/*
 *  linux/fs/proc/base.c
 *
 *  Copyright (C) 1991, 1992 Linus Torvalds
 *
 *  proc base directory handling functions
 *
 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
 *  Instead of using magical inumbers to determine the kind of object
 *  we allocate and fill in-core inodes upon lookup. They don't even
 *  go into icache. We cache the reference to task_struct upon lookup too.
 *  Eventually it should become a filesystem in its own. We don't use the
 *  rest of procfs anymore.
 *
 *
 *  Changelog:
 *  17-Jan-2005
 *  Allan Bezerra
 *  Bruna Moreira <bruna.moreira@indt.org.br>
 *  Edjard Mota <edjard.mota@indt.org.br>
 *  Ilias Biris <ilias.biris@indt.org.br>
 *  Mauricio Lin <mauricio.lin@indt.org.br>
 *
 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
 *
 *  A new process specific entry (smaps) included in /proc. It shows the
 *  size of rss for each memory area. The maps entry lacks information
 *  about physical memory size (rss) for each mapped file, i.e.,
 *  rss information for executables and library files.
 *  This additional information is useful for any tools that need to know
 *  about physical memory consumption for a process specific library.
 *
 *  Changelog:
 *  21-Feb-2005
 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
 *  Pud inclusion in the page table walking.
 *
 *  ChangeLog:
 *  10-Mar-2005
 *  10LE Instituto Nokia de Tecnologia - INdT:
 *  A better way to walks through the page table as suggested by Hugh Dickins.
 *
 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
 *  Smaps information related to shared, private, clean and dirty pages.
 *
 *  Paul Mundt <paul.mundt@nokia.com>:
 *  Overall revision about smaps.
 */

#include <asm/uaccess.h>

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/capability.h>
#include <linux/file.h>
#include <linux/string.h>
#include <linux/seq_file.h>
#include <linux/namei.h>
#include <linux/namespace.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/rcupdate.h>
#include <linux/kallsyms.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/ptrace.h>
#include <linux/seccomp.h>
#include <linux/cpuset.h>
#include <linux/audit.h>
#include <linux/poll.h>
#include "internal.h"

/* NOTE:
 *	Implementing inode permission operations in /proc is almost
 *	certainly an error.  Permission checks need to happen during
 *	each system call not at open time.  The reason is that most of
 *	what we wish to check for permissions in /proc varies at runtime.
 *
 *	The classic example of a problem is opening file descriptors
 *	in /proc for a task before it execs a suid executable.
 */

/*
 * For hysterical raisins we keep the same inumbers as in the old procfs.
 * Feel free to change the macro below - just keep the range distinct from
 * inumbers of the rest of procfs (currently those are in 0x0000--0xffff).
 * As soon as we'll get a separate superblock we will be able to forget
 * about magical ranges too.
 */

#define fake_ino(pid,ino) (((pid)<<16)|(ino))

enum pid_directory_inos {
	PROC_TGID_INO = 2,
	PROC_TGID_TASK,
	PROC_TGID_STATUS,
	PROC_TGID_MEM,
#ifdef CONFIG_SECCOMP
	PROC_TGID_SECCOMP,
#endif
	PROC_TGID_CWD,
	PROC_TGID_ROOT,
	PROC_TGID_EXE,
	PROC_TGID_FD,
	PROC_TGID_ENVIRON,
	PROC_TGID_AUXV,
	PROC_TGID_CMDLINE,
	PROC_TGID_STAT,
	PROC_TGID_STATM,
	PROC_TGID_MAPS,
	PROC_TGID_NUMA_MAPS,
	PROC_TGID_MOUNTS,
	PROC_TGID_MOUNTSTATS,
	PROC_TGID_WCHAN,
#ifdef CONFIG_MMU
	PROC_TGID_SMAPS,
#endif
#ifdef CONFIG_SCHEDSTATS
	PROC_TGID_SCHEDSTAT,
#endif
#ifdef CONFIG_CPUSETS
	PROC_TGID_CPUSET,
#endif
#ifdef CONFIG_SECURITY
	PROC_TGID_ATTR,
	PROC_TGID_ATTR_CURRENT,
	PROC_TGID_ATTR_PREV,
	PROC_TGID_ATTR_EXEC,
	PROC_TGID_ATTR_FSCREATE,
	PROC_TGID_ATTR_KEYCREATE,
#endif
#ifdef CONFIG_AUDITSYSCALL
	PROC_TGID_LOGINUID,
#endif
	PROC_TGID_OOM_SCORE,
	PROC_TGID_OOM_ADJUST,
	PROC_TID_INO,
	PROC_TID_STATUS,
	PROC_TID_MEM,
#ifdef CONFIG_SECCOMP
	PROC_TID_SECCOMP,
#endif
	PROC_TID_CWD,
	PROC_TID_ROOT,
	PROC_TID_EXE,
	PROC_TID_FD,
	PROC_TID_ENVIRON,
	PROC_TID_AUXV,
	PROC_TID_CMDLINE,
	PROC_TID_STAT,
	PROC_TID_STATM,
	PROC_TID_MAPS,
	PROC_TID_NUMA_MAPS,
	PROC_TID_MOUNTS,
	PROC_TID_MOUNTSTATS,
	PROC_TID_WCHAN,
#ifdef CONFIG_MMU
	PROC_TID_SMAPS,
#endif
#ifdef CONFIG_SCHEDSTATS
	PROC_TID_SCHEDSTAT,
#endif
#ifdef CONFIG_CPUSETS
	PROC_TID_CPUSET,
#endif
#ifdef CONFIG_SECURITY
	PROC_TID_ATTR,
	PROC_TID_ATTR_CURRENT,
	PROC_TID_ATTR_PREV,
	PROC_TID_ATTR_EXEC,
	PROC_TID_ATTR_FSCREATE,
	PROC_TID_ATTR_KEYCREATE,
#endif
#ifdef CONFIG_AUDITSYSCALL
	PROC_TID_LOGINUID,
#endif
	PROC_TID_OOM_SCORE,
	PROC_TID_OOM_ADJUST,

	/* Add new entries before this */
	PROC_TID_FD_DIR = 0x8000,	/* 0x8000-0xffff */
};

struct pid_entry {
	int type;
	int len;
	char *name;
	mode_t mode;
};

