/* * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * * The filters are packed to hash tables of key nodes * with a set of 32bit key/mask pairs at every node. * Nodes reference next level hash tables etc. * * This scheme is the best universal classifier I managed to * invent; it is not super-fast, but it is not slow (provided you * program it correctly), and general enough. And its relative * speed grows as the number of rules becomes larger. * * It seems that it represents the best middle point between * speed and manageability both by human and by machine. * * It is especially useful for link sharing combined with QoS; * pure RSVP doesn't need such a general approach and can use * much simpler (and faster) schemes, sort of cls_rsvp.c. * * JHS: We should remove the CONFIG_NET_CLS_IND from here * eventually when the meta match extension is made available * * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro> */ #include <asm/uaccess.h> #include <asm/system.h> #include <linux/bitops.h> #include <linux/config.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/if_ether.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/notifier.h> #include <linux/rtnetlink.h> #include <net/ip.h> #include <net/route.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/act_api.h> #include <net/pkt_cls.h> struct tc_u_knode { struct tc_u_knode *next; u32 handle; struct tc_u_hnode *ht_up; struct tcf_exts exts; #ifdef CONFIG_NET_CLS_IND char indev[IFNAMSIZ]; #endif u8 fshift; struct tcf_result res; struct tc_u_hnode *ht_down; #ifdef CONFIG_CLS_U32_PERF struct tc_u32_pcnt *pf; #endif #ifdef CONFIG_CLS_U32_MARK struct tc_u32_mark mark; #endif struct tc_u32_sel sel; }; struct tc_u_hnode { struct tc_u_hnode *next; u32 handle; u32 prio; struct tc_u_common *tp_c; int refcnt; unsigned divisor; struct tc_u_knode *ht[1]; }; struct tc_u_common { struct tc_u_common *next; struct tc_u_hnode *hlist; struct Qdisc *q; int refcnt; u32 hgenerator; }; static struct tcf_ext_map u32_ext_map = { .action = TCA_U32_ACT, .police = TCA_U32_POLICE }; static struct tc_u_common *u32_list; static __inline__ unsigned u32_hash_fold(u32 key, struct tc_u32_sel *sel, u8 fshift) { unsigned h = (key & sel->hmask)>>fshift; return h; } static int u32_classify(struct sk_buff *skb, struct tcf_proto *tp, struct tcf_result *res) { struct { struct tc_u_knode *knode; u8 *ptr; } stack[TC_U32_MAXDEPTH]; struct tc_u_hnode *ht = (struct tc_u_hnode*)tp->root; u8 *ptr = skb->nh.raw; struct tc_u_knode *n; int sdepth = 0; int off2 = 0; int sel = 0; #ifdef CONFIG_CLS_U32_PERF int j; #endif int i, r; next_ht: n = ht->ht[sel]; next_knode: if (n) { struct tc_u32_key *key = n->sel.keys; #ifdef CONFIG_CLS_U32_PERF n->pf->rcnt +=1; j = 0; #endif #ifdef CONFIG_CLS_U32_MARK if ((skb->nfmark & n->mark.mask) != n->mark.val) { n = n->next; goto next_knode; } else { n->mark.success++; } #endif for (i = n->sel.nkeys; i>0; i--, key++) { if ((*(u32*)(ptr+key->off+(off2&key->offmask))^key->val)&key->mask) { n = n->next; goto next_knode; } #ifdef CONFIG_CLS_U32_PERF n->pf->kcnts[j] +=1; j++; #endif } if (n->ht_down == NULL) { check_terminal: if (n->sel.flags&TC_U32_TERMINAL) { *res = n->res; #ifdef CONFIG_NET_CLS_IND if (!tcf_match_indev(skb, n->indev)) { n = n->next; goto next_knode; } #endif #ifdef CONFIG_CLS_U32_PERF n->pf->rhit +=1; #endif r = tcf_exts_exec(skb, &n->exts, res); if (r < 0) { n = n->next; goto next_knode; } return r; } n = n->next; goto next_knode; } /* PUSH */ if (sdepth >= TC_U32_MAXDEPTH) goto deadloop; stack[sdepth].knode = n; stack[sdepth].ptr = ptr; sdepth++; ht = n->ht_down; sel = 0; if (ht->divisor) sel = ht->divisor&u32_hash_fold(*(u32*)(ptr+n->sel.hoff), &n->sel,n->fshift); if (!(n->sel.flags&(TC_U32_VAROFFSET|TC_U32_OFFSET|TC_U32_EAT))) goto next_ht; if (n->sel.flags&(TC_U32_OFFSET|TC_U32_VAROFFSET)) { off2 = n->sel.off + 3; if (n->sel.flags&TC_U32_VAROFFSET) off2 += ntohs(n->sel.offmask & *(u16*)(ptr+n->sel.offoff)) >>n->sel.offshift; off2 &= ~3; } if (n->sel.flags&TC_U32_EAT) { ptr += off2; off2 = 0; } if (ptr < skb->tail) goto next_ht; } /* POP */ if (sdepth--) { n = stack[sdepth].knode; ht = n->ht_up; ptr = stack[sdepth].ptr; goto check_terminal; } return -1; deadloop: if (net_ratelimit()) printk("cls_u32: dead loop\n"); return -1; } static __inline__ struct tc_u_hnode * u32_lookup_ht(struct tc_u_common *tp_c, u32 handle) { struct tc_u_hnode *ht; for (ht = tp_c->hlist; ht; ht = ht->next) if (ht->handle == handle) break; return ht; } static __inline__ struct tc_u_knode * u32_lookup_key(struct tc_u_hnode *ht, u32 handle) { unsigned sel; struct tc_u_knode *n = NULL; sel = TC_U32_HASH(handle); if (sel > ht->divisor) goto out; for (n = ht->ht[sel]; n; n = n->next) if (n->handle == handle) break; out: return n; } static unsigned long u32_get(struct tcf_proto *tp, u32 handle) { struct tc_u_hnode *ht; struct tc_u_common *tp_c = tp->data; if (TC_U32_HTID(handle) == TC_U32_ROOT) ht = tp->root; else ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle)); if (!ht) return 0; if (TC_U32_KEY(handle) == 0) return (unsigned long)ht; return (unsigned long)u32_lookup_key(ht, handle); } static void u32_put(struct tcf_proto *tp, unsigned long f) { } static u32 gen_new_htid(struct tc_u_common *tp_c) { int i = 0x800; do { if (++tp_c->hgenerator == 0x7FF) tp_c->hgenerator = 1; } while (--i>0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20)); return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0; } static int u32_init(struct tcf_proto *tp) { struct tc_u_hnode *root_ht; struct tc_u_common *tp_c; for (tp_c = u32_list; tp_c; tp_c = tp_c->next) if (tp_c->q == tp->q) break; root_ht = kmalloc(sizeof(*root_ht), GFP_KERNEL); if (root_ht == NULL) return -ENOBUFS; memset(root_ht, 0, sizeof(*root_ht)); root_ht->divisor = 0; root_ht->refcnt++; root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000; root_ht->prio = tp->prio; if (tp_c == NULL) { tp_c = kmalloc(sizeof(*tp_c), GFP_KERNEL); if (tp_c == NULL) { kfree(root_ht); return -ENOBUFS; } memset(tp_c, 0, sizeof(*tp_c)); tp_c->q = tp->q; tp_c->next = u32_list; u32_list = tp_c; } tp_c->refcnt++; root_ht->next = tp_c->hlist; tp_c->hlist = root_ht; root_ht->tp_c = tp_c; tp->root = root_ht; tp->data = tp_c; return 0; } static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n) { tcf_unbind_filter(tp, &n->res); tcf_exts_destroy(tp, &n->exts); if (n->ht_down) n->ht_down->refcnt--; #ifdef CONFIG_CLS_U32_PERF kfree(n->pf); #endif kfree(n); return 0; } static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode* key) { struct tc_u_knode **kp; struct tc_u_hnode *ht = key->ht_up; if (ht) { for (kp = &ht->ht[TC_U32_HASH(key->handle)]; *kp; kp = &(*kp)->next) { if (*kp == key) { tcf_tree_lock(tp); *kp = key->next; tcf_tree_unlock(tp); u32_destroy_key(tp, key); return 0; } } } BUG_TRAP(0); return 0; } static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) { struct tc_u_knode *n; unsigned h; for (h=0; h<=ht->divisor; h++) { while ((n = ht->ht[h]) != NULL) { ht->ht[h] = n->next; u32_destroy_key(tp, n); } } } static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode **hn; BUG_TRAP(!ht->refcnt); u32_clear_hnode(tp, ht); for (hn = &tp_c->hlist; *hn; hn = &(*hn)->next) { if (*hn == ht) { *hn = ht->next; kfree(ht); return 0; } } BUG_TRAP(0); return -ENOENT; } static void u32_destroy(struct tcf_proto *tp) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *root_ht = xchg(&tp->root, NULL); BUG_TRAP(root_ht != NULL); if (root_ht && --root_ht->refcnt == 0) u32_destroy_hnode(tp, root_ht); if (--tp_c->refcnt == 0) { struct tc_u_hnode *ht; struct tc_u_common **tp_cp; for (tp_cp = &u32_list; *tp_cp; tp_cp = &(*tp_cp)->next) { if (*tp_cp == tp_c) { *tp_cp = tp_c->next; break; } } for (ht=tp_c->hlist; ht; ht = ht->next) u32_clear_hnode(tp, ht); while ((ht = tp_c->hlist) != NULL) { tp_c->hlist = ht->next; BUG_TRAP(ht->refcnt == 0); kfree(ht); }; kfree(tp_c); } tp->data = NULL; } static int u32_delete(struct tcf_proto *tp, unsigned long arg) { struct tc_u_hnode *ht = (struct tc_u_hnode*)arg; if (ht == NULL) return 0; if (TC_U32_KEY(ht->handle)) return u32_delete_key(tp, (struct tc_u_knode*)ht); if (tp->root == ht) return -EINVAL; if (--ht->refcnt == 0) u32_destroy_hnode(tp, ht); return 0; } static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle) { struct tc_u_knode *n; unsigned i = 0x7FF; for (n=ht->ht[TC_U32_HASH(handle)]; n; n = n->next) if (i < TC_U32_NODE(n->handle)) i = TC_U32_NODE(n->handle); i++; return handle|(i>0xFFF ? 0xFFF : i); } static int u32_set_parms(struct tcf_proto *tp, unsigned long base, struct tc_u_hnode *ht, struct tc_u_knode *n, struct rtattr **tb, struct rtattr *est) { int err; struct tcf_exts e; err = tcf_exts_validate(tp, tb, est, &e, &u32_ext_map); if (err < 0) return err; err = -EINVAL; if (tb[TCA_U32_LINK-1]) { u32 handle = *(u32*)RTA_DATA(tb[TCA_U32_LINK-1]); struct tc_u_hnode *ht_down = NULL; if (TC_U32_KEY(handle)) goto errout; if (handle) { ht_down = u32_lookup_ht(ht->tp_c, handle); if (ht_down == NULL) goto errout; ht_down->refcnt++; } tcf_tree_lock(tp); ht_down = xchg(&n->ht_down, ht_down); tcf_tree_unlock(tp); if (ht_down) ht_down->refcnt--; } if (tb[TCA_U32_CLASSID-1]) { n->res.classid = *(u32*)RTA_DATA(tb[TCA_U32_CLASSID-1]); tcf_bind_filter(tp, &n->res, base); } #ifdef CONFIG_NET_CLS_IND if (tb[TCA_U32_INDEV-1]) { int err = tcf_change_indev(tp, n->indev, tb[TCA_U32_INDEV-1]); if (err < 0) goto errout; } #endif tcf_exts_change(tp, &n->exts, &e); return 0; errout: tcf_exts_destroy(tp, &e); return err; } static int u32_change(struct tcf_proto *tp, unsigned long base, u32 handle, struct rtattr **tca, unsigned long *arg) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *ht; struct tc_u_knode *n; struct tc_u32_sel *s; struct rtattr *opt = tca[TCA_OPTIONS-1]; struct rtattr *tb[TCA_U32_MAX]; u32 htid; int err; if (opt == NULL) return handle ? -EINVAL : 0; if (rtattr_parse_nested(tb, TCA_U32_MAX, opt) < 0) return -EINVAL; if ((n = (struct tc_u_knode*)*arg) != NULL) { if (TC_U32_KEY(n->handle) == 0) return -EINVAL; return u32_set_parms(tp, base, n->ht_up, n, tb, tca[TCA_RATE-1]); } if (tb[TCA_U32_DIVISOR-1]) { unsigned divisor = *(unsigned*)RTA_DATA(tb[TCA_U32_DIVISOR-1]); if (--divisor > 0x100) return -EINVAL; if (TC_U32_KEY(handle)) return -EINVAL; if (handle == 0) { handle = gen_new_htid(tp->data); if (handle == 0) return -ENOMEM; } ht = kmalloc(sizeof(*ht) + divisor*sizeof(void*), GFP_KERNEL); if (ht == NULL) return -ENOBUFS; memset(ht, 0, sizeof(*ht) + divisor*sizeof(void*)); ht->tp_c = tp_c; ht->refcnt = 0; ht->divisor = divisor; ht->handle = handle; ht->prio = tp->prio; ht->next = tp_c->hlist; tp_c->hlist = ht; *arg = (unsigned long)ht; return 0; } if (tb[TCA_U32_HASH-1]) { htid = *(unsigned*)RTA_DATA(tb[TCA_U32_HASH-1]); if (TC_U32_HTID(htid) == TC_U32_ROOT) { ht = tp->root; htid = ht->handle; } else { ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid)); if (ht == NULL) return -EINVAL; } } else { ht = tp->root; htid = ht->handle; } if (ht->divisor < TC_U32_HASH(htid)) return -EINVAL; if (handle) { if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid)) return -EINVAL; handle = htid | TC_U32_NODE(handle); } else handle = gen_new_kid(ht, htid); if (tb[TCA_U32_SEL-1] == 0 || RTA_PAYLOAD(tb[TCA_U32_SEL-1]) < sizeof(struct tc_u32_sel)) return -EINVAL; s = RTA_DATA(tb[TCA_U32_SEL-1]); n = kmalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL); if (n == NULL) return -ENOBUFS; memset(n, 0, sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key)); #ifdef CONFIG_CLS_U32_PERF n->pf = kmalloc(sizeof(struct tc_u32_pcnt) + s->nkeys*sizeof(u64), GFP_KERNEL); if (n->pf == NULL) { kfree(n); return -ENOBUFS; } memset(n->pf, 0, sizeof(struct tc_u32_pcnt) + s->nkeys*sizeof(u64)); #endif memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key)); n->ht_up = ht; n->handle = handle; { u8 i = 0; u32 mask = s->hmask; if (mask) { while (!(mask & 1)) { i++; mask>>=1; } } n->fshift = i; } #ifdef CONFIG_CLS_U32_MARK if (tb[TCA_U32_MARK-1]) { struct tc_u32_mark *mark; if (RTA_PAYLOAD(tb[TCA_U32_MARK-1]) < sizeof(struct tc_u32_mark)) { #ifdef CONFIG_CLS_U32_PERF kfree(n->pf); #endif kfree(n); return -EINVAL; } mark = RTA_DATA(tb[TCA_U32_MARK-1]); memcpy(&n->mark, mark, sizeof(struct tc_u32_mark)); n->mark.success = 0; } #endif err = u32_set_parms(tp, base, ht, n, tb, tca[TCA_RATE-1]); if (err == 0) { struct tc_u_knode **ins; for (ins = &ht->ht[TC_U32_HASH(handle)]; *ins; ins = &(*ins)->next) if (TC_U32_NODE(handle) < TC_U32_NODE((*ins)->handle)) break; n->next = *ins; wmb(); *ins = n; *arg = (unsigned long)n; return 0; } #ifdef CONFIG_CLS_U32_PERF kfree(n->pf); #endif kfree(n); return err; } static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg) { struct tc_u_common *tp_c = tp->data; struct tc_u_hnode *ht; struct tc_u_knode *n; unsigned h; if (arg->stop) return; for (ht = tp_c->hlist; ht; ht = ht->next) { if (ht->prio != tp->prio) continue; if (arg->count >= arg->skip) { if (arg->fn(tp, (unsigned long)ht, arg) < 0) { arg->stop = 1; return; } } arg->count++; for (h = 0; h <= ht->divisor; h++) { for (n = ht->ht[h]; n; n = n->next) { if (arg->count < arg->skip) { arg->count++; continue; } if (arg->fn(tp, (unsigned long)n, arg) < 0) { arg->stop = 1; return; } arg->count++; } } } } static int u32_dump(struct tcf_proto *tp, unsigned long fh, struct sk_buff *skb, struct tcmsg *t) { struct tc_u_knode *n = (struct tc_u_knode*)fh; unsigned char *b = skb->tail; struct rtattr *rta; if (n == NULL) return skb->len; t->tcm_handle = n->handle; rta = (struct rtattr*)b; RTA_PUT(skb, TCA_OPTIONS, 0, NULL); if (TC_U32_KEY(n->handle) == 0) { struct tc_u_hnode *ht = (struct tc_u_hnode*)fh; u32 divisor = ht->divisor+1; RTA_PUT(skb, TCA_U32_DIVISOR, 4, &divisor); } else { RTA_PUT(skb, TCA_U32_SEL, sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key), &n->sel); if (n->ht_up) { u32 htid = n->handle & 0xFFFFF000; RTA_PUT(skb, TCA_U32_HASH, 4, &htid); } if (n->res.classid) RTA_PUT(skb, TCA_U32_CLASSID, 4, &n->res.classid); if (n->ht_down) RTA_PUT(skb, TCA_U32_LINK, 4, &n->ht_down->handle); #ifdef CONFIG_CLS_U32_MARK if (n->mark.val || n->mark.mask) RTA_PUT(skb, TCA_U32_MARK, sizeof(n->mark), &n->mark); #endif if (tcf_exts_dump(skb, &n->exts, &u32_ext_map) < 0) goto rtattr_failure; #ifdef CONFIG_NET_CLS_IND if(strlen(n->indev)) RTA_PUT(skb, TCA_U32_INDEV, IFNAMSIZ, n->indev); #endif #ifdef CONFIG_CLS_U32_PERF RTA_PUT(skb, TCA_U32_PCNT, sizeof(struct tc_u32_pcnt) + n->sel.nkeys*sizeof(u64), n->pf); #endif } rta->rta_len = skb->tail - b; if (TC_U32_KEY(n->handle)) if (tcf_exts_dump_stats(skb, &n->exts, &u32_ext_map) < 0) goto rtattr_failure; return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } static struct tcf_proto_ops cls_u32_ops = { .next = NULL, .kind = "u32", .classify = u32_classify, .init = u32_init, .destroy = u32_destroy, .get = u32_get, .put = u32_put, .change = u32_change, .delete = u32_delete, .walk = u32_walk, .dump = u32_dump, .owner = THIS_MODULE, }; static int __init init_u32(void) { printk("u32 classifier\n"); #ifdef CONFIG_CLS_U32_PERF printk(" Perfomance counters on\n"); #endif #ifdef CONFIG_NET_CLS_POLICE printk(" OLD policer on \n"); #endif #ifdef CONFIG_NET_CLS_IND printk(" input device check on \n"); #endif #ifdef CONFIG_NET_CLS_ACT printk(" Actions configured \n"); #endif return register_tcf_proto_ops(&cls_u32_ops); } static void __exit exit_u32(void) { unregister_tcf_proto_ops(&cls_u32_ops); } module_init(init_u32) module_exit(exit_u32) MODULE_LICENSE("GPL");