/* SCTP kernel reference Implementation * (C) Copyright IBM Corp. 2001, 2004 * Copyright (c) 1999-2000 Cisco, Inc. * Copyright (c) 1999-2001 Motorola, Inc. * Copyright (c) 2001-2003 Intel Corp. * Copyright (c) 2001-2002 Nokia, Inc. * Copyright (c) 2001 La Monte H.P. Yarroll * * This file is part of the SCTP kernel reference Implementation * * These functions interface with the sockets layer to implement the * SCTP Extensions for the Sockets API. * * Note that the descriptions from the specification are USER level * functions--this file is the functions which populate the struct proto * for SCTP which is the BOTTOM of the sockets interface. * * The SCTP reference implementation is free software; * you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * The SCTP reference implementation is distributed in the hope that it * will be useful, but WITHOUT ANY WARRANTY; without even the implied * ************************ * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU CC; see the file COPYING. If not, write to * the Free Software Foundation, 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. * * Please send any bug reports or fixes you make to the * email address(es): * lksctp developers * * Or submit a bug report through the following website: * http://www.sf.net/projects/lksctp * * Written or modified by: * La Monte H.P. Yarroll * Narasimha Budihal * Karl Knutson * Jon Grimm * Xingang Guo * Daisy Chang * Sridhar Samudrala * Inaky Perez-Gonzalez * Ardelle Fan * Ryan Layer * Anup Pemmaiah * Kevin Gao * * Any bugs reported given to us we will try to fix... any fixes shared will * be incorporated into the next SCTP release. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for sa_family_t */ #include #include #include /* WARNING: Please do not remove the SCTP_STATIC attribute to * any of the functions below as they are used to export functions * used by a project regression testsuite. */ /* Forward declarations for internal helper functions. */ static int sctp_writeable(struct sock *sk); static void sctp_wfree(struct sk_buff *skb); static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, size_t msg_len); static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); static int sctp_wait_for_accept(struct sock *sk, long timeo); static void sctp_wait_for_close(struct sock *sk, long timeo); static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, union sctp_addr *addr, int len); static int sctp_bindx_add(struct sock *, struct sockaddr *, int); static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); static int sctp_send_asconf(struct sctp_association *asoc, struct sctp_chunk *chunk); static int sctp_do_bind(struct sock *, union sctp_addr *, int); static int sctp_autobind(struct sock *sk); static void sctp_sock_migrate(struct sock *, struct sock *, struct sctp_association *, sctp_socket_type_t); static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; extern struct kmem_cache *sctp_bucket_cachep; /* Get the sndbuf space available at the time on the association. */ static inline int sctp_wspace(struct sctp_association *asoc) { struct sock *sk = asoc->base.sk; int amt = 0; if (asoc->ep->sndbuf_policy) { /* make sure that no association uses more than sk_sndbuf */ amt = sk->sk_sndbuf - asoc->sndbuf_used; } else { /* do socket level accounting */ amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); } if (amt < 0) amt = 0; return amt; } /* Increment the used sndbuf space count of the corresponding association by * the size of the outgoing data chunk. * Also, set the skb destructor for sndbuf accounting later. * * Since it is always 1-1 between chunk and skb, and also a new skb is always * allocated for chunk bundling in sctp_packet_transmit(), we can use the * destructor in the data chunk skb for the purpose of the sndbuf space * tracking. */ static inline void sctp_set_owner_w(struct sctp_chunk *chunk) { struct sctp_association *asoc = chunk->asoc; struct sock *sk = asoc->base.sk; /* The sndbuf space is tracked per association. */ sctp_association_hold(asoc); skb_set_owner_w(chunk->skb, sk); chunk->skb->destructor = sctp_wfree; /* Save the chunk pointer in skb for sctp_wfree to use later. */ *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + sizeof(struct sk_buff) + sizeof(struct sctp_chunk); atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); } /* Verify that this is a valid address. */ static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, int len) { struct sctp_af *af; /* Verify basic sockaddr. */ af = sctp_sockaddr_af(sctp_sk(sk), addr, len); if (!af) return -EINVAL; /* Is this a valid SCTP address? */ if (!af->addr_valid(addr, sctp_sk(sk), NULL)) return -EINVAL; if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) return -EINVAL; return 0; } /* Look up the association by its id. If this is not a UDP-style * socket, the ID field is always ignored. */ struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) { struct sctp_association *asoc = NULL; /* If this is not a UDP-style socket, assoc id should be ignored. */ if (!sctp_style(sk, UDP)) { /* Return NULL if the socket state is not ESTABLISHED. It * could be a TCP-style listening socket or a socket which * hasn't yet called connect() to establish an association. */ if (!sctp_sstate(sk, ESTABLISHED)) return NULL; /* Get the first and the only association from the list. */ if (!list_empty(&sctp_sk(sk)->ep->asocs)) asoc = list_entry(sctp_sk(sk)->ep->asocs.next, struct sctp_association, asocs); return asoc; } /* Otherwise this is a UDP-style socket. */ if (!id || (id == (sctp_assoc_t)-1)) return NULL; spin_lock_bh(&sctp_assocs_id_lock); asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); spin_unlock_bh(&sctp_assocs_id_lock); if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) return NULL; return asoc; } /* Look up the transport from an address and an assoc id. If both address and * id are specified, the associations matching the address and the id should be * the same. */ static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, struct sockaddr_storage *addr, sctp_assoc_t id) { struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; struct sctp_transport *transport; union sctp_addr *laddr = (union sctp_addr *)addr; addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, laddr, &transport); if (!addr_asoc) return NULL; id_asoc = sctp_id2assoc(sk, id); if (id_asoc && (id_asoc != addr_asoc)) return NULL; sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), (union sctp_addr *)addr); return transport; } /* API 3.1.2 bind() - UDP Style Syntax * The syntax of bind() is, * * ret = bind(int sd, struct sockaddr *addr, int addrlen); * * sd - the socket descriptor returned by socket(). * addr - the address structure (struct sockaddr_in or struct * sockaddr_in6 [RFC 2553]), * addr_len - the size of the address structure. */ SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) { int retval = 0; sctp_lock_sock(sk); SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", sk, addr, addr_len); /* Disallow binding twice. */ if (!sctp_sk(sk)->ep->base.bind_addr.port) retval = sctp_do_bind(sk, (union sctp_addr *)addr, addr_len); else retval = -EINVAL; sctp_release_sock(sk); return retval; } static long sctp_get_port_local(struct sock *, union sctp_addr *); /* Verify this is a valid sockaddr. */ static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, union sctp_addr *addr, int len) { struct sctp_af *af; /* Check minimum size. */ if (len < sizeof (struct sockaddr)) return NULL; /* Does this PF support this AF? */ if (!opt->pf->af_supported(addr->sa.sa_family, opt)) return NULL; /* If we get this far, af is valid. */ af = sctp_get_af_specific(addr->sa.sa_family); if (len < af->sockaddr_len) return NULL; return af; } /* Bind a local address either to an endpoint or to an association. */ SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; struct sctp_bind_addr *bp = &ep->base.bind_addr; struct sctp_af *af; unsigned short snum; int ret = 0; /* Common sockaddr verification. */ af = sctp_sockaddr_af(sp, addr, len); if (!af) { SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", sk, addr, len); return -EINVAL; } snum = ntohs(addr->v4.sin_port); SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", ", port: %d, new port: %d, len: %d)\n", sk, addr, bp->port, snum, len); /* PF specific bind() address verification. */ if (!sp->pf->bind_verify(sp, addr)) return -EADDRNOTAVAIL; /* We must either be unbound, or bind to the same port. * It's OK to allow 0 ports if we are already bound. * We'll just inhert an already bound port in this case */ if (bp->port) { if (!snum) snum = bp->port; else if (snum != bp->port) { SCTP_DEBUG_PRINTK("sctp_do_bind:" " New port %d does not match existing port " "%d.\n", snum, bp->port); return -EINVAL; } } if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) return -EACCES; /* Make sure we are allowed to bind here. * The function sctp_get_port_local() does duplicate address * detection. */ if ((ret = sctp_get_port_local(sk, addr))) { if (ret == (long) sk) { /* This endpoint has a conflicting address. */ return -EINVAL; } else { return -EADDRINUSE; } } /* Refresh ephemeral port. */ if (!bp->port) bp->port = inet_sk(sk)->num; /* Add the address to the bind address list. */ sctp_local_bh_disable(); sctp_write_lock(&ep->base.addr_lock); /* Use GFP_ATOMIC since BHs are disabled. */ ret = sctp_add_bind_addr(bp, addr, 1, GFP_ATOMIC); sctp_write_unlock(&ep->base.addr_lock); sctp_local_bh_enable(); /* Copy back into socket for getsockname() use. */ if (!ret) { inet_sk(sk)->sport = htons(inet_sk(sk)->num); af->to_sk_saddr(addr, sk); } return ret; } /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks * * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged * at any one time. If a sender, after sending an ASCONF chunk, decides * it needs to transfer another ASCONF Chunk, it MUST wait until the * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a * subsequent ASCONF. Note this restriction binds each side, so at any * time two ASCONF may be in-transit on any given association (one sent * from each endpoint). */ static int sctp_send_asconf(struct sctp_association *asoc, struct sctp_chunk *chunk) { int retval = 0; /* If there is an outstanding ASCONF chunk, queue it for later * transmission. */ if (asoc->addip_last_asconf) { list_add_tail(&chunk->list, &asoc->addip_chunk_list); goto out; } /* Hold the chunk until an ASCONF_ACK is received. */ sctp_chunk_hold(chunk); retval = sctp_primitive_ASCONF(asoc, chunk); if (retval) sctp_chunk_free(chunk); else asoc->addip_last_asconf = chunk; out: return retval; } /* Add a list of addresses as bind addresses to local endpoint or * association. * * Basically run through each address specified in the addrs/addrcnt * array/length pair, determine if it is IPv6 or IPv4 and call * sctp_do_bind() on it. * * If any of them fails, then the operation will be reversed and the * ones that were added will be removed. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) { int cnt; int retval = 0; void *addr_buf; struct sockaddr *sa_addr; struct sctp_af *af; SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", sk, addrs, addrcnt); addr_buf = addrs; for (cnt = 0; cnt < addrcnt; cnt++) { /* The list may contain either IPv4 or IPv6 address; * determine the address length for walking thru the list. */ sa_addr = (struct sockaddr *)addr_buf; af = sctp_get_af_specific(sa_addr->sa_family); if (!af) { retval = -EINVAL; goto err_bindx_add; } retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, af->sockaddr_len); addr_buf += af->sockaddr_len; err_bindx_add: if (retval < 0) { /* Failed. Cleanup the ones that have been added */ if (cnt > 0) sctp_bindx_rem(sk, addrs, cnt); return retval; } } return retval; } /* Send an ASCONF chunk with Add IP address parameters to all the peers of the * associations that are part of the endpoint indicating that a list of local * addresses are added to the endpoint. * * If any of the addresses is already in the bind address list of the * association, we do not send the chunk for that association. But it will not * affect other associations. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_send_asconf_add_ip(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc; struct sctp_bind_addr *bp; struct sctp_chunk *chunk; struct sctp_sockaddr_entry *laddr; union sctp_addr *addr; union sctp_addr saveaddr; void *addr_buf; struct sctp_af *af; struct list_head *pos; struct list_head *p; int i; int retval = 0; if (!sctp_addip_enable) return retval; sp = sctp_sk(sk); ep = sp->ep; SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", __FUNCTION__, sk, addrs, addrcnt); list_for_each(pos, &ep->asocs) { asoc = list_entry(pos, struct sctp_association, asocs); if (!asoc->peer.asconf_capable) continue; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) continue; if (!sctp_state(asoc, ESTABLISHED)) continue; /* Check if any address in the packed array of addresses is * in the bind address list of the association. If so, * do not send the asconf chunk to its peer, but continue with * other associations. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { addr = (union sctp_addr *)addr_buf; af = sctp_get_af_specific(addr->v4.sin_family); if (!af) { retval = -EINVAL; goto out; } if (sctp_assoc_lookup_laddr(asoc, addr)) break; addr_buf += af->sockaddr_len; } if (i < addrcnt) continue; /* Use the first address in bind addr list of association as * Address Parameter of ASCONF CHUNK. */ sctp_read_lock(&asoc->base.addr_lock); bp = &asoc->base.bind_addr; p = bp->address_list.next; laddr = list_entry(p, struct sctp_sockaddr_entry, list); sctp_read_unlock(&asoc->base.addr_lock); chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, addrcnt, SCTP_PARAM_ADD_IP); if (!chunk) { retval = -ENOMEM; goto out; } retval = sctp_send_asconf(asoc, chunk); if (retval) goto out; /* Add the new addresses to the bind address list with * use_as_src set to 0. */ sctp_local_bh_disable(); sctp_write_lock(&asoc->base.addr_lock); addr_buf = addrs; for (i = 0; i < addrcnt; i++) { addr = (union sctp_addr *)addr_buf; af = sctp_get_af_specific(addr->v4.sin_family); memcpy(&saveaddr, addr, af->sockaddr_len); retval = sctp_add_bind_addr(bp, &saveaddr, 0, GFP_ATOMIC); addr_buf += af->sockaddr_len; } sctp_write_unlock(&asoc->base.addr_lock); sctp_local_bh_enable(); } out: return retval; } /* Remove a list of addresses from bind addresses list. Do not remove the * last address. * * Basically run through each address specified in the addrs/addrcnt * array/length pair, determine if it is IPv6 or IPv4 and call * sctp_del_bind() on it. * * If any of them fails, then the operation will be reversed and the * ones that were removed will be added back. * * At least one address has to be left; if only one address is * available, the operation will return -EBUSY. