/* $Id: pgtable.h,v 1.156 2002/02/09 19:49:31 davem Exp $ * pgtable.h: SpitFire page table operations. * * Copyright 1996,1997 David S. Miller (davem@caip.rutgers.edu) * Copyright 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #ifndef _SPARC64_PGTABLE_H #define _SPARC64_PGTABLE_H /* This file contains the functions and defines necessary to modify and use * the SpitFire page tables. */ #include <asm-generic/pgtable-nopud.h> #include <linux/config.h> #include <linux/compiler.h> #include <asm/types.h> #include <asm/spitfire.h> #include <asm/asi.h> #include <asm/system.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/const.h> /* The kernel image occupies 0x4000000 to 0x1000000 (4MB --> 32MB). * The page copy blockops can use 0x2000000 to 0x10000000. * The PROM resides in an area spanning 0xf0000000 to 0x100000000. * The vmalloc area spans 0x100000000 to 0x200000000. * Since modules need to be in the lowest 32-bits of the address space, * we place them right before the OBP area from 0x10000000 to 0xf0000000. * There is a single static kernel PMD which maps from 0x0 to address * 0x400000000. */ #define TLBTEMP_BASE _AC(0x0000000002000000,UL) #define MODULES_VADDR _AC(0x0000000010000000,UL) #define MODULES_LEN _AC(0x00000000e0000000,UL) #define MODULES_END _AC(0x00000000f0000000,UL) #define LOW_OBP_ADDRESS _AC(0x00000000f0000000,UL) #define HI_OBP_ADDRESS _AC(0x0000000100000000,UL) #define VMALLOC_START _AC(0x0000000100000000,UL) #define VMALLOC_END _AC(0x0000000200000000,UL) /* XXX All of this needs to be rethought so we can take advantage * XXX cheetah's full 64-bit virtual address space, ie. no more hole * XXX in the middle like on spitfire. -DaveM */ /* * Given a virtual address, the lowest PAGE_SHIFT bits determine offset * into the page; the next higher PAGE_SHIFT-3 bits determine the pte# * in the proper pagetable (the -3 is from the 8 byte ptes, and each page * table is a single page long). The next higher PMD_BITS determine pmd# * in the proper pmdtable (where we must have PMD_BITS <= (PAGE_SHIFT-2) * since the pmd entries are 4 bytes, and each pmd page is a single page * long). Finally, the higher few bits determine pgde#. */ /* PMD_SHIFT determines the size of the area a second-level page * table can map */ #define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) #define PMD_SIZE (_AC(1,UL) << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) #define PMD_BITS (PAGE_SHIFT - 2) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3) + PMD_BITS) #define PGDIR_SIZE (_AC(1,UL) << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #define PGDIR_BITS (PAGE_SHIFT - 2) #ifndef __ASSEMBLY__ #include <linux/sched.h> /* Entries per page directory level. */ #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3)) #define PTRS_PER_PMD (1UL << PMD_BITS) #define PTRS_PER_PGD (1UL << PGDIR_BITS) /* Kernel has a separate 44bit address space. */ #define FIRST_USER_ADDRESS 0 #define pte_ERROR(e) __builtin_trap() #define pmd_ERROR(e) __builtin_trap() #define pgd_ERROR(e) __builtin_trap() #endif /* !(__ASSEMBLY__) */ /* Spitfire/Cheetah TTE bits. */ #define _PAGE_VALID _AC(0x8000000000000000,UL) /* Valid TTE */ #define _PAGE_R _AC(0x8000000000000000,UL) /* Keep ref bit up to date*/ #define _PAGE_SZ4MB _AC(0x6000000000000000,UL) /* 4MB Page */ #define _PAGE_SZ512K _AC(0x4000000000000000,UL) /* 512K Page */ #define _PAGE_SZ64K _AC(0x2000000000000000,UL) /* 64K Page */ #define _PAGE_SZ8K _AC(0x0000000000000000,UL) /* 8K Page */ #define _PAGE_NFO _AC(0x1000000000000000,UL) /* No Fault Only */ #define _PAGE_IE _AC(0x0800000000000000,UL) /* Invert Endianness */ #define _PAGE_SOFT2 _AC(0x07FC000000000000,UL) /* Software bits, set 2 */ #define _PAGE_RES1 _AC(0x0002000000000000,UL) /* Reserved */ #define _PAGE_SZ32MB _AC(0x0001000000000000,UL) /* (Panther) 32MB page */ #define _PAGE_SZ256MB _AC(0x2001000000000000,UL) /* (Panther) 