/* $Id: dma.h,v 1.35 1999/12/27 06:37:09 anton Exp $ * include/asm-sparc/dma.h * * Copyright 1995 (C) David S. Miller (davem@caip.rutgers.edu) */ #ifndef _ASM_SPARC_DMA_H #define _ASM_SPARC_DMA_H #include <linux/kernel.h> #include <linux/types.h> #include <asm/vac-ops.h> /* for invalidate's, etc. */ #include <asm/sbus.h> #include <asm/delay.h> #include <asm/oplib.h> #include <asm/system.h> #include <asm/io.h> #include <linux/spinlock.h> struct page; extern spinlock_t dma_spin_lock; static __inline__ unsigned long claim_dma_lock(void) { unsigned long flags; spin_lock_irqsave(&dma_spin_lock, flags); return flags; } static __inline__ void release_dma_lock(unsigned long flags) { spin_unlock_irqrestore(&dma_spin_lock, flags); } /* These are irrelevant for Sparc DMA, but we leave it in so that * things can compile. */ #define MAX_DMA_CHANNELS 8 #define MAX_DMA_ADDRESS (~0UL) #define DMA_MODE_READ 1 #define DMA_MODE_WRITE 2 /* Useful constants */ #define SIZE_16MB (16*1024*1024) #define SIZE_64K (64*1024) /* SBUS DMA controller reg offsets */ #define DMA_CSR 0x00UL /* rw DMA control/status register 0x00 */ #define DMA_ADDR 0x04UL /* rw DMA transfer address register 0x04 */ #define DMA_COUNT 0x08UL /* rw DMA transfer count register 0x08 */ #define DMA_TEST 0x0cUL /* rw DMA test/debug register 0x0c */ /* DVMA chip revisions */ enum dvma_rev { dvmarev0, dvmaesc1, dvmarev1, dvmarev2, dvmarev3, dvmarevplus, dvmahme }; #define DMA_HASCOUNT(rev) ((rev)==dvmaesc1) /* Linux DMA information structure, filled during probe. */ struct sbus_dma { struct sbus_dma *next; struct sbus_dev *sdev; void __iomem *regs; /* Status, misc info */ int node; /* Prom node for this DMA device */ int running; /* Are we doing DMA now? */ int allocated; /* Are we "owned" by anyone yet? */ /* Transfer information. */ unsigned long addr; /* Start address of current transfer */ int nbytes; /* Size of current transfer */ int realbytes; /* For splitting up large transfers, etc. */ /* DMA revision */ enum dvma_rev revision; }; extern struct sbus_dma *dma_chain; /* Broken hardware... */ #ifdef CONFIG_SUN4 /* Have to sort this out. Does rev0 work fine on sun4[cmd] without isbroken? * Or is rev0 present only on sun4 boxes? -jj */ #define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev0 || (dma)->revision == dvmarev1) #else #define DMA_ISBROKEN(dma) ((dma)->revision == dvmarev1) #endif #define DMA_ISESC1(dma) ((dma)->revision == dvmaesc1) /* Main routines in dma.c */ extern void dvma_init(struct sbus_bus *); /* Fields in the cond_reg register */ /* First, the version identification bits */ #define DMA_DEVICE_ID 0xf0000000 /* Device identification bits */ #define DMA_VERS0 0x00000000 /* Sunray DMA version */ #define DMA_ESCV1 0x40000000 /* DMA ESC Version 1 */ #define DMA_VERS1 0x80000000 /* DMA rev 1 */ #define DMA_VERS2 0xa0000000 /* DMA rev 2 */ #define DMA_VERHME 0xb0000000 /* DMA hme gate array */ #define DMA_VERSPLUS 0x90000000 /* DMA rev 1 PLUS */ #define DMA_HNDL_INTR 0x00000001 /* An IRQ needs to be handled */ #define DMA_HNDL_ERROR 0x00000002 /* We need to take an error */ #define DMA_FIFO_ISDRAIN 0x0000000c /* The DMA FIFO is draining */ #define DMA_INT_ENAB 0x00000010 /* Turn on interrupts */ #define DMA_FIFO_INV 0x00000020 /* Invalidate the FIFO */ #define DMA_ACC_SZ_ERR 0x00000040 /* The access size was bad */ #define DMA_FIFO_STDRAIN 0x00000040 /* DMA_VERS1 Drain the FIFO */ #define DMA_RST_SCSI 0x00000080 /* Reset the SCSI controller */ #define DMA_RST_ENET DMA_RST_SCSI /* Reset the ENET controller */ #define DMA_RST_BPP DMA_RST_SCSI /* Reset the BPP controller */ #define DMA_ST_WRITE 0x00000100 /* write from device to memory */ #define DMA_ENABLE 0x00000200 /* Fire up DMA, handle