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; int cnt; struct sctp_bind_addr *bp = &ep->base.bind_addr; int retval = 0; void *addr_buf; union sctp_addr *sa_addr; struct sctp_af *af; SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", sk, addrs, addrcnt); addr_buf = addrs; for (cnt = 0; cnt < addrcnt; cnt++) { /* If the bind address list is empty or if there is only one * bind address, there is nothing more to be removed (we need * at least one address here). */ if (list_empty(&bp->address_list) || (sctp_list_single_entry(&bp->address_list))) { retval = -EBUSY; goto err_bindx_rem; } sa_addr = (union sctp_addr *)addr_buf; af = sctp_get_af_specific(sa_addr->sa.sa_family); if (!af) { retval = -EINVAL; goto err_bindx_rem; } if (!af->addr_valid(sa_addr, sp, NULL)) { retval = -EADDRNOTAVAIL; goto err_bindx_rem; } if (sa_addr->v4.sin_port != htons(bp->port)) { retval = -EINVAL; goto err_bindx_rem; } /* FIXME - There is probably a need to check if sk->sk_saddr and * sk->sk_rcv_addr are currently set to one of the addresses to * be removed. This is something which needs to be looked into * when we are fixing the outstanding issues with multi-homing * socket routing and failover schemes. Refer to comments in * sctp_do_bind(). -daisy */ sctp_local_bh_disable(); sctp_write_lock(&ep->base.addr_lock); retval = sctp_del_bind_addr(bp, sa_addr); sctp_write_unlock(&ep->base.addr_lock); sctp_local_bh_enable(); addr_buf += af->sockaddr_len; err_bindx_rem: if (retval < 0) { /* Failed. Add the ones that has been removed back */ if (cnt > 0) sctp_bindx_add(sk, addrs, cnt); return retval; } } return retval; } /* Send an ASCONF chunk with Delete IP address parameters to all the peers of * the associations that are part of the endpoint indicating that a list of * local addresses are removed from the endpoint. * * If any of the addresses is already in the bind address list of the * association, we do not send the chunk for that association. But it will not * affect other associations. * * Only sctp_setsockopt_bindx() is supposed to call this function. */ static int sctp_send_asconf_del_ip(struct sock *sk, struct sockaddr *addrs, int addrcnt) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc; struct sctp_transport *transport; struct sctp_bind_addr *bp; struct sctp_chunk *chunk; union sctp_addr *laddr; void *addr_buf; struct sctp_af *af; struct list_head *pos, *pos1; struct sctp_sockaddr_entry *saddr; int i; int retval = 0; if (!sctp_addip_enable) return retval; sp = sctp_sk(sk); ep = sp->ep; SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", __FUNCTION__, sk, addrs, addrcnt); list_for_each(pos, &ep->asocs) { asoc = list_entry(pos, struct sctp_association, asocs); if (!asoc->peer.asconf_capable) continue; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) continue; if (!sctp_state(asoc, ESTABLISHED)) continue; /* Check if any address in the packed array of addresses is * not present in the bind address list of the association. * If so, do not send the asconf chunk to its peer, but * continue with other associations. */ addr_buf = addrs; for (i = 0; i < addrcnt; i++) { laddr = (union sctp_addr *)addr_buf; af = sctp_get_af_specific(laddr->v4.sin_family); if (!af) { retval = -EINVAL; goto out; } if (!sctp_assoc_lookup_laddr(asoc, laddr)) break; addr_buf += af->sockaddr_len; } if (i < addrcnt) continue; /* Find one address in the association's bind address list * that is not in the packed array of addresses. This is to * make sure that we do not delete all the addresses in the * association. */ sctp_read_lock(&asoc->base.addr_lock); bp = &asoc->base.bind_addr; laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, addrcnt, sp); sctp_read_unlock(&asoc->base.addr_lock); if (!laddr) continue; chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, SCTP_PARAM_DEL_IP); if (!chunk) { retval = -ENOMEM; goto out; } /* Reset use_as_src flag for the addresses in the bind address * list that are to be deleted. */ sctp_local_bh_disable(); sctp_write_lock(&asoc->base.addr_lock); addr_buf = addrs; for (i = 0; i < addrcnt; i++) { laddr = (union sctp_addr *)addr_buf; af = sctp_get_af_specific(laddr->v4.sin_family); list_for_each(pos1, &bp->address_list) { saddr = list_entry(pos1, struct sctp_sockaddr_entry, list); if (sctp_cmp_addr_exact(&saddr->a, laddr)) saddr->use_as_src = 0; } addr_buf += af->sockaddr_len; } sctp_write_unlock(&asoc->base.addr_lock); sctp_local_bh_enable(); /* Update the route and saddr entries for all the transports * as some of the addresses in the bind address list are * about to be deleted and cannot be used as source addresses. */ list_for_each(pos1, &asoc->peer.transport_addr_list) { transport = list_entry(pos1, struct sctp_transport, transports); dst_release(transport->dst); sctp_transport_route(transport, NULL, sctp_sk(asoc->base.sk)); } retval = sctp_send_asconf(asoc, chunk); } out: return retval; } /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() * * API 8.1 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, * int flags); * * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. * If the sd is an IPv6 socket, the addresses passed can either be IPv4 * or IPv6 addresses. * * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see * Section 3.1.2 for this usage. * * addrs is a pointer to an array of one or more socket addresses. Each * address is contained in its appropriate structure (i.e. struct * sockaddr_in or struct sockaddr_in6) the family of the address type * must be used to distinguish the address length (note that this * representation is termed a "packed array" of addresses). The caller * specifies the number of addresses in the array with addrcnt. * * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns * -1, and sets errno to the appropriate error code. * * For SCTP, the port given in each socket address must be the same, or * sctp_bindx() will fail, setting errno to EINVAL. * * The flags parameter is formed from the bitwise OR of zero or more of * the following currently defined flags: * * SCTP_BINDX_ADD_ADDR * * SCTP_BINDX_REM_ADDR * * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given * addresses from the association. The two flags are mutually exclusive; * if both are given, sctp_bindx() will fail with EINVAL. A caller may * not remove all addresses from an association; sctp_bindx() will * reject such an attempt with EINVAL. * * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate * additional addresses with an endpoint after calling bind(). Or use * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening * socket is associated with so that no new association accepted will be * associated with those addresses. If the endpoint supports dynamic * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a * endpoint to send the appropriate message to the peer to change the * peers address lists. * * Adding and removing addresses from a connected association is * optional functionality. Implementations that do not support this * functionality should return EOPNOTSUPP. * * Basically do nothing but copying the addresses from user to kernel * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() * from userspace. * * We don't use copy_from_user() for optimization: we first do the * sanity checks (buffer size -fast- and access check-healthy * pointer); if all of those succeed, then we can alloc the memory * (expensive operation) needed to copy the data to kernel. Then we do * the copying without checking the user space area * (__copy_from_user()). * * On exit there is no need to do sockfd_put(), sys_setsockopt() does * it. * * sk The sk of the socket * addrs The pointer to the addresses in user land * addrssize Size of the addrs buffer * op Operation to perform (add or remove, see the flags of * sctp_bindx) * * Returns 0 if ok, <0 errno code on error. */ SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, struct sockaddr __user *addrs, int addrs_size, int op) { struct sockaddr *kaddrs; int err; int addrcnt = 0; int walk_size = 0; struct sockaddr *sa_addr; void *addr_buf; struct sctp_af *af; SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); if (unlikely(addrs_size <= 0)) return -EINVAL; /* Check the user passed a healthy pointer. */ if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) return -EFAULT; /* Alloc space for the address array in kernel memory. */ kaddrs = kmalloc(addrs_size, GFP_KERNEL); if (unlikely(!kaddrs)) return -ENOMEM; if (__copy_from_user(kaddrs, addrs, addrs_size)) { kfree(kaddrs); return -EFAULT; } /* Walk through the addrs buffer and count the number of addresses. */ addr_buf = kaddrs; while (walk_size < addrs_size) { sa_addr = (struct sockaddr *)addr_buf; af = sctp_get_af_specific(sa_addr->sa_family); /* If the address family is not supported or if this address * causes the address buffer to overflow return EINVAL. */ if (!af || (walk_size + af->sockaddr_len) > addrs_size) { kfree(kaddrs); return -EINVAL; } addrcnt++; addr_buf += af->sockaddr_len; walk_size += af->sockaddr_len; } /* Do the work. */ switch (op) { case SCTP_BINDX_ADD_ADDR: err = sctp_bindx_add(sk, kaddrs, addrcnt); if (err) goto out; err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); break; case SCTP_BINDX_REM_ADDR: err = sctp_bindx_rem(sk, kaddrs, addrcnt); if (err) goto out; err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); break; default: err = -EINVAL; break; } out: kfree(kaddrs); return err; } /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) * * Common routine for handling connect() and sctp_connectx(). * Connect will come in with just a single address. */ static int __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc = NULL; struct sctp_association *asoc2; struct sctp_transport *transport; union sctp_addr to; struct sctp_af *af; sctp_scope_t scope; long timeo; int err = 0; int addrcnt = 0; int walk_size = 0; union sctp_addr *sa_addr; void *addr_buf; unsigned short port; sp = sctp_sk(sk); ep = sp->ep; /* connect() cannot be done on a socket that is already in ESTABLISHED * state - UDP-style peeled off socket or a TCP-style socket that * is already connected. * It cannot be done even on a TCP-style listening socket. */ if (sctp_sstate(sk, ESTABLISHED) || (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { err = -EISCONN; goto out_free; } /* Walk through the addrs buffer and count the number of addresses. */ addr_buf = kaddrs; while (walk_size < addrs_size) { sa_addr = (union sctp_addr *)addr_buf; af = sctp_get_af_specific(sa_addr->sa.sa_family); port = ntohs(sa_addr->v4.sin_port); /* If the address family is not supported or if this address * causes the address buffer to overflow return EINVAL. */ if (!af || (walk_size + af->sockaddr_len) > addrs_size) { err = -EINVAL; goto out_free; } err = sctp_verify_addr(sk, sa_addr, af->sockaddr_len); if (err) goto out_free; /* Make sure the destination port is correctly set * in all addresses. */ if (asoc && asoc->peer.port && asoc->peer.port != port) goto out_free; memcpy(&to, sa_addr, af->sockaddr_len); /* Check if there already is a matching association on the * endpoint (other than the one created here). */ asoc2 = sctp_endpoint_lookup_assoc(ep, sa_addr, &transport); if (asoc2 && asoc2 != asoc) { if (asoc2->state >= SCTP_STATE_ESTABLISHED) err = -EISCONN; else err = -EALREADY; goto out_free; } /* If we could not find a matching association on the endpoint, * make sure that there is no peeled-off association matching * the peer address even on another socket. */ if (sctp_endpoint_is_peeled_off(ep, sa_addr)) { err = -EADDRNOTAVAIL; goto out_free; } if (!asoc) { /* If a bind() or sctp_bindx() is not called prior to * an sctp_connectx() call, the system picks an * ephemeral port and will choose an address set * equivalent to binding with a wildcard address. */ if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) { err = -EAGAIN; goto out_free; } } else { /* * If an unprivileged user inherits a 1-many * style socket with open associations on a * privileged port, it MAY be permitted to * accept new associations, but it SHOULD NOT * be permitted to open new associations. */ if (ep->base.bind_addr.port < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) { err = -EACCES; goto out_free; } } scope = sctp_scope(sa_addr); asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); if (!asoc) { err = -ENOMEM; goto out_free; } } /* Prime the peer's transport structures. */ transport = sctp_assoc_add_peer(asoc, sa_addr, GFP_KERNEL, SCTP_UNKNOWN); if (!transport) { err = -ENOMEM; goto out_free; } addrcnt++; addr_buf += af->sockaddr_len; walk_size += af->sockaddr_len; } err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); if (err < 0) { goto out_free; } err = sctp_primitive_ASSOCIATE(asoc, NULL); if (err < 0) { goto out_free; } /* Initialize sk's dport and daddr for getpeername() */ inet_sk(sk)->dport = htons(asoc->peer.port); af = sctp_get_af_specific(to.sa.sa_family); af->to_sk_daddr(&to, sk); sk->sk_err = 0; timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); err = sctp_wait_for_connect(asoc, &timeo); /* Don't free association on exit. */ asoc = NULL; out_free: SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" " kaddrs: %p err: %d\n", asoc, kaddrs, err); if (asoc) sctp_association_free(asoc); return err; } /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() * * API 8.9 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); * * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. * If the sd is an IPv6 socket, the addresses passed can either be IPv4 * or IPv6 addresses. * * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see * Section 3.1.2 for this usage. * * addrs is a pointer to an array of one or more socket addresses. Each * address is contained in its appropriate structure (i.e. struct * sockaddr_in or struct sockaddr_in6) the family of the address type * must be used to distengish the address length (note that this * representation is termed a "packed array" of addresses). The caller * specifies the number of addresses in the array with addrcnt. * * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns * -1, and sets errno to the appropriate error code. * * For SCTP, the port given in each socket address must be the same, or * sctp_connectx() will fail, setting errno to EINVAL. * * An application can use sctp_connectx to initiate an association with * an endpoint that is multi-homed. Much like sctp_bindx() this call * allows a caller to specify multiple addresses at which a peer can be * reached. The way the SCTP stack uses the list of addresses to set up * the association is implementation dependant. This function only * specifies that the stack will try to make use of all the addresses in * the list when needed. * * Note that the list of addresses passed in is only used for setting up * the association. It does not necessarily equal the set of addresses * the peer uses for the resulting association. If the caller wants to * find out the set of peer addresses, it must use sctp_getpaddrs() to * retrieve them after the association has been set up. * * Basically do nothing but copying the addresses from user to kernel * land and invoking either sctp_connectx(). This is used for tunneling * the sctp_connectx() request through sctp_setsockopt() from userspace. * * We don't use copy_from_user() for optimization: we first do the * sanity