/********************************************************************* * * Filename: af_irda.c * Version: 0.9 * Description: IrDA sockets implementation * Status: Stable * Author: Dag Brattli <dagb@cs.uit.no> * Created at: Sun May 31 10:12:43 1998 * Modified at: Sat Dec 25 21:10:23 1999 * Modified by: Dag Brattli <dag@brattli.net> * Sources: af_netroom.c, af_ax25.c, af_rose.c, af_x25.c etc. * * Copyright (c) 1999 Dag Brattli <dagb@cs.uit.no> * Copyright (c) 1999-2003 Jean Tourrilhes <jt@hpl.hp.com> * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * * Linux-IrDA now supports four different types of IrDA sockets: * * o SOCK_STREAM: TinyTP connections with SAR disabled. The * max SDU size is 0 for conn. of this type * o SOCK_SEQPACKET: TinyTP connections with SAR enabled. TTP may * fragment the messages, but will preserve * the message boundaries * o SOCK_DGRAM: IRDAPROTO_UNITDATA: TinyTP connections with Unitdata * (unreliable) transfers * IRDAPROTO_ULTRA: Connectionless and unreliable data * ********************************************************************/ #include <linux/config.h> #include <linux/capability.h> #include <linux/module.h> #include <linux/types.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/init.h> #include <linux/net.h> #include <linux/irda.h> #include <linux/poll.h> #include <asm/ioctls.h> /* TIOCOUTQ, TIOCINQ */ #include <asm/uaccess.h> #include <net/sock.h> #include <net/tcp_states.h> #include <net/irda/af_irda.h> static int irda_create(struct socket *sock, int protocol); static const struct proto_ops irda_stream_ops; static const struct proto_ops irda_seqpacket_ops; static const struct proto_ops irda_dgram_ops; #ifdef CONFIG_IRDA_ULTRA static const struct proto_ops irda_ultra_ops; #define ULTRA_MAX_DATA 382 #endif /* CONFIG_IRDA_ULTRA */ #define IRDA_MAX_HEADER (TTP_MAX_HEADER) /* * Function irda_data_indication (instance, sap, skb) * * Received some data from TinyTP. Just queue it on the receive queue * */ static int irda_data_indication(void *instance, void *sap, struct sk_buff *skb) { struct irda_sock *self; struct sock *sk; int err; IRDA_DEBUG(3, "%s()\n", __FUNCTION__); self = instance; sk = instance; IRDA_ASSERT(sk != NULL, return -1;); err = sock_queue_rcv_skb(sk, skb); if (err) { IRDA_DEBUG(1, "%s(), error: no more mem!\n", __FUNCTION__); self->rx_flow = FLOW_STOP; /* When we return error, TTP will need to requeue the skb */ return err; } return 0; } /* * Function irda_disconnect_indication (instance, sap, reason, skb) * * Connection has been closed. Check reason to find out why * */ static void irda_disconnect_indication(void *instance, void *sap, LM_REASON reason, struct sk_buff *skb) { struct irda_sock *self; struct sock *sk; self = instance; IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); /* Don't care about it, but let's not leak it */ if(skb) dev_kfree_skb(skb); sk = instance; if (sk == NULL) { IRDA_DEBUG(0, "%s(%p) : BUG : sk is NULL\n", __FUNCTION__, self); return; } /* Prevent race conditions with irda_release() and irda_shutdown() */ if (!sock_flag(sk, SOCK_DEAD) && sk->sk_state != TCP_CLOSE) { sk->sk_state = TCP_CLOSE; sk->sk_err = ECONNRESET; sk->sk_shutdown |= SEND_SHUTDOWN; sk->sk_state_change(sk); /* Uh-oh... Should use sock_orphan ? */ sock_set_flag(sk, SOCK_DEAD); /* Close our TSAP. * If we leave it open, IrLMP put it back into the list of * unconnected LSAPs. The problem is that any incoming request * can then be matched to this socket (and it will be, because * it is at the head of the list). This would prevent any * listening socket waiting on the same TSAP to get those * requests. Some apps forget to close sockets, or hang to it * a bit too long, so we may stay in this dead state long * enough to be noticed... * Note : all socket function do check sk->sk_state, so we are * safe... * Jean II */ if (self->tsap) { irttp_close_tsap(self->tsap); self->tsap = NULL; } } /* Note : once we are there, there is not much you want to do * with the socket anymore, apart from closing it. * For example, bind() and connect() won't reset sk->sk_err, * sk->sk_shutdown and sk->sk_flags to valid values... * Jean II */ } /* * Function irda_connect_confirm (instance, sap, qos, max_sdu_size, skb) * * Connections has been confirmed by the remote device * */ static void irda_connect_confirm(void *instance, void *sap, struct qos_info *qos, __u32 max_sdu_size, __u8 max_header_size, struct sk_buff *skb) { struct irda_sock *self; struct sock *sk; self = instance; IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); sk = instance; if (sk == NULL) { dev_kfree_skb(skb); return; } dev_kfree_skb(skb); // Should be ??? skb_queue_tail(&sk->sk_receive_queue, skb); /* How much header space do we need to reserve */ self->max_header_size = max_header_size; /* IrTTP max SDU size in transmit direction */ self->max_sdu_size_tx = max_sdu_size; /* Find out what the largest chunk of data that we can transmit is */ switch (sk->sk_type) { case SOCK_STREAM: if (max_sdu_size != 0) { IRDA_ERROR("%s: max_sdu_size must be 0\n", __FUNCTION__); return; } self->max_data_size = irttp_get_max_seg_size(self->tsap); break; case SOCK_SEQPACKET: if (max_sdu_size == 0) { IRDA_ERROR("%s: max_sdu_size cannot be 0\n", __FUNCTION__); return; } self->max_data_size = max_sdu_size; break; default: self->max_data_size = irttp_get_max_seg_size(self->tsap); }; IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__, self->max_data_size); memcpy(&self->qos_tx, qos, sizeof(struct qos_info)); /* We are now connected! */ sk->sk_state = TCP_ESTABLISHED; sk->sk_state_change(sk); } /* * Function irda_connect_indication(instance, sap, qos, max_sdu_size, userdata) * * Incoming connection * */ static void irda_connect_indication(void *instance, void *sap, struct qos_info *qos, __u32 max_sdu_size, __u8 max_header_size, struct sk_buff *skb) { struct irda_sock *self; struct sock *sk; self = instance; IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); sk = instance; if (sk == NULL) { dev_kfree_skb(skb); return; } /* How much header space do we need to reserve */ self->max_header_size = max_header_size; /* IrTTP max SDU size in transmit direction */ self->max_sdu_size_tx = max_sdu_size; /* Find out what the largest chunk of data that we can transmit is */ switch (sk->sk_type) { case SOCK_STREAM: if (max_sdu_size != 0) { IRDA_ERROR("%s: max_sdu_size must be 0\n", __FUNCTION__); kfree_skb(skb); return; } self->max_data_size = irttp_get_max_seg_size(self->tsap); break; case SOCK_SEQPACKET: if (max_sdu_size == 0) { IRDA_ERROR("%s: max_sdu_size cannot be 0\n", __FUNCTION__); kfree_skb(skb); return; } self->max_data_size = max_sdu_size; break; default: self->max_data_size = irttp_get_max_seg_size(self->tsap); }; IRDA_DEBUG(2, "%s(), max_data_size=%d\n", __FUNCTION__, self->max_data_size); memcpy(&self->qos_tx, qos, sizeof(struct qos_info)); skb_queue_tail(&sk->sk_receive_queue, skb); sk->sk_state_change(sk); } /* * Function irda_connect_response (handle) * * Accept incoming connection * */ static void irda_connect_response(struct irda_sock *self) { struct sk_buff *skb; IRDA_DEBUG(2, "%s()\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return;); skb = dev_alloc_skb(64); if (skb == NULL) { IRDA_DEBUG(0, "%s() Unable to allocate sk_buff!\n", __FUNCTION__); return; } /* Reserve space for MUX_CONTROL and LAP header */ skb_reserve(skb, IRDA_MAX_HEADER); irttp_connect_response(self->tsap, self->max_sdu_size_rx, skb); } /* * Function irda_flow_indication (instance, sap, flow) * * Used by TinyTP to tell us if it can accept more data or not * */ static void irda_flow_indication(void *instance, void *sap, LOCAL_FLOW flow) { struct irda_sock *self; struct sock *sk; IRDA_DEBUG(2, "%s()\n", __FUNCTION__); self = instance; sk = instance; IRDA_ASSERT(sk != NULL, return;); switch (flow) { case FLOW_STOP: IRDA_DEBUG(1, "%s(), IrTTP wants us to slow down\n", __FUNCTION__); self->tx_flow = flow; break; case FLOW_START: self->tx_flow = flow; IRDA_DEBUG(1, "%s(), IrTTP wants us to start again\n", __FUNCTION__); wake_up_interruptible(sk->sk_sleep); break; default: IRDA_DEBUG(0, "%s(), Unknown flow command!