#ifndef __ASM_SH_BITOPS_H #define __ASM_SH_BITOPS_H #ifdef __KERNEL__ #include <asm/system.h> /* For __swab32 */ #include <asm/byteorder.h> static __inline__ void set_bit(int nr, volatile void * addr) { int mask; volatile unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); local_irq_save(flags); *a |= mask; local_irq_restore(flags); } static __inline__ void __set_bit(int nr, volatile void * addr) { int mask; volatile unsigned int *a = addr; a += nr >> 5; mask = 1 << (nr & 0x1f); *a |= mask; } /* * clear_bit() doesn't provide any barrier for the compiler. */ #define smp_mb__before_clear_bit() barrier() #define smp_mb__after_clear_bit() barrier() static __inline__ void clear_bit(int nr, volatile void * addr) { int mask; volatile unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); local_irq_save(flags); *a &= ~mask; local_irq_restore(flags); } static __inline__ void __clear_bit(int nr, volatile void * addr) { int mask; volatile unsigned int *a = addr; a += nr >> 5; mask = 1 << (nr & 0x1f); *a &= ~mask; } static __inline__ void change_bit(int nr, volatile void * addr) { int mask; volatile unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); local_irq_save(flags); *a ^= mask; local_irq_restore(flags); } static __inline__ void __change_bit(int nr, volatile void * addr) { int mask; volatile unsigned int *a = addr; a += nr >> 5; mask = 1 << (nr & 0x1f); *a ^= mask; } static __inline__ int test_and_set_bit(int nr, volatile void * addr) { int mask, retval; volatile unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); local_irq_save(flags); retval = (mask & *a) != 0; *a |= mask; local_irq_restore(flags); return retval; } static __inline__ int __test_and_set_bit(int nr, volatile void * addr) { int mask, retval; volatile unsigned int *a = addr; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a |= mask; return retval; } static __inline__ int test_and_clear_bit(int nr, volatile void * addr) { int mask, retval; volatile unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); local_irq_save(flags); retval = (mask & *a) != 0; *a &= ~mask; local_irq_restore(flags); return retval; } static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) { int mask, retval; volatile unsigned int *a = addr; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a &= ~mask; return retval; } static __inline__ int test_and_change_bit(int nr, volatile void * addr) { int mask, retval; volatile unsigned int *a = addr; unsigned long flags; a += nr >> 5; mask = 1 << (nr & 0x1f); local_irq_save(flags); retval = (mask & *a) != 0; *a ^= mask; local_irq_restore(flags); return retval; } static __inline__ int __test_and_change_bit(int nr, volatile void * addr) { int mask, retval; volatile unsigned int *a = addr; a += nr >> 5; mask = 1 << (nr & 0x1f); retval = (mask & *a) != 0; *a ^= mask; return retval; } static __inline__ int test_bit(int nr, const volatile void *addr) { return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31)); } static __inline__ unsigned long ffz(unsigned long word) { unsigned long result; __asm__("1:\n\t" "shlr %1\n\t" "bt/s 1b\n\t" " add #1, %0" : "=r" (result), "=r" (word) : "0" (~0L), "1" (word) : "t"); return result; } /** * __ffs - find first bit in word. * @word: The word to search * * Undefined if no bit exists, so code should check against 0 first. */ static __inline__ unsigned long __ffs(unsigned long word) { unsigned long result; __asm__("1:\n\t" "shlr %1\n\t" "bf/s 1b\n\t" " add #1, %0" : "=r" (result), "=r" (word) : "0" (~0L), "1" (word) : "t"); return result; } /** * find_next_bit - find the next set bit in a memory region * @addr: The address to base the search on * @offset: The bitnumber to start searching at * @size: The maximum size to search */ static __inline__ unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset) { unsigned int *p = ((unsigned int *) addr) + (offset >> 5); unsigned int result = offset & ~31UL; unsigned int tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *p++; tmp &= ~0UL << offset; if (size < 32) goto found_first; if (tmp) goto found_middle; size -= 32; result += 32; } while (size >= 32) { if ((tmp = *p++) != 0) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp &= ~0UL >> (32 - size); if (tmp == 0UL) /* Are any bits set? */ return result + size; /* Nope. */ found_middle: return result + __ffs(tmp); } /** * find_first_bit - find the first set bit in a memory region * @addr: The address to start the search at * @size: The maximum size to search * * Returns the bit-number of the first set