#define E(type,name,mode) {(type),sizeof(name)-1,(name),(mode)}

static struct pid_entry tgid_base_stuff[] = {
	E(PROC_TGID_TASK,      "task",    S_IFDIR|S_IRUGO|S_IXUGO),
	E(PROC_TGID_FD,        "fd",      S_IFDIR|S_IRUSR|S_IXUSR),
	E(PROC_TGID_ENVIRON,   "environ", S_IFREG|S_IRUSR),
	E(PROC_TGID_AUXV,      "auxv",	  S_IFREG|S_IRUSR),
	E(PROC_TGID_STATUS,    "status",  S_IFREG|S_IRUGO),
	E(PROC_TGID_CMDLINE,   "cmdline", S_IFREG|S_IRUGO),
	E(PROC_TGID_STAT,      "stat",    S_IFREG|S_IRUGO),
	E(PROC_TGID_STATM,     "statm",   S_IFREG|S_IRUGO),
	E(PROC_TGID_MAPS,      "maps",    S_IFREG|S_IRUGO),
#ifdef CONFIG_NUMA
	E(PROC_TGID_NUMA_MAPS, "numa_maps", S_IFREG|S_IRUGO),
#endif
	E(PROC_TGID_MEM,       "mem",     S_IFREG|S_IRUSR|S_IWUSR),
#ifdef CONFIG_SECCOMP
	E(PROC_TGID_SECCOMP,   "seccomp", S_IFREG|S_IRUSR|S_IWUSR),
#endif
	E(PROC_TGID_CWD,       "cwd",     S_IFLNK|S_IRWXUGO),
	E(PROC_TGID_ROOT,      "root",    S_IFLNK|S_IRWXUGO),
	E(PROC_TGID_EXE,       "exe",     S_IFLNK|S_IRWXUGO),
	E(PROC_TGID_MOUNTS,    "mounts",  S_IFREG|S_IRUGO),
	E(PROC_TGID_MOUNTSTATS, "mountstats", S_IFREG|S_IRUSR),
#ifdef CONFIG_MMU
	E(PROC_TGID_SMAPS,     "smaps",   S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_SECURITY
	E(PROC_TGID_ATTR,      "attr",    S_IFDIR|S_IRUGO|S_IXUGO),
#endif
#ifdef CONFIG_KALLSYMS
	E(PROC_TGID_WCHAN,     "wchan",   S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_SCHEDSTATS
	E(PROC_TGID_SCHEDSTAT, "schedstat", S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_CPUSETS
	E(PROC_TGID_CPUSET,    "cpuset",  S_IFREG|S_IRUGO),
#endif
	E(PROC_TGID_OOM_SCORE, "oom_score",S_IFREG|S_IRUGO),
	E(PROC_TGID_OOM_ADJUST,"oom_adj", S_IFREG|S_IRUGO|S_IWUSR),
#ifdef CONFIG_AUDITSYSCALL
	E(PROC_TGID_LOGINUID, "loginuid", S_IFREG|S_IWUSR|S_IRUGO),
#endif
	{0,0,NULL,0}
};
static struct pid_entry tid_base_stuff[] = {
	E(PROC_TID_FD,         "fd",      S_IFDIR|S_IRUSR|S_IXUSR),
	E(PROC_TID_ENVIRON,    "environ", S_IFREG|S_IRUSR),
	E(PROC_TID_AUXV,       "auxv",	  S_IFREG|S_IRUSR),
	E(PROC_TID_STATUS,     "status",  S_IFREG|S_IRUGO),
	E(PROC_TID_CMDLINE,    "cmdline", S_IFREG|S_IRUGO),
	E(PROC_TID_STAT,       "stat",    S_IFREG|S_IRUGO),
	E(PROC_TID_STATM,      "statm",   S_IFREG|S_IRUGO),
	E(PROC_TID_MAPS,       "maps",    S_IFREG|S_IRUGO),
#ifdef CONFIG_NUMA
	E(PROC_TID_NUMA_MAPS,  "numa_maps",    S_IFREG|S_IRUGO),
#endif
	E(PROC_TID_MEM,        "mem",     S_IFREG|S_IRUSR|S_IWUSR),
#ifdef CONFIG_SECCOMP
	E(PROC_TID_SECCOMP,    "seccomp", S_IFREG|S_IRUSR|S_IWUSR),
#endif
	E(PROC_TID_CWD,        "cwd",     S_IFLNK|S_IRWXUGO),
	E(PROC_TID_ROOT,       "root",    S_IFLNK|S_IRWXUGO),
	E(PROC_TID_EXE,        "exe",     S_IFLNK|S_IRWXUGO),
	E(PROC_TID_MOUNTS,     "mounts",  S_IFREG|S_IRUGO),
#ifdef CONFIG_MMU
	E(PROC_TID_SMAPS,      "smaps",   S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_SECURITY
	E(PROC_TID_ATTR,       "attr",    S_IFDIR|S_IRUGO|S_IXUGO),
#endif
#ifdef CONFIG_KALLSYMS
	E(PROC_TID_WCHAN,      "wchan",   S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_SCHEDSTATS
	E(PROC_TID_SCHEDSTAT, "schedstat",S_IFREG|S_IRUGO),
#endif
#ifdef CONFIG_CPUSETS
	E(PROC_TID_CPUSET,     "cpuset",  S_IFREG|S_IRUGO),
#endif
	E(PROC_TID_OOM_SCORE,  "oom_score",S_IFREG|S_IRUGO),
	E(PROC_TID_OOM_ADJUST, "oom_adj", S_IFREG|S_IRUGO|S_IWUSR),
#ifdef CONFIG_AUDITSYSCALL
	E(PROC_TID_LOGINUID, "loginuid", S_IFREG|S_IWUSR|S_IRUGO),
#endif
	{0,0,NULL,0}
};

#ifdef CONFIG_SECURITY
static struct pid_entry tgid_attr_stuff[] = {
	E(PROC_TGID_ATTR_CURRENT,  "current",  S_IFREG|S_IRUGO|S_IWUGO),
	E(PROC_TGID_ATTR_PREV,     "prev",     S_IFREG|S_IRUGO),
	E(PROC_TGID_ATTR_EXEC,     "exec",     S_IFREG|S_IRUGO|S_IWUGO),
	E(PROC_TGID_ATTR_FSCREATE, "fscreate", S_IFREG|S_IRUGO|S_IWUGO),
	E(PROC_TGID_ATTR_KEYCREATE, "keycreate", S_IFREG|S_IRUGO|S_IWUGO),
	{0,0,NULL,0}
};
static struct pid_entry tid_attr_stuff[] = {
	E(PROC_TID_ATTR_CURRENT,   "current",  S_IFREG|S_IRUGO|S_IWUGO),
	E(PROC_TID_ATTR_PREV,      "prev",     S_IFREG|S_IRUGO),
	E(PROC_TID_ATTR_EXEC,      "exec",     S_IFREG|S_IRUGO|S_IWUGO),
	E(PROC_TID_ATTR_FSCREATE,  "fscreate", S_IFREG|S_IRUGO|S_IWUGO),
	E(PROC_TID_ATTR_KEYCREATE, "keycreate", S_IFREG|S_IRUGO|S_IWUGO),
	{0,0,NULL,0}
};
#endif

#undef E

static int proc_fd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
{
	struct task_struct *task = proc_task(inode);
	struct files_struct *files;
	struct file *file;
	int fd = proc_fd(inode);

	files = get_files_struct(task);
	if (files) {
		/*
		 * We are not taking a ref to the file structure, so we must
		 * hold ->file_lock.
		 */
		spin_lock(&files->file_lock);
		file = fcheck_files(files, fd);
		if (file) {
			*mnt = mntget(file->f_vfsmnt);
			*dentry = dget(file->f_dentry);
			spin_unlock(&files->file_lock);
			put_files_struct(files);
			return 0;
		}
		spin_unlock(&files->file_lock);
		put_files_struct(files);
	}
	return -ENOENT;
}

static struct fs_struct *get_fs_struct(struct task_struct *task)
{
	struct fs_struct *fs;
	task_lock(task);
	fs = task->fs;
	if(fs)
		atomic_inc(&fs->count);
	task_unlock(task);
	return fs;
}

static int proc_cwd_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
{
	struct fs_struct *fs = get_fs_struct(proc_task(inode));
	int result = -ENOENT;
	if (fs) {
		read_lock(&fs->lock);
		*mnt = mntget(fs->pwdmnt);
		*dentry = dget(fs->pwd);
		read_unlock(&fs->lock);
		result = 0;
		put_fs_struct(fs);
	}
	return result;
}

static int proc_root_link(struct inode *inode, struct dentry **dentry, struct vfsmount **mnt)
{
	struct fs_struct *fs = get_fs_struct(proc_task(inode));
	int result = -ENOENT;
	if (fs) {
		read_lock(&fs->lock);
		*mnt = mntget(fs->rootmnt);
		*dentry = dget(fs->root);
		read_unlock(&fs->lock);
		result = 0;
		put_fs_struct(fs);
	}
	return result;
}

#define MAY_PTRACE(task) \
	(task == current || \
	(task->parent == current && \
	(task->ptrace & PT_PTRACED) && \
	 (task->state == TASK_STOPPED || task->state == TASK_TRACED) && \
	 security_ptrace(current,task) == 0))

static int proc_pid_environ(struct task_struct *task, char * buffer)
{
	int res = 0;
	struct mm_struct *mm = get_task_mm(task);
	if (mm) {
		unsigned int len = mm->env_end - mm->env_start;
		if (len > PAGE_SIZE)
			len = PAGE_SIZE;
		res = access_process_vm(task, mm->env_start, buffer, len, 0);
		if (!ptrace_may_attach(task))
			res = -ESRCH;
		mmput(mm);
	}
	return res;
}

static int proc_pid_cmdline(struct task_struct *task, char * buffer)
{
	int res = 0;
	unsigned int len;
	struct mm_struct *mm = get_task_mm(task);
	if (!mm)
		goto out;
	if (!mm->arg_end)
		goto out_mm;	/* Shh! No looking before we're done */

 	len = mm->arg_end - mm->arg_start;
 
	if (len > PAGE_SIZE)
		len = PAGE_SIZE;
 
	res = access_process_vm(task, mm->arg_start, buffer, len, 0);