\n", __FUNCTION__); /* Unknown flow command, better stop */ self->tx_flow = flow; break; } } /* * Function irda_getvalue_confirm (obj_id, value, priv) * * Got answer from remote LM-IAS, just pass object to requester... * * Note : duplicate from above, but we need our own version that * doesn't touch the dtsap_sel and save the full value structure... */ static void irda_getvalue_confirm(int result, __u16 obj_id, struct ias_value *value, void *priv) { struct irda_sock *self; self = (struct irda_sock *) priv; if (!self) { IRDA_WARNING("%s: lost myself!\n", __FUNCTION__); return; } IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); /* We probably don't need to make any more queries */ iriap_close(self->iriap); self->iriap = NULL; /* Check if request succeeded */ if (result != IAS_SUCCESS) { IRDA_DEBUG(1, "%s(), IAS query failed! (%d)\n", __FUNCTION__, result); self->errno = result; /* We really need it later */ /* Wake up any processes waiting for result */ wake_up_interruptible(&self->query_wait); return; } /* Pass the object to the caller (so the caller must delete it) */ self->ias_result = value; self->errno = 0; /* Wake up any processes waiting for result */ wake_up_interruptible(&self->query_wait); } /* * Function irda_selective_discovery_indication (discovery) * * Got a selective discovery indication from IrLMP. * * IrLMP is telling us that this node is new and matching our hint bit * filter. Wake up any process waiting for answer... */ static void irda_selective_discovery_indication(discinfo_t *discovery, DISCOVERY_MODE mode, void *priv) { struct irda_sock *self; IRDA_DEBUG(2, "%s()\n", __FUNCTION__); self = (struct irda_sock *) priv; if (!self) { IRDA_WARNING("%s: lost myself!\n", __FUNCTION__); return; } /* Pass parameter to the caller */ self->cachedaddr = discovery->daddr; /* Wake up process if its waiting for device to be discovered */ wake_up_interruptible(&self->query_wait); } /* * Function irda_discovery_timeout (priv) * * Timeout in the selective discovery process * * We were waiting for a node to be discovered, but nothing has come up * so far. Wake up the user and tell him that we failed... */ static void irda_discovery_timeout(u_long priv) { struct irda_sock *self; IRDA_DEBUG(2, "%s()\n", __FUNCTION__); self = (struct irda_sock *) priv; IRDA_ASSERT(self != NULL, return;); /* Nothing for the caller */ self->cachelog = NULL; self->cachedaddr = 0; self->errno = -ETIME; /* Wake up process if its still waiting... */ wake_up_interruptible(&self->query_wait); } /* * Function irda_open_tsap (self) * * Open local Transport Service Access Point (TSAP) * */ static int irda_open_tsap(struct irda_sock *self, __u8 tsap_sel, char *name) { notify_t notify; if (self->tsap) { IRDA_WARNING("%s: busy!\n", __FUNCTION__); return -EBUSY; } /* Initialize callbacks to be used by the IrDA stack */ irda_notify_init(¬ify); notify.connect_confirm = irda_connect_confirm; notify.connect_indication = irda_connect_indication; notify.disconnect_indication = irda_disconnect_indication; notify.data_indication = irda_data_indication; notify.udata_indication = irda_data_indication; notify.flow_indication = irda_flow_indication; notify.instance = self; strncpy(notify.name, name, NOTIFY_MAX_NAME); self->tsap = irttp_open_tsap(tsap_sel, DEFAULT_INITIAL_CREDIT, ¬ify); if (self->tsap == NULL) { IRDA_DEBUG(0, "%s(), Unable to allocate TSAP!\n", __FUNCTION__); return -ENOMEM; } /* Remember which TSAP selector we actually got */ self->stsap_sel = self->tsap->stsap_sel; return 0; } /* * Function irda_open_lsap (self) * * Open local Link Service Access Point (LSAP). Used for opening Ultra * sockets */ #ifdef CONFIG_IRDA_ULTRA static int irda_open_lsap(struct irda_sock *self, int pid) { notify_t notify; if (self->lsap) { IRDA_WARNING("%s(), busy!\n", __FUNCTION__); return -EBUSY; } /* Initialize callbacks to be used by the IrDA stack */ irda_notify_init(¬ify); notify.udata_indication = irda_data_indication; notify.instance = self; strncpy(notify.name, "Ultra", NOTIFY_MAX_NAME); self->lsap = irlmp_open_lsap(LSAP_CONNLESS, ¬ify, pid); if (self->lsap == NULL) { IRDA_DEBUG( 0, "%s(), Unable to allocate LSAP!\n", __FUNCTION__); return -ENOMEM; } return 0; } #endif /* CONFIG_IRDA_ULTRA */ /* * Function irda_find_lsap_sel (self, name) * * Try to lookup LSAP selector in remote LM-IAS * * Basically, we start a IAP query, and then go to sleep. When the query * return, irda_getvalue_confirm will wake us up, and we can examine the * result of the query... * Note that in some case, the query fail even before we go to sleep, * creating some races... */ static int irda_find_lsap_sel(struct irda_sock *self, char *name) { IRDA_DEBUG(2, "%s(%p, %s)\n", __FUNCTION__, self, name); IRDA_ASSERT(self != NULL, return -1;); if (self->iriap) { IRDA_WARNING("%s(): busy with a previous query\n", __FUNCTION__); return -EBUSY; } self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self, irda_getvalue_confirm); if(self->iriap == NULL) return -ENOMEM; /* Treat unexpected wakeup as disconnect */ self->errno = -EHOSTUNREACH; /* Query remote LM-IAS */ iriap_getvaluebyclass_request(self->iriap, self->saddr, self->daddr, name, "IrDA:TinyTP:LsapSel"); /* Wait for answer, if not yet finished (or failed) */ if (wait_event_interruptible(self->query_wait, (self->iriap==NULL))) /* Treat signals as disconnect */ return -EHOSTUNREACH; /* Check what happened */ if (self->errno) { /* Requested object/attribute doesn't exist */ if((self->errno == IAS_CLASS_UNKNOWN) || (self->errno == IAS_ATTRIB_UNKNOWN)) return (-EADDRNOTAVAIL); else return (-EHOSTUNREACH); } /* Get the remote TSAP selector */ switch (self->ias_result->type) { case IAS_INTEGER: IRDA_DEBUG(4, "%s() int=%d\n", __FUNCTION__, self->ias_result->t.integer); if (self->ias_result->t.integer != -1) self->dtsap_sel = self->ias_result->t.integer; else self->dtsap_sel = 0; break; default: self->dtsap_sel = 0; IRDA_DEBUG(0, "%s(), bad type!\n", __FUNCTION__); break; } if (self->ias_result) irias_delete_value(self->ias_result); if (self->dtsap_sel) return 0; return -EADDRNOTAVAIL; } /* * Function irda_discover_daddr_and_lsap_sel (self, name) * * This try to find a device with the requested service. * * It basically look into the discovery log. For each address in the list, * it queries the LM-IAS of the device to find if this device offer * the requested service. * If there is more than one node supporting the service, we complain * to the user (it should move devices around). * The, we set both the destination address and the lsap selector to point * on the service on the unique device we have found. * * Note : this function fails if there is more than one device in range, * because IrLMP doesn't disconnect the LAP when the last LSAP is closed. * Moreover, we would need to wait the LAP disconnection... */ static int irda_discover_daddr_and_lsap_sel(struct irda_sock *self, char *name) { discinfo_t *discoveries; /* Copy of the discovery log */ int number; /* Number of nodes in the log */ int i; int err = -ENETUNREACH; __u32 daddr = DEV_ADDR_ANY; /* Address we found the service on */ __u8 dtsap_sel = 0x0; /* TSAP associated with it */ IRDA_DEBUG(2, "%s(), name=%s\n", __FUNCTION__, name); IRDA_ASSERT(self != NULL, return -1;); /* Ask lmp for the current discovery log * Note : we have to use irlmp_get_discoveries(), as opposed * to play with the cachelog directly, because while we are * making our ias query, le log might change... */ discoveries = irlmp_get_discoveries(&number, self->mask.word, self->nslots); /* Check if the we got some results */ if (discoveries == NULL) return -ENETUNREACH; /* No nodes discovered */ /* * Now, check all discovered devices (if any), and connect * client only about the services that the client is * interested in... */ for(i = 0; i < number; i++) { /* Try the address in the log */ self->daddr = discoveries[i].daddr; self->saddr = 0x0; IRDA_DEBUG(1, "%s(), trying daddr = %08x\n", __FUNCTION__, self->daddr); /* Query remote LM-IAS for this service */ err = irda_find_lsap_sel(self, name); switch (err) { case 0: /* We found the requested service */ if(daddr != DEV_ADDR_ANY) { IRDA_DEBUG(1, "%s(), discovered service ''%s'' in two different devices !!!