/* * Read-Copy Update mechanism for mutual exclusion, realtime implementation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * Copyright IBM Corporation, 2006 * * Authors: Paul E. McKenney <paulmck@us.ibm.com> * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar * for pushing me away from locks and towards counters, and * to Suparna Bhattacharya for pushing me completely away * from atomic instructions on the read side. * * - Added handling of Dynamic Ticks * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com> * - Steven Rostedt <srostedt@redhat.com> * * Papers: http://www.rdrop.com/users/paulmck/RCU * * Design Document: http://lwn.net/Articles/253651/ * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU/ *.txt * */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/rcupdate.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <asm/atomic.h> #include <linux/bitops.h> #include <linux/module.h> #include <linux/kthread.h> #include <linux/completion.h> #include <linux/moduleparam.h> #include <linux/percpu.h> #include <linux/notifier.h> #include <linux/cpu.h> #include <linux/random.h> #include <linux/delay.h> #include <linux/cpumask.h> #include <linux/rcupreempt_trace.h> #include <asm/byteorder.h> /* * PREEMPT_RCU data structures. */ /* * GP_STAGES specifies the number of times the state machine has * to go through the all the rcu_try_flip_states (see below) * in a single Grace Period. * * GP in GP_STAGES stands for Grace Period ;) */ #define GP_STAGES 2 struct rcu_data { spinlock_t lock; /* Protect rcu_data fields. */ long completed; /* Number of last completed batch. */ int waitlistcount; struct rcu_head *nextlist; struct rcu_head **nexttail; struct rcu_head *waitlist[GP_STAGES]; struct rcu_head **waittail[GP_STAGES]; struct rcu_head *donelist; /* from waitlist & waitschedlist */ struct rcu_head **donetail; long rcu_flipctr[2]; struct rcu_head *nextschedlist; struct rcu_head **nextschedtail; struct rcu_head *waitschedlist; struct rcu_head **waitschedtail; int rcu_sched_sleeping; #ifdef CONFIG_RCU_TRACE struct rcupreempt_trace trace; #endif /* #ifdef CONFIG_RCU_TRACE */ }; /* * States for rcu_try_flip() and friends. */ enum rcu_try_flip_states { /* * Stay here if nothing is happening. Flip the counter if somthing * starts happening. Denoted by "I" */ rcu_try_flip_idle_state, /* * Wait here for all CPUs to notice that the counter has flipped. This * prevents the old set of counters from ever being incremented once * we leave this state, which in turn is necessary because we cannot * test any individual counter for zero -- we can only check the sum. * Denoted by "A". */ rcu_try_flip_waitack_state, /* * Wait here for the sum of the old per-CPU counters to reach zero. * Denoted by "Z". */ rcu_try_flip_waitzero_state, /* * Wait here for each of the other CPUs to execute a memory barrier. * This is necessary to ensure that these other CPUs really have * completed executing their RCU read-side critical sections, despite * their CPUs wildly reordering memory. Denoted by "M". */ rcu_try_flip_waitmb_state, }; /* * States for rcu_ctrlblk.rcu_sched_sleep. */ enum rcu_sched_sleep_states { rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */ rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */ rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */ }; struct rcu_ctrlblk { spinlock_t fliplock; /* Protect state-machine transitions. */ long completed; /* Number of last completed batch. */ enum rcu_try_flip_states rcu_try_flip_state; /* The current state of the rcu state machine */ spinlock_t schedlock; /* Protect rcu_sched sleep state. */ enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */ wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */ }; static DEFINE_PER_CPU(struct rcu_data, rcu_data); static struct rcu_ctrlblk rcu_ctrlblk = { .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock), .completed = 0, .rcu_try_flip_state = rcu_try_flip_idle_state, .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock), .sched_sleep = rcu_sched_not_sleeping, .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq), }; static struct task_struct *rcu_sched_grace_period_task; #ifdef CONFIG_RCU_TRACE static char *rcu_try_flip_state_names[] = { "idle", "waitack", "waitzero", "waitmb" }; #endif /* #ifdef CONFIG_RCU_TRACE */ static DECLARE_BITMAP(rcu_cpu_online_map, NR_CPUS) __read_mostly = CPU_BITS_NONE; /* * Enum and per-CPU flag to determine when each CPU has seen * the most recent counter flip. */ enum rcu_flip_flag_values { rcu_flip_seen, /* Steady/initial state, last flip seen. */ /* Only GP detector can update. */ rcu_flipped /* Flip just completed, need confirmation. */ /* Only corresponding CPU can update. */ }; static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag) = rcu_flip_seen; /* * Enum and per-CPU flag to determine when each