/* * linux/include/asm-arm/byteorder.h * * ARM Endian-ness. In little endian mode, the data bus is connected such * that byte accesses appear as: * 0 = d0...d7, 1 = d8...d15, 2 = d16...d23, 3 = d24...d31 * and word accesses (data or instruction) appear as: * d0...d31 * * When in big endian mode, byte accesses appear as: * 0 = d24...d31, 1 = d16...d23, 2 = d8...d15, 3 = d0...d7 * and word accesses (data or instruction) appear as: * d0...d31 */ #ifndef __ASM_ARM_BYTEORDER_H #define __ASM_ARM_BYTEORDER_H #include <linux/compiler.h> #include <asm/types.h> static inline __attribute_const__ __u32 ___arch__swab32(__u32 x) { __u32 t; if (__builtin_constant_p(x)) { t = x ^ ((x << 16) | (x >> 16)); /* eor r1,r0,r0,ror #16 */ } else { /* * The compiler needs a bit of a hint here to always do the * right thing and not screw it up to different degrees * depending on the gcc version. */ asm ("eor\t%0, %1, %1, ror #16" : "=r" (t) : "r" (x)); } x = (x << 24) | (x >> 8); /* mov r0,r0,ror #8 */ t &= ~0x00FF0000; /* bic r1,r1,#0x00FF0000 */ x ^= (t >> 8); /* eor r0,r0,r1,lsr #8 */ return x; } #define __arch__swab32(x) ___arch__swab32(x) #if !defined(__STRICT_ANSI__) || defined(__KERNEL__) # define __BYTEORDER_HAS_U64__ # define __SWAB_64_THRU_32__ #endif #ifdef __ARMEB__ #include <linux/byteorder/big_endian.h> #else #include <linux/byteorder/little_endian.h> #endif #endif