\n", __FUNCTION__, name); self->daddr = DEV_ADDR_ANY; kfree(discoveries); return(-ENOTUNIQ); } /* First time we found that one, save it ! */ daddr = self->daddr; dtsap_sel = self->dtsap_sel; break; case -EADDRNOTAVAIL: /* Requested service simply doesn't exist on this node */ break; default: /* Something bad did happen :-( */ IRDA_DEBUG(0, "%s(), unexpected IAS query failure\n", __FUNCTION__); self->daddr = DEV_ADDR_ANY; kfree(discoveries); return(-EHOSTUNREACH); break; } } /* Cleanup our copy of the discovery log */ kfree(discoveries); /* Check out what we found */ if(daddr == DEV_ADDR_ANY) { IRDA_DEBUG(1, "%s(), cannot discover service ''%s'' in any device !!!\n", __FUNCTION__, name); self->daddr = DEV_ADDR_ANY; return(-EADDRNOTAVAIL); } /* Revert back to discovered device & service */ self->daddr = daddr; self->saddr = 0x0; self->dtsap_sel = dtsap_sel; IRDA_DEBUG(1, "%s(), discovered requested service ''%s'' at address %08x\n", __FUNCTION__, name, self->daddr); return 0; } /* * Function irda_getname (sock, uaddr, uaddr_len, peer) * * Return the our own, or peers socket address (sockaddr_irda) * */ static int irda_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct sockaddr_irda saddr; struct sock *sk = sock->sk; struct irda_sock *self = irda_sk(sk); if (peer) { if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; saddr.sir_family = AF_IRDA; saddr.sir_lsap_sel = self->dtsap_sel; saddr.sir_addr = self->daddr; } else { saddr.sir_family = AF_IRDA; saddr.sir_lsap_sel = self->stsap_sel; saddr.sir_addr = self->saddr; } IRDA_DEBUG(1, "%s(), tsap_sel = %#x\n", __FUNCTION__, saddr.sir_lsap_sel); IRDA_DEBUG(1, "%s(), addr = %08x\n", __FUNCTION__, saddr.sir_addr); /* uaddr_len come to us uninitialised */ *uaddr_len = sizeof (struct sockaddr_irda); memcpy(uaddr, &saddr, *uaddr_len); return 0; } /* * Function irda_listen (sock, backlog) * * Just move to the listen state * */ static int irda_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; IRDA_DEBUG(2, "%s()\n", __FUNCTION__); if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) && (sk->sk_type != SOCK_DGRAM)) return -EOPNOTSUPP; if (sk->sk_state != TCP_LISTEN) { sk->sk_max_ack_backlog = backlog; sk->sk_state = TCP_LISTEN; return 0; } return -EOPNOTSUPP; } /* * Function irda_bind (sock, uaddr, addr_len) * * Used by servers to register their well known TSAP * */ static int irda_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr; struct irda_sock *self = irda_sk(sk); int err; IRDA_ASSERT(self != NULL, return -1;); IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); if (addr_len != sizeof(struct sockaddr_irda)) return -EINVAL; #ifdef CONFIG_IRDA_ULTRA /* Special care for Ultra sockets */ if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA)) { self->pid = addr->sir_lsap_sel; if (self->pid & 0x80) { IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__); return -EOPNOTSUPP; } err = irda_open_lsap(self, self->pid); if (err < 0) return err; /* Pretend we are connected */ sock->state = SS_CONNECTED; sk->sk_state = TCP_ESTABLISHED; return 0; } #endif /* CONFIG_IRDA_ULTRA */ err = irda_open_tsap(self, addr->sir_lsap_sel, addr->sir_name); if (err < 0) return err; /* Register with LM-IAS */ self->ias_obj = irias_new_object(addr->sir_name, jiffies); irias_add_integer_attrib(self->ias_obj, "IrDA:TinyTP:LsapSel", self->stsap_sel, IAS_KERNEL_ATTR); irias_insert_object(self->ias_obj); return 0; } /* * Function irda_accept (sock, newsock, flags) * * Wait for incoming connection * */ static int irda_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk = sock->sk; struct irda_sock *new, *self = irda_sk(sk); struct sock *newsk; struct sk_buff *skb; int err; IRDA_DEBUG(2, "%s()\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return -1;); err = irda_create(newsock, sk->sk_protocol); if (err) return err; if (sock->state != SS_UNCONNECTED) return -EINVAL; if ((sk = sock->sk) == NULL) return -EINVAL; if ((sk->sk_type != SOCK_STREAM) && (sk->sk_type != SOCK_SEQPACKET) && (sk->sk_type != SOCK_DGRAM)) return -EOPNOTSUPP; if (sk->sk_state != TCP_LISTEN) return -EINVAL; /* * The read queue this time is holding sockets ready to use * hooked into the SABM we saved */ /* * We can perform the accept only if there is incoming data * on the listening socket. * So, we will block the caller until we receive any data. * If the caller was waiting on select() or poll() before * calling us, the data is waiting for us ;-) * Jean II */ skb = skb_dequeue(&sk->sk_receive_queue); if (skb == NULL) { int ret = 0; DECLARE_WAITQUEUE(waitq, current); /* Non blocking operation */ if (flags & O_NONBLOCK) return -EWOULDBLOCK; /* The following code is a cut'n'paste of the * wait_event_interruptible() macro. * We don't us the macro because the condition has * side effects : we want to make sure that only one * skb get dequeued - Jean II */ add_wait_queue(sk->sk_sleep, &waitq); for (;;) { set_current_state(TASK_INTERRUPTIBLE); skb = skb_dequeue(&sk->sk_receive_queue); if (skb != NULL) break; if (!signal_pending(current)) { schedule(); continue; } ret = -ERESTARTSYS; break; } current->state = TASK_RUNNING; remove_wait_queue(sk->sk_sleep, &waitq); if(ret) return -ERESTARTSYS; } newsk = newsock->sk; newsk->sk_state = TCP_ESTABLISHED; new = irda_sk(newsk); IRDA_ASSERT(new != NULL, return -1;); /* Now attach up the new socket */ new->tsap = irttp_dup(self->tsap, new); if (!new->tsap) { IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__); kfree_skb(skb); return -1; } new->stsap_sel = new->tsap->stsap_sel; new->dtsap_sel = new->tsap->dtsap_sel; new->saddr = irttp_get_saddr(new->tsap); new->daddr = irttp_get_daddr(new->tsap); new->max_sdu_size_tx = self->max_sdu_size_tx; new->max_sdu_size_rx = self->max_sdu_size_rx; new->max_data_size = self->max_data_size; new->max_header_size = self->max_header_size; memcpy(&new->qos_tx, &self->qos_tx, sizeof(struct qos_info)); /* Clean up the original one to keep it in listen state */ irttp_listen(self->tsap); /* Wow ! What is that ? Jean II */ skb->sk = NULL; skb->destructor = NULL; kfree_skb(skb); sk->sk_ack_backlog--; newsock->state = SS_CONNECTED; irda_connect_response(new); return 0; } /* * Function irda_connect (sock, uaddr, addr_len, flags) * * Connect to a IrDA device * * The main difference with a "standard" connect is that with IrDA we need * to resolve the service name into a TSAP selector (in TCP, port number * doesn't have to be resolved). * Because of this service name resoltion, we can offer "auto-connect", * where we connect to a service without specifying a destination address. * * Note : by consulting "errno", the user space caller may learn the cause * of the failure. Most of them are visible in the function, others may come * from subroutines called and are listed here : * o EBUSY : already processing a connect * o EHOSTUNREACH : bad addr->sir_addr argument * o EADDRNOTAVAIL : bad addr->sir_name argument * o ENOTUNIQ : more than one node has addr->sir_name (auto-connect) * o ENETUNREACH : no node found on