CPU has executed the * needed memory barrier to fence in memory references from its last RCU * read-side critical section in the just-completed grace period. */ enum rcu_mb_flag_values { rcu_mb_done, /* Steady/initial state, no mb()s required. */ /* Only GP detector can update. */ rcu_mb_needed /* Flip just completed, need an mb(). */ /* Only corresponding CPU can update. */ }; static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag) = rcu_mb_done; /* * RCU_DATA_ME: find the current CPU's rcu_data structure. * RCU_DATA_CPU: find the specified CPU's rcu_data structure. */ #define RCU_DATA_ME() (&__get_cpu_var(rcu_data)) #define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu)) /* * Helper macro for tracing when the appropriate rcu_data is not * cached in a local variable, but where the CPU number is so cached. */ #define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace)); /* * Helper macro for tracing when the appropriate rcu_data is not * cached in a local variable. */ #define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace)); /* * Helper macro for tracing when the appropriate rcu_data is pointed * to by a local variable. */ #define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace)); #define RCU_SCHED_BATCH_TIME (HZ / 50) /* * Return the number of RCU batches processed thus far. Useful * for debug and statistics. */ long rcu_batches_completed(void) { return rcu_ctrlblk.completed; } EXPORT_SYMBOL_GPL(rcu_batches_completed); void __rcu_read_lock(void) { int idx; struct task_struct *t = current; int nesting; nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); if (nesting != 0) { /* An earlier rcu_read_lock() covers us, just count it. */ t->rcu_read_lock_nesting = nesting + 1; } else { unsigned long flags; /* * We disable interrupts for the following reasons: * - If we get scheduling clock interrupt here, and we * end up acking the counter flip, it's like a promise * that we will never increment the old counter again. * Thus we will break that promise if that * scheduling clock interrupt happens between the time * we pick the .completed field and the time that we * increment our counter. * * - We don't want to be preempted out here. * * NMIs can still occur, of course, and might themselves * contain rcu_read_lock(). */ local_irq_save(flags); /* * Outermost nesting of rcu_read_lock(), so increment * the current counter for the current CPU. Use volatile * casts to prevent the compiler from reordering. */ idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1; ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++; /* * Now that the per-CPU counter has been incremented, we * are protected from races with rcu_read_lock() invoked * from NMI handlers on this CPU. We can therefore safely * increment the nesting counter, relieving further NMIs * of the need to increment the per-CPU counter. */ ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1; /* * Now that we have preventing any NMIs from storing * to the ->rcu_flipctr_idx, we can safely use it to * remember which counter to decrement in the matching * rcu_read_unlock(). */ ACCESS_ONCE(t->rcu_flipctr_idx) = idx; local_irq_restore(flags); } } EXPORT_SYMBOL_GPL(__rcu_read_lock); void __rcu_read_unlock(void) { int idx; struct task_struct *t = current; int nesting; nesting = ACCESS_ONCE(t->rcu_read_lock_nesting); if (nesting > 1) { /* * We are still protected by the enclosing rcu_read_lock(), * so simply decrement the counter. */ t->rcu_read_lock_nesting = nesting - 1; } else { unsigned long flags; /* * Disable local interrupts to prevent the grace-period * detection state machine from seeing us half-done. * NMIs can still occur, of course, and might themselves * contain rcu_read_lock() and rcu_read_unlock(). */ local_irq_save(flags); /* * Outermost nesting of rcu_read_unlock(), so we must * decrement the current counter for the current CPU. * This must be done carefully, because NMIs can * occur at any point in this code, and any rcu_read_lock() * and rcu_read_unlock() pairs in the NMI handlers * must interact non-destructively with this code. * Lots of volatile casts, and -very- careful ordering. * * Changes to this code, including this one, must be * inspected, validated, and tested extremely carefully!!! */ /* * First, pick up the index. */ idx = ACCESS_ONCE(t->rcu_flipctr_idx); /* * Now that we have fetched the counter index, it is * safe to decrement the per-task RCU nesting counter. * After this, any interrupts or NMIs will increment and * decrement the per-CPU counters. */ ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1; /* * It is now safe to decrement this task's nesting count. * NMIs that occur after this statement will route their * rcu_read_lock() calls through this "else" clause, and * will thus start incrementing the per-CPU counter on * their own. They