checks (buffer size -fast- and access check-healthy * pointer); if all of those succeed, then we can alloc the memory * (expensive operation) needed to copy the data to kernel. Then we do * the copying without checking the user space area * (__copy_from_user()). * * On exit there is no need to do sockfd_put(), sys_setsockopt() does * it. * * sk The sk of the socket * addrs The pointer to the addresses in user land * addrssize Size of the addrs buffer * * Returns 0 if ok, <0 errno code on error. */ SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, struct sockaddr __user *addrs, int addrs_size) { int err = 0; struct sockaddr *kaddrs; SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", __FUNCTION__, sk, addrs, addrs_size); if (unlikely(addrs_size <= 0)) return -EINVAL; /* Check the user passed a healthy pointer. */ if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) return -EFAULT; /* Alloc space for the address array in kernel memory. */ kaddrs = kmalloc(addrs_size, GFP_KERNEL); if (unlikely(!kaddrs)) return -ENOMEM; if (__copy_from_user(kaddrs, addrs, addrs_size)) { err = -EFAULT; } else { err = __sctp_connect(sk, kaddrs, addrs_size); } kfree(kaddrs); return err; } /* API 3.1.4 close() - UDP Style Syntax * Applications use close() to perform graceful shutdown (as described in * Section 10.1 of [SCTP]) on ALL the associations currently represented * by a UDP-style socket. * * The syntax is * * ret = close(int sd); * * sd - the socket descriptor of the associations to be closed. * * To gracefully shutdown a specific association represented by the * UDP-style socket, an application should use the sendmsg() call, * passing no user data, but including the appropriate flag in the * ancillary data (see Section xxxx). * * If sd in the close() call is a branched-off socket representing only * one association, the shutdown is performed on that association only. * * 4.1.6 close() - TCP Style Syntax * * Applications use close() to gracefully close down an association. * * The syntax is: * * int close(int sd); * * sd - the socket descriptor of the association to be closed. * * After an application calls close() on a socket descriptor, no further * socket operations will succeed on that descriptor. * * API 7.1.4 SO_LINGER * * An application using the TCP-style socket can use this option to * perform the SCTP ABORT primitive. The linger option structure is: * * struct linger { * int l_onoff; // option on/off * int l_linger; // linger time * }; * * To enable the option, set l_onoff to 1. If the l_linger value is set * to 0, calling close() is the same as the ABORT primitive. If the * value is set to a negative value, the setsockopt() call will return * an error. If the value is set to a positive value linger_time, the * close() can be blocked for at most linger_time ms. If the graceful * shutdown phase does not finish during this period, close() will * return but the graceful shutdown phase continues in the system. */ SCTP_STATIC void sctp_close(struct sock *sk, long timeout) { struct sctp_endpoint *ep; struct sctp_association *asoc; struct list_head *pos, *temp; SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); sctp_lock_sock(sk); sk->sk_shutdown = SHUTDOWN_MASK; ep = sctp_sk(sk)->ep; /* Walk all associations on an endpoint. */ list_for_each_safe(pos, temp, &ep->asocs) { asoc = list_entry(pos, struct sctp_association, asocs); if (sctp_style(sk, TCP)) { /* A closed association can still be in the list if * it belongs to a TCP-style listening socket that is * not yet accepted. If so, free it. If not, send an * ABORT or SHUTDOWN based on the linger options. */ if (sctp_state(asoc, CLOSED)) { sctp_unhash_established(asoc); sctp_association_free(asoc); continue; } } if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { struct sctp_chunk *chunk; chunk = sctp_make_abort_user(asoc, NULL, 0); if (chunk) sctp_primitive_ABORT(asoc, chunk); } else sctp_primitive_SHUTDOWN(asoc, NULL); } /* Clean up any skbs sitting on the receive queue. */ sctp_queue_purge_ulpevents(&sk->sk_receive_queue); sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); /* On a TCP-style socket, block for at most linger_time if set. */ if (sctp_style(sk, TCP) && timeout) sctp_wait_for_close(sk, timeout); /* This will run the backlog queue. */ sctp_release_sock(sk); /* Supposedly, no process has access to the socket, but * the net layers still may. */ sctp_local_bh_disable(); sctp_bh_lock_sock(sk); /* Hold the sock, since sk_common_release() will put sock_put() * and we have just a little more cleanup. */ sock_hold(sk); sk_common_release(sk); sctp_bh_unlock_sock(sk); sctp_local_bh_enable(); sock_put(sk); SCTP_DBG_OBJCNT_DEC(sock); } /* Handle EPIPE error. */ static int sctp_error(struct sock *sk, int flags, int err) { if (err == -EPIPE) err = sock_error(sk) ? : -EPIPE; if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) send_sig(SIGPIPE, current, 0); return err; } /* API 3.1.3 sendmsg() - UDP Style Syntax * * An application uses sendmsg() and recvmsg() calls to transmit data to * and receive data from its peer. * * ssize_t sendmsg(int socket, const struct msghdr *message, * int flags); * * socket - the socket descriptor of the endpoint. * message - pointer to the msghdr structure which contains a single * user message and possibly some ancillary data. * * See Section 5 for complete description of the data * structures. * * flags - flags sent or received with the user message, see Section * 5 for complete description of the flags. * * Note: This function could use a rewrite especially when explicit * connect support comes in. */ /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t msg_len) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *new_asoc=NULL, *asoc=NULL; struct sctp_transport *transport, *chunk_tp; struct sctp_chunk *chunk; union sctp_addr to; struct sockaddr *msg_name = NULL; struct sctp_sndrcvinfo default_sinfo = { 0 }; struct sctp_sndrcvinfo *sinfo; struct sctp_initmsg *sinit; sctp_assoc_t associd = 0; sctp_cmsgs_t cmsgs = { NULL }; int err; sctp_scope_t scope; long timeo; __u16 sinfo_flags = 0; struct sctp_datamsg *datamsg; struct list_head *pos; int msg_flags = msg->msg_flags; SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", sk, msg, msg_len); err = 0; sp = sctp_sk(sk); ep = sp->ep; SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); /* We cannot send a message over a TCP-style listening socket. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { err = -EPIPE; goto out_nounlock; } /* Parse out the SCTP CMSGs. */ err = sctp_msghdr_parse(msg, &cmsgs); if (err) { SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); goto out_nounlock; } /* Fetch the destination address for this packet. This * address only selects the association--it is not necessarily * the address we will send to. * For a peeled-off socket, msg_name is ignored. */ if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { int msg_namelen = msg->msg_namelen; err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, msg_namelen); if (err) return err; if (msg_namelen > sizeof(to)) msg_namelen = sizeof(to); memcpy(&to, msg->msg_name, msg_namelen); msg_name = msg->msg_name; } sinfo = cmsgs.info; sinit = cmsgs.init; /* Did the user specify SNDRCVINFO? */ if (sinfo) { sinfo_flags = sinfo->sinfo_flags; associd = sinfo->sinfo_assoc_id; } SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", msg_len, sinfo_flags); /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { err = -EINVAL; goto out_nounlock; } /* If SCTP_EOF is set, no data can be sent. Disallow sending zero * length messages when SCTP_EOF|SCTP_ABORT is not set. * If SCTP_ABORT is set, the message length could be non zero with * the msg_iov set to the user abort reason. */ if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { err = -EINVAL; goto out_nounlock; } /* If SCTP_ADDR_OVER is set, there must be an address * specified in msg_name. */ if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { err = -EINVAL; goto out_nounlock; } transport = NULL; SCTP_DEBUG_PRINTK("About to look up association.\n"); sctp_lock_sock(sk); /* If a msg_name has been specified, assume this is to be used. */ if (msg_name) { /* Look for a matching association on the endpoint. */ asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); if (!asoc) { /* If we could not find a matching association on the * endpoint, make sure that it is not a TCP-style * socket that already has an association or there is * no peeled-off association on another socket. */ if ((sctp_style(sk, TCP) && sctp_sstate(sk, ESTABLISHED)) || sctp_endpoint_is_peeled_off(ep, &to)) { err = -EADDRNOTAVAIL; goto out_unlock; } } } else { asoc = sctp_id2assoc(sk, associd); if (!asoc) { err = -EPIPE; goto out_unlock; } } if (asoc) { SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED * socket that has an association in CLOSED state. This can * happen when an accepted socket has an association that is * already CLOSED. */ if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { err = -EPIPE; goto out_unlock; } if (sinfo_flags & SCTP_EOF) { SCTP_DEBUG_PRINTK("Shutting down association: %p\n", asoc); sctp_primitive_SHUTDOWN(asoc, NULL); err = 0; goto out_unlock; } if (sinfo_flags & SCTP_ABORT) { struct sctp_chunk *chunk; chunk = sctp_make_abort_user(asoc, msg, msg_len); if (!chunk) { err = -ENOMEM; goto out_unlock; } SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); sctp_primitive_ABORT(asoc, chunk); err = 0; goto out_unlock; } } /* Do we need to create the association? */ if (!asoc) { SCTP_DEBUG_PRINTK("There is no association yet.\n"); if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { err = -EINVAL; goto out_unlock; } /* Check for invalid stream against the stream counts, * either the default or the user specified stream counts. */ if (sinfo) { if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { /* Check against the defaults. */ if (sinfo->sinfo_stream >= sp->initmsg.sinit_num_ostreams) { err = -EINVAL; goto out_unlock; } } else { /* Check against the requested. */ if (sinfo->sinfo_stream >= sinit->sinit_num_ostreams) { err = -EINVAL; goto out_unlock; } } } /* * API 3.1.2 bind() - UDP Style Syntax * If a bind() or sctp_bindx() is not called prior to a * sendmsg() call that initiates a new association, the * system picks an ephemeral port and will choose an address * set equivalent to binding with a wildcard address. */ if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) { err = -EAGAIN; goto out_unlock; } } else { /* * If an unprivileged user inherits a one-to-many * style socket with open associations on a privileged * port, it MAY be permitted to accept new associations, * but it SHOULD NOT be permitted to open new * associations. */ if (ep->base.bind_addr.port < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) { err = -EACCES; goto out_unlock; } } scope = sctp_scope(&to); new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); if (!new_asoc) { err = -ENOMEM; goto out_unlock; } asoc = new_asoc; /* If the SCTP_INIT ancillary data is specified, set all * the association init values accordingly. */ if (sinit) { if (sinit->sinit_num_ostreams) { asoc->c.sinit_num_ostreams = sinit->sinit_num_ostreams; } if (sinit->sinit_max_instreams) { asoc->c.sinit_max_instreams = sinit->sinit_max_instreams; } if (sinit->sinit_max_attempts) { asoc->max_init_attempts = sinit->sinit_max_attempts; } if (sinit->sinit_max_init_timeo) { asoc->max_init_timeo = msecs_to_jiffies(sinit->sinit_max_init_timeo); } } /* Prime the peer's transport structures. */ transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); if (!transport) { err = -ENOMEM; goto out_free; } err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); if (err < 0) { err = -ENOMEM; goto out_free; } } /* ASSERT: we have a valid association at this point. */ SCTP_DEBUG_PRINTK("We have a valid association.\n"); if (!sinfo) { /* If the user didn't specify SNDRCVINFO, make up one with * some defaults. */ default_sinfo.sinfo_stream = asoc->default_stream; default_sinfo.sinfo_flags = asoc->default_flags; default_sinfo.sinfo_ppid = asoc->default_ppid; default_sinfo.sinfo_context = asoc->default_context; default_sinfo.sinfo_timetolive = asoc->default_timetolive; default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); sinfo = &default_sinfo; } /* API 7.1.7, the sndbuf size per association bounds the * maximum size of data that can be sent in a single send call. */ if (msg_len > sk->sk_sndbuf) { err = -EMSGSIZE; goto out_free; } if (asoc->pmtu_pending) sctp_assoc_pending_pmtu(asoc); /* If fragmentation is disabled and the message length exceeds the * association fragmentation point, return EMSGSIZE. The I-D * does not specify what this error is, but this looks like * a great fit. */ if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { err = -EMSGSIZE; goto out_free; } if (sinfo) { /* Check for invalid stream. */ if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { err = -EINVAL; goto out_free; } } timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); if (!sctp_wspace(asoc)) { err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); if (err) goto out_free; } /* If an address is passed with the sendto/sendmsg call, it is used * to override the primary destination address in the TCP model, or * when SCTP_ADDR_OVER flag is set in the UDP model. */ if ((sctp_style(sk, TCP) && msg_name) || (sinfo_flags & SCTP_ADDR_OVER)) { chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); if (!chunk_tp) { err = -EINVAL; goto out_free; } } else chunk_tp = NULL; /* Auto-connect, if we aren't connected already. */ if (sctp_state(asoc, CLOSED)) { err = sctp_primitive_ASSOCIATE(asoc, NULL); if (err < 0) goto out_free; SCTP_DEBUG_PRINTK("We associated primitively.\n"); } /* Break the message into multiple chunks of maximum size. */ datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); if (!datamsg) { err = -ENOMEM; goto out_free; } /* Now send the (possibly) fragmented message. */ list_for_each(pos, &datamsg->chunks) { chunk = list_entry(pos, struct sctp_chunk, frag_list); sctp_datamsg_track(chunk); /* Do accounting for the write space. */ sctp_set_owner_w(chunk); chunk->transport = chunk_tp; /* Send it to the lower layers. Note: all chunks * must either fail or succeed. The lower layer * works that way today. Keep it that way or this * breaks. */ err = sctp_primitive_SEND(asoc, chunk); /* Did the lower layer accept the chunk? */ if (err) sctp_chunk_free(chunk); SCTP_DEBUG_PRINTK("We sent primitively.