the network (auto-connect) */ static int irda_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sock *sk = sock->sk; struct sockaddr_irda *addr = (struct sockaddr_irda *) uaddr; struct irda_sock *self = irda_sk(sk); int err; IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); /* Don't allow connect for Ultra sockets */ if ((sk->sk_type == SOCK_DGRAM) && (sk->sk_protocol == IRDAPROTO_ULTRA)) return -ESOCKTNOSUPPORT; if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) { sock->state = SS_CONNECTED; return 0; /* Connect completed during a ERESTARTSYS event */ } if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) { sock->state = SS_UNCONNECTED; return -ECONNREFUSED; } if (sk->sk_state == TCP_ESTABLISHED) return -EISCONN; /* No reconnect on a seqpacket socket */ sk->sk_state = TCP_CLOSE; sock->state = SS_UNCONNECTED; if (addr_len != sizeof(struct sockaddr_irda)) return -EINVAL; /* Check if user supplied any destination device address */ if ((!addr->sir_addr) || (addr->sir_addr == DEV_ADDR_ANY)) { /* Try to find one suitable */ err = irda_discover_daddr_and_lsap_sel(self, addr->sir_name); if (err) { IRDA_DEBUG(0, "%s(), auto-connect failed!\n", __FUNCTION__); return err; } } else { /* Use the one provided by the user */ self->daddr = addr->sir_addr; IRDA_DEBUG(1, "%s(), daddr = %08x\n", __FUNCTION__, self->daddr); /* If we don't have a valid service name, we assume the * user want to connect on a specific LSAP. Prevent * the use of invalid LSAPs (IrLMP 1.1 p10). Jean II */ if((addr->sir_name[0] != '\0') || (addr->sir_lsap_sel >= 0x70)) { /* Query remote LM-IAS using service name */ err = irda_find_lsap_sel(self, addr->sir_name); if (err) { IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__); return err; } } else { /* Directly connect to the remote LSAP * specified by the sir_lsap field. * Please use with caution, in IrDA LSAPs are * dynamic and there is no "well-known" LSAP. */ self->dtsap_sel = addr->sir_lsap_sel; } } /* Check if we have opened a local TSAP */ if (!self->tsap) irda_open_tsap(self, LSAP_ANY, addr->sir_name); /* Move to connecting socket, start sending Connect Requests */ sock->state = SS_CONNECTING; sk->sk_state = TCP_SYN_SENT; /* Connect to remote device */ err = irttp_connect_request(self->tsap, self->dtsap_sel, self->saddr, self->daddr, NULL, self->max_sdu_size_rx, NULL); if (err) { IRDA_DEBUG(0, "%s(), connect failed!\n", __FUNCTION__); return err; } /* Now the loop */ if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) return -EINPROGRESS; if (wait_event_interruptible(*(sk->sk_sleep), (sk->sk_state != TCP_SYN_SENT))) return -ERESTARTSYS; if (sk->sk_state != TCP_ESTABLISHED) { sock->state = SS_UNCONNECTED; return sock_error(sk); /* Always set at this point */ } sock->state = SS_CONNECTED; /* At this point, IrLMP has assigned our source address */ self->saddr = irttp_get_saddr(self->tsap); return 0; } static struct proto irda_proto = { .name = "IRDA", .owner = THIS_MODULE, .obj_size = sizeof(struct irda_sock), }; /* * Function irda_create (sock, protocol) * * Create IrDA socket * */ static int irda_create(struct socket *sock, int protocol) { struct sock *sk; struct irda_sock *self; IRDA_DEBUG(2, "%s()\n", __FUNCTION__); /* Check for valid socket type */ switch (sock->type) { case SOCK_STREAM: /* For TTP connections with SAR disabled */ case SOCK_SEQPACKET: /* For TTP connections with SAR enabled */ case SOCK_DGRAM: /* For TTP Unitdata or LMP Ultra transfers */ break; default: return -ESOCKTNOSUPPORT; } /* Allocate networking socket */ sk = sk_alloc(PF_IRDA, GFP_ATOMIC, &irda_proto, 1); if (sk == NULL) return -ENOMEM; self = irda_sk(sk); IRDA_DEBUG(2, "%s() : self is %p\n", __FUNCTION__, self); init_waitqueue_head(&self->query_wait); /* Initialise networking socket struct */ sock_init_data(sock, sk); /* Note : set sk->sk_refcnt to 1 */ sk->sk_family = PF_IRDA; sk->sk_protocol = protocol; switch (sock->type) { case SOCK_STREAM: sock->ops = &irda_stream_ops; self->max_sdu_size_rx = TTP_SAR_DISABLE; break; case SOCK_SEQPACKET: sock->ops = &irda_seqpacket_ops; self->max_sdu_size_rx = TTP_SAR_UNBOUND; break; case SOCK_DGRAM: switch (protocol) { #ifdef CONFIG_IRDA_ULTRA case IRDAPROTO_ULTRA: sock->ops = &irda_ultra_ops; /* Initialise now, because we may send on unbound * sockets. Jean II */ self->max_data_size = ULTRA_MAX_DATA - LMP_PID_HEADER; self->max_header_size = IRDA_MAX_HEADER + LMP_PID_HEADER; break; #endif /* CONFIG_IRDA_ULTRA */ case IRDAPROTO_UNITDATA: sock->ops = &irda_dgram_ops; /* We let Unitdata conn. be like seqpack conn. */ self->max_sdu_size_rx = TTP_SAR_UNBOUND; break; default: IRDA_ERROR("%s: protocol not supported!\n", __FUNCTION__); return -ESOCKTNOSUPPORT; } break; default: return -ESOCKTNOSUPPORT; } /* Register as a client with IrLMP */ self->ckey = irlmp_register_client(0, NULL, NULL, NULL); self->mask.word = 0xffff; self->rx_flow = self->tx_flow = FLOW_START; self->nslots = DISCOVERY_DEFAULT_SLOTS; self->daddr = DEV_ADDR_ANY; /* Until we get connected */ self->saddr = 0x0; /* so IrLMP assign us any link */ return 0; } /* * Function irda_destroy_socket (self) * * Destroy socket * */ static void irda_destroy_socket(struct irda_sock *self) { IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); IRDA_ASSERT(self != NULL, return;); /* Unregister with IrLMP */ irlmp_unregister_client(self->ckey); irlmp_unregister_service(self->skey); /* Unregister with LM-IAS */ if (self->ias_obj) { irias_delete_object(self->ias_obj); self->ias_obj = NULL; } if (self->iriap) { iriap_close(self->iriap); self->iriap = NULL; } if (self->tsap) { irttp_disconnect_request(self->tsap, NULL, P_NORMAL); irttp_close_tsap(self->tsap); self->tsap = NULL; } #ifdef CONFIG_IRDA_ULTRA if (self->lsap) { irlmp_close_lsap(self->lsap); self->lsap = NULL; } #endif /* CONFIG_IRDA_ULTRA */ } /* * Function irda_release (sock) */ static int irda_release(struct socket *sock) { struct sock *sk = sock->sk; IRDA_DEBUG(2, "%s()\n", __FUNCTION__); if (sk == NULL) return 0; sk->sk_state = TCP_CLOSE; sk->sk_shutdown |= SEND_SHUTDOWN; sk->sk_state_change(sk); /* Destroy IrDA socket */ irda_destroy_socket(irda_sk(sk)); sock_orphan(sk); sock->sk = NULL; /* Purge queues (see sock_init_data()) */ skb_queue_purge(&sk->sk_receive_queue); /* Destroy networking socket if we are the last reference on it, * i.e. if(sk->sk_refcnt == 0) -> sk_free(sk) */ sock_put(sk); /* Notes on socket locking and deallocation... - Jean II * In theory we should put pairs of sock_hold() / sock_put() to * prevent the socket to be destroyed whenever there is an * outstanding request or outstanding incoming packet or event. * * 1) This may include IAS request, both in connect and getsockopt. * Unfortunately, the situation is a bit more messy than it looks, * because we close iriap and kfree(self) above. * * 2) This may include selective discovery in getsockopt. * Same stuff as above, irlmp registration and self are gone. * * Probably 1 and 2 may not matter, because it's all triggered * by a process and the socket layer already prevent the * socket to go away while a process is holding it, through * sockfd_put() and fput()... * * 3) This may include deferred TSAP closure. In particular, * we may receive a late irda_disconnect_indication() * Fortunately, (tsap_cb *)->close_pend should protect us * from that. * * I did some testing on SMP, and it looks solid. And the socket * memory leak is now gone... - Jean II */ return 0; } /* * Function irda_sendmsg (iocb, sock, msg, len) * * Send message down to TinyTP. This function is used for both STREAM and * SEQPACK services. This is possible since it forces the client to * fragment the message if necessary */ static int irda_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct irda_sock *self; struct sk_buff *skb; unsigned char *asmptr; int err; IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); /* Note : socket.c set MSG_EOR on SEQPACKET sockets */ if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT)) return -EINVAL; if (sk->sk_shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 0); return -EPIPE; } if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; self = irda_sk(sk); IRDA_ASSERT(self != NULL, return -1;); /* Check if IrTTP is wants us to slow down */ if (wait_event_interruptible(*(sk->sk_sleep), (self->tx_flow != FLOW_STOP || sk->sk_state != TCP_ESTABLISHED))) return -ERESTARTSYS; /* Check if we are still connected */ if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; /* Check that we don't send out to big frames */ if (len > self->max_data_size) { IRDA_DEBUG(2, "%s(), Chopping frame from %zd to %d bytes!