will also clobber ->rcu_flipctr_idx, * but that is OK, since we have already fetched it. */ ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--; local_irq_restore(flags); } } EXPORT_SYMBOL_GPL(__rcu_read_unlock); /* * If a global counter flip has occurred since the last time that we * advanced callbacks, advance them. Hardware interrupts must be * disabled when calling this function. */ static void __rcu_advance_callbacks(struct rcu_data *rdp) { int cpu; int i; int wlc = 0; if (rdp->completed != rcu_ctrlblk.completed) { if (rdp->waitlist[GP_STAGES - 1] != NULL) { *rdp->donetail = rdp->waitlist[GP_STAGES - 1]; rdp->donetail = rdp->waittail[GP_STAGES - 1]; RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp); } for (i = GP_STAGES - 2; i >= 0; i--) { if (rdp->waitlist[i] != NULL) { rdp->waitlist[i + 1] = rdp->waitlist[i]; rdp->waittail[i + 1] = rdp->waittail[i]; wlc++; } else { rdp->waitlist[i + 1] = NULL; rdp->waittail[i + 1] = &rdp->waitlist[i + 1]; } } if (rdp->nextlist != NULL) { rdp->waitlist[0] = rdp->nextlist; rdp->waittail[0] = rdp->nexttail; wlc++; rdp->nextlist = NULL; rdp->nexttail = &rdp->nextlist; RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp); } else { rdp->waitlist[0] = NULL; rdp->waittail[0] = &rdp->waitlist[0]; } rdp->waitlistcount = wlc; rdp->completed = rcu_ctrlblk.completed; } /* * Check to see if this CPU needs to report that it has seen * the most recent counter flip, thereby declaring that all * subsequent rcu_read_lock() invocations will respect this flip. */ cpu = raw_smp_processor_id(); if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { smp_mb(); /* Subsequent counter accesses must see new value */ per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; smp_mb(); /* Subsequent RCU read-side critical sections */ /* seen -after- acknowledgement. */ } } DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = { .dynticks = 1, }; #ifdef CONFIG_NO_HZ static DEFINE_PER_CPU(int, rcu_update_flag); /** * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI. * * If the CPU was idle with dynamic ticks active, this updates the * rcu_dyntick_sched.dynticks to let the RCU handling know that the * CPU is active. */ void rcu_irq_enter(void) { int cpu = smp_processor_id(); struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); if (per_cpu(rcu_update_flag, cpu)) per_cpu(rcu_update_flag, cpu)++; /* * Only update if we are coming from a stopped ticks mode * (rcu_dyntick_sched.dynticks is even). */ if (!in_interrupt() && (rdssp->dynticks & 0x1) == 0) { /* * The following might seem like we could have a race * with NMI/SMIs. But this really isn't a problem. * Here we do a read/modify/write, and the race happens * when an NMI/SMI comes in after the read and before * the write. But NMI/SMIs will increment this counter * twice before returning, so the zero bit will not * be corrupted by the NMI/SMI which is the most important * part. * * The only thing is that we would bring back the counter * to a postion that it was in during the NMI/SMI. * But the zero bit would be set, so the rest of the * counter would again be ignored. * * On return from the IRQ, the counter may have the zero * bit be 0 and the counter the same as the return from * the NMI/SMI. If the state machine was so unlucky to * see that, it still doesn't matter, since all * RCU read-side critical sections on this CPU would * have already completed. */ rdssp->dynticks++; /* * The following memory barrier ensures that any * rcu_read_lock() primitives in the irq handler * are seen by other CPUs to follow the above * increment to rcu_dyntick_sched.dynticks. This is * required in order for other CPUs to correctly * determine when it is safe to advance the RCU * grace-period state machine. */ smp_mb(); /* see above block comment. */ /* * Since we can't determine the dynamic tick mode from * the rcu_dyntick_sched.dynticks after this routine, * we use a second flag to acknowledge that we came * from an idle state with ticks stopped. */ per_cpu(rcu_update_flag, cpu)++; /* * If we take an NMI/SMI now, they will also increment * the rcu_update_flag, and will not update the * rcu_dyntick_sched.dynticks on exit. That is for * this IRQ to do. */ } } /** * rcu_irq_exit - Called from exiting Hard irq context. * * If the CPU was idle with dynamic ticks active, update the * rcu_dyntick_sched.dynticks to put let the RCU handling be * aware that the CPU is going back to idle with no ticks. */ void rcu_irq_exit(void) { int cpu = smp_processor_id(); struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); /* * rcu_update_flag is set if we interrupted the CPU * when it was idle with ticks stopped. * Once this occurs, we keep track of interrupt nesting * because a NMI/SMI could also come in, and we still * only want the IRQ that started the increment of the * rcu_dyntick_sched.dynticks