\n"); } sctp_datamsg_free(datamsg); if (err) goto out_free; else err = msg_len; /* If we are already past ASSOCIATE, the lower * layers are responsible for association cleanup. */ goto out_unlock; out_free: if (new_asoc) sctp_association_free(asoc); out_unlock: sctp_release_sock(sk); out_nounlock: return sctp_error(sk, msg_flags, err); #if 0 do_sock_err: if (msg_len) err = msg_len; else err = sock_error(sk); goto out; do_interrupted: if (msg_len) err = msg_len; goto out; #endif /* 0 */ } /* This is an extended version of skb_pull() that removes the data from the * start of a skb even when data is spread across the list of skb's in the * frag_list. len specifies the total amount of data that needs to be removed. * when 'len' bytes could be removed from the skb, it returns 0. * If 'len' exceeds the total skb length, it returns the no. of bytes that * could not be removed. */ static int sctp_skb_pull(struct sk_buff *skb, int len) { struct sk_buff *list; int skb_len = skb_headlen(skb); int rlen; if (len <= skb_len) { __skb_pull(skb, len); return 0; } len -= skb_len; __skb_pull(skb, skb_len); for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { rlen = sctp_skb_pull(list, len); skb->len -= (len-rlen); skb->data_len -= (len-rlen); if (!rlen) return 0; len = rlen; } return len; } /* API 3.1.3 recvmsg() - UDP Style Syntax * * ssize_t recvmsg(int socket, struct msghdr *message, * int flags); * * socket - the socket descriptor of the endpoint. * message - pointer to the msghdr structure which contains a single * user message and possibly some ancillary data. * * See Section 5 for complete description of the data * structures. * * flags - flags sent or received with the user message, see Section * 5 for complete description of the flags. */ static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len) { struct sctp_ulpevent *event = NULL; struct sctp_sock *sp = sctp_sk(sk); struct sk_buff *skb; int copied; int err = 0; int skb_len; SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, "len", len, "knoblauch", noblock, "flags", flags, "addr_len", addr_len); sctp_lock_sock(sk); if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { err = -ENOTCONN; goto out; } skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); if (!skb) goto out; /* Get the total length of the skb including any skb's in the * frag_list. */ skb_len = skb->len; copied = skb_len; if (copied > len) copied = len; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); event = sctp_skb2event(skb); if (err) goto out_free; sock_recv_timestamp(msg, sk, skb); if (sctp_ulpevent_is_notification(event)) { msg->msg_flags |= MSG_NOTIFICATION; sp->pf->event_msgname(event, msg->msg_name, addr_len); } else { sp->pf->skb_msgname(skb, msg->msg_name, addr_len); } /* Check if we allow SCTP_SNDRCVINFO. */ if (sp->subscribe.sctp_data_io_event) sctp_ulpevent_read_sndrcvinfo(event, msg); #if 0 /* FIXME: we should be calling IP/IPv6 layers. */ if (sk->sk_protinfo.af_inet.cmsg_flags) ip_cmsg_recv(msg, skb); #endif err = copied; /* If skb's length exceeds the user's buffer, update the skb and * push it back to the receive_queue so that the next call to * recvmsg() will return the remaining data. Don't set MSG_EOR. */ if (skb_len > copied) { msg->msg_flags &= ~MSG_EOR; if (flags & MSG_PEEK) goto out_free; sctp_skb_pull(skb, copied); skb_queue_head(&sk->sk_receive_queue, skb); /* When only partial message is copied to the user, increase * rwnd by that amount. If all the data in the skb is read, * rwnd is updated when the event is freed. */ sctp_assoc_rwnd_increase(event->asoc, copied); goto out; } else if ((event->msg_flags & MSG_NOTIFICATION) || (event->msg_flags & MSG_EOR)) msg->msg_flags |= MSG_EOR; else msg->msg_flags &= ~MSG_EOR; out_free: if (flags & MSG_PEEK) { /* Release the skb reference acquired after peeking the skb in * sctp_skb_recv_datagram(). */ kfree_skb(skb); } else { /* Free the event which includes releasing the reference to * the owner of the skb, freeing the skb and updating the * rwnd. */ sctp_ulpevent_free(event); } out: sctp_release_sock(sk); return err; } /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) * * This option is a on/off flag. If enabled no SCTP message * fragmentation will be performed. Instead if a message being sent * exceeds the current PMTU size, the message will NOT be sent and * instead a error will be indicated to the user. */ static int sctp_setsockopt_disable_fragments(struct sock *sk, char __user *optval, int optlen) { int val; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; return 0; } static int sctp_setsockopt_events(struct sock *sk, char __user *optval, int optlen) { if (optlen != sizeof(struct sctp_event_subscribe)) return -EINVAL; if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) return -EFAULT; return 0; } /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) * * This socket option is applicable to the UDP-style socket only. When * set it will cause associations that are idle for more than the * specified number of seconds to automatically close. An association * being idle is defined an association that has NOT sent or received * user data. The special value of '0' indicates that no automatic * close of any associations should be performed. The option expects an * integer defining the number of seconds of idle time before an * association is closed. */ static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, int optlen) { struct sctp_sock *sp = sctp_sk(sk); /* Applicable to UDP-style socket only */ if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (optlen != sizeof(int)) return -EINVAL; if (copy_from_user(&sp->autoclose, optval, optlen)) return -EFAULT; return 0; } /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) * * Applications can enable or disable heartbeats for any peer address of * an association, modify an address's heartbeat interval, force a * heartbeat to be sent immediately, and adjust the address's maximum * number of retransmissions sent before an address is considered * unreachable. The following structure is used to access and modify an * address's parameters: * * struct sctp_paddrparams { * sctp_assoc_t spp_assoc_id; * struct sockaddr_storage spp_address; * uint32_t spp_hbinterval; * uint16_t spp_pathmaxrxt; * uint32_t spp_pathmtu; * uint32_t spp_sackdelay; * uint32_t spp_flags; * }; * * spp_assoc_id - (one-to-many style socket) This is filled in the * application, and identifies the association for * this query. * spp_address - This specifies which address is of interest. * spp_hbinterval - This contains the value of the heartbeat interval, * in milliseconds. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmaxrxt - This contains the maximum number of * retransmissions before this address shall be * considered unreachable. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmtu - When Path MTU discovery is disabled the value * specified here will be the "fixed" path mtu. * Note that if the spp_address field is empty * then all associations on this address will * have this fixed path mtu set upon them. * * spp_sackdelay - When delayed sack is enabled, this value specifies * the number of milliseconds that sacks will be delayed * for. This value will apply to all addresses of an * association if the spp_address field is empty. Note * also, that if delayed sack is enabled and this * value is set to 0, no change is made to the last * recorded delayed sack timer value. * * spp_flags - These flags are used to control various features * on an association. The flag field may contain * zero or more of the following options. * * SPP_HB_ENABLE - Enable heartbeats on the * specified address. Note that if the address * field is empty all addresses for the association * have heartbeats enabled upon them. * * SPP_HB_DISABLE - Disable heartbeats on the * speicifed address. Note that if the address * field is empty all addresses for the association * will have their heartbeats disabled. Note also * that SPP_HB_ENABLE and SPP_HB_DISABLE are * mutually exclusive, only one of these two should * be specified. Enabling both fields will have * undetermined results. * * SPP_HB_DEMAND - Request a user initiated heartbeat * to be made immediately. * * SPP_HB_TIME_IS_ZERO - Specify's that the time for * heartbeat delayis to be set to the value of 0 * milliseconds. * * SPP_PMTUD_ENABLE - This field will enable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. * * SPP_PMTUD_DISABLE - This field will disable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. Not also that * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually * exclusive. Enabling both will have undetermined * results. * * SPP_SACKDELAY_ENABLE - Setting this flag turns * on delayed sack. The time specified in spp_sackdelay * is used to specify the sack delay for this address. Note * that if spp_address is empty then all addresses will * enable delayed sack and take on the sack delay * value specified in spp_sackdelay. * SPP_SACKDELAY_DISABLE - Setting this flag turns * off delayed sack. If the spp_address field is blank then * delayed sack is disabled for the entire association. Note * also that this field is mutually exclusive to * SPP_SACKDELAY_ENABLE, setting both will have undefined * results. */ static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params, struct sctp_transport *trans, struct sctp_association *asoc, struct sctp_sock *sp, int hb_change, int pmtud_change, int sackdelay_change) { int error; if (params->spp_flags & SPP_HB_DEMAND && trans) { error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); if (error) return error; } /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of * this field is ignored. Note also that a value of zero indicates * the current setting should be left unchanged. */ if (params->spp_flags & SPP_HB_ENABLE) { /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is * set. This lets us use 0 value when this flag * is set. */ if (params->spp_flags & SPP_HB_TIME_IS_ZERO) params->spp_hbinterval = 0; if (params->spp_hbinterval || (params->spp_flags & SPP_HB_TIME_IS_ZERO)) { if (trans) { trans->hbinterval = msecs_to_jiffies(params->spp_hbinterval); } else if (asoc) { asoc->hbinterval = msecs_to_jiffies(params->spp_hbinterval); } else { sp->hbinterval = params->spp_hbinterval; } } } if (hb_change) { if (trans) { trans->param_flags = (trans->param_flags & ~SPP_HB) | hb_change; } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_HB) | hb_change; } else { sp->param_flags = (sp->param_flags & ~SPP_HB) | hb_change; } } /* When Path MTU discovery is disabled the value specified here will * be the "fixed" path mtu (i.e. the value of the spp_flags field must * include the flag SPP_PMTUD_DISABLE for this field to have any * effect). */ if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) { if (trans) { trans->pathmtu = params->spp_pathmtu; sctp_assoc_sync_pmtu(asoc); } else if (asoc) { asoc->pathmtu = params->spp_pathmtu; sctp_frag_point(sp, params->spp_pathmtu); } else { sp->pathmtu = params->spp_pathmtu; } } if (pmtud_change) { if (trans) { int update = (trans->param_flags & SPP_PMTUD_DISABLE) && (params->spp_flags & SPP_PMTUD_ENABLE); trans->param_flags = (trans->param_flags & ~SPP_PMTUD) | pmtud_change; if (update) { sctp_transport_pmtu(trans); sctp_assoc_sync_pmtu(asoc); } } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_PMTUD) | pmtud_change; } else { sp->param_flags = (sp->param_flags & ~SPP_PMTUD) | pmtud_change; } } /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the * value of this field is ignored. Note also that a value of zero * indicates the current setting should be left unchanged. */ if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) { if (trans) { trans->sackdelay = msecs_to_jiffies(params->spp_sackdelay); } else if (asoc) { asoc->sackdelay = msecs_to_jiffies(params->spp_sackdelay); } else { sp->sackdelay = params->spp_sackdelay; } } if (sackdelay_change) { if (trans) { trans->param_flags = (trans->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } else if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } else { sp->param_flags = (sp->param_flags & ~SPP_SACKDELAY) | sackdelay_change; } } /* Note that unless the spp_flag is set to SPP_PMTUD_ENABLE the value * of this field is ignored. Note also that a value of zero * indicates the current setting should be left unchanged. */ if ((params->spp_flags & SPP_PMTUD_ENABLE) && params->spp_pathmaxrxt) { if (trans) { trans->pathmaxrxt = params->spp_pathmaxrxt; } else if (asoc) { asoc->pathmaxrxt = params->spp_pathmaxrxt; } else { sp->pathmaxrxt = params->spp_pathmaxrxt; } } return 0; } static int sctp_setsockopt_peer_addr_params(struct sock *sk, char __user *optval, int optlen) { struct sctp_paddrparams params; struct sctp_transport *trans = NULL; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); int error; int hb_change, pmtud_change, sackdelay_change; if (optlen != sizeof(struct sctp_paddrparams)) return - EINVAL; if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; /* Validate flags and value parameters. */ hb_change = params.spp_flags & SPP_HB; pmtud_change = params.spp_flags & SPP_PMTUD; sackdelay_change = params.spp_flags & SPP_SACKDELAY; if (hb_change == SPP_HB || pmtud_change == SPP_PMTUD || sackdelay_change == SPP_SACKDELAY || params.spp_sackdelay > 500 || (params.spp_pathmtu && params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT)) return -EINVAL; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { trans = sctp_addr_id2transport(sk, ¶ms.spp_address, params.spp_assoc_id); if (!trans) return -EINVAL; } /* Get association, if assoc_id != 0 and the socket is a one * to many style socket, and an association was not found, then * the id was invalid. */ asoc = sctp_id2assoc(sk, params.spp_assoc_id); if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) return -EINVAL; /* Heartbeat demand can only be sent on a transport or * association, but not a socket. */ if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc) return -EINVAL; /* Process parameters. */ error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, hb_change, pmtud_change, sackdelay_change); if (error) return error; /* If changes are for association, also apply parameters to each * transport. */ if (!trans && asoc) { struct list_head *pos; list_for_each(pos, &asoc->peer.transport_addr_list) { trans = list_entry(pos, struct sctp_transport, transports); sctp_apply_peer_addr_params(¶ms, trans, asoc, sp, hb_change, pmtud_change, sackdelay_change); } } return 0; } /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) * * This options will get or set the delayed ack timer. The time is set * in milliseconds. If the assoc_id is 0, then this sets or gets the * endpoints default delayed ack timer value. If the assoc_id field is * non-zero, then the set or get effects the specified association. * * struct sctp_assoc_value { * sctp_assoc_t assoc_id; * uint32_t assoc_value; * }; * * assoc_id - This parameter, indicates which association the * user is preforming an action upon. Note that if * this field's value is zero then the endpoints * default value is changed (effecting future * associations only). * * assoc_value - This parameter contains the number of milliseconds * that the user is requesting the delayed ACK timer * be set to. Note that this value is defined in * the standard to be between 200 and 500 milliseconds. * * Note: a value of zero will leave the value alone, * but disable SACK delay. A non-zero value will also * enable SACK delay. */ static int sctp_setsockopt_delayed_ack_time(struct sock *sk, char __user *optval, int optlen) { struct sctp_assoc_value params; struct sctp_transport *trans = NULL; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); if (optlen != sizeof(struct sctp_assoc_value)) return - EINVAL; if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; /* Validate value parameter. */ if (params.assoc_value > 500) return -EINVAL; /* Get association, if assoc_id != 0 and the socket is a one * to many style socket, and an association was not found, then * the id was invalid. */ asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id && sctp_style(sk, UDP)) return -EINVAL; if (params.assoc_value) { if (asoc) { asoc->sackdelay = msecs_to_jiffies(params.assoc_value); asoc->param_flags = (asoc->param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; } else { sp->sackdelay = params.assoc_value; sp->param_flags = (sp->param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; } } else { if (asoc) { asoc->param_flags = (asoc->param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; } else { sp->param_flags = (sp->param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; } } /* If change is for association, also apply to each transport. */ if (asoc) { struct list_head *pos; list_for_each(pos, &asoc->peer.transport_addr_list) { trans = list_entry(pos, struct sctp_transport, transports); if (params.assoc_value) { trans->sackdelay = msecs_to_jiffies(params.assoc_value); trans->param_flags = (trans->param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE; } else { trans->param_flags = (trans->param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE; } } } return 0; } /* 7.1.3 Initialization Parameters (SCTP_INITMSG) * * Applications can specify protocol parameters for the default association * initialization. The option name argument to setsockopt() and getsockopt() * is SCTP_INITMSG. * * Setting initialization parameters is effective only on an unconnected * socket (for UDP-style sockets only future associations are effected * by the change). With TCP-style sockets, this option is inherited by * sockets derived from a listener socket. */ static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) { struct sctp_initmsg sinit; struct sctp_sock *sp = sctp_sk(sk); if (optlen != sizeof(struct sctp_initmsg)) return -EINVAL; if (copy_from_user(&sinit, optval, optlen)) return -EFAULT; if (sinit.sinit_num_ostreams) sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; if (sinit.sinit_max_instreams) sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; if (sinit.sinit_max_attempts) sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; if (sinit.sinit_max_init_timeo) sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; return 0; } /* * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) * * Applications that wish to use the sendto() system call may wish to * specify a default set of parameters that would normally be supplied * through the inclusion of ancillary data. This socket option allows * such an application to set the default sctp_sndrcvinfo structure. * The application that wishes to use this socket option simply passes * in to this call the sctp_sndrcvinfo structure defined in Section * 5.2.2) The input parameters accepted by this call include * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, * sinfo_timetolive. The user must provide the sinfo_assoc_id field in * to this call if the caller is using the UDP model. */ static int sctp_setsockopt_default_send_param(struct sock *sk, char __user *optval, int optlen) { struct sctp_sndrcvinfo info; struct sctp_association *asoc; struct sctp_sock *sp = sctp_sk(sk); if (optlen != sizeof(struct sctp_sndrcvinfo)) return -EINVAL; if (copy_from_user(&info, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { asoc->default_stream = info.sinfo_stream; asoc->default_flags = info.sinfo_flags; asoc->default_ppid = info.sinfo_ppid; asoc->default_context = info.sinfo_context; asoc->default_timetolive = info.sinfo_timetolive; } else { sp->default_stream = info.sinfo_stream; sp->default_flags = info.sinfo_flags; sp->default_ppid = info.sinfo_ppid; sp->default_context = info.sinfo_context; sp->default_timetolive = info.sinfo_timetolive; } return 0; } /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) * * Requests that the local SCTP stack use the enclosed peer address as * the association primary. The enclosed address must be one of the * association peer's addresses. */ static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, int optlen) { struct sctp_prim prim; struct sctp_transport *trans; if (optlen != sizeof(struct sctp_prim)) return -EINVAL; if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) return -EFAULT; trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); if (!trans) return -EINVAL; sctp_assoc_set_primary(trans->asoc, trans); return 0; } /* * 7.1.5 SCTP_NODELAY * * Turn on/off any Nagle-like algorithm. This means that packets are * generally sent as soon as possible and no unnecessary delays are * introduced, at the cost of more packets in the network. Expects an * integer boolean flag. */ static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, int optlen) { int val; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; return 0; } /* * * 7.1.1 SCTP_RTOINFO * * The protocol parameters used to initialize and bound retransmission * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access * and modify these parameters. * All parameters are time values, in milliseconds. A value of 0, when * modifying the parameters, indicates that the current value should not * be changed. * */ static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { struct sctp_rtoinfo rtoinfo; struct sctp_association *asoc; if (optlen != sizeof (struct sctp_rtoinfo)) return -EINVAL; if (copy_from_user(&rtoinfo, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); /* Set the values to the specific association */ if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { if (rtoinfo.srto_initial != 0) asoc->rto_initial = msecs_to_jiffies(rtoinfo.srto_initial); if (rtoinfo.srto_max != 0) asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); if (rtoinfo.srto_min != 0) asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); } else { /* If there is no association or the association-id = 0 * set the values to the endpoint. */ struct sctp_sock *sp = sctp_sk(sk); if (rtoinfo.srto_initial != 0) sp->rtoinfo.srto_initial = rtoinfo.srto_initial; if (rtoinfo.srto_max != 0) sp->rtoinfo.srto_max = rtoinfo.srto_max; if (rtoinfo.srto_min != 0) sp->rtoinfo.srto_min = rtoinfo.srto_min; } return 0; } /* * * 7.1.2 SCTP_ASSOCINFO * * This option is used to tune the maximum retransmission attempts * of the association. * Returns an error if the new association retransmission value is * greater than the sum of the retransmission value of the peer. * See [SCTP] for more information. * */ static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) { struct sctp_assocparams assocparams; struct sctp_association *asoc; if (optlen != sizeof(struct sctp_assocparams)) return -EINVAL; if (copy_from_user(&assocparams, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) return -EINVAL; /* Set the values to the specific association */ if (asoc) { if (assocparams.sasoc_asocmaxrxt != 0) { __u32 path_sum = 0; int paths = 0; struct list_head *pos; struct sctp_transport *peer_addr; list_for_each(pos, &asoc->peer.transport_addr_list) { peer_addr = list_entry(pos, struct sctp_transport, transports); path_sum += peer_addr->pathmaxrxt; paths++; } /* Only validate asocmaxrxt if we have more then * one path/transport. We do this because path * retransmissions are only counted when we have more * then one path. */ if (paths > 1 && assocparams.sasoc_asocmaxrxt > path_sum) return -EINVAL; asoc->max_retrans = assocparams.sasoc_asocmaxrxt; } if (assocparams.sasoc_cookie_life != 0) { asoc->cookie_life.tv_sec = assocparams.sasoc_cookie_life / 1000; asoc->cookie_life.tv_usec = (assocparams.sasoc_cookie_life % 1000) * 1000; } } else { /* Set the values to the endpoint */ struct sctp_sock *sp = sctp_sk(sk); if (assocparams.sasoc_asocmaxrxt != 0) sp->assocparams.sasoc_asocmaxrxt = assocparams.sasoc_asocmaxrxt; if (assocparams.sasoc_cookie_life != 0) sp->assocparams.sasoc_cookie_life = assocparams.sasoc_cookie_life; } return 0; } /* * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) * * This socket option is a boolean flag which turns on or off mapped V4 * addresses. If this option is turned on and the socket is type * PF_INET6, then IPv4 addresses will be mapped to V6 representation. * If this option is turned off, then no mapping will be done of V4 * addresses and a user will receive both PF_INET6 and PF_INET type * addresses on the socket. */ static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) { int val; struct sctp_sock *sp = sctp_sk(sk); if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; if (val) sp->v4mapped = 1; else sp->v4mapped = 0; return 0; } /* * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) * * This socket option specifies the maximum size to put in any outgoing * SCTP chunk. If a message is larger than this size it will be * fragmented by SCTP into the specified size. Note that the underlying * SCTP implementation may fragment into smaller sized chunks when the * PMTU of the underlying association is smaller than the value set by * the user. */ static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) { struct sctp_association *asoc; struct list_head *pos; struct sctp_sock *sp = sctp_sk(sk); int val; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) return -EINVAL; sp->user_frag = val; /* Update the frag_point of the existing associations. */ list_for_each(pos, &(sp->ep->asocs)) { asoc = list_entry(pos, struct sctp_association, asocs); asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); } return 0; } /* * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) * * Requests that the peer mark the enclosed address as the association * primary. The enclosed address must be one of the association's * locally bound addresses. The following structure is used to make a * set primary request: */ static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, int optlen) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sctp_association *asoc = NULL; struct sctp_setpeerprim prim; struct sctp_chunk *chunk; int err; sp = sctp_sk(sk); ep = sp->ep; if (!sctp_addip_enable) return -EPERM; if (optlen != sizeof(struct sctp_setpeerprim)) return -EINVAL; if (copy_from_user(&prim, optval, optlen)) return -EFAULT; asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); if (!asoc) return -EINVAL; if (!asoc->peer.asconf_capable) return -EPERM; if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) return -EPERM; if (!sctp_state(asoc, ESTABLISHED)) return -ENOTCONN; if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) return -EADDRNOTAVAIL; /* Create an ASCONF chunk with SET_PRIMARY parameter */ chunk = sctp_make_asconf_set_prim(asoc, (union sctp_addr *)&prim.sspp_addr); if (!chunk) return -ENOMEM; err = sctp_send_asconf(asoc, chunk); SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); return err; } static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval, int optlen) { struct sctp_setadaptation adaptation; if (optlen != sizeof(struct sctp_setadaptation)) return -EINVAL; if (copy_from_user(&adaptation, optval, optlen)) return -EFAULT; sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind; return 0; } /* * 7.1.29. Set or Get the default context (SCTP_CONTEXT) * * The context field in the sctp_sndrcvinfo structure is normally only * used when a failed message is retrieved holding the value that was * sent down on the actual send call. This option allows the setting of * a default context on an association basis that will be received on * reading messages from the peer. This is especially helpful in the * one-2-many model for an application to keep some reference to an * internal state machine that is processing messages on the * association. Note that the setting of this value only effects * received messages from the peer and does not effect the value that is * saved with outbound messages. */ static int sctp_setsockopt_context(struct sock *sk, char __user *optval, int optlen) { struct sctp_assoc_value params; struct sctp_sock *sp; struct sctp_association *asoc; if (optlen != sizeof(struct sctp_assoc_value)) return -EINVAL; if (copy_from_user(¶ms, optval, optlen)) return -EFAULT; sp = sctp_sk(sk); if (params.assoc_id != 0) { asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc) return -EINVAL; asoc->default_rcv_context = params.assoc_value; } else { sp->default_rcv_context = params.assoc_value; } return 0; } /* * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) * * This options will at a minimum specify if the implementation is doing * fragmented interleave. Fragmented interleave, for a one to many * socket, is when subsequent calls to receive a message may return * parts of messages from different associations. Some implementations * may allow you to turn this value on or off. If so, when turned off, * no fragment interleave will occur (which will cause a head of line * blocking amongst multiple associations sharing the same one to many * socket). When this option is turned on, then each receive call may * come from a different association (thus the user must receive data * with the extended calls (e.g. sctp_recvmsg) to keep track of which * association each receive belongs to. * * This option takes a boolean value. A non-zero value indicates that * fragmented interleave is on. A value of zero indicates that * fragmented interleave is off. * * Note that it is important that an implementation that allows this * option to be turned on, have it off by default. Otherwise an unaware * application using the one to many model may become confused and act * incorrectly. */ static int sctp_setsockopt_fragment_interleave(struct sock *sk, char __user *optval, int optlen) { int val; if (optlen != sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1; return 0; } /* * 7.1.25. Set or Get the sctp partial delivery point * (SCTP_PARTIAL_DELIVERY_POINT) * This option will set or get the SCTP partial delivery point. This * point is the size of a message where the partial delivery API will be * invoked to help free up rwnd space for the peer. Setting this to a * lower value will cause partial delivery's to happen more often. The * calls argument is an integer that sets or gets the partial delivery * point. */ static int sctp_setsockopt_partial_delivery_point(struct sock *sk, char __user *optval, int optlen) { u32 val; if (optlen != sizeof(u32)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; sctp_sk(sk)->pd_point = val; return 0; /* is this the right error code? */ } /* * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) * * This option will allow a user to change the maximum burst of packets * that can be emitted by this association. Note that the default value * is 4, and some implementations may restrict this setting so that it * can only be lowered. * * NOTE: This text doesn't seem right. Do this on a socket basis with * future associations inheriting