\n", __FUNCTION__, len, self->max_data_size); len = self->max_data_size; } skb = sock_alloc_send_skb(sk, len + self->max_header_size + 16, msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) return -ENOBUFS; skb_reserve(skb, self->max_header_size + 16); asmptr = skb->h.raw = skb_put(skb, len); err = memcpy_fromiovec(asmptr, msg->msg_iov, len); if (err) { kfree_skb(skb); return err; } /* * Just send the message to TinyTP, and let it deal with possible * errors. No need to duplicate all that here */ err = irttp_data_request(self->tsap, skb); if (err) { IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); return err; } /* Tell client how much data we actually sent */ return len; } /* * Function irda_recvmsg_dgram (iocb, sock, msg, size, flags) * * Try to receive message and copy it to user. The frame is discarded * after being read, regardless of how much the user actually read */ static int irda_recvmsg_dgram(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct irda_sock *self = irda_sk(sk); struct sk_buff *skb; size_t copied; int err; IRDA_DEBUG(4, "%s()\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return -1;); skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &err); if (!skb) return err; skb->h.raw = skb->data; copied = skb->len; if (copied > size) { IRDA_DEBUG(2, "%s(), Received truncated frame (%zd < %zd)!\n", __FUNCTION__, copied, size); copied = size; msg->msg_flags |= MSG_TRUNC; } skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); skb_free_datagram(sk, skb); /* * Check if we have previously stopped IrTTP and we know * have more free space in our rx_queue. If so tell IrTTP * to start delivering frames again before our rx_queue gets * empty */ if (self->rx_flow == FLOW_STOP) { if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) { IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__); self->rx_flow = FLOW_START; irttp_flow_request(self->tsap, FLOW_START); } } return copied; } /* * Function irda_recvmsg_stream (iocb, sock, msg, size, flags) */ static int irda_recvmsg_stream(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct irda_sock *self = irda_sk(sk); int noblock = flags & MSG_DONTWAIT; size_t copied = 0; int target = 1; DECLARE_WAITQUEUE(waitq, current); IRDA_DEBUG(3, "%s()\n", __FUNCTION__); IRDA_ASSERT(self != NULL, return -1;); if (sock->flags & __SO_ACCEPTCON) return(-EINVAL); if (flags & MSG_OOB) return -EOPNOTSUPP; if (flags & MSG_WAITALL) target = size; msg->msg_namelen = 0; do { int chunk; struct sk_buff *skb = skb_dequeue(&sk->sk_receive_queue); if (skb==NULL) { int ret = 0; if (copied >= target) break; /* The following code is a cut'n'paste of the * wait_event_interruptible() macro. * We don't us the macro because the test condition * is messy. - Jean II */ set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); add_wait_queue(sk->sk_sleep, &waitq); set_current_state(TASK_INTERRUPTIBLE); /* * POSIX 1003.1g mandates this order. */ ret = sock_error(sk); if (ret) break; else if (sk->sk_shutdown & RCV_SHUTDOWN) ; else if (noblock) ret = -EAGAIN; else if (signal_pending(current)) ret = -ERESTARTSYS; else if (skb_peek(&sk->sk_receive_queue) == NULL) /* Wait process until data arrives */ schedule(); current->state = TASK_RUNNING; remove_wait_queue(sk->sk_sleep, &waitq); clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); if(ret) return(ret); if (sk->sk_shutdown & RCV_SHUTDOWN) break; continue; } chunk = min_t(unsigned int, skb->len, size); if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) { skb_queue_head(&sk->sk_receive_queue, skb); if (copied == 0) copied = -EFAULT; break; } copied += chunk; size -= chunk; /* Mark read part of skb as used */ if (!(flags & MSG_PEEK)) { skb_pull(skb, chunk); /* put the skb back if we didn't use it up.. */ if (skb->len) { IRDA_DEBUG(1, "%s(), back on q!\n", __FUNCTION__); skb_queue_head(&sk->sk_receive_queue, skb); break; } kfree_skb(skb); } else { IRDA_DEBUG(0, "%s() questionable!?\n", __FUNCTION__); /* put message back and return */ skb_queue_head(&sk->sk_receive_queue, skb); break; } } while (size); /* * Check if we have previously stopped IrTTP and we know * have more free space in our rx_queue. If so tell IrTTP * to start delivering frames again before our rx_queue gets * empty */ if (self->rx_flow == FLOW_STOP) { if ((atomic_read(&sk->sk_rmem_alloc) << 2) <= sk->sk_rcvbuf) { IRDA_DEBUG(2, "%s(), Starting IrTTP\n", __FUNCTION__); self->rx_flow = FLOW_START; irttp_flow_request(self->tsap, FLOW_START); } } return copied; } /* * Function irda_sendmsg_dgram (iocb, sock, msg, len) * * Send message down to TinyTP for the unreliable sequenced * packet service... * */ static int irda_sendmsg_dgram(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct irda_sock *self; struct sk_buff *skb; unsigned char *asmptr; int err; IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT)) return -EINVAL; if (sk->sk_shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 0); return -EPIPE; } if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; self = irda_sk(sk); IRDA_ASSERT(self != NULL, return -1;); /* * Check that we don't send out to big frames. This is an unreliable * service, so we have no fragmentation and no coalescence */ if (len > self->max_data_size) { IRDA_DEBUG(0, "%s(), Warning to much data! " "Chopping frame from %zd to %d bytes!\n", __FUNCTION__, len, self->max_data_size); len = self->max_data_size; } skb = sock_alloc_send_skb(sk, len + self->max_header_size, msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) return -ENOBUFS; skb_reserve(skb, self->max_header_size); IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__); asmptr = skb->h.raw = skb_put(skb, len); err = memcpy_fromiovec(asmptr, msg->msg_iov, len); if (err) { kfree_skb(skb); return err; } /* * Just send the message to TinyTP, and let it deal with possible * errors. No need to duplicate all that here */ err = irttp_udata_request(self->tsap, skb); if (err) { IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); return err; } return len; } /* * Function irda_sendmsg_ultra (iocb, sock, msg, len) * * Send message down to IrLMP for the unreliable Ultra * packet service... */ #ifdef CONFIG_IRDA_ULTRA static int irda_sendmsg_ultra(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct irda_sock *self; __u8 pid = 0; int bound = 0; struct sk_buff *skb; unsigned char *asmptr; int err; IRDA_DEBUG(4, "%s(), len=%zd\n", __FUNCTION__, len); if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_CMSG_COMPAT)) return -EINVAL; if (sk->sk_shutdown & SEND_SHUTDOWN) { send_sig(SIGPIPE, current, 0); return -EPIPE; } self = irda_sk(sk); IRDA_ASSERT(self != NULL, return -1;); /* Check if an address was specified with sendto. Jean II */ if (msg->msg_name) { struct sockaddr_irda *addr = (struct sockaddr_irda *) msg->msg_name; /* Check address, extract pid. Jean II */ if (msg->msg_namelen < sizeof(*addr)) return -EINVAL; if (addr->sir_family != AF_IRDA) return -EINVAL; pid = addr->sir_lsap_sel; if (pid & 0x80) { IRDA_DEBUG(0, "%s(), extension in PID not supp!