	// If the nul at the end of args has been overwritten, then
	// assume application is using setproctitle(3).
	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
		len = strnlen(buffer, res);
		if (len < res) {
		    res = len;
		} else {
			len = mm->env_end - mm->env_start;
			if (len > PAGE_SIZE - res)
				len = PAGE_SIZE - res;
			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
			res = strnlen(buffer, res);
		}
	}
out_mm:
	mmput(mm);
out:
	return res;
}

static int proc_pid_auxv(struct task_struct *task, char *buffer)
{
	int res = 0;
	struct mm_struct *mm = get_task_mm(task);
	if (mm) {
		unsigned int nwords = 0;
		do
			nwords += 2;
		while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
		res = nwords * sizeof(mm->saved_auxv[0]);
		if (res > PAGE_SIZE)
			res = PAGE_SIZE;
		memcpy(buffer, mm->saved_auxv, res);
		mmput(mm);
	}
	return res;
}


#ifdef CONFIG_KALLSYMS
/*
 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 * Returns the resolved symbol.  If that fails, simply return the address.
 */
static int proc_pid_wchan(struct task_struct *task, char *buffer)
{
	char *modname;
	const char *sym_name;
	unsigned long wchan, size, offset;
	char namebuf[KSYM_NAME_LEN+1];

	wchan = get_wchan(task);

	sym_name = kallsyms_lookup(wchan, &size, &offset, &modname, namebuf);
	if (sym_name)
		return sprintf(buffer, "%s", sym_name);
	return sprintf(buffer, "%lu", wchan);
}
#endif /* CONFIG_KALLSYMS */

#ifdef CONFIG_SCHEDSTATS
/*
 * Provides /proc/PID/schedstat
 */
static int proc_pid_schedstat(struct task_struct *task, char *buffer)
{
	return sprintf(buffer, "%lu %lu %lu\n",
			task->sched_info.cpu_time,
			task->sched_info.run_delay,
			task->sched_info.pcnt);
}
#endif

/* The badness from the OOM killer */
unsigned long badness(struct task_struct *p, unsigned long uptime);
static int proc_oom_score(struct task_struct *task, char *buffer)
{
	unsigned long points;
	struct timespec uptime;

	do_posix_clock_monotonic_gettime(&uptime);
	points = badness(task, uptime.tv_sec);
	return sprintf(buffer, "%lu\n", points);
}

/************************************************************************/
/*                       Here the fs part begins                        */
/************************************************************************/

/* permission checks */

/* If the process being read is separated by chroot from the reading process,
 * don't let the reader access the threads.
 */
static int proc_check_chroot(struct dentry *de, struct vfsmount *mnt)
{
	struct dentry *base;
	struct vfsmount *our_vfsmnt;
	int res = 0;

	read_lock(&current->fs->lock);
	our_vfsmnt = mntget(current->fs->rootmnt);
	base = dget(current->fs->root);
	read_unlock(&current->fs->lock);

	spin_lock(&vfsmount_lock);

	while (mnt != our_vfsmnt) {
		if (mnt == mnt->mnt_parent)
			goto out;
		de = mnt->mnt_mountpoint;
		mnt = mnt->mnt_parent;
	}

	if (!is_subdir(de, base))
		goto out;
	spin_unlock(&vfsmount_lock);

exit:
	dput(base);
	mntput(our_vfsmnt);
	return res;
out:
	spin_unlock(&vfsmount_lock);
	res = -EACCES;
	goto exit;
}

extern struct seq_operations mounts_op;
struct proc_mounts {
	struct seq_file m;
	int event;
};

static int mounts_open(struct inode *inode, struct file *file)
{
	struct task_struct *task = proc_task(inode);
	struct namespace *namespace;
	struct proc_mounts *p;
	int ret = -EINVAL;

	task_lock(task);
	namespace = task->namespace;
	if (namespace)
		get_namespace(namespace);
	task_unlock(task);

	if (namespace) {
		ret = -ENOMEM;
		p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
		if (p) {
			file->private_data = &p->m;
			ret = seq_open(file, &mounts_op);
			if (!ret) {
				p->m.private = namespace;
				p->event = namespace->event;
				return 0;
			}
			kfree(p);
		}
		put_namespace(namespace);
	}
	return ret;
}

static int mounts_release(struct inode *inode, struct file *file)
{
	struct seq_file *m = file->private_data;
	struct namespace *namespace = m->private;
	put_namespace(namespace);
	return seq_release(inode, file);
}

static unsigned mounts_poll(struct file *file, poll_table *wait)
{
	struct proc_mounts *p = file->private_data;
	struct namespace *ns = p->m.private;
	unsigned res = 0;

	poll_wait(file, &ns->poll, wait);

	spin_lock(&vfsmount_lock);
	if (p->event != ns->event) {
		p->event = ns->event;
		res = POLLERR;
	}
	spin_unlock(&vfsmount_lock);

	return res;
}

static struct file_operations proc_mounts_operations = {
	.open		= mounts_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= mounts_release,
	.poll		= mounts_poll,
};

extern struct seq_operations mountstats_op;
static int mountstats_open(struct inode *inode, struct file *file)
{
	struct task_struct *task = proc_task(inode);
	int ret = seq_open(file, &mountstats_op);

	if (!ret) {
		struct seq_file *m = file->private_data;
		struct namespace *namespace;
		task_lock(task);
		namespace = task->namespace;
		if (namespace)
			get_namespace(namespace);
		task_unlock(task);

		if (namespace)
			m->private = namespace;
		else {
			seq_release(inode, file);
			ret = -EINVAL;
		}
	}
	return ret;
}

static struct file_operations proc_mountstats_operations = {
	.open		= mountstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= mounts_release,
};

#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */

static ssize_t proc_info_read(struct file * file, char __user * buf,
			  size_t count, loff_t *ppos)
{
	struct inode * inode = file->f_dentry->d_inode;
	unsigned long page;
	ssize_t length;
	struct task_struct *task = proc_task(inode);

	if (count > PROC_BLOCK_SIZE)
		count = PROC_BLOCK_SIZE;
	if (!(page = __get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	length = PROC_I(inode)->op.proc_read(task, (char*)page);

	if (length >= 0)
		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
	free_page(page);
	return length;
}

static struct file_operations proc_info_file_operations = {
	.read		= proc_info_read,
};

static int mem_open(struct inode* inode, struct file* file)
{
	file->private_data = (void*)((long)current->self_exec_id);
	return 0;
}

static ssize_t mem_read(struct file * file, char __user * buf,
			size_t count, loff_t *ppos)
{
	struct task_struct *task = proc_task(file->f_dentry->d_inode);
	char *page;
	unsigned long src = *ppos;
	int ret = -ESRCH;
	struct mm_struct *mm;

	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
		goto out;

	ret = -ENOMEM;
	page = (char *)__get_free_page(GFP_USER);
	if (!page)
		goto out;

	ret = 0;
 
	mm = get_task_mm(task);
	if (!mm)
		goto out_free;

	ret = -EIO;
 
	if (file->private_data != (void*)((long)current->self_exec_id))
		goto out_put;

	ret = 0;
 
	while (count > 0) {
		int this_len, retval;

		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
		retval = access_process_vm(task, src, page, this_len, 0);
		if (!retval || !MAY_PTRACE(task) || !ptrace_may_attach(task)) {
			if (!ret)
				ret = -EIO;
			break;
		}

		if (copy_to_user(buf, page, retval)) {
			ret = -EFAULT;
			break;
		}
 
		ret += retval;
		src += retval;
		buf += retval;
		count -= retval;
	}
	*ppos = src;

out_put:
	mmput(mm);
out_free:
	free_page((unsigned long) page);
out:
	return ret;
}

