/* * linux/fs/ext4/ialloc.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * BSD ufs-inspired inode and directory allocation by * Stephen Tweedie (sct@redhat.com), 1993 * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 */ #include <linux/time.h> #include <linux/fs.h> #include <linux/jbd2.h> #include <linux/stat.h> #include <linux/string.h> #include <linux/quotaops.h> #include <linux/buffer_head.h> #include <linux/random.h> #include <linux/bitops.h> #include <linux/blkdev.h> #include <asm/byteorder.h> #include "ext4.h" #include "ext4_jbd2.h" #include "xattr.h" #include "acl.h" #include "group.h" /* * ialloc.c contains the inodes allocation and deallocation routines */ /* * The free inodes are managed by bitmaps. A file system contains several * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap * block for inodes, N blocks for the inode table and data blocks. * * The file system contains group descriptors which are located after the * super block. Each descriptor contains the number of the bitmap block and * the free blocks count in the block. */ /* * To avoid calling the atomic setbit hundreds or thousands of times, we only * need to use it within a single byte (to ensure we get endianness right). * We can use memset for the rest of the bitmap as there are no other users. */ void mark_bitmap_end(int start_bit, int end_bit, char *bitmap) { int i; if (start_bit >= end_bit) return; ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) ext4_set_bit(i, bitmap); if (i < end_bit) memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); } /* Initializes an uninitialized inode bitmap */ unsigned ext4_init_inode_bitmap(struct super_block *sb, struct buffer_head *bh, ext4_group_t block_group, struct ext4_group_desc *gdp) { struct ext4_sb_info *sbi = EXT4_SB(sb); J_ASSERT_BH(bh, buffer_locked(bh)); /* If checksum is bad mark all blocks and inodes use to prevent * allocation, essentially implementing a per-group read-only flag. */ if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { ext4_error(sb, __func__, "Checksum bad for group %lu\n", block_group); gdp->bg_free_blocks_count = 0; gdp->bg_free_inodes_count = 0; gdp->bg_itable_unused = 0; memset(bh->b_data, 0xff, sb->s_blocksize); return 0; } memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), EXT4_BLOCKS_PER_GROUP(sb), bh->b_data); return EXT4_INODES_PER_GROUP(sb); } /* * Read the inode allocation bitmap for a given block_group, reading * into the specified slot in the superblock's bitmap cache. * * Return buffer_head of bitmap on success or NULL. */ static struct buffer_head * ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) { struct ext4_group_desc *desc; struct buffer_head *bh = NULL; ext4_fsblk_t bitmap_blk; desc = ext4_get_group_desc(sb, block_group, NULL); if (!desc) return NULL; bitmap_blk = ext4_inode_bitmap(sb, desc); bh = sb_getblk(sb, bitmap_blk); if (unlikely(!bh)) { ext4_error(sb, __func__, "Cannot read inode bitmap - " "block_group = %lu, inode_bitmap = %llu", block_group, bitmap_blk); return NULL; } if (bh_uptodate_or_lock(bh)) return bh; spin_lock(sb_bgl_lock(EXT4_SB(sb), block_group)); if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { ext4_init_inode_bitmap(sb, bh, block_group, desc); set_buffer_uptodate(bh); unlock_buffer(bh); spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group)); return bh; } spin_unlock(sb_bgl_lock(EXT4_SB(sb), block_group)); if (bh_submit_read(bh) < 0) { put_bh(bh); ext4_error(sb, __func__, "Cannot read inode bitmap - " "block_group = %lu, inode_bitmap = %llu", block_group, bitmap_blk); return NULL; } return bh; } /* * NOTE! When we get the inode, we're the only people * that have access to it, and as such there are no * race conditions we have to worry about. The inode * is not on the hash-lists, and it cannot be reached * through the filesystem