to be the one that modifies * it on exit. */ if (per_cpu(rcu_update_flag, cpu)) { if (--per_cpu(rcu_update_flag, cpu)) return; /* This must match the interrupt nesting */ WARN_ON(in_interrupt()); /* * If an NMI/SMI happens now we are still * protected by the rcu_dyntick_sched.dynticks being odd. */ /* * The following memory barrier ensures that any * rcu_read_unlock() primitives in the irq handler * are seen by other CPUs to preceed the following * increment to rcu_dyntick_sched.dynticks. This * is required in order for other CPUs to determine * when it is safe to advance the RCU grace-period * state machine. */ smp_mb(); /* see above block comment. */ rdssp->dynticks++; WARN_ON(rdssp->dynticks & 0x1); } } void rcu_nmi_enter(void) { rcu_irq_enter(); } void rcu_nmi_exit(void) { rcu_irq_exit(); } static void dyntick_save_progress_counter(int cpu) { struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); rdssp->dynticks_snap = rdssp->dynticks; } static inline int rcu_try_flip_waitack_needed(int cpu) { long curr; long snap; struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); curr = rdssp->dynticks; snap = rdssp->dynticks_snap; smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ /* * If the CPU remained in dynticks mode for the entire time * and didn't take any interrupts, NMIs, SMIs, or whatever, * then it cannot be in the middle of an rcu_read_lock(), so * the next rcu_read_lock() it executes must use the new value * of the counter. So we can safely pretend that this CPU * already acknowledged the counter. */ if ((curr == snap) && ((curr & 0x1) == 0)) return 0; /* * If the CPU passed through or entered a dynticks idle phase with * no active irq handlers, then, as above, we can safely pretend * that this CPU already acknowledged the counter. */ if ((curr - snap) > 2 || (curr & 0x1) == 0) return 0; /* We need this CPU to explicitly acknowledge the counter flip. */ return 1; } static inline int rcu_try_flip_waitmb_needed(int cpu) { long curr; long snap; struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); curr = rdssp->dynticks; snap = rdssp->dynticks_snap; smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ /* * If the CPU remained in dynticks mode for the entire time * and didn't take any interrupts, NMIs, SMIs, or whatever, * then it cannot have executed an RCU read-side critical section * during that time, so there is no need for it to execute a * memory barrier. */ if ((curr == snap) && ((curr & 0x1) == 0)) return 0; /* * If the CPU either entered or exited an outermost interrupt, * SMI, NMI, or whatever handler, then we know that it executed * a memory barrier when doing so. So we don't need another one. */ if (curr != snap) return 0; /* We need the CPU to execute a memory barrier. */ return 1; } static void dyntick_save_progress_counter_sched(int cpu) { struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); rdssp->sched_dynticks_snap = rdssp->dynticks; } static int rcu_qsctr_inc_needed_dyntick(int cpu) { long curr; long snap; struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); curr = rdssp->dynticks; snap = rdssp->sched_dynticks_snap; smp_mb(); /* force ordering with cpu entering/leaving dynticks. */ /* * If the CPU remained in dynticks mode for the entire time * and didn't take any interrupts, NMIs, SMIs, or whatever, * then it cannot be in the middle of an rcu_read_lock(), so * the next rcu_read_lock() it executes must use the new value * of the counter. Therefore, this CPU has been in a quiescent * state the entire time, and we don't need to wait for it. */ if ((curr == snap) && ((curr & 0x1) == 0)) return 0; /* * If the CPU passed through or entered a dynticks idle phase with * no active irq handlers, then, as above, this CPU has already * passed through a quiescent state. */ if ((curr - snap) > 2 || (snap & 0x1) == 0) return 0; /* We need this CPU to go through a quiescent state. */ return 1; } #else /* !CONFIG_NO_HZ */ # define dyntick_save_progress_counter(cpu) do { } while (0) # define rcu_try_flip_waitack_needed(cpu) (1) # define rcu_try_flip_waitmb_needed(cpu) (1) # define dyntick_save_progress_counter_sched(cpu) do { } while (0) # define rcu_qsctr_inc_needed_dyntick(cpu) (1) #endif /* CONFIG_NO_HZ */ static void save_qsctr_sched(int cpu) { struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); rdssp->sched_qs_snap = rdssp->sched_qs; } static inline int rcu_qsctr_inc_needed(int cpu) { struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu); /* * If there has been a quiescent state, no more need to wait * on this CPU. */ if (rdssp->sched_qs != rdssp->sched_qs_snap) { smp_mb(); /* force ordering with cpu entering schedule(). */ return 0; } /* We need this CPU to go through a quiescent state. */ return 1; } /* * Get here when RCU is idle. Decide whether we need to * move out of idle state, and