/* * INETPEER - A storage for permanent information about peers * * This source is covered by the GNU GPL, the same as all kernel sources. * * Authors: Andrey V. Savochkin <saw@msu.ru> */ #include <linux/module.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/random.h> #include <linux/timer.h> #include <linux/time.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/net.h> #include <net/ip.h> #include <net/inetpeer.h> /* * Theory of operations. * We keep one entry for each peer IP address. The nodes contains long-living * information about the peer which doesn't depend on routes. * At this moment this information consists only of ID field for the next * outgoing IP packet. This field is incremented with each packet as encoded * in inet_getid() function (include/net/inetpeer.h). * At the moment of writing this notes identifier of IP packets is generated * to be unpredictable using this code only for packets subjected * (actually or potentially) to defragmentation. I.e. DF packets less than * PMTU in size uses a constant ID and do not use this code (see * ip_select_ident() in include/net/ip.h). * * Route cache entries hold references to our nodes. * New cache entries get references via lookup by destination IP address in * the avl tree. The reference is grabbed only when it's needed i.e. only * when we try to output IP packet which needs an unpredictable ID (see * __ip_select_ident() in net/ipv4/route.c). * Nodes are removed only when reference counter goes to 0. * When it's happened the node may be removed when a sufficient amount of * time has been passed since its last use. The less-recently-used entry can * also be removed if the pool is overloaded i.e. if the total amount of * entries is greater-or-equal than the threshold. * * Node pool is organised as an AVL tree. * Such an implementation has been chosen not just for fun. It's a way to * prevent easy and efficient DoS attacks by creating hash collisions. A huge * amount of long living nodes in a single hash slot would significantly delay * lookups performed with disabled BHs. * * Serialisation issues. * 1. Nodes may appear in the tree only with the pool write lock held. * 2. Nodes may disappear from the tree only with the pool write lock held * AND reference count being 0. * 3. Nodes appears and disappears from unused node list only under * "inet_peer_unused_lock". * 4. Global variable peer_total is modified under the pool lock. * 5. struct inet_peer fields modification: * avl_left, avl_right, avl_parent, avl_height: pool lock * unused: unused node list lock * refcnt: atomically against modifications on other CPU; * usually under some other lock to prevent node disappearing * dtime: unused node list lock * v4daddr: unchangeable * ip_id_count: idlock */ /* Exported for inet_getid inline function. */ DEFINE_SPINLOCK(inet_peer_idlock); static struct kmem_cache *peer_cachep __read_mostly; #define node_height(x) x->avl_height static struct inet_peer peer_fake_node = { .avl_left = &peer_fake_node, .avl_right = &peer_fake_node, .avl_height = 0 }; #define peer_avl_empty (&peer_fake_node) static struct inet_peer *peer_root = peer_avl_empty; static DEFINE_RWLOCK(peer_pool_lock); #define PEER_MAXDEPTH 40 /* sufficient for about 2^27 nodes */ static int peer_total; /* Exported for sysctl_net_ipv4. */ int inet_peer_threshold __read_mostly = 65536 + 128; /* start to throw entries more * aggressively at this stage */ int inet_peer_minttl __read_mostly = 120 * HZ; /* TTL under high load: 120 sec */ int inet_peer_maxttl __read_mostly = 10 * 60 * HZ; /* usual time to live: 10 min */ int inet_peer_gc_mintime __read_mostly = 10 * HZ; int inet_peer_gc_maxtime __read_mostly = 120 * HZ; static LIST_HEAD(unused_peers); static DEFINE_SPINLOCK(inet_peer_unused_lock); static void peer_check_expire(unsigned long dummy); static DEFINE_TIMER(peer_periodic_timer, peer_check_expire, 0, 0); /* Called from ip_output.c:ip_init */ void __init inet_initpeers(void) { struct sysinfo si; /* Use the straight interface to information about memory. */ si_meminfo(&si); /* The values below were suggested by Alexey Kuznetsov * <kuznet@ms2.inr.ac.ru>. I don't have any opinion about the values * myself. --SAW */ if (si.totalram <= (32768*1024)/PAGE_SIZE) inet_peer_threshold >>= 1; /* max pool size about 1MB on IA32 */ if (si.totalram <= (16384*1024)/PAGE_SIZE) inet_peer_threshold >>= 1; /* about 512KB */ if (si.totalram <= (8192*1024)/PAGE_SIZE) inet_peer_threshold >>= 2; /* about 128KB */ peer_cachep = kmem_cache_create("inet_peer_cache", sizeof(struct inet_peer), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); /* All the timers, started at system startup tend to synchronize. Perturb it a bit. */ peer_periodic_timer.expires = jiffies + net_random() % inet_peer_gc_maxtime + inet_peer_gc_maxtime; add_timer(&peer_periodic_timer); } /* Called with or without local BH being disabled. */ static void unlink_from_unused(struct inet_peer *p) { spin_lock_bh(&inet_peer_unused_lock); list_del_init(&p->unused); spin_unlock_bh(&inet_peer_unused_lock); } /* * Called with local BH disabled and the pool lock held. * _stack is known to be NULL or not at compile time, * so compiler will optimize the if (_stack) tests. */ #define lookup(_daddr,_stack) \ ({ \ struct inet_peer *u, **v; \ if (_stack != NULL) { \ stackptr = _stack; \ *stackptr++ = &peer_root; \ } \ for (u = peer_root; u != peer_avl_empty; ) { \ if (_daddr == u->v4daddr) \ break; \ if ((__force __u32)_daddr < (__force __u32)u->v4daddr) \ v = &u->avl_left; \ else \ v = &u->avl_right; \ if (_stack != NULL) \ *stackptr++ = v; \ u = *v; \ } \ u; \ }) /* Called with local BH disabled and the pool write lock held. */ #define lookup_rightempty(start) \ ({ \ struct inet_peer *u, **v; \ *stackptr++ = &start->avl_left; \ v = &start->avl_left; \ for (u = *v; u->avl_right != peer_avl_empty; ) { \ v = &u->avl_right; \ *stackptr++ = v; \ u = *v; \ } \ u; \ }) /* Called with local BH disabled and the pool write lock held. * Variable names are the proof of operation correctness. * Look into mm/map_avl.c for more detail description of the ideas. */ static void peer_avl_rebalance(struct inet_peer **stack[], struct inet_peer ***stackend) { struct inet_peer **nodep, *node, *l, *r; int lh, rh; while (stackend > stack) { nodep = *--stackend; node = *nodep; l = node->avl_left; r = node->avl_right; lh = node_height(l); rh = node_height(r); if (lh > rh + 1) { /* l: RH+2 */ struct inet_peer *ll, *lr, *lrl, *lrr; int lrh; ll = l->avl_left; lr = l->avl_right; lrh = node_height(lr); if (lrh <= node_height(ll)) { /* ll: RH+1 */ node->avl_left = lr; /* lr: RH or RH+1 */ node->avl_right = r; /* r: RH */ node->avl_height = lrh + 1; /* RH+1 or RH+2 */ l->avl_left = ll; /* ll: RH+1 */ l->avl_right = node; /* node: RH+1 or RH+2 */ l->avl_height = node->avl_height + 1; *nodep = l; } else { /* ll: RH, lr: RH+1 */ lrl = lr->avl_left; /* lrl: RH or RH-1 */ lrr = lr->avl_right; /* lrr: RH or RH-1 */ node->avl_left = lrr; /* lrr: RH or RH-1 */ node->avl_right = r; /* r: RH */ node->avl_height = rh + 1; /* node: RH+1 */ l->avl_left = ll; /* ll: RH */ l->avl_right = lrl; /* lrl: RH or RH-1 */ l->avl_height = rh + 1; /* l: RH+1 */ lr->avl_left = l; /* l: RH+1 */ lr->avl_right = node; /* node: RH+1 */ lr->avl_height = rh + 2; *nodep = lr; } } else if (rh > lh + 1) { /* r: LH+2 */ struct inet_peer *rr, *rl, *rlr, *rll; int rlh; rr = r->avl_right; rl = r->avl_left; rlh = node_height(rl); if (rlh <= node_height(rr)) { /* rr: LH+1 */ node->avl_right = rl; /* rl: LH or LH+1 */ node->avl_left = l; /* l: LH */ node->avl_height = rlh + 1; /* LH+1 or LH+2 */ r->avl_right = rr; /* rr: LH+1 */ r->avl_left = node; /* node: LH+1 or LH+2 */ r->avl_height = node->avl_height + 1; *nodep = r; } else { /* rr: RH, rl: RH+1 */ rlr = rl->avl_right; /* rlr: LH or LH-1 */ rll = rl->avl_left; /* rll: LH or LH-1 */ node->avl_right = rll; /* rll: LH or LH-1 */ node->avl_left = l; /* l: LH */ node->avl_height = lh + 1; /* node: LH+1 */ r->avl_right = rr; /* rr: LH */ r->avl_left = rlr; /* rlr: LH or LH-1 */ r->avl_height = lh + 1; /* r: LH+1 */ rl->avl_right = r; /* r: LH+1 */ rl->avl_left = node; /* node: LH+1 */ rl->avl_height = lh + 2; *nodep = rl; } } else { node->avl_height = (lh > rh ? lh : rh) + 1; } } } /* Called with local BH disabled and the pool write lock held. */ #define link_to_pool(n) \ do { \ n->avl_height = 1; \ n->avl_left = peer_avl_empty; \ n->avl_right = peer_avl_empty; \ **--stackptr = n; \ peer_avl_rebalance(stack, stackptr); \ } while(0) /* May be called with local BH enabled. */ static void unlink_from_pool(struct inet_peer *p) { int do_free; do_free = 0; write_lock_bh(&peer_pool_lock); /* Check the reference counter. It was artificially incremented by 1 * in cleanup() function to prevent sudden disappearing. If the * reference count is still 1 then the node is referenced only as `p' * here and from the pool. So under the exclusive pool lock it's safe * to remove the node and free it later. */ if (atomic_read(&p->refcnt) == 1) { struct inet_peer **stack[PEER_MAXDEPTH]; struct inet_peer ***stackptr, ***delp; if (lookup(p->v4daddr, stack) != p) BUG(); delp = stackptr - 1; /* *delp[0] == p */ if (p->avl_left == peer_avl_empty) { *delp[0] = p->avl_right; --stackptr; } else { /* look for a node to insert instead of p */ struct inet_peer *t; t = lookup_rightempty(p); BUG_ON(*stackptr[-1] != t); **--stackptr = t->avl_left; /* t is removed, t->v4daddr > x->v4daddr for any * x in p->avl_left subtree. * Put t in the old place of p. */ *delp[0] = t; t->avl_left = p->avl_left; t->avl_right = p->avl_right; t->avl_height = p->avl_height; BUG_ON(delp[1] != &p->avl_left); delp[1] = &t->avl_left; /* was &p->avl_left */ } peer_avl_rebalance(stack, stackptr); peer_total--; do_free = 1; } write_unlock_bh(&peer_pool_lock); if (do_free) kmem_cache_free(peer_cachep, p); else /* The node is used again. Decrease the reference counter * back. The loop "cleanup -> unlink_from_unused * -> unlink_from_pool -> putpeer -> link_to_unused * -> cleanup (for the same node)" * doesn't really exist because the entry will have a * recent deletion time and will not be cleaned again soon. */ inet_putpeer(p); } /* May