requests */ #define DMA_PEND_READ 0x00000400 /* DMA_VERS1/0/PLUS Pending Read */ #define DMA_ESC_BURST 0x00000800 /* 1=16byte 0=32byte */ #define DMA_READ_AHEAD 0x00001800 /* DMA read ahead partial longword */ #define DMA_DSBL_RD_DRN 0x00001000 /* No EC drain on slave reads */ #define DMA_BCNT_ENAB 0x00002000 /* If on, use the byte counter */ #define DMA_TERM_CNTR 0x00004000 /* Terminal counter */ #define DMA_SCSI_SBUS64 0x00008000 /* HME: Enable 64-bit SBUS mode. */ #define DMA_CSR_DISAB 0x00010000 /* No FIFO drains during csr */ #define DMA_SCSI_DISAB 0x00020000 /* No FIFO drains during reg */ #define DMA_DSBL_WR_INV 0x00020000 /* No EC inval. on slave writes */ #define DMA_ADD_ENABLE 0x00040000 /* Special ESC DVMA optimization */ #define DMA_E_BURSTS 0x000c0000 /* ENET: SBUS r/w burst mask */ #define DMA_E_BURST32 0x00040000 /* ENET: SBUS 32 byte r/w burst */ #define DMA_E_BURST16 0x00000000 /* ENET: SBUS 16 byte r/w burst */ #define DMA_BRST_SZ 0x000c0000 /* SCSI: SBUS r/w burst size */ #define DMA_BRST64 0x00080000 /* SCSI: 64byte bursts (HME on UltraSparc only) */ #define DMA_BRST32 0x00040000 /* SCSI/BPP: 32byte bursts */ #define DMA_BRST16 0x00000000 /* SCSI/BPP: 16byte bursts */ #define DMA_BRST0 0x00080000 /* SCSI: no bursts (non-HME gate arrays) */ #define DMA_ADDR_DISAB 0x00100000 /* No FIFO drains during addr */ #define DMA_2CLKS 0x00200000 /* Each transfer = 2 clock ticks */ #define DMA_3CLKS 0x00400000 /* Each transfer = 3 clock ticks */ #define DMA_EN_ENETAUI DMA_3CLKS /* Put lance into AUI-cable mode */ #define DMA_CNTR_DISAB 0x00800000 /* No IRQ when DMA_TERM_CNTR set */ #define DMA_AUTO_NADDR 0x01000000 /* Use "auto nxt addr" feature */ #define DMA_SCSI_ON 0x02000000 /* Enable SCSI dma */ #define DMA_BPP_ON DMA_SCSI_ON /* Enable BPP dma */ #define DMA_PARITY_OFF 0x02000000 /* HME: disable parity checking */ #define DMA_LOADED_ADDR 0x04000000 /* Address has been loaded */ #define DMA_LOADED_NADDR 0x08000000 /* Next address has been loaded */ #define DMA_RESET_FAS366 0x08000000 /* HME: Assert RESET to FAS366 */ /* Values describing the burst-size property from the PROM */ #define DMA_BURST1 0x01 #define DMA_BURST2 0x02 #define DMA_BURST4 0x04 #define DMA_BURST8 0x08 #define DMA_BURST16 0x10 #define DMA_BURST32 0x20 #define DMA_BURST64 0x40 #define DMA_BURSTBITS 0x7f /* Determine highest possible final transfer address given a base */ #define DMA_MAXEND(addr) (0x01000000UL-(((unsigned long)(addr))&0x00ffffffUL)) /* Yes, I hack a lot of elisp in my spare time... */ #define DMA_ERROR_P(regs) ((((regs)->cond_reg) & DMA_HNDL_ERROR)) #define DMA_IRQ_P(regs) ((((regs)->cond_reg) & (DMA_HNDL_INTR | DMA_HNDL_ERROR))) #define DMA_WRITE_P(regs) ((((regs)->cond_reg) & DMA_ST_WRITE)) #define DMA_OFF(regs) ((((regs)->cond_reg) &= (~DMA_ENABLE))) #define DMA_INTSOFF(regs) ((((regs)->cond_reg) &= (~DMA_INT_ENAB))) #define DMA_INTSON(regs) ((((regs)->cond_reg) |= (DMA_INT_ENAB))) #define DMA_PUNTFIFO(regs) ((((regs)->cond_reg) |= DMA_FIFO_INV)) #define DMA_SETSTART(regs, addr) ((((regs)->st_addr) = (char *) addr)) #define DMA_BEGINDMA_W(regs) \ ((((regs)->cond_reg |= (DMA_ST_WRITE|DMA_ENABLE|DMA_INT_ENAB)))) #define DMA_BEGINDMA_R(regs) \ ((((regs)->cond_reg |= ((DMA_ENABLE|DMA_INT_ENAB)&(~DMA_ST_WRITE))))) /* For certain DMA chips, we need to disable ints upon irq entry * and turn them back on when we are done. So in any ESP interrupt * handler you *must* call DMA_IRQ_ENTRY upon entry and DMA_IRQ_EXIT * when leaving the handler. You have been warned... */ #define DMA_IRQ_ENTRY(dma, dregs) do { \ if(DMA_ISBROKEN(dma)) DMA_INTSOFF(dregs); \ } while (0) #define DMA_IRQ_EXIT(dma, dregs) do { \ if(DMA_ISBROKEN(dma)) DMA_INTSON(dregs); \ } while(0) #if 0 /* P3 