#define mem_write NULL

#ifndef mem_write
/* This is a security hazard */
static ssize_t mem_write(struct file * file, const char * buf,
			 size_t count, loff_t *ppos)
{
	int copied = 0;
	char *page;
	struct task_struct *task = proc_task(file->f_dentry->d_inode);
	unsigned long dst = *ppos;

	if (!MAY_PTRACE(task) || !ptrace_may_attach(task))
		return -ESRCH;

	page = (char *)__get_free_page(GFP_USER);
	if (!page)
		return -ENOMEM;

	while (count > 0) {
		int this_len, retval;

		this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
		if (copy_from_user(page, buf, this_len)) {
			copied = -EFAULT;
			break;
		}
		retval = access_process_vm(task, dst, page, this_len, 1);
		if (!retval) {
			if (!copied)
				copied = -EIO;
			break;
		}
		copied += retval;
		buf += retval;
		dst += retval;
		count -= retval;			
	}
	*ppos = dst;
	free_page((unsigned long) page);
	return copied;
}
#endif

static loff_t mem_lseek(struct file * file, loff_t offset, int orig)
{
	switch (orig) {
	case 0:
		file->f_pos = offset;
		break;
	case 1:
		file->f_pos += offset;
		break;
	default:
		return -EINVAL;
	}
	force_successful_syscall_return();
	return file->f_pos;
}

static struct file_operations proc_mem_operations = {
	.llseek		= mem_lseek,
	.read		= mem_read,
	.write		= mem_write,
	.open		= mem_open,
};

static ssize_t oom_adjust_read(struct file *file, char __user *buf,
				size_t count, loff_t *ppos)
{
	struct task_struct *task = proc_task(file->f_dentry->d_inode);
	char buffer[8];
	size_t len;
	int oom_adjust = task->oomkilladj;
	loff_t __ppos = *ppos;

	len = sprintf(buffer, "%i\n", oom_adjust);
	if (__ppos >= len)
		return 0;
	if (count > len-__ppos)
		count = len-__ppos;
	if (copy_to_user(buf, buffer + __ppos, count))
		return -EFAULT;
	*ppos = __ppos + count;
	return count;
}

static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
				size_t count, loff_t *ppos)
{
	struct task_struct *task = proc_task(file->f_dentry->d_inode);
	char buffer[8], *end;
	int oom_adjust;

	if (!capable(CAP_SYS_RESOURCE))
		return -EPERM;
	memset(buffer, 0, 8);
	if (count > 6)
		count = 6;
	if (copy_from_user(buffer, buf, count))
		return -EFAULT;
	oom_adjust = simple_strtol(buffer, &end, 0);
	if ((oom_adjust < -16 || oom_adjust > 15) && oom_adjust != OOM_DISABLE)
		return -EINVAL;
	if (*end == '\n')
		end++;
	task->oomkilladj = oom_adjust;
	if (end - buffer == 0)
		return -EIO;
	return end - buffer;
}

static struct file_operations proc_oom_adjust_operations = {
	.read		= oom_adjust_read,
	.write		= oom_adjust_write,
};

#ifdef CONFIG_AUDITSYSCALL
#define TMPBUFLEN 21
static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
				  size_t count, loff_t *ppos)
{
	struct inode * inode = file->f_dentry->d_inode;
	struct task_struct *task = proc_task(inode);
	ssize_t length;
	char tmpbuf[TMPBUFLEN];

	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
				audit_get_loginuid(task->audit_context));
	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
}

static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
				   size_t count, loff_t *ppos)
{
	struct inode * inode = file->f_dentry->d_inode;
	char *page, *tmp;
	ssize_t length;
	struct task_struct *task = proc_task(inode);
	uid_t loginuid;

	if (!capable(CAP_AUDIT_CONTROL))
		return -EPERM;

	if (current != task)
		return -EPERM;

	if (count >= PAGE_SIZE)
		count = PAGE_SIZE - 1;

	if (*ppos != 0) {
		/* No partial writes. */
		return -EINVAL;
	}
	page = (char*)__get_free_page(GFP_USER);
	if (!page)
		return -ENOMEM;
	length = -EFAULT;
	if (copy_from_user(page, buf, count))
		goto out_free_page;

	page[count] = '\0';
	loginuid = simple_strtoul(page, &tmp, 10);
	if (tmp == page) {
		length = -EINVAL;
		goto out_free_page;

	}
	length = audit_set_loginuid(task, loginuid);
	if (likely(length == 0))
		length = count;

out_free_page:
	free_page((unsigned long) page);
	return length;
}

static struct file_operations proc_loginuid_operations = {
	.read		= proc_loginuid_read,
	.write		= proc_loginuid_write,
};
#endif

#ifdef CONFIG_SECCOMP
static ssize_t seccomp_read(struct file *file, char __user *buf,
			    size_t count, loff_t *ppos)
{
	struct task_struct *tsk = proc_task(file->f_dentry->d_inode);
	char __buf[20];
	loff_t __ppos = *ppos;
	size_t len;

	/* no need to print the trailing zero, so use only len */
	len = sprintf(__buf, "%u\n", tsk->seccomp.mode);
	if (__ppos >= len)
		return 0;
	if (count > len - __ppos)
		count = len - __ppos;
	if (copy_to_user(buf, __buf + __ppos, count))
		return -EFAULT;
	*ppos = __ppos + count;
	return count;
}

static ssize_t seccomp_write(struct file *file, const char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct task_struct *tsk = proc_task(file->f_dentry->d_inode);
	char __buf[20], *end;
	unsigned int seccomp_mode;

	/* can set it only once to be even more secure */
	if (unlikely(tsk->seccomp.mode))
		return -EPERM;

	memset(__buf, 0, sizeof(__buf));
	count = min(count, sizeof(__buf) - 1);
	if (copy_from_user(__buf, buf, count))
		return -EFAULT;
	seccomp_mode = simple_strtoul(__buf, &end, 0);
	if (*end == '\n')
		end++;
	if (seccomp_mode && seccomp_mode <= NR_SECCOMP_MODES) {
		tsk->seccomp.mode = seccomp_mode;
		set_tsk_thread_flag(tsk, TIF_SECCOMP);
	} else
		return -EINVAL;
	if (unlikely(!(end - __buf)))
		return -EIO;
	return end - __buf;
}

static struct file_operations proc_seccomp_operations = {
	.read		= seccomp_read,
	.write		= seccomp_write,
};
#endif /* CONFIG_SECCOMP */

static int proc_check_dentry_visible(struct inode *inode,
	struct dentry *dentry, struct vfsmount *mnt)
{
	/* Verify that the current process can already see the
	 * file pointed at by the file descriptor.
	 * This prevents /proc from being an accidental information leak.
	 *
	 * This prevents access to files that are not visible do to
	 * being on the otherside of a chroot, in a different
	 * namespace, or are simply process local (like pipes).
	 */
	struct task_struct *task;
	struct files_struct *task_files, *files;
	int error = -EACCES;

	/* See if the the two tasks share a commone set of
	 * file descriptors.  If so everything is visible.
	 */
	task = proc_task(inode);
	if (!task)
		goto out;
	files = get_files_struct(current);
	task_files = get_files_struct(task);
	if (files && task_files && (files == task_files))
		error = 0;
	if (task_files)
		put_files_struct(task_files);
	if (files)
		put_files_struct(files);
	if (!error)
		goto out;

	/* If the two tasks don't share a common set of file
	 * descriptors see if the destination dentry is already
	 * visible in the current tasks filesystem namespace.
	 */
	error = proc_check_chroot(dentry, mnt);
out:
	return error;

}

static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
{
	struct inode *inode = dentry->d_inode;
	int error = -EACCES;

	/* We don't need a base pointer in the /proc filesystem */
	path_release(nd);

	if (current->fsuid != inode->i_uid && !capable(CAP_DAC_OVERRIDE))
		goto out;

	error = PROC_I(inode)->op.proc_get_link(inode, &nd->dentry, &nd->mnt);
	nd->last_type = LAST_BIND;
	if (error)
		goto out;

	/* Only return files this task can already see */
	error = proc_check_dentry_visible(inode, nd->dentry, nd->mnt);
	if (error)
		path_release(nd);
out:
	return ERR_PTR(error);
}

static int do_proc_readlink(struct dentry *dentry, struct vfsmount *mnt,
			    char __user *buffer, int buflen)
{
	struct inode * inode;
	char *tmp = (char*)__get_free_page(GFP_KERNEL), *path;
	int len;

	if (!tmp)
		return -ENOMEM;
		
	inode = dentry->d_inode;
	path = d_path(dentry, mnt, tmp, PAGE_SIZE);
	len = PTR_ERR(path);
	if (IS_ERR(path))
		goto out;
	len = tmp + PAGE_SIZE - 1 - path;

	if (len > buflen)
		len = buflen;
	if (copy_to_user(buffer, path, len))
		len = -EFAULT;
 out:
	free_page((unsigned long)tmp);
	return len;
}

static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
{
	int error = -EACCES;
	struct inode *inode = dentry->d_inode;
	struct dentry *de;
	struct vfsmount *mnt = NULL;


	if (current->fsuid != inode->i_uid && !capable(CAP_DAC_OVERRIDE))
		goto out;

	error = PROC_I(inode)->op.proc_get_link(inode, &de, &mnt);
	if (error)
		goto out;