\n", __FUNCTION__); return -EOPNOTSUPP; } } else { /* Check that the socket is properly bound to an Ultra * port. Jean II */ if ((self->lsap == NULL) || (sk->sk_state != TCP_ESTABLISHED)) { IRDA_DEBUG(0, "%s(), socket not bound to Ultra PID.\n", __FUNCTION__); return -ENOTCONN; } /* Use PID from socket */ bound = 1; } /* * Check that we don't send out to big frames. This is an unreliable * service, so we have no fragmentation and no coalescence */ if (len > self->max_data_size) { IRDA_DEBUG(0, "%s(), Warning to much data! " "Chopping frame from %zd to %d bytes!\n", __FUNCTION__, len, self->max_data_size); len = self->max_data_size; } skb = sock_alloc_send_skb(sk, len + self->max_header_size, msg->msg_flags & MSG_DONTWAIT, &err); if (!skb) return -ENOBUFS; skb_reserve(skb, self->max_header_size); IRDA_DEBUG(4, "%s(), appending user data\n", __FUNCTION__); asmptr = skb->h.raw = skb_put(skb, len); err = memcpy_fromiovec(asmptr, msg->msg_iov, len); if (err) { kfree_skb(skb); return err; } err = irlmp_connless_data_request((bound ? self->lsap : NULL), skb, pid); if (err) { IRDA_DEBUG(0, "%s(), err=%d\n", __FUNCTION__, err); return err; } return len; } #endif /* CONFIG_IRDA_ULTRA */ /* * Function irda_shutdown (sk, how) */ static int irda_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; struct irda_sock *self = irda_sk(sk); IRDA_ASSERT(self != NULL, return -1;); IRDA_DEBUG(1, "%s(%p)\n", __FUNCTION__, self); sk->sk_state = TCP_CLOSE; sk->sk_shutdown |= SEND_SHUTDOWN; sk->sk_state_change(sk); if (self->iriap) { iriap_close(self->iriap); self->iriap = NULL; } if (self->tsap) { irttp_disconnect_request(self->tsap, NULL, P_NORMAL); irttp_close_tsap(self->tsap); self->tsap = NULL; } /* A few cleanup so the socket look as good as new... */ self->rx_flow = self->tx_flow = FLOW_START; /* needed ??? */ self->daddr = DEV_ADDR_ANY; /* Until we get re-connected */ self->saddr = 0x0; /* so IrLMP assign us any link */ return 0; } /* * Function irda_poll (file, sock, wait) */ static unsigned int irda_poll(struct file * file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct irda_sock *self = irda_sk(sk); unsigned int mask; IRDA_DEBUG(4, "%s()\n", __FUNCTION__); poll_wait(file, sk->sk_sleep, wait); mask = 0; /* Exceptional events? */ if (sk->sk_err) mask |= POLLERR; if (sk->sk_shutdown & RCV_SHUTDOWN) { IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__); mask |= POLLHUP; } /* Readable? */ if (!skb_queue_empty(&sk->sk_receive_queue)) { IRDA_DEBUG(4, "Socket is readable\n"); mask |= POLLIN | POLLRDNORM; } /* Connection-based need to check for termination and startup */ switch (sk->sk_type) { case SOCK_STREAM: if (sk->sk_state == TCP_CLOSE) { IRDA_DEBUG(0, "%s(), POLLHUP\n", __FUNCTION__); mask |= POLLHUP; } if (sk->sk_state == TCP_ESTABLISHED) { if ((self->tx_flow == FLOW_START) && sock_writeable(sk)) { mask |= POLLOUT | POLLWRNORM | POLLWRBAND; } } break; case SOCK_SEQPACKET: if ((self->tx_flow == FLOW_START) && sock_writeable(sk)) { mask |= POLLOUT | POLLWRNORM | POLLWRBAND; } break; case SOCK_DGRAM: if (sock_writeable(sk)) mask |= POLLOUT | POLLWRNORM | POLLWRBAND; break; default: break; } return mask; } /* * Function irda_ioctl (sock, cmd, arg) */ static int irda_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; IRDA_DEBUG(4, "%s(), cmd=%#x\n", __FUNCTION__, cmd); switch (cmd) { case TIOCOUTQ: { long amount; amount = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); if (amount < 0) amount = 0; if (put_user(amount, (unsigned int __user *)arg)) return -EFAULT; return 0; } case TIOCINQ: { struct sk_buff *skb; long amount = 0L; /* These two are safe on a single CPU system as only user tasks fiddle here */ if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) amount = skb->len; if (put_user(amount, (unsigned int __user *)arg)) return -EFAULT; return 0; } case SIOCGSTAMP: if (sk != NULL) return sock_get_timestamp(sk, (struct timeval __user *)arg); return -EINVAL; case SIOCGIFADDR: case SIOCSIFADDR: case SIOCGIFDSTADDR: case SIOCSIFDSTADDR: case SIOCGIFBRDADDR: case SIOCSIFBRDADDR: case SIOCGIFNETMASK: case SIOCSIFNETMASK: case SIOCGIFMETRIC: case SIOCSIFMETRIC: return -EINVAL; default: IRDA_DEBUG(1, "%s(), doing device ioctl!\n", __FUNCTION__); return -ENOIOCTLCMD; } /*NOTREACHED*/ return 0; } /* * Function irda_setsockopt (sock, level, optname, optval, optlen) * * Set some options for the socket * */ static int irda_setsockopt(struct socket *sock, int level, int optname, char __user *optval, int optlen) { struct sock *sk = sock->sk; struct irda_sock *self = irda_sk(sk); struct irda_ias_set *ias_opt; struct ias_object *ias_obj; struct ias_attrib * ias_attr; /* Attribute in IAS object */ int opt; IRDA_ASSERT(self != NULL, return -1;); IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); if (level != SOL_IRLMP) return -ENOPROTOOPT; switch (optname) { case IRLMP_IAS_SET: /* The user want to add an attribute to an existing IAS object * (in the IAS database) or to create a new object with this * attribute. * We first query IAS to know if the object exist, and then * create the right attribute... */ if (optlen != sizeof(struct irda_ias_set)) return -EINVAL; ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); if (ias_opt == NULL) return -ENOMEM; /* Copy query to the driver. */ if (copy_from_user(ias_opt, optval, optlen)) { kfree(ias_opt); return -EFAULT; } /* Find the object we target. * If the user gives us an empty string, we use the object * associated with this socket. This will workaround * duplicated class name - Jean II */ if(ias_opt->irda_class_name[0] == '\0') { if(self->ias_obj == NULL) { kfree(ias_opt); return -EINVAL; } ias_obj = self->ias_obj; } else ias_obj = irias_find_object(ias_opt->irda_class_name); /* Only ROOT can mess with the global IAS database. * Users can only add attributes to the object associated * with the socket they own - Jean II */ if((!capable(CAP_NET_ADMIN)) && ((ias_obj == NULL) || (ias_obj != self->ias_obj))) { kfree(ias_opt); return -EPERM; } /* If the object doesn't exist, create it */ if(ias_obj == (struct ias_object *) NULL) { /* Create a new object */ ias_obj = irias_new_object(ias_opt->irda_class_name, jiffies); } /* Do we have the attribute already ? */ if(irias_find_attrib(ias_obj, ias_opt->irda_attrib_name)) { kfree(ias_opt); return -EINVAL; } /* Look at the type */ switch(ias_opt->irda_attrib_type) { case IAS_INTEGER: /* Add an integer attribute */ irias_add_integer_attrib( ias_obj, ias_opt->irda_attrib_name, ias_opt->attribute.irda_attrib_int, IAS_USER_ATTR); break; case IAS_OCT_SEQ: /* Check length */ if(ias_opt->attribute.irda_attrib_octet_seq.len > IAS_MAX_OCTET_STRING) { kfree(ias_opt); return -EINVAL; } /* Add an octet sequence attribute */ irias_add_octseq_attrib( ias_obj, ias_opt->irda_attrib_name, ias_opt->attribute.irda_attrib_octet_seq.octet_seq, ias_opt->attribute.irda_attrib_octet_seq.len, IAS_USER_ATTR); break; case IAS_STRING: /* Should check charset & co */ /* Check length */ /* The length is encoded in a __u8, and * IAS_MAX_STRING == 256, so there is no way * userspace can pass us a string too large. * Jean II */ /* NULL terminate the string (avoid troubles) */ ias_opt->attribute.irda_attrib_string.string[ias_opt->attribute.irda_attrib_string.len] = '\0'; /* Add a string attribute */ irias_add_string_attrib( ias_obj, ias_opt->irda_attrib_name, ias_opt->attribute.irda_attrib_string.string, IAS_USER_ATTR); break; default : kfree(ias_opt); return -EINVAL; } irias_insert_object(ias_obj); kfree(ias_opt); break; case IRLMP_IAS_DEL: /* The user want to delete an object from our local IAS * database. We just need to query the IAS, check is the * object is not owned by the kernel and delete