#ifndef __LINUX_UHCI_HCD_H #define __LINUX_UHCI_HCD_H #include <linux/list.h> #include <linux/usb.h> #define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT) #define PIPE_DEVEP_MASK 0x0007ff00 /* * Universal Host Controller Interface data structures and defines */ /* Command register */ #define USBCMD 0 #define USBCMD_RS 0x0001 /* Run/Stop */ #define USBCMD_HCRESET 0x0002 /* Host reset */ #define USBCMD_GRESET 0x0004 /* Global reset */ #define USBCMD_EGSM 0x0008 /* Global Suspend Mode */ #define USBCMD_FGR 0x0010 /* Force Global Resume */ #define USBCMD_SWDBG 0x0020 /* SW Debug mode */ #define USBCMD_CF 0x0040 /* Config Flag (sw only) */ #define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */ /* Status register */ #define USBSTS 2 #define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */ #define USBSTS_ERROR 0x0002 /* Interrupt due to error */ #define USBSTS_RD 0x0004 /* Resume Detect */ #define USBSTS_HSE 0x0008 /* Host System Error: PCI problems */ #define USBSTS_HCPE 0x0010 /* Host Controller Process Error: * the schedule is buggy */ #define USBSTS_HCH 0x0020 /* HC Halted */ /* Interrupt enable register */ #define USBINTR 4 #define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */ #define USBINTR_RESUME 0x0002 /* Resume interrupt enable */ #define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */ #define USBINTR_SP 0x0008 /* Short packet interrupt enable */ #define USBFRNUM 6 #define USBFLBASEADD 8 #define USBSOF 12 #define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms */ /* USB port status and control registers */ #define USBPORTSC1 16 #define USBPORTSC2 18 #define USBPORTSC_CCS 0x0001 /* Current Connect Status * ("device present") */ #define USBPORTSC_CSC 0x0002 /* Connect Status Change */ #define USBPORTSC_PE 0x0004 /* Port Enable */ #define USBPORTSC_PEC 0x0008 /* Port Enable Change */ #define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */ #define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */ #define USBPORTSC_RD 0x0040 /* Resume Detect */ #define USBPORTSC_RES1 0x0080 /* reserved, always 1 */ #define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */ #define USBPORTSC_PR 0x0200 /* Port Reset */ /* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */ #define USBPORTSC_OC 0x0400 /* Over Current condition */ #define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */ #define USBPORTSC_SUSP 0x1000 /* Suspend */ #define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */ #define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */ #define USBPORTSC_RES4 0x8000 /* reserved, write zeroes */ /* Legacy support register */ #define USBLEGSUP 0xc0 #define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */ #define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */ #define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */ #define UHCI_PTR_BITS __constant_cpu_to_le32(0x000F) #define UHCI_PTR_TERM __constant_cpu_to_le32(0x0001) #define UHCI_PTR_QH __constant_cpu_to_le32(0x0002) #define UHCI_PTR_DEPTH __constant_cpu_to_le32(0x0004) #define UHCI_PTR_BREADTH __constant_cpu_to_le32(0x0000) #define UHCI_NUMFRAMES 1024 /* in the frame list [array] */ #define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */ #define CAN_SCHEDULE_FRAMES 1000 /* how far in the future frames * can be scheduled */ #define MAX_PHASE 32 /* Periodic scheduling length */ /* When no queues need Full-Speed Bandwidth Reclamation, * delay this long before turning FSBR off */ #define FSBR_OFF_DELAY msecs_to_jiffies(10) /* If a queue hasn't advanced after this much time, assume it is stuck */ #define QH_WAIT_TIMEOUT msecs_to_jiffies(200) /* * Queue Headers */ /* * One role of a QH is to hold a queue of TDs for some endpoint. One QH goes * with each endpoint, and qh->element (updated by the HC) is either: * - the next unprocessed TD in the endpoint's queue, or * - UHCI_PTR_TERM (when there's no more traffic for this endpoint). * * The other role of a QH is to serve as a "skeleton" framelist entry, so we * can easily splice a QH for some endpoint into the schedule at the right * place. Then qh->element is UHCI_PTR_TERM. * * In the schedule, qh->link maintains a list of QHs seen by the HC: * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ... * * qh->node is the software equivalent of qh->link. The differences * are that the software list is doubly-linked and QHs in the UNLINKING * state are on the software list but not the hardware schedule. * * For bookkeeping purposes we maintain QHs even for Isochronous endpoints, * but they never get added to the hardware schedule. */ #define QH_STATE_IDLE 1 /* QH is not being used */ #define QH_STATE_UNLINKING 2 /* QH has been removed from the * schedule but the hardware may * still be using it */ #define QH_STATE_ACTIVE 3 /* QH is on the schedule */ struct uhci_qh { /* Hardware fields */ __le32 link; /* Next QH in the schedule */ __le32 element; /* Queue element (TD) pointer */ /* Software fields */ struct list_head node; /* Node in the list of QHs */ struct usb_host_endpoint *hep; /* Endpoint information */ struct usb_device *udev; struct list_head queue; /* Queue of urbps for this QH */ struct uhci_qh *skel; /* Skeleton for this QH */ struct uhci_td *dummy_td; /* Dummy TD to end the queue */ struct uhci_td *post_td; /* Last TD completed */ struct usb_iso_packet_descriptor *iso_packet_desc; /* Next urb->iso_frame_desc entry */ unsigned long advance_jiffies; /* Time of last queue advance */ unsigned int unlink_frame; /* When the QH was unlinked */ unsigned int period; /* For Interrupt and Isochronous QHs */ short phase; /* Between 0 and period-1 */ short load; /* Periodic time requirement, in us */ unsigned int iso_frame; /* Frame # for iso_packet_desc */ int iso_status; /* Status for Isochronous URBs */ int state; /* QH_STATE_xxx; see above */ int type; /* Queue type (control, bulk, etc) */ dma_addr_t dma_handle; unsigned int initial_toggle:1; /* Endpoint's current toggle value */ unsigned int needs_fixup:1; /* Must fix the TD toggle values */ unsigned int is_stopped:1; /* Queue was stopped by error/unlink */ unsigned int wait_expired:1; /* QH_WAIT_TIMEOUT has expired */ unsigned int bandwidth_reserved:1; /* Periodic bandwidth has * been allocated */ } __attribute__((aligned(16))); /* * We need a special accessor for the element pointer because it is * subject to asynchronous updates by the controller. */ static inline __le32 qh_element(struct uhci_qh *qh) { __le32 element = qh->element; barrier(); return element; } /* * Transfer Descriptors */ /* * for TD <status>: */ #define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */ #define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */ #define TD_CTRL_C_ERR_SHIFT 27 #define TD_CTRL_LS (1 << 26) /* Low Speed Device */ #define TD_CTRL_IOS (1 << 25) /* Isochronous Select */ #define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */ #define TD_CTRL_ACTIVE (1 << 23) /* TD Active */ #define TD_CTRL_STALLED (1 << 22) /* TD Stalled */ #define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */ #define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */ #define TD_CTRL_NAK (1 << 19) /* NAK Received */ #define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */ #define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */ #define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */ #define TD_CTRL_ANY_ERROR (TD_CTRL_STALLED | TD_CTRL_DBUFERR | \ TD_CTRL_BABBLE | TD_CTRL_CRCTIME | \ TD_CTRL_BITSTUFF) #define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT) #define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000) #define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & \ TD_CTRL_ACTLEN_MASK) /* 1-based */ /* * for TD <info>: (a.k.a. Token) */ #define