	/* Only return files this task can already see */
	error = proc_check_dentry_visible(inode, de, mnt);
	if (error)
		goto out_put;

	error = do_proc_readlink(de, mnt, buffer, buflen);
out_put:
	dput(de);
	mntput(mnt);
out:
	return error;
}

static struct inode_operations proc_pid_link_inode_operations = {
	.readlink	= proc_pid_readlink,
	.follow_link	= proc_pid_follow_link
};

#define NUMBUF 10

static int proc_readfd(struct file * filp, void * dirent, filldir_t filldir)
{
	struct dentry *dentry = filp->f_dentry;
	struct inode *inode = dentry->d_inode;
	struct task_struct *p = proc_task(inode);
	unsigned int fd, tid, ino;
	int retval;
	char buf[NUMBUF];
	struct files_struct * files;
	struct fdtable *fdt;

	retval = -ENOENT;
	if (!pid_alive(p))
		goto out;
	retval = 0;
	tid = p->pid;

	fd = filp->f_pos;
	switch (fd) {
		case 0:
			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
				goto out;
			filp->f_pos++;
		case 1:
			ino = parent_ino(dentry);
			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
				goto out;
			filp->f_pos++;
		default:
			files = get_files_struct(p);
			if (!files)
				goto out;
			rcu_read_lock();
			fdt = files_fdtable(files);
			for (fd = filp->f_pos-2;
			     fd < fdt->max_fds;
			     fd++, filp->f_pos++) {
				unsigned int i,j;

				if (!fcheck_files(files, fd))
					continue;
				rcu_read_unlock();

				j = NUMBUF;
				i = fd;
				do {
					j--;
					buf[j] = '0' + (i % 10);
					i /= 10;
				} while (i);

				ino = fake_ino(tid, PROC_TID_FD_DIR + fd);
				if (filldir(dirent, buf+j, NUMBUF-j, fd+2, ino, DT_LNK) < 0) {
					rcu_read_lock();
					break;
				}
				rcu_read_lock();
			}
			rcu_read_unlock();
			put_files_struct(files);
	}
out:
	return retval;
}

static int proc_pident_readdir(struct file *filp,
		void *dirent, filldir_t filldir,
		struct pid_entry *ents, unsigned int nents)
{
	int i;
	int pid;
	struct dentry *dentry = filp->f_dentry;
	struct inode *inode = dentry->d_inode;
	struct pid_entry *p;
	ino_t ino;
	int ret;

	ret = -ENOENT;
	if (!pid_alive(proc_task(inode)))
		goto out;

	ret = 0;
	pid = proc_task(inode)->pid;
	i = filp->f_pos;
	switch (i) {
	case 0:
		ino = inode->i_ino;
		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
			goto out;
		i++;
		filp->f_pos++;
		/* fall through */
	case 1:
		ino = parent_ino(dentry);
		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
			goto out;
		i++;
		filp->f_pos++;
		/* fall through */
	default:
		i -= 2;
		if (i >= nents) {
			ret = 1;
			goto out;
		}
		p = ents + i;
		while (p->name) {
			if (filldir(dirent, p->name, p->len, filp->f_pos,
				    fake_ino(pid, p->type), p->mode >> 12) < 0)
				goto out;
			filp->f_pos++;
			p++;
		}
	}

	ret = 1;
out:
	return ret;
}

static int proc_tgid_base_readdir(struct file * filp,
			     void * dirent, filldir_t filldir)
{
	return proc_pident_readdir(filp,dirent,filldir,
				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
}

static int proc_tid_base_readdir(struct file * filp,
			     void * dirent, filldir_t filldir)
{
	return proc_pident_readdir(filp,dirent,filldir,
				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
}

/* building an inode */

static int task_dumpable(struct task_struct *task)
{
	int dumpable = 0;
	struct mm_struct *mm;

	task_lock(task);
	mm = task->mm;
	if (mm)
		dumpable = mm->dumpable;
	task_unlock(task);
	if(dumpable == 1)
		return 1;
	return 0;
}


static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task, int ino)
{
	struct inode * inode;
	struct proc_inode *ei;

	/* We need a new inode */
	
	inode = new_inode(sb);
	if (!inode)
		goto out;

	/* Common stuff */
	ei = PROC_I(inode);
	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
	inode->i_ino = fake_ino(task->pid, ino);

	if (!pid_alive(task))
		goto out_unlock;

	/*
	 * grab the reference to task.
	 */
	get_task_struct(task);
	ei->task = task;
	inode->i_uid = 0;
	inode->i_gid = 0;
	if (task_dumpable(task)) {
		inode->i_uid = task->euid;
		inode->i_gid = task->egid;
	}
	security_task_to_inode(task, inode);

out:
	return inode;

out_unlock:
	iput(inode);
	return NULL;
}

/* dentry stuff */

/*
 *	Exceptional case: normally we are not allowed to unhash a busy
 * directory. In this case, however, we can do it - no aliasing problems
 * due to the way we treat inodes.
 *
 * Rewrite the inode's ownerships here because the owning task may have
 * performed a setuid(), etc.
 */
static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
{
	struct inode *inode = dentry->d_inode;
	struct task_struct *task = proc_task(inode);
	if (pid_alive(task)) {
		if (task_dumpable(task)) {
			inode->i_uid = task->euid;
			inode->i_gid = task->egid;
		} else {
			inode->i_uid = 0;
			inode->i_gid = 0;
		}
		security_task_to_inode(task, inode);
		return 1;
	}
	d_drop(dentry);
	return 0;
}

static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
{
	struct inode *inode = dentry->d_inode;
	struct task_struct *task = proc_task(inode);
	int fd = proc_fd(inode);
	struct files_struct *files;

	files = get_files_struct(task);
	if (files) {
		rcu_read_lock();
		if (fcheck_files(files, fd)) {
			rcu_read_unlock();
			put_files_struct(files);
			if (task_dumpable(task)) {
				inode->i_uid = task->euid;
				inode->i_gid = task->egid;
			} else {
				inode->i_uid = 0;
				inode->i_gid = 0;
			}
			security_task_to_inode(task, inode);
			return 1;
		}
		rcu_read_unlock();
		put_files_struct(files);
	}
	d_drop(dentry);
	return 0;
}

static int pid_delete_dentry(struct dentry * dentry)
{
	/* Is the task we represent dead?
	 * If so, then don't put the dentry on the lru list,
	 * kill it immediately.
	 */
	return !pid_alive(proc_task(dentry->d_inode));
}

static struct dentry_operations tid_fd_dentry_operations =
{
	.d_revalidate	= tid_fd_revalidate,
	.d_delete	= pid_delete_dentry,
};

static struct dentry_operations pid_dentry_operations =
{
	.d_revalidate	= pid_revalidate,
	.d_delete	= pid_delete_dentry,
};

/* Lookups */

static unsigned name_to_int(struct dentry *dentry)
{
	const char *name = dentry->d_name.name;
	int len = dentry->d_name.len;
	unsigned n = 0;

	if (len > 1 && *name == '0')
		goto out;
	while (len-- > 0) {
		unsigned c = *name++ - '0';
		if (c > 9)
			goto out;
		if (n >= (~0U-9)/10)
			goto out;
		n *= 10;
		n += c;
	}
	return n;
out:
	return ~0U;
}