the socket value. */ static int sctp_setsockopt_maxburst(struct sock *sk, char __user *optval, int optlen) { int val; if (optlen != sizeof(int)) return -EINVAL; if (get_user(val, (int __user *)optval)) return -EFAULT; if (val < 0) return -EINVAL; sctp_sk(sk)->max_burst = val; return 0; } /* API 6.2 setsockopt(), getsockopt() * * Applications use setsockopt() and getsockopt() to set or retrieve * socket options. Socket options are used to change the default * behavior of sockets calls. They are described in Section 7. * * The syntax is: * * ret = getsockopt(int sd, int level, int optname, void __user *optval, * int __user *optlen); * ret = setsockopt(int sd, int level, int optname, const void __user *optval, * int optlen); * * sd - the socket descript. * level - set to IPPROTO_SCTP for all SCTP options. * optname - the option name. * optval - the buffer to store the value of the option. * optlen - the size of the buffer. */ SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, int optlen) { int retval = 0; SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", sk, optname); /* I can hardly begin to describe how wrong this is. This is * so broken as to be worse than useless. The API draft * REALLY is NOT helpful here... I am not convinced that the * semantics of setsockopt() with a level OTHER THAN SOL_SCTP * are at all well-founded. */ if (level != SOL_SCTP) { struct sctp_af *af = sctp_sk(sk)->pf->af; retval = af->setsockopt(sk, level, optname, optval, optlen); goto out_nounlock; } sctp_lock_sock(sk); switch (optname) { case SCTP_SOCKOPT_BINDX_ADD: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, optlen, SCTP_BINDX_ADD_ADDR); break; case SCTP_SOCKOPT_BINDX_REM: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, optlen, SCTP_BINDX_REM_ADDR); break; case SCTP_SOCKOPT_CONNECTX: /* 'optlen' is the size of the addresses buffer. */ retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, optlen); break; case SCTP_DISABLE_FRAGMENTS: retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); break; case SCTP_EVENTS: retval = sctp_setsockopt_events(sk, optval, optlen); break; case SCTP_AUTOCLOSE: retval = sctp_setsockopt_autoclose(sk, optval, optlen); break; case SCTP_PEER_ADDR_PARAMS: retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); break; case SCTP_DELAYED_ACK_TIME: retval = sctp_setsockopt_delayed_ack_time(sk, optval, optlen); break; case SCTP_PARTIAL_DELIVERY_POINT: retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen); break; case SCTP_INITMSG: retval = sctp_setsockopt_initmsg(sk, optval, optlen); break; case SCTP_DEFAULT_SEND_PARAM: retval = sctp_setsockopt_default_send_param(sk, optval, optlen); break; case SCTP_PRIMARY_ADDR: retval = sctp_setsockopt_primary_addr(sk, optval, optlen); break; case SCTP_SET_PEER_PRIMARY_ADDR: retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); break; case SCTP_NODELAY: retval = sctp_setsockopt_nodelay(sk, optval, optlen); break; case SCTP_RTOINFO: retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); break; case SCTP_ASSOCINFO: retval = sctp_setsockopt_associnfo(sk, optval, optlen); break; case SCTP_I_WANT_MAPPED_V4_ADDR: retval = sctp_setsockopt_mappedv4(sk, optval, optlen); break; case SCTP_MAXSEG: retval = sctp_setsockopt_maxseg(sk, optval, optlen); break; case SCTP_ADAPTATION_LAYER: retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen); break; case SCTP_CONTEXT: retval = sctp_setsockopt_context(sk, optval, optlen); break; case SCTP_FRAGMENT_INTERLEAVE: retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen); break; case SCTP_MAX_BURST: retval = sctp_setsockopt_maxburst(sk, optval, optlen); break; default: retval = -ENOPROTOOPT; break; } sctp_release_sock(sk); out_nounlock: return retval; } /* API 3.1.6 connect() - UDP Style Syntax * * An application may use the connect() call in the UDP model to initiate an * association without sending data. * * The syntax is: * * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); * * sd: the socket descriptor to have a new association added to. * * nam: the address structure (either struct sockaddr_in or struct * sockaddr_in6 defined in RFC2553 [7]). * * len: the size of the address. */ SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, int addr_len) { int err = 0; struct sctp_af *af; sctp_lock_sock(sk); SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", __FUNCTION__, sk, addr, addr_len); /* Validate addr_len before calling common connect/connectx routine. */ af = sctp_get_af_specific(addr->sa_family); if (!af || addr_len < af->sockaddr_len) { err = -EINVAL; } else { /* Pass correct addr len to common routine (so it knows there * is only one address being passed. */ err = __sctp_connect(sk, addr, af->sockaddr_len); } sctp_release_sock(sk); return err; } /* FIXME: Write comments. */ SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) { return -EOPNOTSUPP; /* STUB */ } /* 4.1.4 accept() - TCP Style Syntax * * Applications use accept() call to remove an established SCTP * association from the accept queue of the endpoint. A new socket * descriptor will be returned from accept() to represent the newly * formed association. */ SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) { struct sctp_sock *sp; struct sctp_endpoint *ep; struct sock *newsk = NULL; struct sctp_association *asoc; long timeo; int error = 0; sctp_lock_sock(sk); sp = sctp_sk(sk); ep = sp->ep; if (!sctp_style(sk, TCP)) { error = -EOPNOTSUPP; goto out; } if (!sctp_sstate(sk, LISTENING)) { error = -EINVAL; goto out; } timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); error = sctp_wait_for_accept(sk, timeo); if (error) goto out; /* We treat the list of associations on the endpoint as the accept * queue and pick the first association on the list. */ asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); newsk = sp->pf->create_accept_sk(sk, asoc); if (!newsk) { error = -ENOMEM; goto out; } /* Populate the fields of the newsk from the oldsk and migrate the * asoc to the newsk. */ sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); out: sctp_release_sock(sk); *err = error; return newsk; } /* The SCTP ioctl handler. */ SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) { return -ENOIOCTLCMD; } /* This is the function which gets called during socket creation to * initialized the SCTP-specific portion of the sock. * The sock structure should already be zero-filled memory. */ SCTP_STATIC int sctp_init_sock(struct sock *sk) { struct sctp_endpoint *ep; struct sctp_sock *sp; SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); sp = sctp_sk(sk); /* Initialize the SCTP per socket area. */ switch (sk->sk_type) { case SOCK_SEQPACKET: sp->type = SCTP_SOCKET_UDP; break; case SOCK_STREAM: sp->type = SCTP_SOCKET_TCP; break; default: return -ESOCKTNOSUPPORT; } /* Initialize default send parameters. These parameters can be * modified with the SCTP_DEFAULT_SEND_PARAM socket option. */ sp->default_stream = 0; sp->default_ppid = 0; sp->default_flags = 0; sp->default_context = 0; sp->default_timetolive = 0; sp->default_rcv_context = 0; sp->max_burst = sctp_max_burst; /* Initialize default setup parameters. These parameters * can be modified with the SCTP_INITMSG socket option or * overridden by the SCTP_INIT CMSG. */ sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; sp->initmsg.sinit_max_instreams = sctp_max_instreams; sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; sp->initmsg.sinit_max_init_timeo = sctp_rto_max; /* Initialize default RTO related parameters. These parameters can * be modified for with the SCTP_RTOINFO socket option. */ sp->rtoinfo.srto_initial = sctp_rto_initial; sp->rtoinfo.srto_max = sctp_rto_max; sp->rtoinfo.srto_min = sctp_rto_min; /* Initialize default association related parameters. These parameters * can be modified with the SCTP_ASSOCINFO socket option. */ sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; sp->assocparams.sasoc_number_peer_destinations = 0; sp->assocparams.sasoc_peer_rwnd = 0; sp->assocparams.sasoc_local_rwnd = 0; sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life; /* Initialize default event subscriptions. By default, all the * options are off. */ memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); /* Default Peer Address Parameters. These defaults can * be modified via SCTP_PEER_ADDR_PARAMS */ sp->hbinterval = sctp_hb_interval; sp->pathmaxrxt = sctp_max_retrans_path; sp->pathmtu = 0; // allow default discovery sp->sackdelay = sctp_sack_timeout; sp->param_flags = SPP_HB_ENABLE | SPP_PMTUD_ENABLE | SPP_SACKDELAY_ENABLE; /* If enabled no SCTP message fragmentation will be performed. * Configure through SCTP_DISABLE_FRAGMENTS socket option. */ sp->disable_fragments = 0; /* Enable Nagle algorithm by default. */ sp->nodelay = 0; /* Enable by default. */ sp->v4mapped = 1; /* Auto-close idle associations after the configured * number of seconds. A value of 0 disables this * feature. Configure through the SCTP_AUTOCLOSE socket option, * for UDP-style sockets only. */ sp->autoclose = 0; /* User specified fragmentation limit. */ sp->user_frag = 0; sp->adaptation_ind = 0; sp->pf = sctp_get_pf_specific(sk->sk_family); /* Control variables for partial data delivery. */ atomic_set(&sp->pd_mode, 0); skb_queue_head_init(&sp->pd_lobby); sp->frag_interleave = 0; /* Create a per socket endpoint structure. Even if we * change the data structure relationships, this may still * be useful for storing pre-connect address information. */ ep = sctp_endpoint_new(sk, GFP_KERNEL); if (!ep) return -ENOMEM; sp->ep = ep; sp->hmac = NULL; SCTP_DBG_OBJCNT_INC(sock); return 0; } /* Cleanup any SCTP per socket resources. */ SCTP_STATIC int sctp_destroy_sock(struct sock *sk) { struct sctp_endpoint *ep; SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); /* Release our hold on the endpoint. */ ep = sctp_sk(sk)->ep; sctp_endpoint_free(ep); return 0; } /* API 4.1.7 shutdown() - TCP Style Syntax * int shutdown(int socket, int how); * * sd - the socket descriptor of the association to be closed. * how - Specifies the type of shutdown. The values are * as follows: * SHUT_RD * Disables further receive operations. No SCTP * protocol action is taken. * SHUT_WR * Disables further send operations, and initiates * the SCTP shutdown sequence. * SHUT_RDWR * Disables further send and receive operations * and initiates the SCTP shutdown sequence. */ SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) { struct sctp_endpoint *ep; struct sctp_association *asoc; if (!sctp_style(sk, TCP)) return; if (how & SEND_SHUTDOWN) { ep = sctp_sk(sk)->ep; if (!list_empty(&ep->asocs)) { asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); sctp_primitive_SHUTDOWN(asoc, NULL); } } } /* 7.2.1 Association Status (SCTP_STATUS) * Applications can retrieve current status information about an * association, including association state, peer receiver window size, * number of unacked data chunks, and number of data chunks pending * receipt. This information is read-only. */ static int sctp_getsockopt_sctp_status(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_status status; struct sctp_association *asoc = NULL; struct sctp_transport *transport; sctp_assoc_t associd; int retval = 0; if (len < sizeof(status)) { retval = -EINVAL; goto out; } len = sizeof(status); if (copy_from_user(&status, optval, len)) { retval = -EFAULT; goto out; } associd = status.sstat_assoc_id; asoc = sctp_id2assoc(sk, associd); if (!asoc) { retval = -EINVAL; goto out; } transport = asoc->peer.primary_path; status.sstat_assoc_id = sctp_assoc2id(asoc); status.sstat_state = asoc->state; status.sstat_rwnd = asoc->peer.rwnd; status.sstat_unackdata = asoc->unack_data; status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); status.sstat_instrms = asoc->c.sinit_max_instreams; status.sstat_outstrms = asoc->c.sinit_num_ostreams; status.sstat_fragmentation_point = asoc->frag_point; status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr, transport->af_specific->sockaddr_len); /* Map ipv4 address into v4-mapped-on-v6 address. */ sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), (union sctp_addr *)&status.sstat_primary.spinfo_address); status.sstat_primary.spinfo_state = transport->state; status.sstat_primary.spinfo_cwnd = transport->cwnd; status.sstat_primary.spinfo_srtt = transport->srtt; status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); status.sstat_primary.spinfo_mtu = transport->pathmtu; if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) status.sstat_primary.spinfo_state = SCTP_ACTIVE; if (put_user(len, optlen)) { retval = -EFAULT; goto out; } SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", len, status.sstat_state, status.sstat_rwnd, status.sstat_assoc_id); if (copy_to_user(optval, &status, len)) { retval = -EFAULT; goto out; } out: return (retval); } /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) * * Applications can retrieve information about a specific peer address * of an association, including its reachability state, congestion * window, and retransmission timer values. This information is * read-only. */ static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_paddrinfo pinfo; struct sctp_transport *transport; int retval = 0; if (len < sizeof(pinfo)) { retval = -EINVAL; goto out; } len = sizeof(pinfo); if (copy_from_user(&pinfo, optval, len)) { retval = -EFAULT; goto out; } transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, pinfo.spinfo_assoc_id); if (!transport) return -EINVAL; pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); pinfo.spinfo_state = transport->state; pinfo.spinfo_cwnd = transport->cwnd; pinfo.spinfo_srtt = transport->srtt; pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); pinfo.spinfo_mtu = transport->pathmtu; if (pinfo.spinfo_state == SCTP_UNKNOWN) pinfo.spinfo_state = SCTP_ACTIVE; if (put_user(len, optlen)) { retval = -EFAULT; goto out; } if (copy_to_user(optval, &pinfo, len)) { retval = -EFAULT; goto out; } out: return (retval); } /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) * * This option is a on/off flag. If enabled no SCTP message * fragmentation will be performed. Instead if a message being sent * exceeds the current PMTU size, the message will NOT be sent and * instead a error will be indicated to the user. */ static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = (sctp_sk(sk)->disable_fragments == 1); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) * * This socket option is used to specify various notifications and * ancillary data the user wishes to receive. */ static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, int __user *optlen) { if (len < sizeof(struct sctp_event_subscribe)) return -EINVAL; len = sizeof(struct sctp_event_subscribe); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) return -EFAULT; return 0; } /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) * * This socket option is applicable to the UDP-style socket only. When * set it will cause associations that are idle for more than the * specified number of seconds to automatically close. An association * being idle is defined an