#ifndef _ASM_IO_H #define _ASM_IO_H #include <linux/config.h> /* * This file contains the definitions for the x86 IO instructions * inb/inw/inl/outb/outw/outl and the "string versions" of the same * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" * versions of the single-IO instructions (inb_p/inw_p/..). * * This file is not meant to be obfuscating: it's just complicated * to (a) handle it all in a way that makes gcc able to optimize it * as well as possible and (b) trying to avoid writing the same thing * over and over again with slight variations and possibly making a * mistake somewhere. */ /* * Thanks to James van Artsdalen for a better timing-fix than * the two short jumps: using outb's to a nonexistent port seems * to guarantee better timings even on fast machines. * * On the other hand, I'd like to be sure of a non-existent port: * I feel a bit unsafe about using 0x80 (should be safe, though) * * Linus */ /* * Bit simplified and optimized by Jan Hubicka * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999. * * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added, * isa_read[wl] and isa_write[wl] fixed * - Arnaldo Carvalho de Melo <acme@conectiva.com.br> */ #define __SLOW_DOWN_IO "\noutb %%al,$0x80" #ifdef REALLY_SLOW_IO #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO #else #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO #endif /* * Talk about misusing macros.. */ #define __OUT1(s,x) \ extern inline void out##s(unsigned x value, unsigned short port) { #define __OUT2(s,s1,s2) \ __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1" #define __OUT(s,s1,x) \ __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \ __OUT1(s##_p,x) __OUT2(s,s1,"w") __FULL_SLOW_DOWN_IO : : "a" (value), "Nd" (port));} \ #define __IN1(s) \ extern inline RETURN_TYPE in##s(unsigned short port) { RETURN_TYPE _v; #define __IN2(s,s1,s2) \ __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0" #define __IN(s,s1,i...) \ __IN1(s) __IN2(s,s1,"w") : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \ __IN1(s##_p) __IN2(s,s1,"w") __FULL_SLOW_DOWN_IO : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \ #define __INS(s) \ extern inline void ins##s(unsigned short port, void * addr, unsigned long count) \ { __asm__ __volatile__ ("rep ; ins" #s \ : "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } #define __OUTS(s) \ extern inline void outs##s(unsigned short port, const void * addr, unsigned long count) \ { __asm__ __volatile__ ("rep ; outs" #s \ : "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } #define RETURN_TYPE unsigned char __IN(b,"") #undef RETURN_TYPE #define RETURN_TYPE unsigned short __IN(w,"") #undef RETURN_TYPE #define RETURN_TYPE unsigned int __IN(l,"") #undef RETURN_TYPE __OUT(b,"b",char) __OUT(w,"w",short) __OUT(l,,int) __INS(b) __INS(w) __INS(l) __OUTS(b) __OUTS(w) __OUTS(l) #define IO_SPACE_LIMIT 0xffff #if defined(__KERNEL__) && __x86_64__ #include <linux/vmalloc.h> #ifndef __i386__ /* * Change virtual addresses to physical addresses and vv. * These are pretty trivial */ extern inline unsigned long virt_to_phys(volatile void * address) { return __pa(address); } extern inline void * phys_to_virt(unsigned long address) { return __va(address); } #endif /* * Change "struct page" to physical address. */ #ifdef CONFIG_DISCONTIGMEM #include <asm/mmzone.h> #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) #else #define page_to_phys(page) ((page - mem_map) << PAGE_SHIFT) #endif #include <asm-generic/iomap.h> extern void __iomem *__ioremap(unsigned long offset, unsigned long size, unsigned long flags); extern inline void __iomem * ioremap (unsigned long offset, unsigned long size) { return __ioremap(offset, size, 0); } /* * This one maps high address device memory and turns off caching for that area. * it's useful if some control registers are in such an area and write combining * or read caching is not desirable: */ extern void __iomem * ioremap_nocache (unsigned long offset, unsigned long size); extern void iounmap(volatile void __iomem *addr); /* * ISA I/O bus memory addresses are 1:1 with the physical address. */ #define isa_virt_to_bus virt_to_phys #define isa_page_to_bus page_to_phys #define isa_bus_to_virt phys_to_virt /* * However PCI ones are not necessarily 1:1 and therefore these interfaces * are forbidden in portable PCI drivers. * * Allow them on x86 for legacy drivers, though. */ #define virt_to_bus virt_to_phys #define bus_to_virt phys_to_virt /* * readX/writeX() are used to access