it. */ if (optlen != sizeof(struct irda_ias_set)) return -EINVAL; ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); if (ias_opt == NULL) return -ENOMEM; /* Copy query to the driver. */ if (copy_from_user(ias_opt, optval, optlen)) { kfree(ias_opt); return -EFAULT; } /* Find the object we target. * If the user gives us an empty string, we use the object * associated with this socket. This will workaround * duplicated class name - Jean II */ if(ias_opt->irda_class_name[0] == '\0') ias_obj = self->ias_obj; else ias_obj = irias_find_object(ias_opt->irda_class_name); if(ias_obj == (struct ias_object *) NULL) { kfree(ias_opt); return -EINVAL; } /* Only ROOT can mess with the global IAS database. * Users can only del attributes from the object associated * with the socket they own - Jean II */ if((!capable(CAP_NET_ADMIN)) && ((ias_obj == NULL) || (ias_obj != self->ias_obj))) { kfree(ias_opt); return -EPERM; } /* Find the attribute (in the object) we target */ ias_attr = irias_find_attrib(ias_obj, ias_opt->irda_attrib_name); if(ias_attr == (struct ias_attrib *) NULL) { kfree(ias_opt); return -EINVAL; } /* Check is the user space own the object */ if(ias_attr->value->owner != IAS_USER_ATTR) { IRDA_DEBUG(1, "%s(), attempting to delete a kernel attribute\n", __FUNCTION__); kfree(ias_opt); return -EPERM; } /* Remove the attribute (and maybe the object) */ irias_delete_attrib(ias_obj, ias_attr, 1); kfree(ias_opt); break; case IRLMP_MAX_SDU_SIZE: if (optlen < sizeof(int)) return -EINVAL; if (get_user(opt, (int __user *)optval)) return -EFAULT; /* Only possible for a seqpacket service (TTP with SAR) */ if (sk->sk_type != SOCK_SEQPACKET) { IRDA_DEBUG(2, "%s(), setting max_sdu_size = %d\n", __FUNCTION__, opt); self->max_sdu_size_rx = opt; } else { IRDA_WARNING("%s: not allowed to set MAXSDUSIZE for this socket type!\n", __FUNCTION__); return -ENOPROTOOPT; } break; case IRLMP_HINTS_SET: if (optlen < sizeof(int)) return -EINVAL; /* The input is really a (__u8 hints[2]), easier as an int */ if (get_user(opt, (int __user *)optval)) return -EFAULT; /* Unregister any old registration */ if (self->skey) irlmp_unregister_service(self->skey); self->skey = irlmp_register_service((__u16) opt); break; case IRLMP_HINT_MASK_SET: /* As opposed to the previous case which set the hint bits * that we advertise, this one set the filter we use when * making a discovery (nodes which don't match any hint * bit in the mask are not reported). */ if (optlen < sizeof(int)) return -EINVAL; /* The input is really a (__u8 hints[2]), easier as an int */ if (get_user(opt, (int __user *)optval)) return -EFAULT; /* Set the new hint mask */ self->mask.word = (__u16) opt; /* Mask out extension bits */ self->mask.word &= 0x7f7f; /* Check if no bits */ if(!self->mask.word) self->mask.word = 0xFFFF; break; default: return -ENOPROTOOPT; } return 0; } /* * Function irda_extract_ias_value(ias_opt, ias_value) * * Translate internal IAS value structure to the user space representation * * The external representation of IAS values, as we exchange them with * user space program is quite different from the internal representation, * as stored in the IAS database (because we need a flat structure for * crossing kernel boundary). * This function transform the former in the latter. We also check * that the value type is valid. */ static int irda_extract_ias_value(struct irda_ias_set *ias_opt, struct ias_value *ias_value) { /* Look at the type */ switch (ias_value->type) { case IAS_INTEGER: /* Copy the integer */ ias_opt->attribute.irda_attrib_int = ias_value->t.integer; break; case IAS_OCT_SEQ: /* Set length */ ias_opt->attribute.irda_attrib_octet_seq.len = ias_value->len; /* Copy over */ memcpy(ias_opt->attribute.irda_attrib_octet_seq.octet_seq, ias_value->t.oct_seq, ias_value->len); break; case IAS_STRING: /* Set length */ ias_opt->attribute.irda_attrib_string.len = ias_value->len; ias_opt->attribute.irda_attrib_string.charset = ias_value->charset; /* Copy over */ memcpy(ias_opt->attribute.irda_attrib_string.string, ias_value->t.string, ias_value->len); /* NULL terminate the string (avoid troubles) */ ias_opt->attribute.irda_attrib_string.string[ias_value->len] = '\0'; break; case IAS_MISSING: default : return -EINVAL; } /* Copy type over */ ias_opt->irda_attrib_type = ias_value->type; return 0; } /* * Function irda_getsockopt (sock, level, optname, optval, optlen) */ static int irda_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct irda_sock *self = irda_sk(sk); struct irda_device_list list; struct irda_device_info *discoveries; struct irda_ias_set * ias_opt; /* IAS get/query params */ struct ias_object * ias_obj; /* Object in IAS */ struct ias_attrib * ias_attr; /* Attribute in IAS object */ int daddr = DEV_ADDR_ANY; /* Dest address for IAS queries */ int val = 0; int len = 0; int err; int offset, total; IRDA_DEBUG(2, "%s(%p)\n", __FUNCTION__, self); if (level != SOL_IRLMP) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if(len < 0) return -EINVAL; switch (optname) { case IRLMP_ENUMDEVICES: /* Ask lmp for the current discovery log */ discoveries = irlmp_get_discoveries(&list.len, self->mask.word, self->nslots); /* Check if the we got some results */ if (discoveries == NULL) return -EAGAIN; /* Didn't find any devices */ err = 0; /* Write total list length back to client */ if (copy_to_user(optval, &list, sizeof(struct irda_device_list) - sizeof(struct irda_device_info))) err = -EFAULT; /* Offset to first device entry */ offset = sizeof(struct irda_device_list) - sizeof(struct irda_device_info); /* Copy the list itself - watch for overflow */ if(list.len > 2048) { err = -EINVAL; goto bed; } total = offset + (list.len * sizeof(struct irda_device_info)); if (total > len) total = len; if (copy_to_user(optval+offset, discoveries, total - offset)) err = -EFAULT; /* Write total number of bytes used back to client */ if (put_user(total, optlen)) err = -EFAULT; bed: /* Free up our buffer */ kfree(discoveries); if (err) return err; break; case IRLMP_MAX_SDU_SIZE: val = self->max_data_size; len = sizeof(int); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; break; case IRLMP_IAS_GET: /* The user want an object from our local IAS database. * We just need to query the IAS and return the value * that we found */ /* Check that the user has allocated the right space for us */ if (len != sizeof(struct irda_ias_set)) return -EINVAL; ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); if (ias_opt == NULL) return -ENOMEM; /* Copy query to the driver. */ if (copy_from_user(ias_opt, optval, len)) { kfree(ias_opt); return -EFAULT; } /* Find the object we target. * If the user gives us an empty string, we use the object * associated with this socket. This will workaround * duplicated class name - Jean II */ if(ias_opt->irda_class_name[0] == '\0') ias_obj = self->ias_obj; else ias_obj = irias_find_object(ias_opt->irda_class_name); if(ias_obj == (struct ias_object *) NULL) { kfree(ias_opt); return -EINVAL; } /* Find the attribute (in the object) we target */ ias_attr = irias_find_attrib(ias_obj, ias_opt->irda_attrib_name); if(ias_attr == (struct ias_attrib *) NULL) { kfree(ias_opt); return -EINVAL; } /* Translate from internal to user structure */ err = irda_extract_ias_value(ias_opt, ias_attr->value); if(err) { kfree(ias_opt); return err; } /* Copy reply to the user */ if (copy_to_user(optval, ias_opt, sizeof(struct irda_ias_set))) { kfree(ias_opt); return -EFAULT; } /* Note : don't need to put optlen, we checked it */ kfree(ias_opt); break; case IRLMP_IAS_QUERY: /* The user want an object from a remote IAS database. * We need to use IAP to query the remote database and * then wait for the answer to come back. */ /* Check that the user has allocated the right space for us */ if (len != sizeof(struct