/* SMP-safe */
static struct dentry *proc_lookupfd(struct inode * dir, struct dentry * dentry, struct nameidata *nd)
{
	struct task_struct *task = proc_task(dir);
	unsigned fd = name_to_int(dentry);
	struct dentry *result = ERR_PTR(-ENOENT);
	struct file * file;
	struct files_struct * files;
	struct inode *inode;
	struct proc_inode *ei;

	if (fd == ~0U)
		goto out;
	if (!pid_alive(task))
		goto out;

	inode = proc_pid_make_inode(dir->i_sb, task, PROC_TID_FD_DIR+fd);
	if (!inode)
		goto out;
	ei = PROC_I(inode);
	ei->fd = fd;
	files = get_files_struct(task);
	if (!files)
		goto out_unlock;
	inode->i_mode = S_IFLNK;

	/*
	 * We are not taking a ref to the file structure, so we must
	 * hold ->file_lock.
	 */
	spin_lock(&files->file_lock);
	file = fcheck_files(files, fd);
	if (!file)
		goto out_unlock2;
	if (file->f_mode & 1)
		inode->i_mode |= S_IRUSR | S_IXUSR;
	if (file->f_mode & 2)
		inode->i_mode |= S_IWUSR | S_IXUSR;
	spin_unlock(&files->file_lock);
	put_files_struct(files);
	inode->i_op = &proc_pid_link_inode_operations;
	inode->i_size = 64;
	ei->op.proc_get_link = proc_fd_link;
	dentry->d_op = &tid_fd_dentry_operations;
	d_add(dentry, inode);
	/* Close the race of the process dying before we return the dentry */
	if (tid_fd_revalidate(dentry, NULL))
		result = NULL;
out:
	return result;

out_unlock2:
	spin_unlock(&files->file_lock);
	put_files_struct(files);
out_unlock:
	iput(inode);
	goto out;
}

static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir);
static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd);
static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat);

static struct file_operations proc_fd_operations = {
	.read		= generic_read_dir,
	.readdir	= proc_readfd,
};

static struct file_operations proc_task_operations = {
	.read		= generic_read_dir,
	.readdir	= proc_task_readdir,
};

/*
 * proc directories can do almost nothing..
 */
static struct inode_operations proc_fd_inode_operations = {
	.lookup		= proc_lookupfd,
};

static struct inode_operations proc_task_inode_operations = {
	.lookup		= proc_task_lookup,
	.getattr	= proc_task_getattr,
};

#ifdef CONFIG_SECURITY
static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
				  size_t count, loff_t *ppos)
{
	struct inode * inode = file->f_dentry->d_inode;
	unsigned long page;
	ssize_t length;
	struct task_struct *task = proc_task(inode);

	if (count > PAGE_SIZE)
		count = PAGE_SIZE;
	if (!(page = __get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	length = security_getprocattr(task, 
				      (char*)file->f_dentry->d_name.name, 
				      (void*)page, count);
	if (length >= 0)
		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
	free_page(page);
	return length;
}

static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
				   size_t count, loff_t *ppos)
{ 
	struct inode * inode = file->f_dentry->d_inode;
	char *page; 
	ssize_t length; 
	struct task_struct *task = proc_task(inode); 

	if (count > PAGE_SIZE) 
		count = PAGE_SIZE; 
	if (*ppos != 0) {
		/* No partial writes. */
		return -EINVAL;
	}
	page = (char*)__get_free_page(GFP_USER); 
	if (!page) 
		return -ENOMEM;
	length = -EFAULT; 
	if (copy_from_user(page, buf, count)) 
		goto out;

	length = security_setprocattr(task, 
				      (char*)file->f_dentry->d_name.name, 
				      (void*)page, count);
out:
	free_page((unsigned long) page);
	return length;
} 

static struct file_operations proc_pid_attr_operations = {
	.read		= proc_pid_attr_read,
	.write		= proc_pid_attr_write,
};

static struct file_operations proc_tid_attr_operations;
static struct inode_operations proc_tid_attr_inode_operations;
static struct file_operations proc_tgid_attr_operations;
static struct inode_operations proc_tgid_attr_inode_operations;
#endif

/* SMP-safe */
static struct dentry *proc_pident_lookup(struct inode *dir, 
					 struct dentry *dentry,
					 struct pid_entry *ents)
{
	struct inode *inode;
	struct dentry *error;
	struct task_struct *task = proc_task(dir);
	struct pid_entry *p;
	struct proc_inode *ei;

	error = ERR_PTR(-ENOENT);
	inode = NULL;

	if (!pid_alive(task))
		goto out;

	for (p = ents; p->name; p++) {
		if (p->len != dentry->d_name.len)
			continue;
		if (!memcmp(dentry->d_name.name, p->name, p->len))
			break;
	}
	if (!p->name)
		goto out;

	error = ERR_PTR(-EINVAL);
	inode = proc_pid_make_inode(dir->i_sb, task, p->type);
	if (!inode)
		goto out;

	ei = PROC_I(inode);
	inode->i_mode = p->mode;
	/*
	 * Yes, it does not scale. And it should not. Don't add
	 * new entries into /proc/<tgid>/ without very good reasons.
	 */
	switch(p->type) {
		case PROC_TGID_TASK:
			inode->i_nlink = 2;
			inode->i_op = &proc_task_inode_operations;
			inode->i_fop = &proc_task_operations;
			break;
		case PROC_TID_FD:
		case PROC_TGID_FD:
			inode->i_nlink = 2;
			inode->i_op = &proc_fd_inode_operations;
			inode->i_fop = &proc_fd_operations;
			break;
		case PROC_TID_EXE:
		case PROC_TGID_EXE:
			inode->i_op = &proc_pid_link_inode_operations;
			ei->op.proc_get_link = proc_exe_link;
			break;
		case PROC_TID_CWD:
		case PROC_TGID_CWD:
			inode->i_op = &proc_pid_link_inode_operations;
			ei->op.proc_get_link = proc_cwd_link;
			break;
		case PROC_TID_ROOT:
		case PROC_TGID_ROOT:
			inode->i_op = &proc_pid_link_inode_operations;
			ei->op.proc_get_link = proc_root_link;
			break;
		case PROC_TID_ENVIRON:
		case PROC_TGID_ENVIRON:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_pid_environ;
			break;
		case PROC_TID_AUXV:
		case PROC_TGID_AUXV:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_pid_auxv;
			break;
		case PROC_TID_STATUS:
		case PROC_TGID_STATUS:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_pid_status;
			break;
		case PROC_TID_STAT:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_tid_stat;
			break;
		case PROC_TGID_STAT:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_tgid_stat;
			break;
		case PROC_TID_CMDLINE:
		case PROC_TGID_CMDLINE:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_pid_cmdline;
			break;
		case PROC_TID_STATM:
		case PROC_TGID_STATM:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_pid_statm;
			break;
		case PROC_TID_MAPS:
		case PROC_TGID_MAPS:
			inode->i_fop = &proc_maps_operations;
			break;
#ifdef CONFIG_NUMA
		case PROC_TID_NUMA_MAPS:
		case PROC_TGID_NUMA_MAPS:
			inode->i_fop = &proc_numa_maps_operations;
			break;
#endif
		case PROC_TID_MEM:
		case PROC_TGID_MEM:
			inode->i_fop = &proc_mem_operations;
			break;
#ifdef CONFIG_SECCOMP
		case PROC_TID_SECCOMP:
		case PROC_TGID_SECCOMP:
			inode->i_fop = &proc_seccomp_operations;
			break;
#endif /* CONFIG_SECCOMP */
		case PROC_TID_MOUNTS:
		case PROC_TGID_MOUNTS:
			inode->i_fop = &proc_mounts_operations;
			break;
#ifdef CONFIG_MMU
		case PROC_TID_SMAPS:
		case PROC_TGID_SMAPS:
			inode->i_fop = &proc_smaps_operations;
			break;
#endif
		case PROC_TID_MOUNTSTATS:
		case PROC_TGID_MOUNTSTATS:
			inode->i_fop = &proc_mountstats_operations;
			break;
#ifdef CONFIG_SECURITY
		case PROC_TID_ATTR:
			inode->i_nlink = 2;
			inode->i_op = &proc_tid_attr_inode_operations;
			inode->i_fop = &proc_tid_attr_operations;
			break;
		case PROC_TGID_ATTR:
			inode->i_nlink = 2;
			inode->i_op = &proc_tgid_attr_inode_operations;
			inode->i_fop = &proc_tgid_attr_operations;
			break;
		case PROC_TID_ATTR_CURRENT:
		case PROC_TGID_ATTR_CURRENT:
		case PROC_TID_ATTR_PREV:
		case PROC_TGID_ATTR_PREV:
		case PROC_TID_ATTR_EXEC:
		case PROC_TGID_ATTR_EXEC:
		case PROC_TID_ATTR_FSCREATE:
		case PROC_TGID_ATTR_FSCREATE:
		case PROC_TID_ATTR_KEYCREATE:
		case PROC_TGID_ATTR_KEYCREATE:
			inode->i_fop = &proc_pid_attr_operations;
			break;
#endif
#ifdef CONFIG_KALLSYMS
		case PROC_TID_WCHAN:
		case PROC_TGID_WCHAN:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_pid_wchan;
			break;
#endif
#ifdef CONFIG_SCHEDSTATS
		case PROC_TID_SCHEDSTAT:
		case PROC_TGID_SCHEDSTAT:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_pid_schedstat;
			break;
#endif
#ifdef CONFIG_CPUSETS
		case PROC_TID_CPUSET:
		case PROC_TGID_CPUSET:
			inode->i_fop = &proc_cpuset_operations;
			break;
#endif
		case PROC_TID_OOM_SCORE:
		case PROC_TGID_OOM_SCORE:
			inode->i_fop = &proc_info_file_operations;
			ei->op.proc_read = proc_oom_score;
			break;
		case PROC_TID_OOM_ADJUST:
		case PROC_TGID_OOM_ADJUST:
			inode->i_fop = &proc_oom_adjust_operations;
			break;
#ifdef CONFIG_AUDITSYSCALL
		case PROC_TID_LOGINUID:
		case PROC_TGID_LOGINUID:
			inode->i_fop = &proc_loginuid_operations;
			break;
#endif
		default:
			printk("procfs: impossible type (%d)",p->type);
			iput(inode);
			error = ERR_PTR(-EINVAL);
			goto out;
	}
	dentry->d_op = &pid_dentry_operations;
	d_add(dentry, inode);
	/* Close the race of the process dying before we return the dentry */
	if (pid_revalidate(dentry, NULL))
		error = NULL;
out:
	return error;
}