return non-zero if so. * "Straightforward" approach for the moment, might later * use callback-list lengths, grace-period duration, or * some such to determine when to exit idle state. * Might also need a pre-idle test that does not acquire * the lock, but let's get the simple case working first... */ static int rcu_try_flip_idle(void) { int cpu; RCU_TRACE_ME(rcupreempt_trace_try_flip_i1); if (!rcu_pending(smp_processor_id())) { RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1); return 0; } /* * Do the flip. */ RCU_TRACE_ME(rcupreempt_trace_try_flip_g1); rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */ /* * Need a memory barrier so that other CPUs see the new * counter value before they see the subsequent change of all * the rcu_flip_flag instances to rcu_flipped. */ smp_mb(); /* see above block comment. */ /* Now ask each CPU for acknowledgement of the flip. */ for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) { per_cpu(rcu_flip_flag, cpu) = rcu_flipped; dyntick_save_progress_counter(cpu); } return 1; } /* * Wait for CPUs to acknowledge the flip. */ static int rcu_try_flip_waitack(void) { int cpu; RCU_TRACE_ME(rcupreempt_trace_try_flip_a1); for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) if (rcu_try_flip_waitack_needed(cpu) && per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) { RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1); return 0; } /* * Make sure our checks above don't bleed into subsequent * waiting for the sum of the counters to reach zero. */ smp_mb(); /* see above block comment. */ RCU_TRACE_ME(rcupreempt_trace_try_flip_a2); return 1; } /* * Wait for collective ``last'' counter to reach zero, * then tell all CPUs to do an end-of-grace-period memory barrier. */ static int rcu_try_flip_waitzero(void) { int cpu; int lastidx = !(rcu_ctrlblk.completed & 0x1); int sum = 0; /* Check to see if the sum of the "last" counters is zero. */ RCU_TRACE_ME(rcupreempt_trace_try_flip_z1); for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx]; if (sum != 0) { RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1); return 0; } /* * This ensures that the other CPUs see the call for * memory barriers -after- the sum to zero has been * detected here */ smp_mb(); /* ^^^^^^^^^^^^ */ /* Call for a memory barrier from each CPU. */ for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) { per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed; dyntick_save_progress_counter(cpu); } RCU_TRACE_ME(rcupreempt_trace_try_flip_z2); return 1; } /* * Wait for all CPUs to do their end-of-grace-period memory barrier. * Return 0 once all CPUs have done so. */ static int rcu_try_flip_waitmb(void) { int cpu; RCU_TRACE_ME(rcupreempt_trace_try_flip_m1); for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) if (rcu_try_flip_waitmb_needed(cpu) && per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) { RCU_TRACE_ME(rcupreempt_trace_try_flip_me1); return 0; } smp_mb(); /* Ensure that the above checks precede any following flip. */ RCU_TRACE_ME(rcupreempt_trace_try_flip_m2); return 1; } /* * Attempt a single flip of the counters. Remember, a single flip does * -not- constitute a grace period. Instead, the interval between * at least GP_STAGES consecutive flips is a grace period. * * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation * on a large SMP, they might want to use a hierarchical organization of * the per-CPU-counter pairs. */ static void rcu_try_flip(void) { unsigned long flags; RCU_TRACE_ME(rcupreempt_trace_try_flip_1); if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) { RCU_TRACE_ME(rcupreempt_trace_try_flip_e1); return; } /* * Take the next transition(s) through the RCU grace-period * flip-counter state machine. */ switch (rcu_ctrlblk.rcu_try_flip_state) { case rcu_try_flip_idle_state: if (rcu_try_flip_idle()) rcu_ctrlblk.rcu_try_flip_state = rcu_try_flip_waitack_state; break; case rcu_try_flip_waitack_state: if (rcu_try_flip_waitack()) rcu_ctrlblk.rcu_try_flip_state = rcu_try_flip_waitzero_state; break; case rcu_try_flip_waitzero_state: if (rcu_try_flip_waitzero()) rcu_ctrlblk.rcu_try_flip_state = rcu_try_flip_waitmb_state; break; case rcu_try_flip_waitmb_state: if (rcu_try_flip_waitmb()) rcu_ctrlblk.rcu_try_flip_state = rcu_try_flip_idle_state; } spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); } /* * Check to see if this CPU needs to do a memory barrier in order to * ensure that any prior RCU read-side critical sections have committed * their counter manipulations and critical-section memory references * before declaring the grace period to be completed. */ static void rcu_check_mb(int cpu) { if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) { smp_mb(); /* Ensure RCU read-side accesses are visible. */ per_cpu(rcu_mb_flag, cpu) = rcu_mb_done; } } void rcu_check_callbacks(int cpu, int user) { unsigned long flags; struct rcu_data *rdp = RCU_DATA_CPU(cpu); /* * If this CPU took its interrupt from user mode or from the * idle loop, and this is not a nested interrupt, then * this CPU has to have exited all prior preept-disable * sections of code. So increment the counter to note this. * * The memory barrier is needed to handle the case where * writes from a preempt-disable section of code get reordered * into schedule() by this CPU's write buffer. So the memory * barrier makes sure that the rcu_qsctr_inc() is seen by other * CPUs to happen after any such write. */ if (user || (idle_cpu(cpu) && !