td_token(td) le32_to_cpu((td)->token) #define TD_TOKEN_DEVADDR_SHIFT 8 #define TD_TOKEN_TOGGLE_SHIFT 19 #define TD_TOKEN_TOGGLE (1 << 19) #define TD_TOKEN_EXPLEN_SHIFT 21 #define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n-1 */ #define TD_TOKEN_PID_MASK 0xFF #define uhci_explen(len) ((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \ TD_TOKEN_EXPLEN_SHIFT) #define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \ 1) & TD_TOKEN_EXPLEN_MASK) #define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1) #define uhci_endpoint(token) (((token) >> 15) & 0xf) #define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f) #define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff) #define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK) #define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN) #define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN) /* * The documentation says "4 words for hardware, 4 words for software". * * That's silly, the hardware doesn't care. The hardware only cares that * the hardware words are 16-byte aligned, and we can have any amount of * sw space after the TD entry. * * td->link points to either another TD (not necessarily for the same urb or * even the same endpoint), or nothing (PTR_TERM), or a QH. */ struct uhci_td { /* Hardware fields */ __le32 link; __le32 status; __le32 token; __le32 buffer; /* Software fields */ dma_addr_t dma_handle; struct list_head list; int frame; /* for iso: what frame? */ struct list_head fl_list; } __attribute__((aligned(16))); /* * We need a special accessor for the control/status word because it is * subject to asynchronous updates by the controller. */ static inline u32 td_status(struct uhci_td *td) { __le32 status = td->status; barrier(); return le32_to_cpu(status); } /* * Skeleton Queue Headers */ /* * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for * automatic queuing. To make it easy to insert entries into the schedule, * we have a skeleton of QHs for each predefined Interrupt latency, * low-speed control, full-speed control, bulk, and terminating QH * (see explanation for the terminating QH below). * * When we want to add a new QH, we add it to the end of the list for the * skeleton QH. For instance, the schedule list can look like this: * * skel int128 QH * dev 1 interrupt QH * dev 5 interrupt QH * skel int64 QH * skel int32 QH * ... * skel int1 QH * skel low-speed control QH * dev 5 control QH * skel full-speed control QH * skel bulk QH * dev 1 bulk QH * dev 2 bulk QH * skel terminating QH * * The terminating QH is used for 2 reasons: * - To place a terminating TD which is used to workaround a PIIX bug * (see Intel errata for explanation), and * - To loop back to the full-speed control queue for full-speed bandwidth * reclamation. * * There's a special skeleton QH for Isochronous QHs. It never appears * on the schedule, and Isochronous TDs go on the schedule before the * the skeleton QHs. The hardware accesses them directly rather than * through their QH, which is used only for bookkeeping purposes. * While the UHCI spec doesn't forbid the use of QHs for Isochronous, * it doesn't use them either. And the spec says that queues never * advance on an error completion status, which makes them totally * unsuitable for Isochronous transfers. */ #define UHCI_NUM_SKELQH 14 #define skel_unlink_qh skelqh[0] #define skel_iso_qh skelqh[1] #define skel_int128_qh skelqh[2] #define skel_int64_qh skelqh[3] #define skel_int32_qh skelqh[4] #define skel_int16_qh skelqh[5] #define skel_int8_qh skelqh[6] #define skel_int4_qh skelqh[7] #define skel_int2_qh skelqh[8] #define skel_int1_qh skelqh[9] #define skel_ls_control_qh skelqh[10] #define skel_fs_control_qh skelqh[11] #define skel_bulk_qh skelqh[12] #define skel_term_qh skelqh[13] /* Find the skelqh entry corresponding to an interval exponent */ #define UHCI_SKEL_INDEX(exponent) (9 - exponent) /* * The UHCI controller and root hub */ /* * States for the root hub: * * To prevent "bouncing" in the presence of electrical noise, * when there are no devices attached we delay for 1 second in the * RUNNING_NODEVS state before switching to the AUTO_STOPPED state. * * (Note that the AUTO_STOPPED state won't be necessary once the hub * driver learns to autosuspend.) */ enum uhci_rh_state { /* In the following states the HC must be halted. * These two must come first. */ UHCI_RH_RESET, UHCI_RH_SUSPENDED, UHCI_RH_AUTO_STOPPED, UHCI_RH_RESUMING, /* In this state the HC changes from running to halted, * so it can legally appear either way. */ UHCI_RH_SUSPENDING, /* In the following states it's an error if the HC is halted. * These two must come last. */ UHCI_RH_RUNNING, /* The normal state */ UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */ }; /* * The full UHCI controller information: */ struct uhci_hcd { /* debugfs */ struct dentry *dentry; /* Grabbed from PCI */ unsigned long io_addr; struct dma_pool *qh_pool; struct dma_pool *td_pool; struct uhci_td *term_td; /* Terminating TD, see UHCI bug */ struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QHs */ struct uhci_qh *next_qh; /* Next QH to scan */ spinlock_t lock; dma_addr_t frame_dma_handle; /* Hardware frame list */ __le32 *frame; void **frame_cpu; /* CPU's frame list */ enum uhci_rh_state rh_state; unsigned long auto_stop_time; /* When to AUTO_STOP */ unsigned int frame_number; /* As of last check */ unsigned int is_stopped; #define UHCI_IS_STOPPED 9999 /* Larger than a frame # */ unsigned int last_iso_frame; /* Frame of last scan */ unsigned int cur_iso_frame; /* Frame for current scan */ unsigned int scan_in_progress:1; /* Schedule scan is running */ unsigned int need_rescan:1; /* Redo the schedule scan */ unsigned int dead:1; /* Controller has died */ unsigned int working_RD:1; /* Suspended root hub doesn't need to be polled */ unsigned int is_initialized:1; /* Data structure is usable */ unsigned int fsbr_is_on:1; /* FSBR is turned on */ unsigned int fsbr_is_wanted:1; /* Does any URB want FSBR? */ unsigned int fsbr_expiring:1; /* FSBR is timing out */ struct timer_list fsbr_timer; /* For turning off FBSR */ /* Support for port suspend/resume/reset */ unsigned long port_c_suspend; /* Bit-arrays of ports */ unsigned long resuming_ports; unsigned long ports_timeout; /* Time to stop signalling */ struct list_head idle_qh_list; /* Where the idle QHs live */ int rh_numports; /* Number of root-hub ports */ wait_queue_head_t waitqh; /* endpoint_disable waiters */ int num_waiting; /* Number of waiters */ int total_load; /* Sum of array values */ short load[MAX_PHASE]; /* Periodic allocations */ }; /* Convert between a usb_hcd pointer and the corresponding uhci_hcd */ static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd) { return (struct uhci_hcd *) (hcd->hcd_priv); } static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci) { return container_of((void *) uhci, struct usb_hcd, hcd_priv); } #define uhci_dev(u) (uhci_to_hcd(u)->self.controller) /* Utility macro for comparing frame numbers */ #define uhci_frame_before_eq(f1, f2) (0 <= (int) ((f2) - (f1))) /* * Private per-URB data */ struct urb_priv { struct list_head node; /* Node in the QH's urbp list */ struct urb *urb; struct uhci_qh *qh; /* QH for this URB */ struct list_head td_list; unsigned fsbr:1; /* URB wants FSBR */ }; /* * Locking in uhci.c * * Almost everything relating to the hardware schedule and processing * of URBs is protected by uhci->lock. urb->status is protected by * urb->lock; that's the one exception. * * To prevent deadlocks, never lock uhci->lock while holding urb->lock. * The safe order of locking is: * * #1 uhci->lock * #2 urb->lock */ /* Some special IDs */ #define PCI_VENDOR_ID_GENESYS 0x17a0 #define PCI_DEVICE_ID_GL880S_UHCI 0x8083 #endif