static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
	return proc_pident_lookup(dir, dentry, tgid_base_stuff);
}

static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
	return proc_pident_lookup(dir, dentry, tid_base_stuff);
}

static struct file_operations proc_tgid_base_operations = {
	.read		= generic_read_dir,
	.readdir	= proc_tgid_base_readdir,
};

static struct file_operations proc_tid_base_operations = {
	.read		= generic_read_dir,
	.readdir	= proc_tid_base_readdir,
};

static struct inode_operations proc_tgid_base_inode_operations = {
	.lookup		= proc_tgid_base_lookup,
};

static struct inode_operations proc_tid_base_inode_operations = {
	.lookup		= proc_tid_base_lookup,
};

#ifdef CONFIG_SECURITY
static int proc_tgid_attr_readdir(struct file * filp,
			     void * dirent, filldir_t filldir)
{
	return proc_pident_readdir(filp,dirent,filldir,
				   tgid_attr_stuff,ARRAY_SIZE(tgid_attr_stuff));
}

static int proc_tid_attr_readdir(struct file * filp,
			     void * dirent, filldir_t filldir)
{
	return proc_pident_readdir(filp,dirent,filldir,
				   tid_attr_stuff,ARRAY_SIZE(tid_attr_stuff));
}

static struct file_operations proc_tgid_attr_operations = {
	.read		= generic_read_dir,
	.readdir	= proc_tgid_attr_readdir,
};

static struct file_operations proc_tid_attr_operations = {
	.read		= generic_read_dir,
	.readdir	= proc_tid_attr_readdir,
};

static struct dentry *proc_tgid_attr_lookup(struct inode *dir,
				struct dentry *dentry, struct nameidata *nd)
{
	return proc_pident_lookup(dir, dentry, tgid_attr_stuff);
}

static struct dentry *proc_tid_attr_lookup(struct inode *dir,
				struct dentry *dentry, struct nameidata *nd)
{
	return proc_pident_lookup(dir, dentry, tid_attr_stuff);
}

static struct inode_operations proc_tgid_attr_inode_operations = {
	.lookup		= proc_tgid_attr_lookup,
};

static struct inode_operations proc_tid_attr_inode_operations = {
	.lookup		= proc_tid_attr_lookup,
};
#endif

/*
 * /proc/self:
 */
static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
			      int buflen)
{
	char tmp[30];
	sprintf(tmp, "%d", current->tgid);
	return vfs_readlink(dentry,buffer,buflen,tmp);
}

static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
{
	char tmp[30];
	sprintf(tmp, "%d", current->tgid);
	return ERR_PTR(vfs_follow_link(nd,tmp));
}	

static struct inode_operations proc_self_inode_operations = {
	.readlink	= proc_self_readlink,
	.follow_link	= proc_self_follow_link,
};

/**
 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
 *
 * @task: task that should be flushed.
 *
 * Looks in the dcache for
 * /proc/@pid
 * /proc/@tgid/task/@pid
 * if either directory is present flushes it and all of it'ts children
 * from the dcache.
 *
 * It is safe and reasonable to cache /proc entries for a task until
 * that task exits.  After that they just clog up the dcache with
 * useless entries, possibly causing useful dcache entries to be
 * flushed instead.  This routine is proved to flush those useless
 * dcache entries at process exit time.
 *
 * NOTE: This routine is just an optimization so it does not guarantee
 *       that no dcache entries will exist at process exit time it
 *       just makes it very unlikely that any will persist.
 */
void proc_flush_task(struct task_struct *task)
{
	struct dentry *dentry, *leader, *dir;
	char buf[30];
	struct qstr name;

	name.name = buf;
	name.len = snprintf(buf, sizeof(buf), "%d", task->pid);
	dentry = d_hash_and_lookup(proc_mnt->mnt_root, &name);
	if (dentry) {
		shrink_dcache_parent(dentry);
		d_drop(dentry);
		dput(dentry);
	}

	if (thread_group_leader(task))
		goto out;

	name.name = buf;
	name.len = snprintf(buf, sizeof(buf), "%d", task->tgid);
	leader = d_hash_and_lookup(proc_mnt->mnt_root, &name);
	if (!leader)
		goto out;

	name.name = "task";
	name.len = strlen(name.name);
	dir = d_hash_and_lookup(leader, &name);
	if (!dir)
		goto out_put_leader;

	name.name = buf;
	name.len = snprintf(buf, sizeof(buf), "%d", task->pid);
	dentry = d_hash_and_lookup(dir, &name);
	if (dentry) {
		shrink_dcache_parent(dentry);
		d_drop(dentry);
		dput(dentry);
	}

	dput(dir);
out_put_leader:
	dput(leader);
out:
	return;
}

/* SMP-safe */
struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
{
	struct dentry *result = ERR_PTR(-ENOENT);
	struct task_struct *task;
	struct inode *inode;
	struct proc_inode *ei;
	unsigned tgid;

	if (dentry->d_name.len == 4 && !memcmp(dentry->d_name.name,"self",4)) {
		inode = new_inode(dir->i_sb);
		if (!inode)
			return ERR_PTR(-ENOMEM);
		ei = PROC_I(inode);
		inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
		inode->i_ino = fake_ino(0, PROC_TGID_INO);
		ei->pde = NULL;
		inode->i_mode = S_IFLNK|S_IRWXUGO;
		inode->i_uid = inode->i_gid = 0;
		inode->i_size = 64;
		inode->i_op = &proc_self_inode_operations;
		d_add(dentry, inode);
		return NULL;
	}
	tgid = name_to_int(dentry);
	if (tgid == ~0U)
		goto out;

	rcu_read_lock();
	task = find_task_by_pid(tgid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();
	if (!task)
		goto out;

	inode = proc_pid_make_inode(dir->i_sb, task, PROC_TGID_INO);
	if (!inode)
		goto out_put_task;

