34) if (pWb35Reg->EEPROMPhyType != RF_DECIDE_BY_INF) { if( (pWb35Reg->EEPROMPhyType == RF_MAXIM_2825) || (pWb35Reg->EEPROMPhyType == RF_MAXIM_2827) || (pWb35Reg->EEPROMPhyType == RF_MAXIM_2828) || (pWb35Reg->EEPROMPhyType == RF_MAXIM_2829) || (pWb35Reg->EEPROMPhyType == RF_MAXIM_V1) || (pWb35Reg->EEPROMPhyType == RF_AIROHA_2230) || (pWb35Reg->EEPROMPhyType == RF_AIROHA_2230S) || (pWb35Reg->EEPROMPhyType == RF_AIROHA_7230) || (pWb35Reg->EEPROMPhyType == RF_WB_242) || (pWb35Reg->EEPROMPhyType == RF_WB_242_1)) pHwData->phy_type = pWb35Reg->EEPROMPhyType; } // Power On procedure running. The relative parameter will be set according to phy_type Uxx_power_on_procedure( pHwData ); // Reading MAC address Uxx_ReadEthernetAddress( pHwData ); // Read VCO trim for RF parameter Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08200000 ); Wb35Reg_ReadSync( pHwData, 0x03b4, &VCO_trim ); // Read Antenna On/Off of software flag Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08210000 ); Wb35Reg_ReadSync( pHwData, 0x03b4, &SoftwareSet ); // Read TXVGA Wb35Reg_WriteSync( pHwData, 0x03b4, 0x08100000 ); Wb35Reg_ReadSync( pHwData, 0x03b4, &TxVga ); // Get Scan interval setting from EEPROM offset 0x1c Wb35Reg_WriteSync( pHwData, 0x03b4, 0x081d0000 ); Wb35Reg_ReadSync( pHwData, 0x03b4, &Region_ScanInterval ); // Update Ethernet address memcpy( pHwData->CurrentMacAddress, pHwData->PermanentMacAddress, ETH_LENGTH_OF_ADDRESS ); // Update software variable pHwData->SoftwareSet = (u16)(SoftwareSet & 0xffff); TxVga &= 0x000000ff; pHwData->PowerIndexFromEEPROM = (u8)TxVga; pHwData->VCO_trim = (u8)VCO_trim & 0xff; if (pHwData->VCO_trim == 0xff) pHwData->VCO_trim = 0x28; pWb35Reg->EEPROMRegion = (u8)(Region_ScanInterval>>8); // 20060720 if( pWb35Reg->EEPROMRegion<1 || pWb35Reg->EEPROMRegion>6 ) pWb35Reg->EEPROMRegion = REGION_AUTO; //For Get Tx VGA from EEPROM 20060315.5 move here GetTxVgaFromEEPROM( pHwData ); // Set Scan Interval pHwData->Scan_Interval = (u8)(Region_ScanInterval & 0xff) * 10; if ((pHwData->Scan_Interval == 2550) || (pHwData->Scan_Interval < 10)) // Is default setting 0xff * 10 pHwData->Scan_Interval = SCAN_MAX_CHNL_TIME; // Initial register RFSynthesizer_initial(pHwData); BBProcessor_initial(pHwData); // Async write, must wait until complete Wb35Reg_phy_calibration(pHwData); Mxx_initial(pHwData); Dxx_initial(pHwData); if (pHwData->SurpriseRemove) return FALSE; else return TRUE; // Initial fail } //=================================================================================== // CardComputeCrc -- // // Description: // Runs the AUTODIN II CRC algorithm on buffer Buffer of length, Length. // // Arguments: // Buffer - the input buffer // Length - the length of Buffer // // Return Value: // The 32-bit CRC value. // // Note: // This is adapted from the comments in the assembly language // version in _GENREQ.ASM of the DWB NE1000/2000 driver. //================================================================================== u32 CardComputeCrc(u8 * Buffer, u32 Length) { u32 Crc, Carry; u32 i, j; u8 CurByte; Crc = 0xffffffff; for (i = 0; i < Length; i++) { CurByte = Buffer[i]; for (j = 0; j < 8; j++) { Carry = ((Crc & 0x80000000) ? 1 : 0) ^ (CurByte & 0x01); Crc <<= 1; CurByte >>= 1; if (Carry) { Crc =(Crc ^ 0x04c11db6) | Carry; } } } return Crc; } //================================================================== // BitReverse -- // Reverse the bits in the input argument, dwData, which is // regarded as a string of bits with the length, DataLength. // // Arguments: // dwData : // DataLength : // // Return: // The converted value. //================================================================== u32 BitReverse( u32 dwData, u32 DataLength) { u32 HalfLength, i, j; u32 BitA, BitB; if ( DataLength <= 0) return 0; // No conversion is done. dwData = dwData & (0xffffffff >> (32 - DataLength)); HalfLength = DataLength / 2; for ( i = 0, j = DataLength-1 ; i < HalfLength; i++, j--) { BitA = GetBit( dwData, i); BitB = GetBit( dwData, j); if (BitA && !BitB) { dwData = ClearBit( dwData, i); dwData = SetBit( dwData, j); } else if (!BitA && BitB) { dwData = SetBit( dwData, i); dwData = ClearBit( dwData, j); } else { // Do nothing since these two bits are of the save values. } } return dwData; } void Wb35Reg_phy_calibration( phw_data_t pHwData ) { u32 BB3c, BB54; if ((pHwData->phy_type == RF_WB_242) || (pHwData->phy_type == RF_WB_242_1)) { phy_calibration_winbond ( pHwData, 2412 ); // Sync operation Wb35Reg_ReadSync( pHwData, 0x103c, &BB3c ); Wb35Reg_ReadSync( pHwData, 0x1054, &BB54 ); pHwData->BB3c_cal = BB3c; pHwData->BB54_cal = BB54; RFSynthesizer_initial(pHwData); BBProcessor_initial(pHwData); // Async operation Wb35Reg_WriteSync( pHwData, 0x103c, BB3c ); Wb35Reg_WriteSync( pHwData, 0x1054, BB54 ); } }