irda_ias_set)) return -EINVAL; ias_opt = kmalloc(sizeof(struct irda_ias_set), GFP_ATOMIC); if (ias_opt == NULL) return -ENOMEM; /* Copy query to the driver. */ if (copy_from_user(ias_opt, optval, len)) { kfree(ias_opt); return -EFAULT; } /* At this point, there are two cases... * 1) the socket is connected - that's the easy case, we * just query the device we are connected to... * 2) the socket is not connected - the user doesn't want * to connect and/or may not have a valid service name * (so can't create a fake connection). In this case, * we assume that the user pass us a valid destination * address in the requesting structure... */ if(self->daddr != DEV_ADDR_ANY) { /* We are connected - reuse known daddr */ daddr = self->daddr; } else { /* We are not connected, we must specify a valid * destination address */ daddr = ias_opt->daddr; if((!daddr) || (daddr == DEV_ADDR_ANY)) { kfree(ias_opt); return -EINVAL; } } /* Check that we can proceed with IAP */ if (self->iriap) { IRDA_WARNING("%s: busy with a previous query\n", __FUNCTION__); kfree(ias_opt); return -EBUSY; } self->iriap = iriap_open(LSAP_ANY, IAS_CLIENT, self, irda_getvalue_confirm); if (self->iriap == NULL) { kfree(ias_opt); return -ENOMEM; } /* Treat unexpected wakeup as disconnect */ self->errno = -EHOSTUNREACH; /* Query remote LM-IAS */ iriap_getvaluebyclass_request(self->iriap, self->saddr, daddr, ias_opt->irda_class_name, ias_opt->irda_attrib_name); /* Wait for answer, if not yet finished (or failed) */ if (wait_event_interruptible(self->query_wait, (self->iriap == NULL))) { /* pending request uses copy of ias_opt-content * we can free it regardless! */ kfree(ias_opt); /* Treat signals as disconnect */ return -EHOSTUNREACH; } /* Check what happened */ if (self->errno) { kfree(ias_opt); /* Requested object/attribute doesn't exist */ if((self->errno == IAS_CLASS_UNKNOWN) || (self->errno == IAS_ATTRIB_UNKNOWN)) return (-EADDRNOTAVAIL); else return (-EHOSTUNREACH); } /* Translate from internal to user structure */ err = irda_extract_ias_value(ias_opt, self->ias_result); if (self->ias_result) irias_delete_value(self->ias_result); if (err) { kfree(ias_opt); return err; } /* Copy reply to the user */ if (copy_to_user(optval, ias_opt, sizeof(struct irda_ias_set))) { kfree(ias_opt); return -EFAULT; } /* Note : don't need to put optlen, we checked it */ kfree(ias_opt); break; case IRLMP_WAITDEVICE: /* This function is just another way of seeing life ;-) * IRLMP_ENUMDEVICES assumes that you have a static network, * and that you just want to pick one of the devices present. * On the other hand, in here we assume that no device is * present and that at some point in the future a device will * come into range. When this device arrive, we just wake * up the caller, so that he has time to connect to it before * the device goes away... * Note : once the node has been discovered for more than a * few second, it won't trigger this function, unless it * goes away and come back changes its hint bits (so we * might call it IRLMP_WAITNEWDEVICE). */ /* Check that the user is passing us an int */ if (len != sizeof(int)) return -EINVAL; /* Get timeout in ms (max time we block the caller) */ if (get_user(val, (int __user *)optval)) return -EFAULT; /* Tell IrLMP we want to be notified */ irlmp_update_client(self->ckey, self->mask.word, irda_selective_discovery_indication, NULL, (void *) self); /* Do some discovery (and also return cached results) */ irlmp_discovery_request(self->nslots); /* Wait until a node is discovered */ if (!self->cachedaddr) { int ret = 0; IRDA_DEBUG(1, "%s(), nothing discovered yet, going to sleep...\n", __FUNCTION__); /* Set watchdog timer to expire in <val> ms. */ self->errno = 0; init_timer(&self->watchdog); self->watchdog.function = irda_discovery_timeout; self->watchdog.data = (unsigned long) self; self->watchdog.expires = jiffies + (val * HZ/1000); add_timer(&(self->watchdog)); /* Wait for IR-LMP to call us back */ __wait_event_interruptible(self->query_wait, (self->cachedaddr != 0 || self->errno == -ETIME), ret); /* If watchdog is still activated, kill it! */ if(timer_pending(&(self->watchdog))) del_timer(&(self->watchdog)); IRDA_DEBUG(1, "%s(), ...waking up !\n", __FUNCTION__); if (ret != 0) return ret; } else IRDA_DEBUG(1, "%s(), found immediately !\n", __FUNCTION__); /* Tell IrLMP that we have been notified */ irlmp_update_client(self->ckey, self->mask.word, NULL, NULL, NULL); /* Check if the we got some results */ if (!self->cachedaddr) return -EAGAIN; /* Didn't find any devices */ daddr = self->cachedaddr; /* Cleanup */ self->cachedaddr = 0; /* We return the daddr of the device that trigger the * wakeup. As irlmp pass us only the new devices, we * are sure that it's not an old device. * If the user want more details, he should query * the whole discovery log and pick one device... */ if (put_user(daddr, (int __user *)optval)) return -EFAULT; break; default: return -ENOPROTOOPT; } return 0; } static struct net_proto_family irda_family_ops = { .family = PF_IRDA, .create = irda_create, .owner = THIS_MODULE, }; static const struct proto_ops SOCKOPS_WRAPPED(irda_stream_ops) = { .family = PF_IRDA, .owner = THIS_MODULE, .release = irda_release, .bind = irda_bind, .connect = irda_connect, .socketpair = sock_no_socketpair, .accept = irda_accept, .getname = irda_getname, .poll = irda_poll, .ioctl = irda_ioctl, .listen = irda_listen, .shutdown = irda_shutdown, .setsockopt = irda_setsockopt, .getsockopt = irda_getsockopt, .sendmsg = irda_sendmsg, .recvmsg = irda_recvmsg_stream, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops SOCKOPS_WRAPPED(irda_seqpacket_ops) = { .family = PF_IRDA, .owner = THIS_MODULE, .release = irda_release, .bind = irda_bind, .connect = irda_connect, .socketpair = sock_no_socketpair, .accept = irda_accept, .getname = irda_getname, .poll = datagram_poll, .ioctl = irda_ioctl, .listen = irda_listen, .shutdown = irda_shutdown, .setsockopt = irda_setsockopt, .getsockopt = irda_getsockopt, .sendmsg = irda_sendmsg, .recvmsg = irda_recvmsg_dgram, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops SOCKOPS_WRAPPED(irda_dgram_ops) = { .family = PF_IRDA, .owner = THIS_MODULE, .release = irda_release, .bind = irda_bind, .connect = irda_connect, .socketpair = sock_no_socketpair, .accept = irda_accept, .getname = irda_getname, .poll = datagram_poll, .ioctl = irda_ioctl, .listen = irda_listen, .shutdown = irda_shutdown, .setsockopt = irda_setsockopt, .getsockopt = irda_getsockopt, .sendmsg = irda_sendmsg_dgram, .recvmsg = irda_recvmsg_dgram, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; #ifdef CONFIG_IRDA_ULTRA static const struct proto_ops SOCKOPS_WRAPPED(irda_ultra_ops) = { .family = PF_IRDA, .owner = THIS_MODULE, .release = irda_release, .bind = irda_bind, .connect = sock_no_connect, .socketpair = sock_no_socketpair, .accept = sock_no_accept, .getname = irda_getname, .poll = datagram_poll, .ioctl = irda_ioctl, .listen = sock_no_listen, .shutdown = irda_shutdown, .setsockopt = irda_setsockopt, .getsockopt = irda_getsockopt, .sendmsg = irda_sendmsg_ultra, .recvmsg = irda_recvmsg_dgram, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; #endif /* CONFIG_IRDA_ULTRA */ #include <linux/smp_lock.h> SOCKOPS_WRAP(irda_stream, PF_IRDA); SOCKOPS_WRAP(irda_seqpacket, PF_IRDA); SOCKOPS_WRAP(irda_dgram, PF_IRDA); #ifdef CONFIG_IRDA_ULTRA SOCKOPS_WRAP(irda_ultra, PF_IRDA); #endif /* CONFIG_IRDA_ULTRA */ /* * Function irsock_init (pro) * * Initialize IrDA protocol * */ int __init irsock_init(void) { int rc = proto_register(&irda_proto, 0); if (rc == 0) rc = sock_register(&irda_family_ops); return rc; } /* * Function irsock_cleanup (void) * * Remove IrDA protocol * */ void __exit irsock_cleanup(void) { sock_unregister(PF_IRDA); proto_unregister(&irda_proto); }