/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV architectural definitions * * Copyright (C) 2007 Silicon Graphics, Inc. All rights reserved. */ #ifndef __ASM_X86_UV_HUB_H__ #define __ASM_X86_UV_HUB_H__ #include <linux/numa.h> #include <linux/percpu.h> #include <asm/types.h> #include <asm/percpu.h> /* * Addressing Terminology * * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of * routers always have low bit of 1, C/MBricks have low bit * equal to 0. Most addressing macros that target UV hub chips * right shift the NASID by 1 to exclude the always-zero bit. * * SNASID - NASID right shifted by 1 bit. * * * Memory/UV-HUB Processor Socket Address Format: * +--------+---------------+---------------------+ * |00..0000| SNASID | NodeOffset | * +--------+---------------+---------------------+ * <--- N bits --->|<--------M bits -----> * * M number of node offset bits (35 .. 40) * N number of SNASID bits (0 .. 10) * * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64). * The actual values are configuration dependent and are set at * boot time * * APICID format * NOTE!!!!!! This is the current format of the APICID. However, code * should assume that this will change in the future. Use functions * in this file for all APICID bit manipulations and conversion. * * 1111110000000000 * 5432109876543210 * nnnnnnnnnnlc0cch * sssssssssss * * n = snasid bits * l = socket number on board * c = core * h = hyperthread * s = bits that are in the socket CSR * * Note: Processor only supports 12 bits in the APICID register. The ACPI * tables hold all 16 bits. Software needs to be aware of this. * * Unless otherwise specified, all references to APICID refer to * the FULL value contained in ACPI tables, not the subset in the * processor APICID register. */ /* * Maximum number of bricks in all partitions and in all coherency domains. * This is the total number of bricks accessible in the numalink fabric. It * includes all C & M bricks. Routers are NOT included. * * This value is also the value of the maximum number of non-router NASIDs * in the numalink fabric. * * NOTE: a brick may be 1 or 2 OS nodes. Don't get these confused. */ #define UV_MAX_NUMALINK_BLADES 16384 /* * Maximum number of C/Mbricks within a software SSI (hardware may support * more). */ #define UV_MAX_SSI_BLADES 256 /* * The largest possible NASID of a C or M brick (+ 2) */ #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2) /* * The following defines attributes of the HUB chip. These attributes are * frequently referenced and are kept in the per-cpu data areas of each cpu. * They are kept together in a struct to minimize cache misses. */ struct uv_hub_info_s { unsigned long global_mmr_base; unsigned short local_nasid; unsigned short gnode_upper; unsigned short coherency_domain_number; unsigned short numa_blade_id; unsigned char blade_processor_id; unsigned char m_val; unsigned char n_val; }; DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info); #define uv_hub_info (&__get_cpu_var(__uv_hub_info)) #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu)) /* * Local & Global MMR space macros. * Note: macros are intended to be used ONLY by inline functions * in this file - not by other kernel code. */ #define UV_SNASID(n) ((n) >> 1) #define UV_NASID(n) ((n) << 1) #define UV_LOCAL_MMR_BASE 0xf4000000UL #define UV_GLOBAL_MMR32_BASE 0xf8000000UL #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) #define UV_GLOBAL_MMR32_SNASID_MASK 0x3ff #define UV_GLOBAL_MMR32_SNASID_SHIFT 15 #define UV_GLOBAL_MMR64_SNASID_SHIFT 26 #define UV_GLOBAL_MMR32_NASID_BITS(n) \ (((UV_SNASID(n) & UV_GLOBAL_MMR32_SNASID_MASK)) << \ (UV_GLOBAL_MMR32_SNASID_SHIFT)) #define UV_GLOBAL_MMR64_NASID_BITS(n) \ ((unsigned long)UV_SNASID(n) << UV_GLOBAL_MMR64_SNASID_SHIFT) #define UV_APIC_NASID_SHIFT 6 /* * Extract a NASID from an APICID (full apicid, not processor subset) */ static inline int uv_apicid_to_nasid(int apicid) { return (UV_NASID(apicid >> UV_APIC_NASID_SHIFT)); } /* * Access global MMRs using the low memory MMR32 space. This region supports * faster MMR access but not all MMRs are accessible in this space. */ static inline unsigned long *uv_global_mmr32_address(int nasid, unsigned long offset) { return __va(UV_GLOBAL_MMR32_BASE | UV_GLOBAL_MMR32_NASID_BITS(nasid) | offset); } static inline void uv_write_global_mmr32(int nasid, unsigned long offset, unsigned long val) { *uv_global_mmr32_address(nasid, offset) = val; } static inline unsigned long uv_read_global_mmr32(int nasid, unsigned long offset) { return *uv_global_mmr32_address(nasid, offset); } /* * Access Global MMR space using the MMR space located at the top of physical * memory. */ static inline unsigned long *uv_global_mmr64_address(int nasid, unsigned long offset) { return __va(UV_GLOBAL_MMR64_BASE | UV_GLOBAL_MMR64_NASID_BITS(nasid) | offset); } static inline void uv_write_global_mmr64(int nasid, unsigned long offset, unsigned long val) { *uv_global_mmr64_address(nasid, offset) = val; } static inline unsigned long uv_read_global_mmr64(int nasid, unsigned long offset) { return *uv_global_mmr64_address(nasid, offset); } /* * Access node local MMRs. Faster than using global space but only local MMRs * are accessible. */ static inline unsigned long *uv_local_mmr_address(unsigned long offset) { return __va(UV_LOCAL_MMR_BASE | offset); } static inline unsigned long uv_read_local_mmr(unsigned long offset) { return *uv_local_mmr_address(offset); } static inline void uv_write_local_mmr(unsigned long offset, unsigned long val) { *uv_local_mmr_address(offset) = val; } /* * Structures and definitions for converting between cpu, node, and blade * numbers. */ struct uv_blade_info { unsigned short nr_posible_cpus; unsigned short nr_online_cpus; unsigned short nasid; }; struct uv_blade_info *uv_blade_info; extern short *uv_node_to_blade; extern short *uv_cpu_to_blade; extern short uv_possible_blades; /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */ static inline int uv_blade_processor_id(void) { return uv_hub_info->blade_processor_id; } /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */ static inline int uv_numa_blade_id(void) { return uv_hub_info->numa_blade_id; } /* Convert a cpu number to the the UV blade number */ static inline int uv_cpu_to_blade_id(int cpu) { return uv_cpu_to_blade[cpu]; } /* Convert linux node number to the UV blade number */ static inline int uv_node_to_blade_id(int nid) { return uv_node_to_blade[nid]; } /* Convert a blade id to the NASID of the blade */ static inline int uv_blade_to_nasid(int bid) { return uv_blade_info[bid].nasid; } /* Determine the number of possible cpus on a blade */ static inline int uv_blade_nr_possible_cpus(int bid) { return uv_blade_info[bid].nr_posible_cpus; } /* Determine the number of online cpus on a blade */ static inline int uv_blade_nr_online_cpus(int bid) { return uv_blade_info[bid].nr_online_cpus; } /* Convert a cpu id to the NASID of the blade containing the cpu */ static inline int uv_cpu_to_nasid(int cpu) { return uv_blade_info[uv_cpu_to_blade_id(cpu)].nasid; } /* Convert a node number to the NASID of the blade */ static inline int uv_node_to_nasid(int nid) { return uv_blade_info[uv_node_to_blade_id(nid)].nasid; } /* Maximum possible number of blades */ static inline int uv_num_possible_blades(void) { return uv_possible_blades; } #endif /* __ASM_X86_UV_HUB__ */