be called with local BH enabled. */ static int cleanup_once(unsigned long ttl) { struct inet_peer *p = NULL; /* Remove the first entry from the list of unused nodes. */ spin_lock_bh(&inet_peer_unused_lock); if (!list_empty(&unused_peers)) { __u32 delta; p = list_first_entry(&unused_peers, struct inet_peer, unused); delta = (__u32)jiffies - p->dtime; if (delta < ttl) { /* Do not prune fresh entries. */ spin_unlock_bh(&inet_peer_unused_lock); return -1; } list_del_init(&p->unused); /* Grab an extra reference to prevent node disappearing * before unlink_from_pool() call. */ atomic_inc(&p->refcnt); } spin_unlock_bh(&inet_peer_unused_lock); if (p == NULL) /* It means that the total number of USED entries has * grown over inet_peer_threshold. It shouldn't really * happen because of entry limits in route cache. */ return -1; unlink_from_pool(p); return 0; } /* Called with or without local BH being disabled. */ struct inet_peer *inet_getpeer(__be32 daddr, int create) { struct inet_peer *p, *n; struct inet_peer **stack[PEER_MAXDEPTH], ***stackptr; /* Look up for the address quickly. */ read_lock_bh(&peer_pool_lock); p = lookup(daddr, NULL); if (p != peer_avl_empty) atomic_inc(&p->refcnt); read_unlock_bh(&peer_pool_lock); if (p != peer_avl_empty) { /* The existing node has been found. */ /* Remove the entry from unused list if it was there. */ unlink_from_unused(p); return p; } if (!create) return NULL; /* Allocate the space outside the locked region. */ n = kmem_cache_alloc(peer_cachep, GFP_ATOMIC); if (n == NULL) return NULL; n->v4daddr = daddr; atomic_set(&n->refcnt, 1); atomic_set(&n->rid, 0); n->ip_id_count = secure_ip_id(daddr); n->tcp_ts_stamp = 0; write_lock_bh(&peer_pool_lock); /* Check if an entry has suddenly appeared. */ p = lookup(daddr, stack); if (p != peer_avl_empty) goto out_free; /* Link the node. */ link_to_pool(n); INIT_LIST_HEAD(&n->unused); peer_total++; write_unlock_bh(&peer_pool_lock); if (peer_total >= inet_peer_threshold) /* Remove one less-recently-used entry. */ cleanup_once(0); return n; out_free: /* The appropriate node is already in the pool. */ atomic_inc(&p->refcnt); write_unlock_bh(&peer_pool_lock); /* Remove the entry from unused list if it was there. */ unlink_from_unused(p); /* Free preallocated the preallocated node. */ kmem_cache_free(peer_cachep, n); return p; } /* Called with local BH disabled. */ static void peer_check_expire(unsigned long dummy) { unsigned long now = jiffies; int ttl; if (peer_total >= inet_peer_threshold) ttl = inet_peer_minttl; else ttl = inet_peer_maxttl - (inet_peer_maxttl - inet_peer_minttl) / HZ * peer_total / inet_peer_threshold * HZ; while (!cleanup_once(ttl)) { if (jiffies != now) break; } /* Trigger the timer after inet_peer_gc_mintime .. inet_peer_gc_maxtime * interval depending on the total number of entries (more entries, * less interval). */ if (peer_total >= inet_peer_threshold) peer_periodic_timer.expires = jiffies + inet_peer_gc_mintime; else peer_periodic_timer.expires = jiffies + inet_peer_gc_maxtime - (inet_peer_gc_maxtime - inet_peer_gc_mintime) / HZ * peer_total / inet_peer_threshold * HZ; add_timer(&peer_periodic_timer); } void inet_putpeer(struct inet_peer *p) { spin_lock_bh(&inet_peer_unused_lock); if (atomic_dec_and_test(&p->refcnt)) { list_add_tail(&p->unused, &unused_peers); p->dtime = (__u32)jiffies; } spin_unlock_bh(&inet_peer_unused_lock); }