/** * eCryptfs: Linux filesystem encryption layer * * Copyright (C) 1997-2003 Erez Zadok * Copyright (C) 2001-2003 Stony Brook University * Copyright (C) 2004-2007 International Business Machines Corp. * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> * Michael C. Thompson <mcthomps@us.ibm.com> * Tyler Hicks <tyhicks@ou.edu> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ #include <linux/dcache.h> #include <linux/file.h> #include <linux/module.h> #include <linux/namei.h> #include <linux/skbuff.h> #include <linux/crypto.h> #include <linux/netlink.h> #include <linux/mount.h> #include <linux/pagemap.h> #include <linux/key.h> #include <linux/parser.h> #include <linux/fs_stack.h> #include "ecryptfs_kernel.h" /** * Module parameter that defines the ecryptfs_verbosity level. */ int ecryptfs_verbosity = 0; module_param(ecryptfs_verbosity, int, 0); MODULE_PARM_DESC(ecryptfs_verbosity, "Initial verbosity level (0 or 1; defaults to " "0, which is Quiet)"); /** * Module parameter that defines the number of netlink message buffer * elements */ unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS; module_param(ecryptfs_message_buf_len, uint, 0); MODULE_PARM_DESC(ecryptfs_message_buf_len, "Number of message buffer elements"); /** * Module parameter that defines the maximum guaranteed amount of time to wait * for a response through netlink. The actual sleep time will be, more than * likely, a small amount greater than this specified value, but only less if * the netlink message successfully arrives. */ signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ; module_param(ecryptfs_message_wait_timeout, long, 0); MODULE_PARM_DESC(ecryptfs_message_wait_timeout, "Maximum number of seconds that an operation will " "sleep while waiting for a message response from " "userspace"); /** * Module parameter that is an estimate of the maximum number of users * that will be concurrently using eCryptfs. Set this to the right * value to balance performance and memory use. */ unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS; module_param(ecryptfs_number_of_users, uint, 0); MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of " "concurrent users of eCryptfs"); unsigned int ecryptfs_transport = ECRYPTFS_DEFAULT_TRANSPORT; void __ecryptfs_printk(const char *fmt, ...) { va_list args; va_start(args, fmt); if (fmt[1] == '7') { /* KERN_DEBUG */ if (ecryptfs_verbosity >= 1) vprintk(fmt, args); } else vprintk(fmt, args); va_end(args); } /** * ecryptfs_init_persistent_file * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with * the lower dentry and the lower mount set * * eCryptfs only ever keeps a single open file for every lower * inode. All I/O operations to the lower inode occur through that * file. When the first eCryptfs dentry that interposes with the first * lower dentry for that inode is created, this function creates the * persistent file struct and associates it with the eCryptfs * inode. When the eCryptfs inode is destroyed, the file is closed. * * The persistent file will be opened with read/write permissions, if * possible. Otherwise, it is opened read-only. * * This function does nothing if a lower persistent file is already * associated with the eCryptfs inode. * * Returns zero on success; non-zero otherwise */ static int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry) { struct ecryptfs_inode_info *inode_info = ecryptfs_inode_to_private(ecryptfs_dentry->d_inode); int rc = 0; mutex_lock(&inode_info->lower_file_mutex); if (!inode_info->lower_file) { struct dentry *lower_dentry; struct vfsmount *lower_mnt = ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry); lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); /* Corresponding dput() and mntput() are done when the * persistent file is fput() when the eCryptfs inode * is destroyed. */ dget(lower_dentry); mntget(lower_mnt); inode_info->lower_file = dentry_open(lower_dentry, lower_mnt, (O_RDWR | O_LARGEFILE)); if (IS_ERR(inode_info->lower_file)) { dget(lower_dentry); mntget(lower_mnt); inode_info->lower_file = dentry_open(lower_dentry, lower_mnt, (O_RDONLY | O_LARGEFILE)); } if (IS_ERR(inode_info->lower_file)) { printk(KERN_ERR "Error opening lower persistent file " "for lower_dentry [0x%p] and lower_mnt [0x%p]\n", lower_dentry, lower_mnt); rc = PTR_ERR(inode_info->lower_file); inode_info->lower_file = NULL; } } mutex_unlock(&inode_info->lower_file_mutex); return rc; } /** * ecryptfs_interpose * @lower_dentry: Existing dentry in the lower filesystem * @dentry: ecryptfs' dentry * @sb: ecryptfs's super_block * @flag: If set to true, then d_add is called, else d_instantiate is called * * Interposes upper and lower dentries. * * Returns zero on success; non-zero otherwise */ int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry, struct super_block *sb, int flag) { struct inode *lower_inode; struct inode *inode; int rc = 0; lower_inode = lower_dentry->d_inode; if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) { rc = -EXDEV; goto out; } if (!igrab(lower_inode)) { rc = -ESTALE; goto out; } inode = iget5_locked(sb, (unsigned long)lower_inode, ecryptfs_inode_test, ecryptfs_inode_set, lower_inode); if (!inode) { rc = -EACCES; iput(lower_inode); goto out; } if (inode->i_state & I_NEW) unlock_new_inode(inode); else iput(lower_inode); if (S_ISLNK(lower_inode->i_mode)) inode->i_op = &ecryptfs_symlink_iops; else if (S_ISDIR(lower_inode->i_mode)) inode->i_op = &ecryptfs_dir_iops; if (S_ISDIR(lower_inode->i_mode)) inode->i_fop = &ecryptfs_dir_fops; if (special_file(lower_inode->i_mode)) init_special_inode(inode, lower_inode->i_mode, lower_inode->i_rdev); dentry->d_op = &ecryptfs_dops; if (flag) d_add(dentry, inode); else d_instantiate(dentry, inode); fsstack_copy_attr_all(inode, lower_inode, NULL); /* This size will be overwritten for real files w/ headers and * other metadata */ fsstack_copy_inode_size(inode, lower_inode); rc = ecryptfs_init_persistent_file(dentry); if (rc) { printk(KERN_ERR "%s: Error attempting to initialize the " "persistent file for the dentry with name [%s]; " "rc = [%d]\n", __func__, dentry->d_name.name, rc); goto out; } out: return rc; } enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig, ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher, ecryptfs_opt_ecryptfs_key_bytes, ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata, ecryptfs_opt_encrypted_view, ecryptfs_opt_err }; static match_table_t tokens = { {ecryptfs_opt_sig, "sig=%s"}, {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"}, {ecryptfs_opt_cipher, "cipher=%s"}, {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"}, {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"}, {ecryptfs_opt_passthrough, "ecryptfs_passthrough"}, {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"}, {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"}, {ecryptfs_opt_err, NULL} }; static int ecryptfs_init_global_auth_toks( struct ecryptfs_mount_crypt_stat *mount_crypt_stat) { struct ecryptfs_global_auth_tok *global_auth_tok; int rc = 0; list_for_each_entry(global_auth_tok, &mount_crypt_stat->global_auth_tok_list, mount_crypt_stat_list) { rc = ecryptfs_keyring_auth_tok_for_sig( &global_auth_tok->global_auth_tok_key, &global_auth_tok->global_auth_tok, global_auth_tok->sig); if (rc) { printk(KERN_ERR "Could not find valid key in user " "session keyring for sig specified in mount " "option: [%s]\n", global_auth_tok->sig); global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID; rc = 0; } else global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID; } return rc; } static void ecryptfs_init_mount_crypt_stat( struct ecryptfs_mount_crypt_stat *mount_crypt_stat) { memset((void *)mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list); mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex); mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED; } /** * ecryptfs_parse_options * @sb: The ecryptfs super block * @options: The options pased to the kernel * * Parse mount options: * debug=N - ecryptfs_verbosity level for debug output * sig=XXX - description(signature) of the key to use * * Returns the dentry object of the lower-level (lower/interposed) * directory; We want to mount our stackable file system on top of * that lower directory. * * The signature of the key to use must be the description of a key * already in the keyring. Mounting will fail if the key can not be * found. * * Returns zero on success; non-zero on error */ static int ecryptfs_parse_options(struct super_block *sb, char *options) { char *p; int rc = 0; int sig_set = 0; int cipher_name_set = 0; int cipher_key_bytes; int cipher_key_bytes_set = 0; struct ecryptfs_mount_crypt_stat *mount_crypt_stat = &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; substring_t args[MAX_OPT_ARGS]; int token; char *sig_src; char *cipher_name_dst; char *cipher_name_src; char *cipher_key_bytes_src; int cipher_name_len; if (!options) { rc = -EINVAL; goto out; } ecryptfs_init_mount_crypt_stat(mount_crypt_stat); while ((p = strsep(&options, ",")) != NULL) { if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case ecryptfs_opt_sig: case ecryptfs_opt_ecryptfs_sig: sig_src = args[0].from; rc = ecryptfs_add_global_auth_tok(mount_crypt_stat, sig_src); if (rc) { printk(KERN_ERR "Error attempting to register " "global sig; rc = [%d]\n", rc); goto out; } sig_set = 1; break; case ecryptfs_opt_cipher: case ecryptfs_opt_ecryptfs_cipher: cipher_name_src = args[0].from; cipher_name_dst = mount_crypt_stat-> global_default_cipher_name; strncpy(cipher_name_dst, cipher_name_src, ECRYPTFS_MAX_CIPHER_NAME_SIZE); ecryptfs_printk(KERN_DEBUG, "The mount_crypt_stat " "global_default_cipher_name set to: " "[%s]\n", cipher_name_dst); cipher_name_set = 1; break; case ecryptfs_opt_ecryptfs_key_bytes: cipher_key_bytes_src = args[0].from; cipher_key_bytes = (int)simple_strtol(cipher_key_bytes_src, &cipher_key_bytes_src, 0); mount_crypt_stat->global_default_cipher_key_size = cipher_key_bytes; ecryptfs_printk(KERN_DEBUG, "The mount_crypt_stat " "global_default_cipher_key_size " "set to: [%d]\n", mount_crypt_stat-> global_default_cipher_key_size); cipher_key_bytes_set = 1; break; case ecryptfs_opt_passthrough: mount_crypt_stat->flags |= ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED; break; case ecryptfs_opt_xattr_metadata: mount_crypt_stat->flags |= ECRYPTFS_XATTR_METADATA_ENABLED; break; case ecryptfs_opt_encrypted_view: mount_crypt_stat->flags |= ECRYPTFS_XATTR_METADATA_ENABLED; mount_crypt_stat->flags |= ECRYPTFS_ENCRYPTED_VIEW_ENABLED; break; case ecryptfs_opt_err: default: ecryptfs_printk(KERN_WARNING, "eCryptfs: unrecognized option '%s'\n", p); } } if (!sig_set) { rc = -EINVAL; ecryptfs_printk(KERN_ERR, "You must supply at least one valid " "auth tok signature as a mount " "parameter; see the eCryptfs README\n"); goto out; } if (!cipher_name_set) { cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER); if (unlikely(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE)) { rc = -EINVAL; BUG(); goto out; } memcpy(mount_crypt_stat->global_default_cipher_name, ECRYPTFS_DEFAULT_CIPHER, cipher_name_len); mount_crypt_stat->global_default_cipher_name[cipher_name_len] = '\0'; } if (!cipher_key_bytes_set) { mount_crypt_stat->global_default_cipher_key_size = 0; } mutex_lock(&key_tfm_list_mutex); if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name, NULL)) rc = ecryptfs_add_new_key_tfm( NULL, mount_crypt_stat->global_default_cipher_name, mount_crypt_stat->global_default_cipher_key_size); mutex_unlock(&key_tfm_list_mutex); if (rc) { printk(KERN_ERR "Error attempting to initialize cipher with " "name = [%s] and key size = [%td]; rc = [%d]\n", mount_crypt_stat->global_default_cipher_name, mount_crypt_stat->global_default_cipher_key_size, rc); rc = -EINVAL; goto out; } rc = ecryptfs_init_global_auth_toks(mount_crypt_stat); if (rc) { printk(KERN_WARNING "One or more global auth toks could not " "properly register; rc = [%d]\n", rc); } rc = 0; out: return rc; } struct kmem_cache *ecryptfs_sb_info_cache; /** * ecryptfs_fill_super * @sb: The ecryptfs super block * @raw_data: The options passed to mount * @silent: Not used but required by function prototype * * Sets up what we can of the sb, rest is done in ecryptfs_read_super * * Returns zero on success; non-zero otherwise */ static int ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent) { int rc = 0; /* Released in ecryptfs_put_super() */ ecryptfs_set_superblock_private(sb, kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL)); if (!ecryptfs_superblock_to_private(sb)) { ecryptfs_printk(KERN_WARNING, "Out of memory\n"); rc = -ENOMEM; goto out; } sb->s_op = &ecryptfs_sops; /* Released through deactivate_super(sb) from get_sb_nodev */ sb->s_root = d_alloc(NULL, &(const struct qstr) { .hash = 0,.name = "/",.len = 1}); if (!sb->s_root) { ecryptfs_printk(KERN_ERR, "d_alloc failed\n"); rc = -ENOMEM; goto out; } sb->s_root->d_op = &ecryptfs_dops; sb->s_root->d_sb = sb; sb->s_root->d_parent = sb->s_root; /* Released in d_release when dput(sb->s_root) is called */ /* through