/* * linux/kernel/power/swsusp.c * * This file provides code to write suspend image to swap and read it back. * * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu> * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@suse.cz> * * This file is released under the GPLv2. * * I'd like to thank the following people for their work: * * Pavel Machek <pavel@ucw.cz>: * Modifications, defectiveness pointing, being with me at the very beginning, * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17. * * Steve Doddi <dirk@loth.demon.co.uk>: * Support the possibility of hardware state restoring. * * Raph <grey.havens@earthling.net>: * Support for preserving states of network devices and virtual console * (including X and svgatextmode) * * Kurt Garloff <garloff@suse.de>: * Straightened the critical function in order to prevent compilers from * playing tricks with local variables. * * Andreas Mohr <a.mohr@mailto.de> * * Alex Badea <vampire@go.ro>: * Fixed runaway init * * Rafael J. Wysocki <rjw@sisk.pl> * Reworked the freeing of memory and the handling of swap * * More state savers are welcome. Especially for the scsi layer... * * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt */ #include <linux/mm.h> #include <linux/suspend.h> #include <linux/spinlock.h> #include <linux/kernel.h> #include <linux/major.h> #include <linux/swap.h> #include <linux/pm.h> #include <linux/swapops.h> #include <linux/bootmem.h> #include <linux/syscalls.h> #include <linux/highmem.h> #include <linux/time.h> #include <linux/rbtree.h> #include <linux/io.h> #include "power.h" /* * Preferred image size in bytes (tunable via /sys/power/image_size). * When it is set to N, swsusp will do its best to ensure the image * size will not exceed N bytes, but if that is impossible, it will * try to create the smallest image possible. */ unsigned long image_size = 500 * 1024 * 1024; int in_suspend __nosavedata = 0; /** * The following functions are used for tracing the allocated * swap pages, so that they can be freed in case of an error. */ struct swsusp_extent { struct rb_node node; unsigned long start; unsigned long end; }; static struct rb_root swsusp_extents = RB_ROOT; static int swsusp_extents_insert(unsigned long swap_offset) { struct rb_node **new = &(swsusp_extents.rb_node); struct rb_node *parent = NULL; struct swsusp_extent *ext; /* Figure out where to put the new node */ while (*new) { ext = container_of(*new, struct swsusp_extent, node); parent = *new; if (swap_offset < ext->start) { /* Try to merge */ if (swap_offset == ext->start - 1) { ext->start--; return 0; } new = &((*new)->rb_left); } else if (swap_offset > ext->end) { /* Try to merge */ if (swap_offset == ext->end + 1) { ext->end++; return 0; } new = &((*new)->rb_right); } else { /* It already is in the tree */ return -EINVAL; } } /* Add the new node and rebalance the tree. */ ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); if (!ext) return -ENOMEM; ext->start = swap_offset; ext->end = swap_offset; rb_link_node(&ext->node, parent, new); rb_insert_color(&ext->node, &swsusp_extents); return 0; } /** * alloc_swapdev_block - allocate a swap page and register that it has * been allocated, so that it can be freed in case of an error. */ sector_t alloc_swapdev_block(int swap) { unsigned long offset; offset = swp_offset(get_swap_page_of_type(swap)); if (offset) { if (swsusp_extents_insert(offset)) swap_free(swp_entry(swap, offset)); else return swapdev_block(swap, offset); } return 0; } /** * free_all_swap_pages - free swap pages allocated for saving image data. * It also frees the extents used to register which swap entres had been * allocated. */ void free_all_swap_pages(int swap) { struct rb_node *node; while ((node = swsusp_extents.rb_node)) { struct swsusp_extent *ext; unsigned long offset; ext = container_of(node, struct swsusp_extent, node); rb_erase(node, &swsusp_extents); for (offset = ext->start; offset <= ext->end; offset++) swap_free(swp_entry(swap, offset)); kfree(ext); } } int swsusp_swap_in_use(void) { return (swsusp_extents.rb_node != NULL); } /** * swsusp_show_speed - print the time elapsed between two events represented by * @start and @stop * * @nr_pages - number of pages processed between @start and @stop * @msg - introductory message to print */ void swsusp_show_speed(struct timeval *start, struct timeval *stop, unsigned nr_pages, char *msg) { s64 elapsed_centisecs64; int centisecs; int k; int kps; elapsed_centisecs64 = timeval_to_ns(stop) - timeval_to_ns(start); do_div(elapsed_centisecs64, NSEC_PER_SEC / 100); centisecs = elapsed_centisecs64; if (centisecs == 0) centisecs = 1; /* avoid div-by-zero */ k = nr_pages * (PAGE_SIZE / 1024); kps = (k * 100) / centisecs; printk(KERN_INFO "PM: %s %d kbytes in %d.