bit, not the number of the byte * containing a bit. */ #define find_first_bit(addr, size) \ find_next_bit((addr), (size), 0) static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset) { const unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if (offset) { tmp = *(p++); tmp |= ~0UL >> (32-offset); if (size < 32) goto found_first; if (~tmp) goto found_middle; size -= 32; result += 32; } while (size & ~31UL) { if (~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if (!size) return result; tmp = *p; found_first: tmp |= ~0UL << size; found_middle: return result + ffz(tmp); } #define find_first_zero_bit(addr, size) \ find_next_zero_bit((addr), (size), 0) /* * ffs: find first bit set. This is defined the same way as * the libc and compiler builtin ffs routines, therefore * differs in spirit from the above ffz (man ffs). */ #define ffs(x) generic_ffs(x) /* * hweightN: returns the hamming weight (i.e. the number * of bits set) of a N-bit word */ #define hweight32(x) generic_hweight32(x) #define hweight16(x) generic_hweight16(x) #define hweight8(x) generic_hweight8(x) /* * Every architecture must define this function. It's the fastest * way of searching a 140-bit bitmap where the first 100 bits are * unlikely to be set. It's guaranteed that at least one of the 140 * bits is cleared. */ static inline int sched_find_first_bit(const unsigned long *b) { if (unlikely(b[0])) return __ffs(b[0]); if (unlikely(b[1])) return __ffs(b[1]) + 32; if (unlikely(b[2])) return __ffs(b[2]) + 64; if (b[3]) return __ffs(b[3]) + 96; return __ffs(b[4]) + 128; } #ifdef __LITTLE_ENDIAN__ #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) #define ext2_find_next_zero_bit(addr, size, offset) \ find_next_zero_bit((unsigned long *)(addr), (size), (offset)) #else static __inline__ int ext2_set_bit(int nr, volatile void * addr) { int mask, retval; unsigned long flags; volatile unsigned char *ADDR = (unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); local_irq_save(flags); retval = (mask & *ADDR) != 0; *ADDR |= mask; local_irq_restore(flags); return retval; } static __inline__ int ext2_clear_bit(int nr, volatile void * addr) { int mask, retval; unsigned long flags; volatile unsigned char *ADDR = (unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); local_irq_save(flags); retval = (mask & *ADDR) != 0; *ADDR &= ~mask; local_irq_restore(flags); return retval; } static __inline__ int ext2_test_bit(int nr, const volatile void * addr) { int mask; const volatile unsigned char *ADDR = (const unsigned char *) addr; ADDR += nr >> 3; mask = 1 << (nr & 0x07); return ((mask & *ADDR) != 0); } #define ext2_find_first_zero_bit(addr, size) \ ext2_find_next_zero_bit((addr), (size), 0) static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) { unsigned long *p = ((unsigned long *) addr) + (offset >> 5); unsigned long result = offset & ~31UL; unsigned long tmp; if (offset >= size) return size; size -= result; offset &= 31UL; if(offset) { /* We hold the little endian value in tmp, but then the * shift is illegal. So we could keep a big endian value * in tmp, like this: * * tmp = __swab32(*(p++)); * tmp |= ~0UL >> (32-offset); * * but this would decrease preformance, so we change the * shift: */ tmp = *(p++); tmp |= __swab32(~0UL >> (32-offset)); if(size < 32) goto found_first; if(~tmp) goto found_middle; size -= 32; result += 32; } while(size & ~31UL) { if(~(tmp = *(p++))) goto found_middle; result += 32; size -= 32; } if(!size) return result; tmp = *p; found_first: /* tmp is little endian, so we would have to swab the shift, * see above. But then we have to swab tmp below for ffz, so * we might as well do this here. */ return result + ffz(__swab32(tmp) | (~0UL << size)); found_middle: return result + ffz(__swab32(tmp)); } #endif #define ext2_set_bit_atomic(lock, nr, addr) \ ({ \ int ret; \ spin_lock(lock); \ ret = ext2_set_bit((nr), (addr)); \ spin_unlock(lock); \ ret; \ }) #define ext2_clear_bit_atomic(lock, nr, addr) \ ({ \ int ret; \ spin_lock(lock); \ ret = ext2_clear_bit((nr), (addr)); \ spin_unlock(lock); \ ret; \ }) /* Bitmap functions for the minix filesystem. */ #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) #define minix_set_bit(nr,addr) set_bit(nr,addr) #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) #define minix_test_bit(nr,addr) test_bit(nr,addr) #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) /* * fls: find last bit set. */ #define fls(x) generic_fls(x) #define fls64(x) generic_fls64(x) #endif /* __KERNEL__ */ #endif /* __ASM_SH_BITOPS_H */