because the directory entry * has been deleted earlier. * * HOWEVER: we must make sure that we get no aliases, * which means that we have to call "clear_inode()" * _before_ we mark the inode not in use in the inode * bitmaps. Otherwise a newly created file might use * the same inode number (not actually the same pointer * though), and then we'd have two inodes sharing the * same inode number and space on the harddisk. */ void ext4_free_inode (handle_t *handle, struct inode * inode) { struct super_block * sb = inode->i_sb; int is_directory; unsigned long ino; struct buffer_head *bitmap_bh = NULL; struct buffer_head *bh2; ext4_group_t block_group; unsigned long bit; struct ext4_group_desc * gdp; struct ext4_super_block * es; struct ext4_sb_info *sbi; int fatal = 0, err; ext4_group_t flex_group; if (atomic_read(&inode->i_count) > 1) { printk ("ext4_free_inode: inode has count=%d\n", atomic_read(&inode->i_count)); return; } if (inode->i_nlink) { printk ("ext4_free_inode: inode has nlink=%d\n", inode->i_nlink); return; } if (!sb) { printk("ext4_free_inode: inode on nonexistent device\n"); return; } sbi = EXT4_SB(sb); ino = inode->i_ino; ext4_debug ("freeing inode %lu\n", ino); /* * Note: we must free any quota before locking the superblock, * as writing the quota to disk may need the lock as well. */ DQUOT_INIT(inode); ext4_xattr_delete_inode(handle, inode); DQUOT_FREE_INODE(inode); DQUOT_DROP(inode); is_directory = S_ISDIR(inode->i_mode); /* Do this BEFORE marking the inode not in use or returning an error */ clear_inode (inode); es = EXT4_SB(sb)->s_es; if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { ext4_error (sb, "ext4_free_inode", "reserved or nonexistent inode %lu", ino); goto error_return; } block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); bitmap_bh = ext4_read_inode_bitmap(sb, block_group); if (!bitmap_bh) goto error_return; BUFFER_TRACE(bitmap_bh, "get_write_access"); fatal = ext4_journal_get_write_access(handle, bitmap_bh); if (fatal) goto error_return; /* Ok, now we can actually update the inode bitmaps.. */ if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group), bit, bitmap_bh->b_data)) ext4_error (sb, "ext4_free_inode", "bit already cleared for inode %lu", ino); else { gdp = ext4_get_group_desc (sb, block_group, &bh2); BUFFER_TRACE(bh2, "get_write_access"); fatal = ext4_journal_get_write_access(handle, bh2); if (fatal) goto error_return; if (gdp) { spin_lock(sb_bgl_lock(sbi, block_group)); le16_add_cpu(&gdp->bg_free_inodes_count, 1); if (is_directory) le16_add_cpu(&gdp->bg_used_dirs_count, -1); gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); spin_unlock(sb_bgl_lock(sbi, block_group)); percpu_counter_inc(&sbi->s_freeinodes_counter); if (is_directory) percpu_counter_dec(&sbi->s_dirs_counter); if (sbi->s_log_groups_per_flex) { flex_group = ext4_flex_group(sbi, block_group); spin_lock(sb_bgl_lock(sbi, flex_group)); sbi->s_flex_groups[flex_group].free_inodes++; spin_unlock(sb_bgl_lock(sbi, flex_group)); } } BUFFER_TRACE(bh2, "call ext4_journal_dirty_metadata"); err = ext4_journal_dirty_metadata(handle, bh2); if (!fatal) fatal = err; } BUFFER_TRACE(bitmap_bh, "call ext4_journal_dirty_metadata"); err = ext4_journal_dirty_metadata(handle, bitmap_bh); if (!fatal) fatal = err; sb->s_dirt = 1; error_return: brelse(bitmap_bh); ext4_std_error(sb, fatal); } /* * There are two policies for allocating an inode. If the new inode is * a directory, then a forward search is made for a block group with both * free space and a low directory-to-inode ratio; if that fails, then of * the groups with above-average free space, that group with the fewest * directories already is chosen. * * For other inodes, search forward from the parent directory\'s block * group to find a free inode. */ static int find_group_dir(struct super_block *sb, struct inode *parent, ext4_group_t *best_group) { ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; unsigned int freei, avefreei; struct ext4_group_desc *desc, *best_desc = NULL; ext4_group_t group; int ret = -1; freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter); avefreei = freei / ngroups; for (group = 0; group < ngroups; group++) { desc = ext4_get_group_desc (sb, group, NULL); if (!desc || !desc->bg_free_inodes_count) continue; if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei) continue; if (!best_desc || (le16_to_cpu(desc->bg_free_blocks_count) > le16_to_cpu(best_desc->bg_free_blocks_count))) { *best_group = group; best_desc = desc; ret = 0; } } return ret; } #define free_block_ratio 10 static int find_group_flex(struct super_block *sb, struct inode *parent, ext4_group_t *best_group) { struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_group_desc *desc; struct buffer_head *bh; struct flex_groups *flex_group = sbi->s_flex_groups; ext4_group_t parent_group = EXT4_I(parent)->i_block_group; ext4_group_t parent_fbg_group = ext4_flex_group(sbi, parent_group); ext4_group_t ngroups = sbi->s_groups_count; int flex_size = ext4_flex_bg_size(sbi); ext4_group_t best_flex = parent_fbg_group; int blocks_per_flex = sbi->s_blocks_per_group * flex_size; int flexbg_free_blocks; int flex_freeb_ratio; ext4_group_t n_fbg_groups; ext4_group_t i; n_fbg_groups = (sbi->s_groups_count + flex_size - 1) >> sbi->s_log_groups_per_flex; find_close_to_parent: flexbg_free_blocks = flex_group[best_flex].free_blocks; flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex; if (flex_group[best_flex].free_inodes && flex_freeb_ratio > free_block_ratio) goto found_flexbg; if (best_flex && best_flex == parent_fbg_group) { best_flex--; goto find_close_to_parent; } for (i = 0; i < n_fbg_groups; i++) { if (i == parent_fbg_group || i == parent_fbg_group - 1) continue; flexbg_free_blocks = flex_group[i].free_blocks; flex_freeb_ratio = flexbg_free_blocks * 100 / blocks_per_flex; if (flex_freeb_ratio > free_block_ratio && flex_group[i].free_inodes) { best_flex = i; goto found_flexbg; } if (flex_group[best_flex].free_inodes == 0 || (flex_group[i].free_blocks > flex_group[best_flex].free_blocks && flex_group[i].free_inodes)) best_flex = i; } if (!flex_group[best_flex].free_inodes || !flex_group[best_flex].free_blocks) return -1; found_flexbg: for (i = best_flex * flex_size; i < ngroups && i < (best_flex + 1) * flex_size; i++) { desc = ext4_get_group_desc(sb, i, &bh); if (le16_to_cpu(desc->bg_free_inodes_count)) { *best_group = i; goto out; } } return -1; out: return 0; } /* * Orlov's allocator for directories. * * We always try to spread first-level directories. * * If there are blockgroups with both free inodes and free blocks counts * not worse than average we return one with smallest directory count. * Otherwise we simply return a random group. * * For the rest rules look so: * * It's OK to put directory into a group unless * it has too many directories already (max_dirs) or * it has too few free inodes left (min_inodes) or * it has too few free blocks left (min_blocks) or * it's already running too large debt (max_debt). * Parent's group is preferred, if it doesn't satisfy these * conditions we search cyclically through the rest. If none * of the groups look good we just look for a group with more * free inodes than average (starting at parent's group). * * Debt is incremented each time we allocate a directory and decremented * when we allocate an inode, within 0--255. */ #define INODE_COST 64 #define BLOCK_COST 256 static int find_group_orlov(struct super_block *sb, struct inode *parent, ext4_group_t *group) { ext4_group_t parent_group = EXT4_I(parent)->i_block_group; struct ext4_sb_info *sbi = EXT4_SB(sb); struct ext4_super_block *es = sbi->s_es; ext4_group_t ngroups = sbi->s_groups_count; int inodes_per_group = EXT4_INODES_PER_GROUP(sb); unsigned int freei, avefreei; ext4_fsblk_t freeb, avefreeb; ext4_fsblk_t blocks_per_dir; unsigned int ndirs; int max_debt, max_dirs, min_inodes; ext4_grpblk_t min_blocks; ext4_group_t i; struct ext4_group_desc *desc; freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); avefreei = freei / ngroups; freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter); avefreeb = freeb; do_div(avefreeb, ngroups); ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); if ((parent == sb->s_root->d_inode) || (EXT4_I(parent)->i_flags & EXT4_TOPDIR_FL)) { int best_ndir = inodes_per_group; ext4_group_t grp; int ret = -1; get_random_bytes(&grp, sizeof(grp)); parent_group = (unsigned)grp % ngroups; for (i = 0; i < ngroups; i++) { grp = (parent_group + i) % ngroups; desc = ext4_get_group_desc(sb, grp, NULL); if (!desc || !desc->bg_free_inodes_count) continue; if (le16_to_cpu(desc->bg_used_dirs_count) >= best_ndir) continue; if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei) continue; if (le16_to_cpu(desc->bg_free_blocks_count) < avefreeb) continue; *group = grp; ret = 0; best_ndir = le16_to_cpu(desc->bg_used_dirs_count); } if (ret == 0) return ret; goto fallback; } blocks_per_dir = ext4_blocks_count(es) - freeb; do_div(blocks_per_dir, ndirs); max_dirs = ndirs / ngroups + inodes_per_group / 16; min_inodes = avefreei - inodes_per_group / 4; min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb) / 4; max_debt = EXT4_BLOCKS_PER_GROUP(sb); max_debt /= max_t(int, blocks_per_dir, BLOCK_COST); if (max_debt * INODE_COST > inodes_per_group) max_debt = inodes_per_group / INODE_COST; if (max_debt > 255) max_debt = 255; if (max_debt == 0) max_debt = 1; for (i = 0; i < ngroups; i++) { *group = (parent_group + i) % ngroups; desc = ext4_get_group_desc(sb, *group, NULL); if (!desc || !desc->bg_free_inodes_count) continue; if (le16_to_cpu(desc->bg_used_dirs_count) >= max_dirs) continue; if (le16_to_cpu(desc->bg_free_inodes_count) < min_inodes) continue; if (le16_to_cpu(desc->bg_free_blocks_count) < min_blocks) continue; return 0; } fallback: for (i = 0; i < ngroups; i++) { *group = (parent_group + i) % ngroups; desc = ext4_get_group_desc(sb, *group, NULL); if (desc && desc->bg_free_inodes_count && le16_to_cpu(desc->bg_free_inodes_count) >= avefreei) return 0; } if (avefreei) { /* * The free-inodes counter is approximate, and for really small * filesystems the above test can fail to find any blockgroups */ avefreei = 0; goto fallback; } return -1; } static int find_group_other(struct super_block *sb, struct inode *parent, ext4_group_t *group) { ext4_group_t parent_group = EXT4_I(parent)->i_block_group; ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; struct ext4_group_desc *desc; ext4_group_t i; /* * Try to place the inode in its parent directory */ *group = parent_group; desc = ext4_get_group_desc(sb, *group, NULL); if (desc && le16_to_cpu(desc->bg_free_inodes_count) && le16_to_cpu(desc->bg_free_blocks_count)) return 0; /* * We're going to place this inode in a different blockgroup from its * parent. We want to cause files in a common directory to all land in * the same blockgroup. But we want files which are in a different * directory which shares a blockgroup with our parent to land in a * different blockgroup. * * So add our directory's i_ino into the starting point for the hash. */ *group = (*group + parent->i_ino) % ngroups; /* * Use a quadratic hash to find a group with a free inode and some free * blocks. */ for (i = 1; i < ngroups; i <<= 1) { *group += i; if (*group >= ngroups) *group -= ngroups; desc = ext4_get_group_desc(sb, *group, NULL); if (desc && le16_to_cpu(desc->bg_free_inodes_count) && le16_to_cpu(desc->bg_free_blocks_count)) return 0; } /* * That failed: try linear search for a free inode, even if that group * has no free blocks. */ *group = parent_group; for (i = 0; i < ngroups; i++) { if (++*group >= ngroups) *group = 0; desc = ext4_get_group_desc(sb, *group, NULL); if (desc && le16_to_cpu(desc->bg_free_inodes_count)) return 0; } return -1; } /* * There are two policies for allocating an inode. If the new inode is * a directory, then a forward search is made for a block group with both * free space and a low directory-to-inode ratio; if that fails, then of * the groups with above-average free space, that group with the fewest * directories already is chosen. * * For other inodes, search forward from the parent directory's block * group to find a free inode. */ struct inode *ext4_new_inode(handle_t *handle, struct inode * dir, int mode) { struct super_block *sb; struct buffer_head *bitmap_bh = NULL; struct buffer_head *bh2; ext4_group_t group = 0; unsigned long ino = 0; struct inode * inode; struct ext4_group_desc * gdp = NULL; struct ext4_super_block * es; struct ext4_inode_info *ei; struct ext4_sb_info *sbi; int ret2, err = 0; struct inode *ret; ext4_group_t i; int free = 0; ext4_group_t flex_group; /* Cannot create files in a deleted directory */ if (!dir || !dir->i_nlink) return ERR_PTR(-EPERM); sb = dir->i_sb; inode = new_inode(sb); if (!inode) return ERR_PTR(-ENOMEM); ei = EXT4_I(inode); sbi = EXT4_SB(sb); es = sbi->s_es; if (sbi->s_log_groups_per_flex) { ret2 = find_group_flex(sb, dir, &group); goto got_group; } if (S_ISDIR(mode)) { if (test_opt (sb, OLDALLOC)) ret2 = find_group_dir(sb, dir, &group); else ret2 = find_group_orlov(sb, dir, &group); } else ret2 = find_group_other(sb, dir, &group); got_group: err = -ENOSPC; if (ret2 == -1) goto out; for (i = 0; i < sbi->s_groups_count; i++) { err = -EIO; gdp = ext4_get_group_desc(sb, group, &bh2); if (!gdp) goto fail; brelse(bitmap_bh); bitmap_bh = ext4_read_inode_bitmap(sb, group); if (!bitmap_bh) goto fail; ino = 0; repeat_in_this_group: ino = ext4_find_next_zero_bit((unsigned long *) bitmap_bh->b_data, EXT4_INODES_PER_GROUP(sb), ino); if (ino < EXT4_INODES_PER_GROUP(sb)) { BUFFER_TRACE(bitmap_bh, "get_write_access"); err = ext4_journal_get_write_access(handle, bitmap_bh); if (err) goto fail; if (!ext4_set_bit_atomic(sb_bgl_lock(sbi, group), ino, bitmap_bh->b_data)) { /* we won it */ BUFFER_TRACE(bitmap_bh, "call ext4_journal_dirty_metadata"); err = ext4_journal_dirty_metadata(handle, bitmap_bh); if (err) goto fail; goto got; } /* we lost it */ jbd2_journal_release_buffer(handle, bitmap_bh); if (++ino < EXT4_INODES_PER_GROUP(sb)) goto repeat_in_this_group; } /* * This case is possible in concurrent environment. It is very * rare. We cannot repeat the find_group_xxx() call because * that will simply return the same blockgroup, because the * group descriptor metadata has not yet been updated. * So we just go onto the next blockgroup. */ if (++group == sbi->s_groups_count) group = 0; } err = -ENOSPC; goto out; got: ino++; if ((group == 0 && ino < EXT4_FIRST_INO(sb)) || ino > EXT4_INODES_PER_GROUP(sb)) { ext4_error(sb, __func__, "reserved inode or inode > inodes count - " "block_group = %lu, inode=%lu", group, ino + group * EXT4_INODES_PER_GROUP(sb)); err = -EIO; goto fail; } BUFFER_TRACE(bh2, "get_write_access"); err = ext4_journal_get_write_access(handle, bh2); if (err) goto fail; /* We may have to initialize the block bitmap if it isn't already */ if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) && gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { struct buffer_head *block_bh = ext4_read_block_bitmap(sb, group); BUFFER_TRACE(block_bh, "get block bitmap access"); err = ext4_journal_get_write_access(handle, block_bh); if (err) { brelse(block_bh); goto fail; } free = 0; spin_lock(sb_bgl_lock(sbi, group)); /* recheck and clear flag under lock if we still need to */ if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); free = ext4_free_blocks_after_init(sb, group, gdp); gdp->bg_free_blocks_count = cpu_to_le16(free); } spin_unlock(sb_bgl_lock(sbi, group)); /* Don't need to dirty bitmap block if we didn't change it */ if (free) { BUFFER_TRACE(block_bh, "dirty block bitmap"); err = ext4_journal_dirty_metadata(handle, block_bh); } brelse(block_bh); if (err) goto fail; } spin_lock(sb_bgl_lock(sbi, group)); /* If we didn't allocate from within the initialized part of the inode * table then we need to initialize up to this inode. */ if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); /* When marking the block group with * ~EXT4_BG_INODE_UNINIT we don't want to depend * on the value of bg_itable_unused even though * mke2fs could have initialized the same for us. * Instead we calculated the value below */ free = 0; } else { free = EXT4_INODES_PER_GROUP(sb) - le16_to_cpu(gdp->bg_itable_unused); } /* * Check the relative inode number against the last used * relative inode number in this group. if it is greater * we need to update the bg_itable_unused count * */ if (ino > free) gdp->bg_itable_unused = cpu_to_le16(EXT4_INODES_PER_GROUP(sb) - ino); } le16_add_cpu(&gdp->bg_free_inodes_count, -1); if (S_ISDIR(mode)) { le16_add_cpu(&gdp->bg_used_dirs_count, 1); } gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); spin_unlock(sb_bgl_lock(sbi, group)); BUFFER_TRACE(bh2, "call ext4_journal_dirty_metadata"); err = ext4_journal_dirty_metadata(handle, bh2); if (err) goto fail; percpu_counter_dec(&sbi->s_freeinodes_counter); if (S_ISDIR(mode)) percpu_counter_inc(&sbi->s_dirs_counter); sb->s_dirt = 1; if (sbi->s_log_groups_per_flex) { flex_group = ext4_flex_group(sbi, group); spin_lock(sb_bgl_lock(sbi, flex_group)); sbi->s_flex_groups[flex_group].free_inodes--; spin_unlock(sb_bgl_lock(sbi, flex_group)); } inode->i_uid = current->fsuid; if (test_opt (sb, GRPID)) inode->i_gid = dir->i_gid; else if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; if (S_ISDIR(mode)) mode |= S_ISGID; } else inode->i_gid = current->fsgid; inode->i_mode = mode; inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); /* This is the optimal IO size (for stat), not the fs block size */ inode->i_blocks = 0; inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = ext4_current_time(inode); memset(ei->i_data, 0, sizeof(ei->i_data)); ei->i_dir_start_lookup = 0; ei->i_disksize = 0; /* * Don't inherit extent flag from directory. We set extent flag on * newly created directory and file only if -o extent mount option is * specified */ ei->i_flags = EXT4_I(dir)->i_flags & ~(EXT4_INDEX_FL|EXT4_EXTENTS_FL); if (S_ISLNK(mode)) ei->i_flags &= ~(EXT4_IMMUTABLE_FL|EXT4_APPEND_FL); /* dirsync only applies to directories */ if (!S_ISDIR(mode)) ei->i_flags &= ~EXT4_DIRSYNC_FL; ei->i_file_acl = 0; ei->i_dtime = 0; ei->i_block_alloc_info = NULL; ei->i_block_group = group; ext4_set_inode_flags(inode); if (IS_DIRSYNC(inode)) handle->h_sync = 1; insert_inode_hash(inode); spin_lock(&sbi->s_next_gen_lock); inode->i_generation = sbi->s_next_generation++; spin_unlock(&sbi->s_next_gen_lock); ei->i_state = EXT4_STATE_NEW; ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; ret = inode; if(DQUOT_ALLOC_INODE(inode)) { err = -EDQUOT; goto fail_drop; } err = ext4_init_acl(handle, inode, dir); if (err) goto fail_free_drop; err = ext4_init_security(handle,inode, dir); if (err) goto fail_free_drop; if (test_opt(sb, EXTENTS)) { /* set extent flag only for directory, file and normal symlink*/ if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) { EXT4_I(inode)->i_flags |= EXT4_EXTENTS_FL; ext4_ext_tree_init(handle, inode); } } err = ext4_mark_inode_dirty(handle, inode); if (err) { ext4_std_error(sb, err); goto fail_free_drop; } ext4_debug("allocating inode %lu\n", inode->i_ino); goto really_out; fail: ext4_std_error(sb, err); out: iput(inode); ret = ERR_PTR(err); really_out: brelse(bitmap_bh); return ret; fail_free_drop: DQUOT_FREE_INODE(inode); fail_drop: DQUOT_DROP(inode); inode->i_flags |= S_NOQUOTA; inode->i_nlink = 0; iput(inode); brelse(bitmap_bh); return ERR_PTR(err); } /* Verify that we are loading a valid orphan from disk */ struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) { unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); ext4_group_t block_group; int bit; struct buffer_head *bitmap_bh; struct inode *inode = NULL; long err = -EIO; /* Error cases - e2fsck has already cleaned up for us */ if (ino > max_ino) { ext4_warning(sb, __func__, "bad orphan ino %lu! e2fsck was run?", ino); goto error; } block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); bitmap_bh = ext4_read_inode_bitmap(sb, block_group); if (!bitmap_bh) { ext4_warning(sb, __func__, "inode bitmap error for orphan %lu", ino); goto error; } /* Having the inode bit set should be a 100% indicator that this * is a valid orphan (no e2fsck run on fs). Orphans also include * inodes that were being truncated, so we can't check i_nlink==0. */ if (!ext4_test_bit(bit, bitmap_bh->b_data)) goto bad_orphan; inode = ext4_iget(sb, ino); if (IS_ERR(inode)) goto iget_failed; /* * If the orphans has i_nlinks > 0 then it should be able to be * truncated, otherwise it won't be removed from the orphan list * during processing and an infinite loop will result. */ if (inode->i_nlink && !ext4_can_truncate(inode)) goto bad_orphan; if (NEXT_ORPHAN(inode) > max_ino) goto bad_orphan; brelse(bitmap_bh); return inode; iget_failed: err = PTR_ERR(inode); inode = NULL; bad_orphan: ext4_warning(sb, __func__, "bad orphan inode %lu! e2fsck was run?", ino); printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n", bit, (unsigned long long)bitmap_bh->b_blocknr, ext4_test_bit(bit, bitmap_bh->b_data)); printk(KERN_NOTICE "inode=%p\n", inode); if (inode) { printk(KERN_NOTICE "is_bad_inode(inode)=%d\n", is_bad_inode(inode)); printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n", NEXT_ORPHAN(inode)); printk(KERN_NOTICE "max_ino=%lu\n", max_ino); printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink); /* Avoid freeing blocks if we got a bad deleted inode */ if (inode->i_nlink == 0) inode->i_blocks = 0; iput(inode); } brelse(bitmap_bh); error: return ERR_PTR(err); } unsigned long ext4_count_free_inodes (struct super_block * sb) { unsigned long desc_count; struct ext4_group_desc *gdp; ext4_group_t i; #ifdef EXT4FS_DEBUG struct ext4_super_block *es; unsigned long bitmap_count, x; struct buffer_head *bitmap_bh = NULL; es = EXT4_SB(sb)->s_es; desc_count = 0; bitmap_count = 0; gdp = NULL; for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { gdp = ext4_get_group_desc (sb, i, NULL); if (!gdp) continue; desc_count += le16_to_cpu(gdp->bg_free_inodes_count); brelse(bitmap_bh); bitmap_bh = ext4_read_inode_bitmap(sb, i); if (!bitmap_bh) continue; x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8); printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", i, le16_to_cpu(gdp->bg_free_inodes_count), x); bitmap_count += x; } brelse(bitmap_bh); printk("ext4_count_free_inodes: stored = %u, computed = %lu, %lu\n", le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); return desc_count; #else desc_count = 0; for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { gdp = ext4_get_group_desc (sb, i, NULL); if (!gdp) continue; desc_count += le16_to_cpu(gdp->bg_free_inodes_count); cond_resched(); } return desc_count; #endif } /* Called at mount-time, super-block is locked */ unsigned long ext4_count_dirs (struct super_block * sb) { unsigned long count = 0; ext4_group_t i; for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { struct ext4_group_desc *gdp = ext4_get_group_desc (sb, i, NULL); if (!gdp) continue; count += le16_to_cpu(gdp->bg_used_dirs_count); } return count; }