/* * Architecture specific parts of the Floppy driver * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1995 */ #ifndef ASM_X86__FLOPPY_H #define ASM_X86__FLOPPY_H #include <linux/vmalloc.h> /* * The DMA channel used by the floppy controller cannot access data at * addresses >= 16MB * * Went back to the 1MB limit, as some people had problems with the floppy * driver otherwise. It doesn't matter much for performance anyway, as most * floppy accesses go through the track buffer. */ #define _CROSS_64KB(a, s, vdma) \ (!(vdma) && \ ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64)) #define CROSS_64KB(a, s) _CROSS_64KB(a, s, use_virtual_dma & 1) #define SW fd_routine[use_virtual_dma & 1] #define CSW fd_routine[can_use_virtual_dma & 1] #define fd_inb(port) inb_p(port) #define fd_outb(value, port) outb_p(value, port) #define fd_request_dma() CSW._request_dma(FLOPPY_DMA, "floppy") #define fd_free_dma() CSW._free_dma(FLOPPY_DMA) #define fd_enable_irq() enable_irq(FLOPPY_IRQ) #define fd_disable_irq() disable_irq(FLOPPY_IRQ) #define fd_free_irq() free_irq(FLOPPY_IRQ, NULL) #define fd_get_dma_residue() SW._get_dma_residue(FLOPPY_DMA) #define fd_dma_mem_alloc(size) SW._dma_mem_alloc(size) #define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io) #define FLOPPY_CAN_FALLBACK_ON_NODMA static int virtual_dma_count; static int virtual_dma_residue; static char *virtual_dma_addr; static int virtual_dma_mode; static int doing_pdma; static irqreturn_t floppy_hardint(int irq, void *dev_id) { unsigned char st; #undef TRACE_FLPY_INT #ifdef TRACE_FLPY_INT static int calls; static int bytes; static int dma_wait; #endif if (!doing_pdma) return floppy_interrupt(irq, dev_id); #ifdef TRACE_FLPY_INT if (!calls) bytes = virtual_dma_count; #endif { int lcount; char *lptr; st = 1; for (lcount = virtual_dma_count, lptr = virtual_dma_addr; lcount; lcount--, lptr++) { st = inb(virtual_dma_port + 4) & 0xa0; if (st != 0xa0) break; if (virtual_dma_mode) outb_p(*lptr, virtual_dma_port + 5); else *lptr = inb_p(virtual_dma_port + 5); } virtual_dma_count = lcount; virtual_dma_addr = lptr; st = inb(virtual_dma_port + 4); } #ifdef TRACE_FLPY_INT calls++; #endif if (st == 0x20) return IRQ_HANDLED; if (!(st & 0x20)) { virtual_dma_residue += virtual_dma_count; virtual_dma_count = 0; #ifdef TRACE_FLPY_INT printk("count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n", virtual_dma_count, virtual_dma_residue, calls, bytes, dma_wait); calls = 0; dma_wait = 0; #endif doing_pdma = 0; floppy_interrupt(irq, dev_id); return IRQ_HANDLED; } #ifdef TRACE_FLPY_INT if (!virtual_dma_count) dma_wait++; #endif return IRQ_HANDLED; } static void fd_disable_dma(void) { if (!(can_use_virtual_dma & 1)) disable_dma(FLOPPY_DMA); doing_pdma = 0; virtual_dma_residue += virtual_dma_count; virtual_dma_count = 0; } static int vdma_request_dma(unsigned int dmanr, const char *device_id) { return 0; } static void vdma_nop(unsigned int dummy) { } static int vdma_get_dma_residue(unsigned int dummy) { return virtual_dma_count + virtual_dma_residue; } static int fd_request_irq(void) { if (can_use_virtual_dma) return request_irq(FLOPPY_IRQ, floppy_hardint, IRQF_DISABLED, "floppy", NULL); else return request_irq(FLOPPY_IRQ, floppy_interrupt, IRQF_DISABLED, "floppy", NULL); } static unsigned long dma_mem_alloc(unsigned long size) { return __get_dma_pages(GFP_KERNEL|__GFP_NORETRY, get_order(size)); } static unsigned long vdma_mem_alloc(unsigned long size) { return (unsigned long)vmalloc(size); } #define nodma_mem_alloc(size) vdma_mem_alloc(size) static void _fd_dma_mem_free(unsigned long addr, unsigned long size) { if ((unsigned long)addr >= (unsigned long)high_memory) vfree((void *)addr); else free_pages(addr, get_order(size)); } #define fd_dma_mem_free(addr, size) _fd_dma_mem_free(addr, size) static void _fd_chose_dma_mode(char *addr, unsigned long size) { if (can_use_virtual_dma == 2) { if ((unsigned long)addr >= (unsigned long)high_memory || isa_virt_to_bus(addr) >= 0x1000000 || _CROSS_64KB(addr, size, 0)) use_virtual_dma = 1; else use_virtual_dma = 0; } else { use_virtual_dma = can_use_virtual_dma & 1; } } #define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size) static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io) { doing_pdma = 1; virtual_dma_port = io; virtual_dma_mode = (mode == DMA_MODE_WRITE); virtual_dma_addr = addr; virtual_dma_count = size; virtual_dma_residue = 0; return 0; } static int hard_dma_setup(char *addr, unsigned long size, int mode, int io) { #ifdef FLOPPY_SANITY_CHECK if (CROSS_64KB(addr, size)) { printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size); return -1; } #endif /* actual, physical DMA */ doing_pdma = 0; clear_dma_ff(FLOPPY_DMA); set_dma_mode(FLOPPY_DMA, mode); set_dma_addr(FLOPPY_DMA, isa_virt_to_bus(addr)); set_dma_count(FLOPPY_DMA, size); enable_dma(FLOPPY_DMA); return 0; } static struct fd_routine_l { int (*_request_dma)(unsigned int dmanr, const char *device_id); void (*_free_dma)(unsigned int dmanr); int (*_get_dma_residue)(unsigned int dummy); unsigned long (*_dma_mem_alloc)(unsigned long size); int (*_dma_setup)(char *addr, unsigned long size, int mode, int io); } fd_routine[] = { { request_dma, free_dma, get_dma_residue, dma_mem_alloc, hard_dma_setup }, { vdma_request_dma, vdma_nop, vdma_get_dma_residue, vdma_mem_alloc, vdma_dma_setup } }; static int FDC1 = 0x3f0; static int FDC2 = -1; /* * Floppy types are stored in the rtc's CMOS RAM and so rtc_lock * is needed to prevent corrupted CMOS RAM in case "insmod floppy" * coincides with another rtc CMOS user. Paul G. */ #define FLOPPY0_TYPE \ ({ \ unsigned long flags; \ unsigned char val; \ spin_lock_irqsave(&rtc_lock, flags); \ val = (CMOS_READ(0x10) >> 4) & 15; \ spin_unlock_irqrestore(&rtc_lock, flags); \ val; \ }) #define FLOPPY1_TYPE \ ({ \ unsigned long flags; \ unsigned char val; \ spin_lock_irqsave(&rtc_lock, flags); \ val = CMOS_READ(0x10) & 15; \ spin_unlock_irqrestore(&rtc_lock, flags); \ val; \ }) #define N_FDC 2 #define N_DRIVE 8 #define EXTRA_FLOPPY_PARAMS #endif /* ASM_X86__FLOPPY_H */