/* * include/asm-generic/rtc.h * * Author: Tom Rini <trini@mvista.com> * * Based on: * drivers/char/rtc.c * * Please read the COPYING file for all license details. */ #ifndef __ASM_RTC_H__ #define __ASM_RTC_H__ #include <linux/mc146818rtc.h> #include <linux/rtc.h> #include <linux/bcd.h> #include <linux/delay.h> #define RTC_PIE 0x40 /* periodic interrupt enable */ #define RTC_AIE 0x20 /* alarm interrupt enable */ #define RTC_UIE 0x10 /* update-finished interrupt enable */ /* some dummy definitions */ #define RTC_BATT_BAD 0x100 /* battery bad */ #define RTC_SQWE 0x08 /* enable square-wave output */ #define RTC_DM_BINARY 0x04 /* all time/date values are BCD if clear */ #define RTC_24H 0x02 /* 24 hour mode - else hours bit 7 means pm */ #define RTC_DST_EN 0x01 /* auto switch DST - works f. USA only */ /* * Returns true if a clock update is in progress */ static inline unsigned char rtc_is_updating(void) { unsigned char uip; unsigned long flags; spin_lock_irqsave(&rtc_lock, flags); uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); spin_unlock_irqrestore(&rtc_lock, flags); return uip; } static inline unsigned int __get_rtc_time(struct rtc_time *time) { unsigned char ctrl; unsigned long flags; #ifdef CONFIG_MACH_DECSTATION unsigned int real_year; #endif /* * read RTC once any update in progress is done. The update * can take just over 2ms. We wait 20ms. There is no need to * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. * If you need to know *exactly* when a second has started, enable * periodic update complete interrupts, (via ioctl) and then * immediately read /dev/rtc which will block until you get the IRQ. * Once the read clears, read the RTC time (again via ioctl). Easy. */ if (rtc_is_updating()) mdelay(20); /* * Only the values that we read from the RTC are set. We leave * tm_wday, tm_yday and tm_isdst untouched. Even though the * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated * by the RTC when initially set to a non-zero value. */ spin_lock_irqsave(&rtc_lock, flags); time->tm_sec = CMOS_READ(RTC_SECONDS); time->tm_min = CMOS_READ(RTC_MINUTES); time->tm_hour = CMOS_READ(RTC_HOURS); time->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH); time->tm_mon = CMOS_READ(RTC_MONTH); time->tm_year = CMOS_READ(RTC_YEAR); #ifdef CONFIG_MACH_DECSTATION real_year = CMOS_READ(RTC_DEC_YEAR); #endif ctrl = CMOS_READ(RTC_CONTROL); spin_unlock_irqrestore(&rtc_lock, flags); if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { time->tm_sec = bcd2bin(time->tm_sec); time->tm_min = bcd2bin(time->tm_min); time->tm_hour = bcd2bin(time->tm_hour); time->tm_mday = bcd2bin(time->tm_mday); time->tm_mon = bcd2bin(time->tm_mon); time->tm_year = bcd2bin(time->tm_year); } #ifdef CONFIG_MACH_DECSTATION time->tm_year += real_year - 72; #endif /* * Account for differences between how the RTC uses the values * and how they are defined in a struct rtc_time; */ if (time->tm_year <= 69) time->tm_year += 100; time->tm_mon--; return RTC_24H; } #ifndef get_rtc_time #define get_rtc_time __get_rtc_time #endif /* Set the current date and time in the real time clock. */ static inline int __set_rtc_time(struct rtc_time *time) { unsigned long flags; unsigned char mon, day, hrs, min, sec; unsigned char save_control, save_freq_select; unsigned int yrs; #ifdef CONFIG_MACH_DECSTATION unsigned int real_yrs, leap_yr; #endif yrs = time->tm_year; mon = time->tm_mon + 1; /* tm_mon starts at zero */ day = time->tm_mday; hrs = time->tm_hour; min = time->tm_min; sec = time->tm_sec; if (yrs > 255) /* They are unsigned */ return -EINVAL; spin_lock_irqsave(&rtc_lock, flags); #ifdef CONFIG_MACH_DECSTATION real_yrs = yrs; leap_yr = ((!((yrs + 1900) % 4) && ((yrs + 1900) % 100)) || !((yrs + 1900) % 400)); yrs = 72; /* * We want to keep the year set to 73 until March * for non-leap years, so that Feb, 29th is handled * correctly. */ if (!leap_yr && mon < 3) { real_yrs--; yrs = 73; } #endif /* These limits and adjustments are independent of * whether the chip is in binary mode or not. */ if (yrs > 169) { spin_unlock_irqrestore(&rtc_lock, flags); return -EINVAL; } if (yrs >= 100) yrs -= 100; if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { sec = bin2bcd(sec); min = bin2bcd(min); hrs = bin2bcd(hrs); day = bin2bcd(day); mon = bin2bcd(mon); yrs = bin2bcd(yrs); } save_control = CMOS_READ(RTC_CONTROL); CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); #ifdef CONFIG_MACH_DECSTATION CMOS_WRITE(real_yrs, RTC_DEC_YEAR); #endif CMOS_WRITE(yrs, RTC_YEAR); CMOS_WRITE(mon, RTC_MONTH); CMOS_WRITE(day, RTC_DAY_OF_MONTH); CMOS_WRITE(hrs, RTC_HOURS); CMOS_WRITE(min, RTC_MINUTES); CMOS_WRITE(sec, RTC_SECONDS); CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); spin_unlock_irqrestore(&rtc_lock, flags); return 0; } #ifndef set_rtc_time #define set_rtc_time __set_rtc_time #endif static inline unsigned int get_rtc_ss(void) { struct rtc_time h; __get_rtc_time(&h); return h.tm_sec; } static inline int get_rtc_pll(struct rtc_pll_info *pll) { return -EINVAL; } static inline int set_rtc_pll(struct rtc_pll_info *pll) { return -EINVAL; } #endif /* __ASM_RTC_H__ */