deactivate_super(sb) from get_sb_nodev() */ ecryptfs_set_dentry_private(sb->s_root, kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL)); if (!ecryptfs_dentry_to_private(sb->s_root)) { ecryptfs_printk(KERN_ERR, "dentry_info_cache alloc failed\n"); rc = -ENOMEM; goto out; } rc = 0; out: /* Should be able to rely on deactivate_super called from * get_sb_nodev */ return rc; } /** * ecryptfs_read_super * @sb: The ecryptfs super block * @dev_name: The path to mount over * * Read the super block of the lower filesystem, and use * ecryptfs_interpose to create our initial inode and super block * struct. */ static int ecryptfs_read_super(struct super_block *sb, const char *dev_name) { int rc; struct nameidata nd; struct dentry *lower_root; struct vfsmount *lower_mnt; memset(&nd, 0, sizeof(struct nameidata)); rc = path_lookup(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &nd); if (rc) { ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n"); goto out; } lower_root = nd.path.dentry; lower_mnt = nd.path.mnt; ecryptfs_set_superblock_lower(sb, lower_root->d_sb); sb->s_maxbytes = lower_root->d_sb->s_maxbytes; sb->s_blocksize = lower_root->d_sb->s_blocksize; ecryptfs_set_dentry_lower(sb->s_root, lower_root); ecryptfs_set_dentry_lower_mnt(sb->s_root, lower_mnt); rc = ecryptfs_interpose(lower_root, sb->s_root, sb, 0); if (rc) goto out_free; rc = 0; goto out; out_free: path_put(&nd.path); out: return rc; } /** * ecryptfs_get_sb * @fs_type * @flags * @dev_name: The path to mount over * @raw_data: The options passed into the kernel * * The whole ecryptfs_get_sb process is broken into 4 functions: * ecryptfs_parse_options(): handle options passed to ecryptfs, if any * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block * with as much information as it can before needing * the lower filesystem. * ecryptfs_read_super(): this accesses the lower filesystem and uses * ecryptfs_interpolate to perform most of the linking * ecryptfs_interpolate(): links the lower filesystem into ecryptfs */ static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *raw_data, struct vfsmount *mnt) { int rc; struct super_block *sb; rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt); if (rc < 0) { printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc); goto out; } sb = mnt->mnt_sb; rc = ecryptfs_parse_options(sb, raw_data); if (rc) { printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc); goto out_abort; } rc = ecryptfs_read_super(sb, dev_name); if (rc) { printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc); goto out_abort; } goto out; out_abort: dput(sb->s_root); up_write(&sb->s_umount); deactivate_super(sb); out: return rc; } /** * ecryptfs_kill_block_super * @sb: The ecryptfs super block * * Used to bring the superblock down and free the private data. * Private data is free'd in ecryptfs_put_super() */ static void ecryptfs_kill_block_super(struct super_block *sb) { generic_shutdown_super(sb); } static struct file_system_type ecryptfs_fs_type = { .owner = THIS_MODULE, .name = "ecryptfs", .get_sb = ecryptfs_get_sb, .kill_sb = ecryptfs_kill_block_super, .fs_flags = 0 }; /** * inode_info_init_once * * Initializes the ecryptfs_inode_info_cache when it is created */ static void inode_info_init_once(struct kmem_cache *cachep, void *vptr) { struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr; inode_init_once(&ei->vfs_inode); } static struct ecryptfs_cache_info { struct kmem_cache **cache; const char *name; size_t size; void (*ctor)(struct kmem_cache *cache, void *obj); } ecryptfs_cache_infos[] = { { .cache = &ecryptfs_auth_tok_list_item_cache, .name = "ecryptfs_auth_tok_list_item", .size = sizeof(struct ecryptfs_auth_tok_list_item), }, { .cache = &ecryptfs_file_info_cache, .name = "ecryptfs_file_cache", .size = sizeof(struct ecryptfs_file_info), }, { .cache = &ecryptfs_dentry_info_cache, .name = "ecryptfs_dentry_info_cache", .size = sizeof(struct ecryptfs_dentry_info), }, { .cache = &ecryptfs_inode_info_cache, .name = "ecryptfs_inode_cache", .size = sizeof(struct ecryptfs_inode_info), .ctor = inode_info_init_once, }, { .cache = &ecryptfs_sb_info_cache, .name = "ecryptfs_sb_cache", .size = sizeof(struct ecryptfs_sb_info), }, { .cache = &ecryptfs_header_cache_1, .name = "ecryptfs_headers_1", .size = PAGE_CACHE_SIZE, }, { .cache = &ecryptfs_header_cache_2, .name = "ecryptfs_headers_2", .size = PAGE_CACHE_SIZE, }, { .cache = &ecryptfs_xattr_cache, .name = "ecryptfs_xattr_cache", .size = PAGE_CACHE_SIZE, }, { .cache = &ecryptfs_key_record_cache, .name = "ecryptfs_key_record_cache", .size = sizeof(struct ecryptfs_key_record), }, { .cache = &ecryptfs_key_sig_cache, .name = "ecryptfs_key_sig_cache", .size = sizeof(struct ecryptfs_key_sig), }, { .cache = &ecryptfs_global_auth_tok_cache, .name = "ecryptfs_global_auth_tok_cache", .size = sizeof(struct ecryptfs_global_auth_tok), }, { .cache = &ecryptfs_key_tfm_cache, .name = "ecryptfs_key_tfm_cache", .size = sizeof(struct ecryptfs_key_tfm), }, }; static void ecryptfs_free_kmem_caches(void) { int i; for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) { struct ecryptfs_cache_info *info; info = &ecryptfs_cache_infos[i]; if (*(info->cache)) kmem_cache_destroy(*(info->cache)); } } /** * ecryptfs_init_kmem_caches * * Returns zero on success; non-zero otherwise */ static int ecryptfs_init_kmem_caches(void) { int i; for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) { struct ecryptfs_cache_info *info; info = &ecryptfs_cache_infos[i]; *(info->cache) = kmem_cache_create(info->name, info->size, 0, SLAB_HWCACHE_ALIGN, info->ctor); if (!*(info->cache)) { ecryptfs_free_kmem_caches(); ecryptfs_printk(KERN_WARNING, "%s: " "kmem_cache_create failed\n", info->name); return -ENOMEM; } } return 0; } static struct kobject *ecryptfs_kobj; static ssize_t version_show(struct kobject *kobj, struct kobj_attribute *attr, char *buff) { return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK); } static struct kobj_attribute version_attr = __ATTR_RO(version); static struct attribute *attributes[] = { &version_attr.attr, NULL, }; static struct attribute_group attr_group = { .attrs = attributes, }; static int do_sysfs_registration(void) { int rc; ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj); if (!ecryptfs_kobj) { printk(KERN_ERR "Unable to create ecryptfs kset\n"); rc = -ENOMEM; goto out; } rc = sysfs_create_group(ecryptfs_kobj, &attr_group); if (rc) { printk(KERN_ERR "Unable to create ecryptfs version attributes\n"); kobject_put(ecryptfs_kobj); } out: return rc; } static void do_sysfs_unregistration(void) { sysfs_remove_group(ecryptfs_kobj, &attr_group); kobject_put(ecryptfs_kobj); } static int __init ecryptfs_init(void) { int rc; if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) { rc = -EINVAL; ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is " "larger than the host's page size, and so " "eCryptfs cannot run on this system. The " "default eCryptfs extent size is [%d] bytes; " "the page size is [%d] bytes.\n", ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE); goto out; } rc = ecryptfs_init_kmem_caches(); if (rc) { printk(KERN_ERR "Failed to allocate one or more kmem_cache objects\n"); goto out; } rc = register_filesystem(&ecryptfs_fs_type); if (rc) { printk(KERN_ERR "Failed to register filesystem\n"); goto out_free_kmem_caches; } rc = do_sysfs_registration(); if (rc) { printk(KERN_ERR "sysfs registration failed\n"); goto out_unregister_filesystem; } rc = ecryptfs_init_messaging(ecryptfs_transport); if (rc) { ecryptfs_printk(KERN_ERR, "Failure occured while attempting to " "initialize the eCryptfs netlink socket\n"); goto out_do_sysfs_unregistration; } rc = ecryptfs_init_crypto(); if (rc) { printk(KERN_ERR "Failure whilst attempting to init crypto; " "rc = [%d]\n", rc); goto out_release_messaging; } if (ecryptfs_verbosity > 0) printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values " "will be written to the syslog!\n", ecryptfs_verbosity); goto out; out_release_messaging: ecryptfs_release_messaging(ecryptfs_transport); out_do_sysfs_unregistration: do_sysfs_unregistration(); out_unregister_filesystem: unregister_filesystem(&ecryptfs_fs_type); out_free_kmem_caches: ecryptfs_free_kmem_caches(); out: return rc; } static void __exit ecryptfs_exit(void) { int rc; rc = ecryptfs_destroy_crypto(); if (rc) printk(KERN_ERR "Failure whilst attempting to destroy crypto; " "rc = [%d]\n", rc); ecryptfs_release_messaging(ecryptfs_transport); do_sysfs_unregistration(); unregister_filesystem(&ecryptfs_fs_type); ecryptfs_free_kmem_caches(); } MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>"); MODULE_DESCRIPTION("eCryptfs"); MODULE_LICENSE("GPL"); module_init(ecryptfs_init) module_exit(ecryptfs_exit)