#ifdef CONFIG_SCHEDSTATS /* * bump this up when changing the output format or the meaning of an existing * format, so that tools can adapt (or abort) */ #define SCHEDSTAT_VERSION 14 static int show_schedstat(struct seq_file *seq, void *v) { int cpu; int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9; char *mask_str = kmalloc(mask_len, GFP_KERNEL); if (mask_str == NULL) return -ENOMEM; seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION); seq_printf(seq, "timestamp %lu\n", jiffies); for_each_online_cpu(cpu) { struct rq *rq = cpu_rq(cpu); #ifdef CONFIG_SMP struct sched_domain *sd; int dcount = 0; #endif /* runqueue-specific stats */ seq_printf(seq, "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu", cpu, rq->yld_both_empty, rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count, rq->sched_switch, rq->sched_count, rq->sched_goidle, rq->ttwu_count, rq->ttwu_local, rq->rq_cpu_time, rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount); seq_printf(seq, "\n"); #ifdef CONFIG_SMP /* domain-specific stats */ preempt_disable(); for_each_domain(cpu, sd) { enum cpu_idle_type itype; cpumask_scnprintf(mask_str, mask_len, sched_domain_span(sd)); seq_printf(seq, "domain%d %s", dcount++, mask_str); for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES; itype++) { seq_printf(seq, " %u %u %u %u %u %u %u %u", sd->lb_count[itype], sd->lb_balanced[itype], sd->lb_failed[itype], sd->lb_imbalance[itype], sd->lb_gained[itype], sd->lb_hot_gained[itype], sd->lb_nobusyq[itype], sd->lb_nobusyg[itype]); } seq_printf(seq, " %u %u %u %u %u %u %u %u %u %u %u %u\n", sd->alb_count, sd->alb_failed, sd->alb_pushed, sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed, sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed, sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance); } preempt_enable(); #endif } kfree(mask_str); return 0; } static int schedstat_open(struct inode *inode, struct file *file) { unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32); char *buf = kmalloc(size, GFP_KERNEL); struct seq_file *m; int res; if (!buf) return -ENOMEM; res = single_open(file, show_schedstat, NULL); if (!res) { m = file->private_data; m->buf = buf; m->size = size; } else kfree(buf); return res; } static const struct file_operations proc_schedstat_operations = { .open = schedstat_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int __init proc_schedstat_init(void) { proc_create("schedstat", 0, NULL, &proc_schedstat_operations); return 0; } module_init(proc_schedstat_init); /* * Expects runqueue lock to be held for atomicity of update */ static inline void rq_sched_info_arrive(struct rq *rq, unsigned long long delta) { if (rq) { rq->rq_sched_info.run_delay += delta; rq->rq_sched_info.pcount++; } } /* * Expects runqueue lock to be held for atomicity of update */ static inline void rq_sched_info_depart(struct rq *rq, unsigned long long delta) { if (rq) rq->rq_cpu_time += delta; } static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) { if (rq) rq->rq_sched_info.run_delay += delta; } # define schedstat_inc(rq, field) do { (rq)->field++; } while (0) # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0) # define schedstat_set(var, val) do { var = (val); } while (0) #else /* !CONFIG_SCHEDSTATS */ static inline void rq_sched_info_arrive(struct rq *rq, unsigned long long delta) {} static inline void rq_sched_info_dequeued(struct rq *rq, unsigned long long delta) {} static inline void rq_sched_info_depart(struct rq *rq, unsigned long long delta) {} # define schedstat_inc(rq, field) do { } while (0) # define schedstat_add(rq, field, amt) do { } while (0) # define schedstat_set(var, val) do { } while (0) #endif #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) static inline void sched_info_reset_dequeued(struct task_struct *t) { t->sched_info.last_queued = 0; } /* * Called when a process is dequeued from the active array and given * the cpu. We should note that with the exception of interactive * tasks, the expired queue will become the active queue after the active * queue is empty, without explicitly dequeuing and requeuing tasks in the * expired queue. (Interactive tasks may be requeued directly to the * active queue, thus delaying tasks in the expired queue from running; * see scheduler_tick()). * * Though we are interested in knowing how long it was from the *first* time a * task was queued to the time that it finally hit a cpu, we call this routine * from dequeue_task() to account for possible rq->clock skew across cpus. The * delta taken on each cpu would annul the skew. */ static inline void sched_info_dequeued(struct task_struct *t) { unsigned long long now = task_rq(t)->clock, delta = 0; if (unlikely(sched_info_on())) if (t->sched_info.last_queued) delta = now - t->sched_info.last_queued; sched_info_reset_dequeued(t); t->sched_info.run_delay += delta; rq_sched_info_dequeued(task_rq(t), delta); } /* * Called when a task finally hits the cpu. We can now calculate how * long it was waiting to run. We also note