%02d seconds (%d.%02d MB/s)\n", msg, k, centisecs / 100, centisecs % 100, kps / 1000, (kps % 1000) / 10); } /** * swsusp_shrink_memory - Try to free as much memory as needed * * ... but do not OOM-kill anyone * * Notice: all userland should be stopped before it is called, or * livelock is possible. */ #define SHRINK_BITE 10000 static inline unsigned long __shrink_memory(long tmp) { if (tmp > SHRINK_BITE) tmp = SHRINK_BITE; return shrink_all_memory(tmp); } int swsusp_shrink_memory(void) { long tmp; struct zone *zone; unsigned long pages = 0; unsigned int i = 0; char *p = "-\\|/"; struct timeval start, stop; printk(KERN_INFO "PM: Shrinking memory... "); do_gettimeofday(&start); do { long size, highmem_size; highmem_size = count_highmem_pages(); size = count_data_pages() + PAGES_FOR_IO + SPARE_PAGES; tmp = size; size += highmem_size; for_each_populated_zone(zone) { tmp += snapshot_additional_pages(zone); if (is_highmem(zone)) { highmem_size -= zone_page_state(zone, NR_FREE_PAGES); } else { tmp -= zone_page_state(zone, NR_FREE_PAGES); tmp += zone->lowmem_reserve[ZONE_NORMAL]; } } if (highmem_size < 0) highmem_size = 0; tmp += highmem_size; if (tmp > 0) { tmp = __shrink_memory(tmp); if (!tmp) return -ENOMEM; pages += tmp; } else if (size > image_size / PAGE_SIZE) { tmp = __shrink_memory(size - (image_size / PAGE_SIZE)); pages += tmp; } printk("\b%c", p[i++%4]); } while (tmp > 0); do_gettimeofday(&stop); printk("\bdone (%lu pages freed)\n", pages); swsusp_show_speed(&start, &stop, pages, "Freed"); return 0; } /* * Platforms, like ACPI, may want us to save some memory used by them during * hibernation and to restore the contents of this memory during the subsequent * resume. The code below implements a mechanism allowing us to do that. */ struct nvs_page { unsigned long phys_start; unsigned int size; void *kaddr; void *data; struct list_head node; }; static LIST_HEAD(nvs_list); /** * hibernate_nvs_register - register platform NVS memory region to save * @start - physical address of the region * @size - size of the region * * The NVS region need not be page-aligned (both ends) and we arrange * things so that the data from page-aligned addresses in this region will * be copied into separate RAM pages. */ int hibernate_nvs_register(unsigned long start, unsigned long size) { struct nvs_page *entry, *next; while (size > 0) { unsigned int nr_bytes; entry = kzalloc(sizeof(struct nvs_page), GFP_KERNEL); if (!entry) goto Error; list_add_tail(&entry->node, &nvs_list); entry->phys_start = start; nr_bytes = PAGE_SIZE - (start & ~PAGE_MASK); entry->size = (size < nr_bytes) ? size : nr_bytes; start += entry->size; size -= entry->size; } return 0; Error: list_for_each_entry_safe(entry, next, &nvs_list, node) { list_del(&entry->node); kfree(entry); } return -ENOMEM; } /** * hibernate_nvs_free - free data pages allocated for saving NVS regions */ void hibernate_nvs_free(void) { struct nvs_page *entry; list_for_each_entry(entry, &nvs_list, node) if (entry->data) { free_page((unsigned long)entry->data); entry->data = NULL; if (entry->kaddr) { iounmap(entry->kaddr); entry->kaddr = NULL; } } } /** * hibernate_nvs_alloc - allocate memory necessary for saving NVS regions */ int hibernate_nvs_alloc(void) { struct nvs_page *entry; list_for_each_entry(entry, &nvs_list, node) { entry->data = (void *)__get_free_page(GFP_KERNEL); if (!entry->data) { hibernate_nvs_free(); return -ENOMEM; } } return 0; } /** * hibernate_nvs_save - save NVS memory regions */ void hibernate_nvs_save(void) { struct nvs_page *entry; printk(KERN_INFO "PM: Saving platform NVS memory\n"); list_for_each_entry(entry, &nvs_list, node) if (entry->data) { entry->kaddr = ioremap(entry->phys_start, entry->size); memcpy(entry->data, entry->kaddr, entry->size); } } /** * hibernate_nvs_restore - restore NVS memory regions * * This function is going to be called with interrupts disabled, so it * cannot iounmap the virtual addresses used to access the NVS region. */ void hibernate_nvs_restore(void) { struct nvs_page *entry; printk(KERN_INFO "PM: Restoring platform NVS memory\n"); list_for_each_entry(entry, &nvs_list, node) if (entry->data) memcpy(entry->kaddr, entry->data, entry->size); }