memory mapped devices. On some * architectures the memory mapped IO stuff needs to be accessed * differently. On the x86 architecture, we just read/write the * memory location directly. */ static inline __u8 __readb(const volatile void __iomem *addr) { return *(__force volatile __u8 *)addr; } static inline __u16 __readw(const volatile void __iomem *addr) { return *(__force volatile __u16 *)addr; } static inline __u32 __readl(const volatile void __iomem *addr) { return *(__force volatile __u32 *)addr; } static inline __u64 __readq(const volatile void __iomem *addr) { return *(__force volatile __u64 *)addr; } #define readb(x) __readb(x) #define readw(x) __readw(x) #define readl(x) __readl(x) #define readq(x) __readq(x) #define readb_relaxed(a) readb(a) #define readw_relaxed(a) readw(a) #define readl_relaxed(a) readl(a) #define readq_relaxed(a) readq(a) #define __raw_readb readb #define __raw_readw readw #define __raw_readl readl #define __raw_readq readq #define mmiowb() #ifdef CONFIG_UNORDERED_IO static inline void __writel(__u32 val, volatile void __iomem *addr) { volatile __u32 __iomem *target = addr; asm volatile("movnti %1,%0" : "=m" (*target) : "r" (val) : "memory"); } static inline void __writeq(__u64 val, volatile void __iomem *addr) { volatile __u64 __iomem *target = addr; asm volatile("movnti %1,%0" : "=m" (*target) : "r" (val) : "memory"); } #else static inline void __writel(__u32 b, volatile void __iomem *addr) { *(__force volatile __u32 *)addr = b; } static inline void __writeq(__u64 b, volatile void __iomem *addr) { *(__force volatile __u64 *)addr = b; } #endif static inline void __writeb(__u8 b, volatile void __iomem *addr) { *(__force volatile __u8 *)addr = b; } static inline void __writew(__u16 b, volatile void __iomem *addr) { *(__force volatile __u16 *)addr = b; } #define writeq(val,addr) __writeq((val),(addr)) #define writel(val,addr) __writel((val),(addr)) #define writew(val,addr) __writew((val),(addr)) #define writeb(val,addr) __writeb((val),(addr)) #define __raw_writeb writeb #define __raw_writew writew #define __raw_writel writel #define __raw_writeq writeq void __memcpy_fromio(void*,unsigned long,unsigned); void __memcpy_toio(unsigned long,const void*,unsigned); static inline void memcpy_fromio(void *to, const volatile void __iomem *from, unsigned len) { __memcpy_fromio(to,(unsigned long)from,len); } static inline void memcpy_toio(volatile void __iomem *to, const void *from, unsigned len) { __memcpy_toio((unsigned long)to,from,len); } void memset_io(volatile void __iomem *a, int b, size_t c); /* * ISA space is 'always mapped' on a typical x86 system, no need to * explicitly ioremap() it. The fact that the ISA IO space is mapped * to PAGE_OFFSET is pure coincidence - it does not mean ISA values * are physical addresses. The following constant pointer can be * used as the IO-area pointer (it can be iounmapped as well, so the * analogy with PCI is quite large): */ #define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET)) #define isa_readb(a) readb(__ISA_IO_base + (a)) #define isa_readw(a) readw(__ISA_IO_base + (a)) #define isa_readl(a) readl(__ISA_IO_base + (a)) #define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a)) #define isa_writew(w,a) writew(w,__ISA_IO_base + (a)) #define isa_writel(l,a) writel(l,__ISA_IO_base + (a)) #define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c)) #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c)) #define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c)) /* * Again, x86-64 does not require mem IO specific function. */ #define eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(void *)(b),(c),(d)) #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(void *)(__ISA_IO_base + (b)),(c),(d)) /** * check_signature - find BIOS signatures * @io_addr: mmio address to check * @signature: signature block * @length: length of signature * * Perform a signature comparison with the mmio address io_addr. This * address should have been obtained by ioremap. * Returns 1 on a match. */ static inline int check_signature(void __iomem *io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } /* Nothing to do */ #define dma_cache_inv(_start,_size) do { } while (0) #define dma_cache_wback(_start,_size) do { } while (0) #define dma_cache_wback_inv(_start,_size) do { } while (0) #define flush_write_buffers() extern int iommu_bio_merge; #define BIO_VMERGE_BOUNDARY iommu_bio_merge /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p #endif /* __KERNEL__ */ #endif