256MB page */ #define _PAGE_SN _AC(0x0000800000000000,UL) /* (Cheetah) Snoop */ #define _PAGE_RES2 _AC(0x0000780000000000,UL) /* Reserved */ #define _PAGE_PADDR_SF _AC(0x000001FFFFFFE000,UL) /* (Spitfire) paddr[40:13]*/ #define _PAGE_PADDR _AC(0x000007FFFFFFE000,UL) /* (Cheetah) paddr[42:13] */ #define _PAGE_SOFT _AC(0x0000000000001F80,UL) /* Software bits */ #define _PAGE_L _AC(0x0000000000000040,UL) /* Locked TTE */ #define _PAGE_CP _AC(0x0000000000000020,UL) /* Cacheable in P-Cache */ #define _PAGE_CV _AC(0x0000000000000010,UL) /* Cacheable in V-Cache */ #define _PAGE_E _AC(0x0000000000000008,UL) /* side-Effect */ #define _PAGE_P _AC(0x0000000000000004,UL) /* Privileged Page */ #define _PAGE_W _AC(0x0000000000000002,UL) /* Writable */ #define _PAGE_G _AC(0x0000000000000001,UL) /* Global */ /* Here are the SpitFire software bits we use in the TTE's. * * WARNING: If you are going to try and start using some * of the soft2 bits, you will need to make * modifications to the swap entry implementation. * For example, one thing that could happen is that * swp_entry_to_pte() would BUG_ON() if you tried * to use one of the soft2 bits for _PAGE_FILE. * * Like other architectures, I have aliased _PAGE_FILE with * _PAGE_MODIFIED. This works because _PAGE_FILE is never * interpreted that way unless _PAGE_PRESENT is clear. */ #define _PAGE_EXEC _AC(0x0000000000001000,UL) /* Executable SW bit */ #define _PAGE_MODIFIED _AC(0x0000000000000800,UL) /* Modified (dirty) */ #define _PAGE_FILE _AC(0x0000000000000800,UL) /* Pagecache page */ #define _PAGE_ACCESSED _AC(0x0000000000000400,UL) /* Accessed (ref'd) */ #define _PAGE_READ _AC(0x0000000000000200,UL) /* Readable SW Bit */ #define _PAGE_WRITE _AC(0x0000000000000100,UL) /* Writable SW Bit */ #define _PAGE_PRESENT _AC(0x0000000000000080,UL) /* Present */ #if PAGE_SHIFT == 13 #define _PAGE_SZBITS _PAGE_SZ8K #elif PAGE_SHIFT == 16 #define _PAGE_SZBITS _PAGE_SZ64K #elif PAGE_SHIFT == 19 #define _PAGE_SZBITS _PAGE_SZ512K #elif PAGE_SHIFT == 22 #define _PAGE_SZBITS _PAGE_SZ4MB #else #error Wrong PAGE_SHIFT specified #endif #if defined(CONFIG_HUGETLB_PAGE_SIZE_4MB) #define _PAGE_SZHUGE _PAGE_SZ4MB #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K) #define _PAGE_SZHUGE _PAGE_SZ512K #elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K) #define _PAGE_SZHUGE _PAGE_SZ64K #endif #define _PAGE_CACHE (_PAGE_CP | _PAGE_CV) #define __DIRTY_BITS (_PAGE_MODIFIED | _PAGE_WRITE | _PAGE_W) #define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_READ | _PAGE_R) #define __PRIV_BITS _PAGE_P #define PAGE_NONE __pgprot (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_CACHE) /* Don't set the TTE _PAGE_W bit here, else the dirty bit never gets set. */ #define PAGE_SHARED __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \ __ACCESS_BITS | _PAGE_WRITE | _PAGE_EXEC) #define PAGE_COPY __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \ __ACCESS_BITS | _PAGE_EXEC) #define PAGE_READONLY __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \ __ACCESS_BITS | _PAGE_EXEC) #define PAGE_KERNEL __pgprot (_PAGE_PRESENT | _PAGE_VALID | _PAGE_CACHE | \ __PRIV_BITS | \ __ACCESS_BITS | __DIRTY_BITS | _PAGE_EXEC) #define PAGE_SHARED_NOEXEC __pgprot (_PAGE_PRESENT | _PAGE_VALID | \ _PAGE_CACHE | \ __ACCESS_BITS | _PAGE_WRITE) #define PAGE_COPY_NOEXEC __pgprot (_PAGE_PRESENT | _PAGE_VALID | \ _PAGE_CACHE | __ACCESS_BITS) #define PAGE_READONLY_NOEXEC __pgprot (_PAGE_PRESENT | _PAGE_VALID | \ _PAGE_CACHE | __ACCESS_BITS) #define _PFN_MASK _PAGE_PADDR #define pg_iobits (_PAGE_VALID | _PAGE_PRESENT | __DIRTY_BITS | \ __ACCESS_BITS | _PAGE_E) #define __P000 PAGE_NONE #define __P001 PAGE_READONLY_NOEXEC #define __P010 PAGE_COPY_NOEXEC #define __P011 PAGE_COPY_NOEXEC #define __P100 PAGE_READONLY #define __P101 PAGE_READONLY #define __P110 PAGE_COPY #define __P111 PAGE_COPY #define __S000 PAGE_NONE #define __S001 PAGE_READONLY_NOEXEC #define __S010 PAGE_SHARED_NOEXEC #define __S011 PAGE_SHARED_NOEXEC #define __S100 PAGE_READONLY #define __S101 PAGE_READONLY #define __S110 PAGE_SHARED #define __S111 PAGE_SHARED #ifndef __ASSEMBLY__ extern unsigned long phys_base; extern unsigned long pfn_base; extern struct page *mem_map_zero; #define ZERO_PAGE(vaddr) (mem_map_zero) /* PFNs are real physical page numbers. However, mem_map only begins to record * per-page information starting at pfn_base. This is to handle systems where * the first physical page in the machine is at some huge physical address, * such as 4GB. This is common on a partitioned E10000, for example. */ #define pfn_pte(pfn, prot) \ __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot) | _PAGE_SZBITS) #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) #define pte_pfn(x) ((pte_val(x) & _PAGE_PADDR)>>PAGE_SHIFT) #define pte_page(x) pfn_to_page(pte_pfn(x)) static inline pte_t pte_modify(pte_t orig_pte, pgprot_t new_prot) { pte_t __pte; const unsigned long preserve_mask = (_PFN_MASK | _PAGE_MODIFIED | _PAGE_ACCESSED | _PAGE_CACHE | _PAGE_E | _PAGE_PRESENT | _PAGE_SZBITS); pte_val(__pte) = (pte_val(orig_pte) & preserve_mask) | (pgprot_val(new_prot) & ~preserve_mask); return __pte; } #define pmd_set(pmdp, ptep) \ (pmd_val(*(pmdp)) = (__pa((unsigned long) (ptep)) >> 11UL)) #define pud_set(pudp, pmdp) \ (pud_val(*(pudp)) = (__pa((unsigned long) (pmdp)) >> 11UL)) #define __pmd_page(pmd) \ ((unsigned long) __va((((unsigned long)pmd_val(pmd))<<11UL))) #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) #define pud_page(pud) \ ((unsigned long) __va((((unsigned long)pud_val(pud))<<11UL))) #define pte_none(pte) (!pte_val(pte)) #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (0) #define pmd_present(pmd) (pmd_val(pmd) != 0U) #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0U) #define pud_none(pud) (!pud_val(pud)) #define pud_bad(pud) (0) #define pud_present(pud) (pud_val(pud) != 0U) #define pud_clear(pudp) (pud_val(*(pudp)) = 0U) /* The following only work if pte_present() is true. * Undefined behaviour if not.. */ #define pte_read(pte) (pte_val(pte) & _PAGE_READ) #define pte_exec(pte) (pte_val(pte) & _PAGE_EXEC) #define pte_write(pte) (pte_val(pte) & _PAGE_WRITE) #define pte_dirty(pte) (pte_val(pte) & _PAGE_MODIFIED) #define pte_young(pte) (pte_val(pte) & _PAGE_ACCESSED) #define pte_wrprotect(pte) (__pte(pte_val(pte) & ~(_PAGE_WRITE|_PAGE_W))) #define pte_rdprotect(pte) \ (__pte(((pte_val(pte)<<1UL)>>1UL) & ~_PAGE_READ)) #define pte_mkclean(pte) \ (__pte(pte_val(pte) & ~(_PAGE_MODIFIED|_PAGE_W))) #define pte_mkold(pte) \ (__pte(((pte_val(pte)<<1UL)>>1UL) & ~_PAGE_ACCESSED)) /* Permanent address of a page. */ #define __page_address(page) page_address(page) /* Be very careful when you change these three, they are delicate. */ #define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_ACCESSED | _PAGE_R)) #define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_WRITE)) #define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_MODIFIED | _PAGE_W)) #define pte_mkhuge(pte) (__pte(pte_val(pte) | _PAGE_SZHUGE)) /* to find an entry in a page-table-directory. */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) /* to find an entry in a kernel page-table-directory */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) /* extract the pgd cache used for optimizing the tlb miss * slow path when executing 32-bit compat processes */ #define get_pgd_cache(pgd) ((unsigned long) pgd_val(*pgd) << 11) /* Find an entry in the second-level page table.. */ #define pmd_offset(pudp, address) \ ((pmd_t *) pud_page(*(pudp)) + \ (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))) /* Find an entry in the third-level page table.. */ #define pte_index(dir, address) \ ((pte_t *) __pmd_page(*(dir)) + \ ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) #define