when it began so that we * can keep stats on how long its timeslice is. */ static void sched_info_arrive(struct task_struct *t) { unsigned long long now = task_rq(t)->clock, delta = 0; if (t->sched_info.last_queued) delta = now - t->sched_info.last_queued; sched_info_reset_dequeued(t); t->sched_info.run_delay += delta; t->sched_info.last_arrival = now; t->sched_info.pcount++; rq_sched_info_arrive(task_rq(t), delta); } /* * Called when a process is queued into either the active or expired * array. The time is noted and later used to determine how long we * had to wait for us to reach the cpu. Since the expired queue will * become the active queue after active queue is empty, without dequeuing * and requeuing any tasks, we are interested in queuing to either. It * is unusual but not impossible for tasks to be dequeued and immediately * requeued in the same or another array: this can happen in sched_yield(), * set_user_nice(), and even load_balance() as it moves tasks from runqueue * to runqueue. * * This function is only called from enqueue_task(), but also only updates * the timestamp if it is already not set. It's assumed that * sched_info_dequeued() will clear that stamp when appropriate. */ static inline void sched_info_queued(struct task_struct *t) { if (unlikely(sched_info_on())) if (!t->sched_info.last_queued) t->sched_info.last_queued = task_rq(t)->clock; } /* * Called when a process ceases being the active-running process, either * voluntarily or involuntarily. Now we can calculate how long we ran. * Also, if the process is still in the TASK_RUNNING state, call * sched_info_queued() to mark that it has now again started waiting on * the runqueue. */ static inline void sched_info_depart(struct task_struct *t) { unsigned long long delta = task_rq(t)->clock - t->sched_info.last_arrival; rq_sched_info_depart(task_rq(t), delta); if (t->state == TASK_RUNNING) sched_info_queued(t); } /* * Called when tasks are switched involuntarily due, typically, to expiring * their time slice. (This may also be called when switching to or from * the idle task.) We are only called when prev != next. */ static inline void __sched_info_switch(struct task_struct *prev, struct task_struct *next) { struct rq *rq = task_rq(prev); /* * prev now departs the cpu. It's not interesting to record * stats about how efficient we were at scheduling the idle * process, however. */ if (prev != rq->idle) sched_info_depart(prev); if (next != rq->idle) sched_info_arrive(next); } static inline void sched_info_switch(struct task_struct *prev, struct task_struct *next) { if (unlikely(sched_info_on())) __sched_info_switch(prev, next); } #else #define sched_info_queued(t) do { } while (0) #define sched_info_reset_dequeued(t) do { } while (0) #define sched_info_dequeued(t) do { } while (0) #define sched_info_switch(t, next) do { } while (0) #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ /* * The following are functions that support scheduler-internal time accounting. * These functions are generally called at the timer tick. None of this depends * on CONFIG_SCHEDSTATS. */ /** * account_group_user_time - Maintain utime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the utime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the utime field there. */ static inline void account_group_user_time(struct task_struct *tsk, cputime_t cputime) { struct task_cputime *times; struct signal_struct *sig; /* tsk == current, ensure it is safe to use ->signal */ if (unlikely(tsk->exit_state)) return; sig = tsk->signal; times = &sig->cputime.totals; spin_lock(×->lock); times->utime = cputime_add(times->utime, cputime); spin_unlock(×->lock); } /** * account_group_system_time - Maintain stime for a thread group. * * @tsk: Pointer to task structure. * @cputime: Time value by which to increment the stime field of the * thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the stime field there. */ static inline void account_group_system_time(struct task_struct *tsk, cputime_t cputime) { struct task_cputime *times; struct signal_struct *sig; /* tsk == current, ensure it is safe to use ->signal */ if (unlikely(tsk->exit_state)) return; sig = tsk->signal; times = &sig->cputime.totals; spin_lock(×->lock); times->stime = cputime_add(times->stime, cputime); spin_unlock(×->lock); } /** * account_group_exec_runtime - Maintain exec runtime for a thread group. * * @tsk: Pointer to task structure. * @ns: Time value by which to increment the sum_exec_runtime field * of the thread_group_cputime structure. * * If thread group time is being maintained, get the structure for the * running CPU and update the sum_exec_runtime field there. */ static inline void account_group_exec_runtime(struct task_struct *tsk, unsigned long long ns) { struct task_cputime *times; struct signal_struct *sig; sig = tsk->signal; /* see __exit_signal()->task_rq_unlock_wait() */ barrier(); if (unlikely(!sig)) return; times = &sig->cputime.totals; spin_lock(×->lock); times->sum_exec_runtime += ns; spin_unlock(×->lock); }