	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
	inode->i_op = &proc_tgid_base_inode_operations;
	inode->i_fop = &proc_tgid_base_operations;
	inode->i_flags|=S_IMMUTABLE;
#ifdef CONFIG_SECURITY
	inode->i_nlink = 5;
#else
	inode->i_nlink = 4;
#endif

	dentry->d_op = &pid_dentry_operations;

	d_add(dentry, inode);
	/* Close the race of the process dying before we return the dentry */
	if (pid_revalidate(dentry, NULL))
		result = NULL;

out_put_task:
	put_task_struct(task);
out:
	return result;
}

/* SMP-safe */
static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
{
	struct dentry *result = ERR_PTR(-ENOENT);
	struct task_struct *task;
	struct task_struct *leader = proc_task(dir);
	struct inode *inode;
	unsigned tid;

	tid = name_to_int(dentry);
	if (tid == ~0U)
		goto out;

	rcu_read_lock();
	task = find_task_by_pid(tid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();
	if (!task)
		goto out;
	if (leader->tgid != task->tgid)
		goto out_drop_task;

	inode = proc_pid_make_inode(dir->i_sb, task, PROC_TID_INO);


	if (!inode)
		goto out_drop_task;
	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
	inode->i_op = &proc_tid_base_inode_operations;
	inode->i_fop = &proc_tid_base_operations;
	inode->i_flags|=S_IMMUTABLE;
#ifdef CONFIG_SECURITY
	inode->i_nlink = 4;
#else
	inode->i_nlink = 3;
#endif

	dentry->d_op = &pid_dentry_operations;

	d_add(dentry, inode);
	/* Close the race of the process dying before we return the dentry */
	if (pid_revalidate(dentry, NULL))
		result = NULL;

out_drop_task:
	put_task_struct(task);
out:
	return result;
}

#define PROC_NUMBUF 10

/*
 * Find the first tgid to return to user space.
 *
 * Usually this is just whatever follows &init_task, but if the users
 * buffer was too small to hold the full list or there was a seek into
 * the middle of the directory we have more work to do.
 *
 * In the case of a short read we start with find_task_by_pid.
 *
 * In the case of a seek we start with &init_task and walk nr
 * threads past it.
 */
static struct task_struct *first_tgid(int tgid, unsigned int nr)
{
	struct task_struct *pos;
	rcu_read_lock();
	if (tgid && nr) {
		pos = find_task_by_pid(tgid);
		if (pos && thread_group_leader(pos))
			goto found;
	}
	/* If nr exceeds the number of processes get out quickly */
	pos = NULL;
	if (nr && nr >= nr_processes())
		goto done;

	/* If we haven't found our starting place yet start with
	 * the init_task and walk nr tasks forward.
	 */
	for (pos = next_task(&init_task); nr > 0; --nr) {
		pos = next_task(pos);
		if (pos == &init_task) {
			pos = NULL;
			goto done;
		}
	}
found:
	get_task_struct(pos);
done:
	rcu_read_unlock();
	return pos;
}

/*
 * Find the next task in the task list.
 * Return NULL if we loop or there is any error.
 *
 * The reference to the input task_struct is released.
 */
static struct task_struct *next_tgid(struct task_struct *start)
{
	struct task_struct *pos;
	rcu_read_lock();
	pos = start;
	if (pid_alive(start))
		pos = next_task(start);
	if (pid_alive(pos) && (pos != &init_task)) {
		get_task_struct(pos);
		goto done;
	}
	pos = NULL;
done:
	rcu_read_unlock();
	put_task_struct(start);
	return pos;
}

/* for the /proc/ directory itself, after non-process stuff has been done */
int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
{
	char buf[PROC_NUMBUF];
	unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
	struct task_struct *task;
	int tgid;

	if (!nr) {
		ino_t ino = fake_ino(0,PROC_TGID_INO);
		if (filldir(dirent, "self", 4, filp->f_pos, ino, DT_LNK) < 0)
			return 0;
		filp->f_pos++;
		nr++;
	}
	nr -= 1;

	/* f_version caches the tgid value that the last readdir call couldn't
	 * return. lseek aka telldir automagically resets f_version to 0.
	 */
	tgid = filp->f_version;
	filp->f_version = 0;
	for (task = first_tgid(tgid, nr);
	     task;
	     task = next_tgid(task), filp->f_pos++) {
		int len;
		ino_t ino;
		tgid = task->pid;
		len = snprintf(buf, sizeof(buf), "%d", tgid);
		ino = fake_ino(tgid, PROC_TGID_INO);
		if (filldir(dirent, buf, len, filp->f_pos, ino, DT_DIR) < 0) {
			/* returning this tgid failed, save it as the first
			 * pid for the next readir call */
			filp->f_version = tgid;
			put_task_struct(task);
			break;
		}
	}
	return 0;
}

/*
 * Find the first tid of a thread group to return to user space.
 *
 * Usually this is just the thread group leader, but if the users
 * buffer was too small or there was a seek into the middle of the
 * directory we have more work todo.
 *
 * In the case of a short read we start with find_task_by_pid.
 *
 * In the case of a seek we start with the leader and walk nr
 * threads past it.
 */
static struct task_struct *first_tid(struct task_struct *leader, int tid, int nr)
{
	struct task_struct *pos = NULL;
	read_lock(&tasklist_lock);

	/* Attempt to start with the pid of a thread */
	if (tid && (nr > 0)) {
		pos = find_task_by_pid(tid);
		if (pos && (pos->group_leader != leader))
			pos = NULL;
		if (pos)
			nr = 0;
	}

	/* If nr exceeds the number of threads there is nothing todo */
	if (nr) {
		int threads = 0;
		task_lock(leader);
		if (leader->signal)
			threads = atomic_read(&leader->signal->count);
		task_unlock(leader);
		if (nr >= threads)
			goto done;
	}

	/* If we haven't found our starting place yet start with the
	 * leader and walk nr threads forward.
	 */
	if (!pos && (nr >= 0))
		pos = leader;

	for (; pos && pid_alive(pos); pos = next_thread(pos)) {
		if (--nr > 0)
			continue;
		get_task_struct(pos);
		goto done;
	}
	pos = NULL;
done:
	read_unlock(&tasklist_lock);
	return pos;
}

/*
 * Find the next thread in the thread list.
 * Return NULL if there is an error or no next thread.
 *
 * The reference to the input task_struct is released.
 */
static struct task_struct *next_tid(struct task_struct *start)
{
	struct task_struct *pos;
	read_lock(&tasklist_lock);
	pos = start;
	if (pid_alive(start))
		pos = next_thread(start);
	if (pid_alive(pos) && (pos != start->group_leader))
		get_task_struct(pos);
	else
		pos = NULL;
	read_unlock(&tasklist_lock);
	put_task_struct(start);
	return pos;
}

/* for the /proc/TGID/task/ directories */
static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
{
	char buf[PROC_NUMBUF];
	struct dentry *dentry = filp->f_dentry;
	struct inode *inode = dentry->d_inode;
	struct task_struct *leader = proc_task(inode);
	struct task_struct *task;
	int retval = -ENOENT;
	ino_t ino;
	int tid;
	unsigned long pos = filp->f_pos;  /* avoiding "long long" filp->f_pos */

	if (!pid_alive(leader))
		goto out;
	retval = 0;

	switch (pos) {
	case 0:
		ino = inode->i_ino;
		if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
			goto out;
		pos++;
		/* fall through */
	case 1:
		ino = parent_ino(dentry);
		if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
			goto out;
		pos++;
		/* fall through */
	}

	/* f_version caches the tgid value that the last readdir call couldn't
	 * return. lseek aka telldir automagically resets f_version to 0.
	 */
	tid = filp->f_version;
	filp->f_version = 0;
	for (task = first_tid(leader, tid, pos - 2);
	     task;
	     task = next_tid(task), pos++) {
		int len;
		tid = task->pid;
		len = snprintf(buf, sizeof(buf), "%d", tid);
		ino = fake_ino(tid, PROC_TID_INO);
		if (filldir(dirent, buf, len, pos, ino, DT_DIR < 0)) {
			/* returning this tgid failed, save it as the first
			 * pid for the next readir call */
			filp->f_version = tid;
			put_task_struct(task);
			break;
		}
	}
out:
	filp->f_pos = pos;
	return retval;
}

static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
{
	struct inode *inode = dentry->d_inode;
	struct task_struct *p = proc_task(inode);
	generic_fillattr(inode, stat);

	if (pid_alive(p)) {
		task_lock(p);
		if (p->signal)
			stat->nlink += atomic_read(&p->signal->count);
		task_unlock(p);
	}

	return 0;
}