pte_offset_kernel pte_index #define pte_offset_map pte_index #define pte_offset_map_nested pte_index #define pte_unmap(pte) do { } while (0) #define pte_unmap_nested(pte) do { } while (0) /* Actual page table PTE updates. */ extern void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr, pte_t *ptep, pte_t orig); static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { pte_t orig = *ptep; *ptep = pte; /* It is more efficient to let flush_tlb_kernel_range() * handle init_mm tlb flushes. */ if (likely(mm != &init_mm) && (pte_val(orig) & _PAGE_VALID)) tlb_batch_add(mm, addr, ptep, orig); } #define pte_clear(mm,addr,ptep) \ set_pte_at((mm), (addr), (ptep), __pte(0UL)) extern pgd_t swapper_pg_dir[2048]; extern pmd_t swapper_low_pmd_dir[2048]; extern void paging_init(void); extern unsigned long find_ecache_flush_span(unsigned long size); /* These do nothing with the way I have things setup. */ #define mmu_lockarea(vaddr, len) (vaddr) #define mmu_unlockarea(vaddr, len) do { } while(0) struct vm_area_struct; extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); /* Encode and de-code a swap entry */ #define __swp_type(entry) (((entry).val >> PAGE_SHIFT) & 0xffUL) #define __swp_offset(entry) ((entry).val >> (PAGE_SHIFT + 8UL)) #define __swp_entry(type, offset) \ ( (swp_entry_t) \ { \ (((long)(type) << PAGE_SHIFT) | \ ((long)(offset) << (PAGE_SHIFT + 8UL))) \ } ) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) /* File offset in PTE support. */ #define pte_file(pte) (pte_val(pte) & _PAGE_FILE) #define pte_to_pgoff(pte) (pte_val(pte) >> PAGE_SHIFT) #define pgoff_to_pte(off) (__pte(((off) << PAGE_SHIFT) | _PAGE_FILE)) #define PTE_FILE_MAX_BITS (64UL - PAGE_SHIFT - 1UL) extern unsigned long prom_virt_to_phys(unsigned long, int *); static __inline__ unsigned long sun4u_get_pte (unsigned long addr) { pgd_t *pgdp; pud_t *pudp; pmd_t *pmdp; pte_t *ptep; if (addr >= PAGE_OFFSET) return addr & _PAGE_PADDR; if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS)) return prom_virt_to_phys(addr, NULL); pgdp = pgd_offset_k(addr); pudp = pud_offset(pgdp, addr); pmdp = pmd_offset(pudp, addr); ptep = pte_offset_kernel(pmdp, addr); return pte_val(*ptep) & _PAGE_PADDR; } static __inline__ unsigned long __get_phys (unsigned long addr) { return sun4u_get_pte (addr); } static __inline__ int __get_iospace (unsigned long addr) { return ((sun4u_get_pte (addr) & 0xf0000000) >> 28); } extern unsigned long *sparc64_valid_addr_bitmap; /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ #define kern_addr_valid(addr) \ (test_bit(__pa((unsigned long)(addr))>>22, sparc64_valid_addr_bitmap)) extern int io_remap_pfn_range(struct vm_area_struct *vma, unsigned long from, unsigned long pfn, unsigned long size, pgprot_t prot); /* Clear virtual and physical cachability, set side-effect bit. */ #define pgprot_noncached(prot) \ (__pgprot((pgprot_val(prot) & ~(_PAGE_CP | _PAGE_CV)) | \ _PAGE_E)) /* * For sparc32&64, the pfn in io_remap_pfn_range() carries <iospace> in * its high 4 bits. These macros/functions put it there or get it from there. */ #define MK_IOSPACE_PFN(space, pfn) (pfn | (space << (BITS_PER_LONG - 4))) #define GET_IOSPACE(pfn) (pfn >> (BITS_PER_LONG - 4)) #define GET_PFN(pfn) (pfn & 0x0fffffffffffffffUL) #include <asm-generic/pgtable.h> /* We provide our own get_unmapped_area to cope with VA holes for userland */ #define HAVE_ARCH_UNMAPPED_AREA /* We provide a special get_unmapped_area for framebuffer mmaps to try and use * the largest alignment possible such that larget PTEs can be used. */ extern unsigned long get_fb_unmapped_area(struct file *filp, unsigned long, unsigned long, unsigned long, unsigned long); #define HAVE_ARCH_FB_UNMAPPED_AREA /* * No page table caches to initialise */ #define pgtable_cache_init() do { } while (0) extern void check_pgt_cache(void); #endif /* !(__ASSEMBLY__) */ #endif /* !(_SPARC64_PGTABLE_H) */