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) { smp_mb(); /* Guard against aggressive schedule(). */ rcu_qsctr_inc(cpu); } rcu_check_mb(cpu); if (rcu_ctrlblk.completed == rdp->completed) rcu_try_flip(); spin_lock_irqsave(&rdp->lock, flags); RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); __rcu_advance_callbacks(rdp); if (rdp->donelist == NULL) { spin_unlock_irqrestore(&rdp->lock, flags); } else { spin_unlock_irqrestore(&rdp->lock, flags); raise_softirq(RCU_SOFTIRQ); } } /* * Needed by dynticks, to make sure all RCU processing has finished * when we go idle: */ void rcu_advance_callbacks(int cpu, int user) { unsigned long flags; struct rcu_data *rdp = RCU_DATA_CPU(cpu); if (rcu_ctrlblk.completed == rdp->completed) { rcu_try_flip(); if (rcu_ctrlblk.completed == rdp->completed) return; } spin_lock_irqsave(&rdp->lock, flags); RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp); __rcu_advance_callbacks(rdp); spin_unlock_irqrestore(&rdp->lock, flags); } #ifdef CONFIG_HOTPLUG_CPU #define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \ *dsttail = srclist; \ if (srclist != NULL) { \ dsttail = srctail; \ srclist = NULL; \ srctail = &srclist;\ } \ } while (0) void rcu_offline_cpu(int cpu) { int i; struct rcu_head *list = NULL; unsigned long flags; struct rcu_data *rdp = RCU_DATA_CPU(cpu); struct rcu_head *schedlist = NULL; struct rcu_head **schedtail = &schedlist; struct rcu_head **tail = &list; /* * Remove all callbacks from the newly dead CPU, retaining order. * Otherwise rcu_barrier() will fail */ spin_lock_irqsave(&rdp->lock, flags); rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail); for (i = GP_STAGES - 1; i >= 0; i--) rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i], list, tail); rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail); rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail, schedlist, schedtail); rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail, schedlist, schedtail); rdp->rcu_sched_sleeping = 0; spin_unlock_irqrestore(&rdp->lock, flags); rdp->waitlistcount = 0; /* Disengage the newly dead CPU from the grace-period computation. */ spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); rcu_check_mb(cpu); if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) { smp_mb(); /* Subsequent counter accesses must see new value */ per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen; smp_mb(); /* Subsequent RCU read-side critical sections */ /* seen -after- acknowledgement. */ } RCU_DATA_ME()->rcu_flipctr[0] += RCU_DATA_CPU(cpu)->rcu_flipctr[0]; RCU_DATA_ME()->rcu_flipctr[1] += RCU_DATA_CPU(cpu)->rcu_flipctr[1]; RCU_DATA_CPU(cpu)->rcu_flipctr[0] = 0; RCU_DATA_CPU(cpu)->rcu_flipctr[1] = 0; cpumask_clear_cpu(cpu, to_cpumask(rcu_cpu_online_map)); spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); /* * Place the removed callbacks on the current CPU's queue. * Make them all start a new grace period: simple approach, * in theory could starve a given set of callbacks, but * you would need to be doing some serious CPU hotplugging * to make this happen. If this becomes a problem, adding * a synchronize_rcu() to the hotplug path would be a simple * fix. */ local_irq_save(flags); /* disable preempt till we know what lock. */ rdp = RCU_DATA_ME(); spin_lock(&rdp->lock); *rdp->nexttail = list; if (list) rdp->nexttail = tail; *rdp->nextschedtail = schedlist; if (schedlist) rdp->nextschedtail = schedtail; spin_unlock_irqrestore(&rdp->lock, flags); } #else /* #ifdef CONFIG_HOTPLUG_CPU */ void rcu_offline_cpu(int cpu) { } #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ void __cpuinit rcu_online_cpu(int cpu) { unsigned long flags; struct rcu_data *rdp; spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags); cpumask_set_cpu(cpu, to_cpumask(rcu_cpu_online_map)); spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags); /* * The rcu_sched grace-period processing might have bypassed * this CPU, given that it was not in the rcu_cpu_online_map * when the grace-period scan started. This means that the * grace-period task might sleep. So make sure that if this * should happen, the first callback posted to this CPU will * wake up the grace-period task if need be. */ rdp = RCU_DATA_CPU(cpu); spin_lock_irqsave(&rdp->lock, flags); rdp->rcu_sched_sleeping = 1; spin_unlock_irqrestore(&rdp->lock, flags); } static void rcu_process_callbacks(struct softirq_action *unused) { unsigned long flags; struct rcu_head *next, *list; struct rcu_data *rdp; local_irq_save(flags); rdp = RCU_DATA_ME(); spin_lock(&rdp->lock); list = rdp->donelist; if (list == NULL) { spin_unlock_irqrestore(&rdp->lock, flags); return; } rdp->donelist = NULL; rdp->donetail = &rdp->donelist; RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp); spin_unlock_irqrestore(&rdp->lock, flags); while (list) { next = list->next; list->func(list); list = next; RCU_TRACE_ME(rcupreempt_trace_invoke); } } void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) { unsigned long flags; struct rcu_data *rdp; head->func = func; head->next = NULL; local_irq_save(flags); rdp = RCU_DATA_ME(); spin_lock(&rdp->lock); __rcu_advance_callbacks(rdp); *rdp->nexttail = head; rdp->nexttail = &head->next; RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp); spin_unlock_irqrestore(&rdp->lock, flags); } EXPORT_SYMBOL_GPL(call_rcu); void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) { unsigned long flags; struct rcu_data *rdp; int wake_gp = 0; head->func = func; head->next = NULL; local_irq_save(flags); rdp = RCU_DATA_ME(); spin_lock(&rdp->lock); *rdp->nextschedtail = head; rdp->nextschedtail = &head->next; if (rdp->rcu_sched_sleeping) { /* Grace-period processing might be sleeping... */ rdp->rcu_sched_sleeping = 0; wake_gp = 1; } spin_unlock_irqrestore(&rdp->lock, flags); if (wake_gp) { /* Wake up grace-period processing, unless someone beat us. */ spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping) wake_gp = 0; rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping; spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); if (wake_gp) wake_up_interruptible(&rcu_ctrlblk.sched_wq); } } EXPORT_SYMBOL_GPL(call_rcu_sched); /* * Wait until all currently running preempt_disable() code segments * (including hardware-irq-disable segments) complete. Note that * in -rt this does -not- necessarily result in all currently executing * interrupt -handlers- having completed. */ void __synchronize_sched(void) { struct rcu_synchronize rcu; if (num_online_cpus() == 1) return; /* blocking is gp if only one CPU! */ init_completion(&rcu.completion); /* Will wake me after RCU finished. */ call_rcu_sched(&rcu.head, wakeme_after_rcu); /* Wait for it. */ wait_for_completion(&rcu.completion); } EXPORT_SYMBOL_GPL(__synchronize_sched); /* * kthread function that manages call_rcu_sched grace periods. */ static int rcu_sched_grace_period(void *arg) { int couldsleep; /* might sleep after current pass. */ int couldsleepnext = 0; /* might sleep after next pass. */ int cpu; unsigned long flags; struct rcu_data *rdp; int ret; /* * Each pass through the following loop handles one * rcu_sched grace period cycle. */ do { /* Save each CPU's current state. */ for_each_online_cpu(cpu) { dyntick_save_progress_counter_sched(cpu); save_qsctr_sched(cpu); } /* * Sleep for about an RCU grace-period's worth to * allow better batching and to consume less CPU. */ schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME); /* * If there was nothing to do last time, prepare to * sleep at the end of the current grace period cycle. */ couldsleep = couldsleepnext; couldsleepnext = 1; if (couldsleep) { spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep; spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); } /* * Wait on each CPU in turn to have either visited * a quiescent state or been in dynticks-idle mode. */ for_each_online_cpu(cpu) { while (rcu_qsctr_inc_needed(cpu) && rcu_qsctr_inc_needed_dyntick(cpu)) { /* resched_cpu(cpu); @@@ */ schedule_timeout_interruptible(1); } } /* Advance callbacks for each CPU. */ for_each_online_cpu(cpu) { rdp = RCU_DATA_CPU(cpu); spin_lock_irqsave(&rdp->lock, flags); /* * We are running on this CPU irq-disabled, so no * CPU can go offline until we re-enable irqs. * The current CPU might have already gone * offline (between the for_each_offline_cpu and * the spin_lock_irqsave), but in that case all its * callback lists will be empty, so no harm done. * * Advance the callbacks! We share normal RCU's * donelist, since callbacks are invoked the * same way in either case. */ if (rdp->waitschedlist != NULL) { *rdp->donetail = rdp->waitschedlist; rdp->donetail = rdp->waitschedtail; /* * Next rcu_check_callbacks() will * do the required raise_softirq(). */ } if (rdp->nextschedlist != NULL) { rdp->waitschedlist = rdp->nextschedlist; rdp->waitschedtail = rdp->nextschedtail; couldsleep = 0; couldsleepnext = 0; } else { rdp->waitschedlist = NULL; rdp->waitschedtail = &rdp->waitschedlist; } rdp->nextschedlist = NULL; rdp->nextschedtail = &rdp->nextschedlist; /* Mark sleep intention. */ rdp->rcu_sched_sleeping = couldsleep; spin_unlock_irqrestore(&rdp->lock, flags); } /* If we saw callbacks on the last scan, go deal with them. */ if (!couldsleep) continue; /* Attempt to block... */ spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags); if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) { /* * Someone posted a callback after we scanned. * Go take care of it. */ spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); couldsleepnext = 0; continue; } /* Block until the next person posts a callback. */ rcu_ctrlblk.sched_sleep = rcu_sched_sleeping; spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags); ret = 0; __wait_event_interruptible(rcu_ctrlblk.sched_wq, rcu_ctrlblk.sched_sleep != rcu_sched_sleeping, ret); /* * Signals would prevent us from sleeping, and we cannot * do much with them in any case. So flush them. */ if (ret) flush_signals(current); couldsleepnext = 0; } while (!kthread_should_stop()); return (0); } /* * Check to see if any future RCU-related work will need to be done * by the current CPU, even if none need be done immediately, returning * 1 if so. Assumes that notifiers would take care of handling any * outstanding requests from the RCU core. * * This function is part of the RCU implementation; it is -not- * an exported member of the RCU API. */ int rcu_needs_cpu(int cpu) { struct rcu_data *rdp = RCU_DATA_CPU(cpu); return (rdp->donelist != NULL || !!rdp->waitlistcount || rdp->nextlist != NULL || rdp->nextschedlist != NULL || rdp->waitschedlist != NULL); } int rcu_pending(int cpu) { struct rcu_data *rdp = RCU_DATA_CPU(cpu); /* The CPU has at least one callback queued somewhere. */ if (rdp->donelist != NULL || !!rdp->waitlistcount || rdp->nextlist != NULL || rdp->nextschedlist != NULL || rdp->waitschedlist != NULL) return 1; /* The RCU core needs an acknowledgement from this CPU. */ if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) || (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed)) return 1; /* This CPU has fallen behind the global grace-period number. */ if (rdp->completed != rcu_ctrlblk.completed) return 1; /* Nothing needed from this CPU. */ return 0; } static int __cpuinit rcu_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: rcu_online_cpu(cpu); break; case CPU_UP_CANCELED: case CPU_UP_CANCELED_FROZEN: case CPU_DEAD: case CPU_DEAD_FROZEN: rcu_offline_cpu(cpu); break; default: break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata rcu_nb = { .notifier_call = rcu_cpu_notify, }; void __init __rcu_init(void) { int cpu; int i; struct rcu_data *rdp; printk(KERN_NOTICE "Preemptible RCU implementation.\n"); for_each_possible_cpu(cpu) { rdp = RCU_DATA_CPU(cpu); spin_lock_init(&rdp->lock); rdp->completed = 0; rdp->waitlistcount = 0; rdp->nextlist = NULL; rdp->nexttail = &rdp->nextlist; for (i = 0; i < GP_STAGES; i++) { rdp->waitlist[i] = NULL; rdp->waittail[i] = &rdp->waitlist[i]; } rdp->donelist = NULL; rdp->donetail = &rdp->donelist; rdp->rcu_flipctr[0] = 0; rdp->rcu_flipctr[1] = 0; rdp->nextschedlist = NULL; rdp->nextschedtail = &rdp->nextschedlist; rdp->waitschedlist = NULL; rdp->waitschedtail = &rdp->waitschedlist; rdp->rcu_sched_sleeping = 0; } register_cpu_notifier(&rcu_nb); /* * We don't need protection against CPU-Hotplug here * since * a) If a CPU comes online while we are iterating over the * cpu_online_mask below, we would only end up making a * duplicate call to rcu_online_cpu() which sets the corresponding * CPU's mask in the rcu_cpu_online_map. * * b) A CPU cannot go offline at this point in time since the user * does not have access to the sysfs interface, nor do we * suspend the system. */ for_each_online_cpu(cpu) rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE, (void *)(long) cpu); open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); } /* * Late-boot-time RCU initialization that must wait until after scheduler * has been initialized. */ void __init rcu_init_sched(void) { rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period, NULL, "rcu_sched_grace_period"); WARN_ON(IS_ERR(rcu_sched_grace_period_task)); } #ifdef CONFIG_RCU_TRACE long *rcupreempt_flipctr(int cpu) { return &RCU_DATA_CPU(cpu)->rcu_flipctr[0]; } EXPORT_SYMBOL_GPL(rcupreempt_flipctr); int rcupreempt_flip_flag(int cpu) { return per_cpu(rcu_flip_flag, cpu); } EXPORT_SYMBOL_GPL(rcupreempt_flip_flag); int rcupreempt_mb_flag(int cpu) { return per_cpu(rcu_mb_flag, cpu); } EXPORT_SYMBOL_GPL(rcupreempt_mb_flag); char *rcupreempt_try_flip_state_name(void) { return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state]; } EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name); struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu) { struct rcu_data *rdp = RCU_DATA_CPU(cpu); return &rdp->trace; } EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu); #endif /* #ifdef RCU_TRACE */