this stuff is inline in ledma.c:init_restart_ledma() */ /* Pause until counter runs out or BIT isn't set in the DMA condition * register. */ static inline void sparc_dma_pause(struct sparc_dma_registers *regs, unsigned long bit) { int ctr = 50000; /* Let's find some bugs ;) */ /* Busy wait until the bit is not set any more */ while((regs->cond_reg&bit) && (ctr>0)) { ctr--; __delay(5); } /* Check for bogus outcome. */ if(!ctr) panic("DMA timeout"); } /* Reset the friggin' thing... */ #define DMA_RESET(dma) do { \ struct sparc_dma_registers *regs = dma->regs; \ /* Let the current FIFO drain itself */ \ sparc_dma_pause(regs, (DMA_FIFO_ISDRAIN)); \ /* Reset the logic */ \ regs->cond_reg |= (DMA_RST_SCSI); /* assert */ \ __delay(400); /* let the bits set ;) */ \ regs->cond_reg &= ~(DMA_RST_SCSI); /* de-assert */ \ sparc_dma_enable_interrupts(regs); /* Re-enable interrupts */ \ /* Enable FAST transfers if available */ \ if(dma->revision>dvmarev1) regs->cond_reg |= DMA_3CLKS; \ dma->running = 0; \ } while(0) #endif #define for_each_dvma(dma) \ for((dma) = dma_chain; (dma); (dma) = (dma)->next) extern int get_dma_list(char *); extern int request_dma(unsigned int, __const__ char *); extern void free_dma(unsigned int); /* From PCI */ #ifdef CONFIG_PCI extern int isa_dma_bridge_buggy; #else #define isa_dma_bridge_buggy (0) #endif /* Routines for data transfer buffers. */ BTFIXUPDEF_CALL(char *, mmu_lockarea, char *, unsigned long) BTFIXUPDEF_CALL(void, mmu_unlockarea, char *, unsigned long) #define mmu_lockarea(vaddr,len) BTFIXUP_CALL(mmu_lockarea)(vaddr,len) #define mmu_unlockarea(vaddr,len) BTFIXUP_CALL(mmu_unlockarea)(vaddr,len) /* These are implementations for sbus_map_sg/sbus_unmap_sg... collapse later */ BTFIXUPDEF_CALL(__u32, mmu_get_scsi_one, char *, unsigned long, struct sbus_bus *sbus) BTFIXUPDEF_CALL(void, mmu_get_scsi_sgl, struct scatterlist *, int, struct sbus_bus *sbus) BTFIXUPDEF_CALL(void, mmu_release_scsi_one, __u32, unsigned long, struct sbus_bus *sbus) BTFIXUPDEF_CALL(void, mmu_release_scsi_sgl, struct scatterlist *, int, struct sbus_bus *sbus) #define mmu_get_scsi_one(vaddr,len,sbus) BTFIXUP_CALL(mmu_get_scsi_one)(vaddr,len,sbus) #define mmu_get_scsi_sgl(sg,sz,sbus) BTFIXUP_CALL(mmu_get_scsi_sgl)(sg,sz,sbus) #define mmu_release_scsi_one(vaddr,len,sbus) BTFIXUP_CALL(mmu_release_scsi_one)(vaddr,len,sbus) #define mmu_release_scsi_sgl(sg,sz,sbus) BTFIXUP_CALL(mmu_release_scsi_sgl)(sg,sz,sbus) /* * mmu_map/unmap are provided by iommu/iounit; Invalid to call on IIep. * * The mmu_map_dma_area establishes two mappings in one go. * These mappings point to pages normally mapped at 'va' (linear address). * First mapping is for CPU visible address at 'a', uncached. * This is an alias, but it works because it is an uncached mapping. * Second mapping is for device visible address, or "bus" address. * The bus address is returned at '*pba'. * * These functions seem distinct, but are hard to split. On sun4c, * at least for now, 'a' is equal to bus address, and retured in *pba. * On sun4m, page attributes depend on the CPU type, so we have to * know if we are mapping RAM or I/O, so it has to be an additional argument * to a separate mapping function for CPU visible mappings. */ BTFIXUPDEF_CALL(int, mmu_map_dma_area, dma_addr_t *, unsigned long, unsigned long, int len) BTFIXUPDEF_CALL(struct page *, mmu_translate_dvma, unsigned long busa) BTFIXUPDEF_CALL(void, mmu_unmap_dma_area, unsigned long busa, int len) #define mmu_map_dma_area(pba,va,a,len) BTFIXUP_CALL(mmu_map_dma_area)(pba,va,a,len) #define mmu_unmap_dma_area(ba,len) BTFIXUP_CALL(mmu_unmap_dma_area)(ba,len) #define mmu_translate_dvma(ba) BTFIXUP_CALL(mmu_translate_dvma)(ba) #endif /* !(_ASM_SPARC_DMA_H) */