association that has NOT sent or received * user data. The special value of '0' indicates that no automatic * close of any associations should be performed. The option expects an * integer defining the number of seconds of idle time before an * association is closed. */ static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) { /* Applicable to UDP-style socket only */ if (sctp_style(sk, TCP)) return -EOPNOTSUPP; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int))) return -EFAULT; return 0; } /* Helper routine to branch off an association to a new socket. */ SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, struct socket **sockp) { struct sock *sk = asoc->base.sk; struct socket *sock; struct inet_sock *inetsk; struct sctp_af *af; int err = 0; /* An association cannot be branched off from an already peeled-off * socket, nor is this supported for tcp style sockets. */ if (!sctp_style(sk, UDP)) return -EINVAL; /* Create a new socket. */ err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); if (err < 0) return err; /* Populate the fields of the newsk from the oldsk and migrate the * asoc to the newsk. */ sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); /* Make peeled-off sockets more like 1-1 accepted sockets. * Set the daddr and initialize id to something more random */ af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family); af->to_sk_daddr(&asoc->peer.primary_addr, sk); inetsk = inet_sk(sock->sk); inetsk->id = asoc->next_tsn ^ jiffies; *sockp = sock; return err; } static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) { sctp_peeloff_arg_t peeloff; struct socket *newsock; int retval = 0; struct sctp_association *asoc; if (len < sizeof(sctp_peeloff_arg_t)) return -EINVAL; len = sizeof(sctp_peeloff_arg_t); if (copy_from_user(&peeloff, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, peeloff.associd); if (!asoc) { retval = -EINVAL; goto out; } SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); retval = sctp_do_peeloff(asoc, &newsock); if (retval < 0) goto out; /* Map the socket to an unused fd that can be returned to the user. */ retval = sock_map_fd(newsock); if (retval < 0) { sock_release(newsock); goto out; } SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", __FUNCTION__, sk, asoc, newsock->sk, retval); /* Return the fd mapped to the new socket. */ peeloff.sd = retval; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &peeloff, len)) retval = -EFAULT; out: return retval; } /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) * * Applications can enable or disable heartbeats for any peer address of * an association, modify an address's heartbeat interval, force a * heartbeat to be sent immediately, and adjust the address's maximum * number of retransmissions sent before an address is considered * unreachable. The following structure is used to access and modify an * address's parameters: * * struct sctp_paddrparams { * sctp_assoc_t spp_assoc_id; * struct sockaddr_storage spp_address; * uint32_t spp_hbinterval; * uint16_t spp_pathmaxrxt; * uint32_t spp_pathmtu; * uint32_t spp_sackdelay; * uint32_t spp_flags; * }; * * spp_assoc_id - (one-to-many style socket) This is filled in the * application, and identifies the association for * this query. * spp_address - This specifies which address is of interest. * spp_hbinterval - This contains the value of the heartbeat interval, * in milliseconds. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmaxrxt - This contains the maximum number of * retransmissions before this address shall be * considered unreachable. If a value of zero * is present in this field then no changes are to * be made to this parameter. * spp_pathmtu - When Path MTU discovery is disabled the value * specified here will be the "fixed" path mtu. * Note that if the spp_address field is empty * then all associations on this address will * have this fixed path mtu set upon them. * * spp_sackdelay - When delayed sack is enabled, this value specifies * the number of milliseconds that sacks will be delayed * for. This value will apply to all addresses of an * association if the spp_address field is empty. Note * also, that if delayed sack is enabled and this * value is set to 0, no change is made to the last * recorded delayed sack timer value. * * spp_flags - These flags are used to control various features * on an association. The flag field may contain * zero or more of the following options. * * SPP_HB_ENABLE - Enable heartbeats on the * specified address. Note that if the address * field is empty all addresses for the association * have heartbeats enabled upon them. * * SPP_HB_DISABLE - Disable heartbeats on the * speicifed address. Note that if the address * field is empty all addresses for the association * will have their heartbeats disabled. Note also * that SPP_HB_ENABLE and SPP_HB_DISABLE are * mutually exclusive, only one of these two should * be specified. Enabling both fields will have * undetermined results. * * SPP_HB_DEMAND - Request a user initiated heartbeat * to be made immediately. * * SPP_PMTUD_ENABLE - This field will enable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. * * SPP_PMTUD_DISABLE - This field will disable PMTU * discovery upon the specified address. Note that * if the address feild is empty then all addresses * on the association are effected. Not also that * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually * exclusive. Enabling both will have undetermined * results. * * SPP_SACKDELAY_ENABLE - Setting this flag turns * on delayed sack. The time specified in spp_sackdelay * is used to specify the sack delay for this address. Note * that if spp_address is empty then all addresses will * enable delayed sack and take on the sack delay * value specified in spp_sackdelay. * SPP_SACKDELAY_DISABLE - Setting this flag turns * off delayed sack. If the spp_address field is blank then * delayed sack is disabled for the entire association. Note * also that this field is mutually exclusive to * SPP_SACKDELAY_ENABLE, setting both will have undefined * results. */ static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_paddrparams params; struct sctp_transport *trans = NULL; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(struct sctp_paddrparams)) return -EINVAL; len = sizeof(struct sctp_paddrparams); if (copy_from_user(¶ms, optval, len)) return -EFAULT; /* If an address other than INADDR_ANY is specified, and * no transport is found, then the request is invalid. */ if (!sctp_is_any(( union sctp_addr *)¶ms.spp_address)) { trans = sctp_addr_id2transport(sk, ¶ms.spp_address, params.spp_assoc_id); if (!trans) { SCTP_DEBUG_PRINTK("Failed no transport\n"); return -EINVAL; } } /* Get association, if assoc_id != 0 and the socket is a one * to many style socket, and an association was not found, then * the id was invalid. */ asoc = sctp_id2assoc(sk, params.spp_assoc_id); if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) { SCTP_DEBUG_PRINTK("Failed no association\n"); return -EINVAL; } if (trans) { /* Fetch transport values. */ params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval); params.spp_pathmtu = trans->pathmtu; params.spp_pathmaxrxt = trans->pathmaxrxt; params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay); /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = trans->param_flags; } else if (asoc) { /* Fetch association values. */ params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval); params.spp_pathmtu = asoc->pathmtu; params.spp_pathmaxrxt = asoc->pathmaxrxt; params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay); /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = asoc->param_flags; } else { /* Fetch socket values. */ params.spp_hbinterval = sp->hbinterval; params.spp_pathmtu = sp->pathmtu; params.spp_sackdelay = sp->sackdelay; params.spp_pathmaxrxt = sp->pathmaxrxt; /*draft-11 doesn't say what to return in spp_flags*/ params.spp_flags = sp->param_flags; } if (copy_to_user(optval, ¶ms, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } /* 7.1.23. Delayed Ack Timer (SCTP_DELAYED_ACK_TIME) * * This options will get or set the delayed ack timer. The time is set * in milliseconds. If the assoc_id is 0, then this sets or gets the * endpoints default delayed ack timer value. If the assoc_id field is * non-zero, then the set or get effects the specified association. * * struct sctp_assoc_value { * sctp_assoc_t assoc_id; * uint32_t assoc_value; * }; * * assoc_id - This parameter, indicates which association the * user is preforming an action upon. Note that if * this field's value is zero then the endpoints * default value is changed (effecting future * associations only). * * assoc_value - This parameter contains the number of milliseconds * that the user is requesting the delayed ACK timer * be set to. Note that this value is defined in * the standard to be between 200 and 500 milliseconds. * * Note: a value of zero will leave the value alone, * but disable SACK delay. A non-zero value will also * enable SACK delay. */ static int sctp_getsockopt_delayed_ack_time(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_association *asoc = NULL; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(struct sctp_assoc_value)) return - EINVAL; len = sizeof(struct sctp_assoc_value); if (copy_from_user(¶ms, optval, len)) return -EFAULT; /* Get association, if assoc_id != 0 and the socket is a one * to many style socket, and an association was not found, then * the id was invalid. */ asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc && params.assoc_id && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { /* Fetch association values. */ if (asoc->param_flags & SPP_SACKDELAY_ENABLE) params.assoc_value = jiffies_to_msecs( asoc->sackdelay); else params.assoc_value = 0; } else { /* Fetch socket values. */ if (sp->param_flags & SPP_SACKDELAY_ENABLE) params.assoc_value = sp->sackdelay; else params.assoc_value = 0; } if (copy_to_user(optval, ¶ms, len)) return -EFAULT; if (put_user(len, optlen)) return -EFAULT; return 0; } /* 7.1.3 Initialization Parameters (SCTP_INITMSG) * * Applications can specify protocol parameters for the default association * initialization. The option name argument to setsockopt() and getsockopt() * is SCTP_INITMSG. * * Setting initialization parameters is effective only on an unconnected * socket (for UDP-style sockets only future associations are effected * by the change). With TCP-style sockets, this option is inherited by * sockets derived from a listener socket. */ static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) { if (len < sizeof(struct sctp_initmsg)) return -EINVAL; len = sizeof(struct sctp_initmsg); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) return -EFAULT; return 0; } static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, char __user *optval, int __user *optlen) { sctp_assoc_t id; struct sctp_association *asoc; struct list_head *pos; int cnt = 0; if (len < sizeof(sctp_assoc_t)) return -EINVAL; if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) return -EFAULT; /* For UDP-style sockets, id specifies the association to query. */ asoc = sctp_id2assoc(sk, id); if (!asoc) return -EINVAL; list_for_each(pos, &asoc->peer.transport_addr_list) { cnt ++; } return cnt; } /* * Old API for getting list of peer addresses. Does not work for 32-bit * programs running on a 64-bit kernel */ static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_association *asoc; struct list_head *pos; int cnt = 0; struct sctp_getaddrs_old getaddrs; struct sctp_transport *from; void __user *to; union sctp_addr temp; struct sctp_sock *sp = sctp_sk(sk); int addrlen; if (len < sizeof(struct sctp_getaddrs_old)) return -EINVAL; len = sizeof(struct sctp_getaddrs_old); if (copy_from_user(&getaddrs, optval, len)) return -EFAULT; if (getaddrs.addr_num <= 0) return -EINVAL; /* For UDP-style sockets, id specifies the association to query. */ asoc = sctp_id2assoc(sk, getaddrs.assoc_id); if (!asoc) return -EINVAL; to = (void __user *)getaddrs.addrs; list_for_each(pos, &asoc->peer.transport_addr_list) { from = list_entry(pos, struct sctp_transport, transports); memcpy(&temp, &from->ipaddr, sizeof(temp)); sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; if (copy_to_user(to, &temp, addrlen)) return -EFAULT; to += addrlen ; cnt ++; if (cnt >= getaddrs.addr_num) break; } getaddrs.addr_num = cnt; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &getaddrs, len)) return -EFAULT; return 0; } static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_association *asoc; struct list_head *pos; int cnt = 0; struct sctp_getaddrs getaddrs; struct sctp_transport *from; void __user *to; union sctp_addr temp; struct sctp_sock *sp = sctp_sk(sk); int addrlen; size_t space_left; int bytes_copied; if (len < sizeof(struct sctp_getaddrs)) return -EINVAL; if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) return -EFAULT; /* For UDP-style sockets, id specifies the association to query. */ asoc = sctp_id2assoc(sk, getaddrs.assoc_id); if (!asoc) return -EINVAL; to = optval + offsetof(struct sctp_getaddrs,addrs); space_left = len - offsetof(struct sctp_getaddrs,addrs); list_for_each(pos, &asoc->peer.transport_addr_list) { from = list_entry(pos, struct sctp_transport, transports); memcpy(&temp, &from->ipaddr, sizeof(temp)); sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; if (space_left < addrlen) return -ENOMEM; if (copy_to_user(to, &temp, addrlen)) return -EFAULT; to += addrlen; cnt++; space_left -= addrlen; } if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) return -EFAULT; bytes_copied = ((char __user *)to) - optval; if (put_user(bytes_copied, optlen)) return -EFAULT; return 0; } static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, char __user *optval, int __user *optlen) { sctp_assoc_t id; struct sctp_bind_addr *bp; struct sctp_association *asoc; struct list_head *pos, *temp; struct sctp_sockaddr_entry *addr; rwlock_t *addr_lock; int cnt = 0; if (len < sizeof(sctp_assoc_t)) return -EINVAL; if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) return -EFAULT; /* * For UDP-style sockets, id specifies the association to query. * If the id field is set to the value '0' then the locally bound * addresses are returned without regard to any particular * association. */ if (0 == id) { bp = &sctp_sk(sk)->ep->base.bind_addr; addr_lock = &sctp_sk(sk)->ep->base.addr_lock; } else { asoc = sctp_id2assoc(sk, id); if (!asoc) return -EINVAL; bp = &asoc->base.bind_addr; addr_lock = &asoc->base.addr_lock; } sctp_read_lock(addr_lock); /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid * addresses from the global local address list. */ if (sctp_list_single_entry(&bp->address_list)) { addr = list_entry(bp->address_list.next, struct sctp_sockaddr_entry, list); if (sctp_is_any(&addr->a)) { list_for_each_safe(pos, temp, &sctp_local_addr_list) { addr = list_entry(pos, struct sctp_sockaddr_entry, list); if ((PF_INET == sk->sk_family) && (AF_INET6 == addr->a.sa.sa_family)) continue; cnt++; } } else { cnt = 1; } goto done; } list_for_each(pos, &bp->address_list) { cnt ++; } done: sctp_read_unlock(addr_lock); return cnt; } /* Helper function that copies local addresses to user and returns the number * of addresses copied. */ static int sctp_copy_laddrs_old(struct sock *sk, __u16 port, int max_addrs, void *to, int *bytes_copied) { struct list_head *pos, *next; struct sctp_sockaddr_entry *addr; union sctp_addr temp; int cnt = 0; int addrlen; list_for_each_safe(pos, next, &sctp_local_addr_list) { addr = list_entry(pos, struct sctp_sockaddr_entry, list); if ((PF_INET == sk->sk_family) && (AF_INET6 == addr->a.sa.sa_family)) continue; memcpy(&temp, &addr->a, sizeof(temp)); sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), &temp); addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; memcpy(to, &temp, addrlen); to += addrlen; *bytes_copied += addrlen; cnt ++; if (cnt >= max_addrs) break; } return cnt; } static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to, size_t space_left, int *bytes_copied) { struct list_head *pos, *next; struct sctp_sockaddr_entry *addr; union sctp_addr temp; int cnt = 0; int addrlen; list_for_each_safe(pos, next, &sctp_local_addr_list) { addr = list_entry(pos, struct sctp_sockaddr_entry, list); if ((PF_INET == sk->sk_family) && (AF_INET6 == addr->a.sa.sa_family)) continue; memcpy(&temp, &addr->a, sizeof(temp)); sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), &temp); addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; if (space_left < addrlen) return -ENOMEM; memcpy(to, &temp, addrlen); to += addrlen; cnt ++; space_left -= addrlen; bytes_copied += addrlen; } return cnt; } /* Old API for getting list of local addresses. Does not work for 32-bit * programs running on a 64-bit kernel */ static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_bind_addr *bp; struct sctp_association *asoc; struct list_head *pos; int cnt = 0; struct sctp_getaddrs_old getaddrs; struct sctp_sockaddr_entry *addr; void __user *to; union sctp_addr temp; struct sctp_sock *sp = sctp_sk(sk); int addrlen; rwlock_t *addr_lock; int err = 0; void *addrs; void *buf; int bytes_copied = 0; if (len < sizeof(struct sctp_getaddrs_old)) return -EINVAL; len = sizeof(struct sctp_getaddrs_old); if (copy_from_user(&getaddrs, optval, len)) return -EFAULT; if (getaddrs.addr_num <= 0) return -EINVAL; /* * For UDP-style sockets, id specifies the association to query. * If the id field is set to the value '0' then the locally bound * addresses are returned without regard to any particular * association. */ if (0 == getaddrs.assoc_id) { bp = &sctp_sk(sk)->ep->base.bind_addr; addr_lock = &sctp_sk(sk)->ep->base.addr_lock; } else { asoc = sctp_id2assoc(sk, getaddrs.assoc_id); if (!asoc) return -EINVAL; bp = &asoc->base.bind_addr; addr_lock = &asoc->base.addr_lock; } to = getaddrs.addrs; /* Allocate space for a local instance of packed array to hold all * the data. We store addresses here first and then put write them * to the user in one shot. */ addrs = kmalloc(sizeof(union sctp_addr) * getaddrs.addr_num, GFP_KERNEL); if (!addrs) return -ENOMEM; sctp_read_lock(addr_lock); /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid * addresses from the global local address list. */ if (sctp_list_single_entry(&bp->address_list)) { addr = list_entry(bp->address_list.next, struct sctp_sockaddr_entry, list); if (sctp_is_any(&addr->a)) { cnt = sctp_copy_laddrs_old(sk, bp->port, getaddrs.addr_num, addrs, &bytes_copied); goto copy_getaddrs; } } buf = addrs; list_for_each(pos, &bp->address_list) { addr = list_entry(pos, struct sctp_sockaddr_entry, list); memcpy(&temp, &addr->a, sizeof(temp)); sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; memcpy(buf, &temp, addrlen); buf += addrlen; bytes_copied += addrlen; cnt ++; if (cnt >= getaddrs.addr_num) break; } copy_getaddrs: sctp_read_unlock(addr_lock); /* copy the entire address list into the user provided space */ if (copy_to_user(to, addrs, bytes_copied)) { err = -EFAULT; goto error; } /* copy the leading structure back to user */ getaddrs.addr_num = cnt; if (copy_to_user(optval, &getaddrs, len)) err = -EFAULT; error: kfree(addrs); return err; } static int sctp_getsockopt_local_addrs(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_bind_addr *bp; struct sctp_association *asoc; struct list_head *pos; int cnt = 0; struct sctp_getaddrs getaddrs; struct sctp_sockaddr_entry *addr; void __user *to; union sctp_addr temp; struct sctp_sock *sp = sctp_sk(sk); int addrlen; rwlock_t *addr_lock; int err = 0; size_t space_left; int bytes_copied = 0; void *addrs; void *buf; if (len < sizeof(struct sctp_getaddrs)) return -EINVAL; if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) return -EFAULT; /* * For UDP-style sockets, id specifies the association to query. * If the id field is set to the value '0' then the locally bound * addresses are returned without regard to any particular * association. */ if (0 == getaddrs.assoc_id) { bp = &sctp_sk(sk)->ep->base.bind_addr; addr_lock = &sctp_sk(sk)->ep->base.addr_lock; } else { asoc = sctp_id2assoc(sk, getaddrs.assoc_id); if (!asoc) return -EINVAL; bp = &asoc->base.bind_addr; addr_lock = &asoc->base.addr_lock; } to = optval + offsetof(struct sctp_getaddrs,addrs); space_left = len - offsetof(struct sctp_getaddrs,addrs); addrs = kmalloc(space_left, GFP_KERNEL); if (!addrs) return -ENOMEM; sctp_read_lock(addr_lock); /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid * addresses from the global local address list. */ if (sctp_list_single_entry(&bp->address_list)) { addr = list_entry(bp->address_list.next, struct sctp_sockaddr_entry, list); if (sctp_is_any(&addr->a)) { cnt = sctp_copy_laddrs(sk, bp->port, addrs, space_left, &bytes_copied); if (cnt < 0) { err = cnt; goto error; } goto copy_getaddrs; } } buf = addrs; list_for_each(pos, &bp->address_list) { addr = list_entry(pos, struct sctp_sockaddr_entry, list); memcpy(&temp, &addr->a, sizeof(temp)); sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; if (space_left < addrlen) { err = -ENOMEM; /*fixme: right error?*/ goto error; } memcpy(buf, &temp, addrlen); buf += addrlen; bytes_copied += addrlen; cnt ++; space_left -= addrlen; } copy_getaddrs: sctp_read_unlock(addr_lock); if (copy_to_user(to, addrs, bytes_copied)) { err = -EFAULT; goto error; } if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) { err = -EFAULT; goto error; } if (put_user(bytes_copied, optlen)) err = -EFAULT; error: kfree(addrs); return err; } /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) * * Requests that the local SCTP stack use the enclosed peer address as * the association primary. The enclosed address must be one of the * association peer's addresses. */ static int sctp_getsockopt_primary_addr(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_prim prim; struct sctp_association *asoc; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(struct sctp_prim)) return -EINVAL; len = sizeof(struct sctp_prim); if (copy_from_user(&prim, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); if (!asoc) return -EINVAL; if (!asoc->peer.primary_path) return -ENOTCONN; memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, asoc->peer.primary_path->af_specific->sockaddr_len); sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, (union sctp_addr *)&prim.ssp_addr); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &prim, len)) return -EFAULT; return 0; } /* * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER) * * Requests that the local endpoint set the specified Adaptation Layer * Indication parameter for all future INIT and INIT-ACK exchanges. */ static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_setadaptation adaptation; if (len < sizeof(struct sctp_setadaptation)) return -EINVAL; len = sizeof(struct sctp_setadaptation); adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &adaptation, len)) return -EFAULT; return 0; } /* * * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) * * Applications that wish to use the sendto() system call may wish to * specify a default set of parameters that would normally be supplied * through the inclusion of ancillary data. This socket option allows * such an application to set the default sctp_sndrcvinfo structure. * The application that wishes to use this socket option simply passes * in to this call the sctp_sndrcvinfo structure defined in Section * 5.2.2) The input parameters accepted by this call include * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, * sinfo_timetolive. The user must provide the sinfo_assoc_id field in * to this call if the caller is using the UDP model. * * For getsockopt, it get the default sctp_sndrcvinfo structure. */ static int sctp_getsockopt_default_send_param(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_sndrcvinfo info; struct sctp_association *asoc; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(struct sctp_sndrcvinfo)) return -EINVAL; len = sizeof(struct sctp_sndrcvinfo); if (copy_from_user(&info, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) return -EINVAL; if (asoc) { info.sinfo_stream = asoc->default_stream; info.sinfo_flags = asoc->default_flags; info.sinfo_ppid = asoc->default_ppid; info.sinfo_context = asoc->default_context; info.sinfo_timetolive = asoc->default_timetolive; } else { info.sinfo_stream = sp->default_stream; info.sinfo_flags = sp->default_flags; info.sinfo_ppid = sp->default_ppid; info.sinfo_context = sp->default_context; info.sinfo_timetolive = sp->default_timetolive; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &info, len)) return -EFAULT; return 0; } /* * * 7.1.5 SCTP_NODELAY * * Turn on/off any Nagle-like algorithm. This means that packets are * generally sent as soon as possible and no unnecessary delays are * introduced, at the cost of more packets in the network. Expects an * integer boolean flag. */ static int sctp_getsockopt_nodelay(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = (sctp_sk(sk)->nodelay == 1); if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * * 7.1.1 SCTP_RTOINFO * * The protocol parameters used to initialize and bound retransmission * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access * and modify these parameters. * All parameters are time values, in milliseconds. A value of 0, when * modifying the parameters, indicates that the current value should not * be changed. * */ static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_rtoinfo rtoinfo; struct sctp_association *asoc; if (len < sizeof (struct sctp_rtoinfo)) return -EINVAL; len = sizeof(struct sctp_rtoinfo); if (copy_from_user(&rtoinfo, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) return -EINVAL; /* Values corresponding to the specific association. */ if (asoc) { rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); } else { /* Values corresponding to the endpoint. */ struct sctp_sock *sp = sctp_sk(sk); rtoinfo.srto_initial = sp->rtoinfo.srto_initial; rtoinfo.srto_max = sp->rtoinfo.srto_max; rtoinfo.srto_min = sp->rtoinfo.srto_min; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &rtoinfo, len)) return -EFAULT; return 0; } /* * * 7.1.2 SCTP_ASSOCINFO * * This option is used to tune the maximum retransmission attempts * of the association. * Returns an error if the new association retransmission value is * greater than the sum of the retransmission value of the peer. * See [SCTP] for more information. * */ static int sctp_getsockopt_associnfo(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assocparams assocparams; struct sctp_association *asoc; struct list_head *pos; int cnt = 0; if (len < sizeof (struct sctp_assocparams)) return -EINVAL; len = sizeof(struct sctp_assocparams); if (copy_from_user(&assocparams, optval, len)) return -EFAULT; asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) return -EINVAL; /* Values correspoinding to the specific association */ if (asoc) { assocparams.sasoc_asocmaxrxt = asoc->max_retrans; assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; assocparams.sasoc_local_rwnd = asoc->a_rwnd; assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec * 1000) + (asoc->cookie_life.tv_usec / 1000); list_for_each(pos, &asoc->peer.transport_addr_list) { cnt ++; } assocparams.sasoc_number_peer_destinations = cnt; } else { /* Values corresponding to the endpoint */ struct sctp_sock *sp = sctp_sk(sk); assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; assocparams.sasoc_cookie_life = sp->assocparams.sasoc_cookie_life; assocparams.sasoc_number_peer_destinations = sp->assocparams. sasoc_number_peer_destinations; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &assocparams, len)) return -EFAULT; return 0; } /* * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) * * This socket option is a boolean flag which turns on or off mapped V4 * addresses. If this option is turned on and the socket is type * PF_INET6, then IPv4 addresses will be mapped to V6 representation. * If this option is turned off, then no mapping will be done of V4 * addresses and a user will receive both PF_INET6 and PF_INET type * addresses on the socket. */ static int sctp_getsockopt_mappedv4(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; struct sctp_sock *sp = sctp_sk(sk); if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sp->v4mapped; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.29. Set or Get the default context (SCTP_CONTEXT) * (chapter and verse is quoted at sctp_setsockopt_context()) */ static int sctp_getsockopt_context(struct sock *sk, int len, char __user *optval, int __user *optlen) { struct sctp_assoc_value params; struct sctp_sock *sp; struct sctp_association *asoc; if (len < sizeof(struct sctp_assoc_value)) return -EINVAL; len = sizeof(struct sctp_assoc_value); if (copy_from_user(¶ms, optval, len)) return -EFAULT; sp = sctp_sk(sk); if (params.assoc_id != 0) { asoc = sctp_id2assoc(sk, params.assoc_id); if (!asoc) return -EINVAL; params.assoc_value = asoc->default_rcv_context; } else { params.assoc_value = sp->default_rcv_context; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, ¶ms, len)) return -EFAULT; return 0; } /* * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) * * This socket option specifies the maximum size to put in any outgoing * SCTP chunk. If a message is larger than this size it will be * fragmented by SCTP into the specified size. Note that the underlying * SCTP implementation may fragment into smaller sized chunks when the * PMTU of the underlying association is smaller than the value set by * the user. */ static int sctp_getsockopt_maxseg(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sctp_sk(sk)->user_frag; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE) * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave()) */ static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sctp_sk(sk)->frag_interleave; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* * 7.1.25. Set or Get the sctp partial delivery point * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point()) */ static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len, char __user *optval, int __user *optlen) { u32 val; if (len < sizeof(u32)) return -EINVAL; len = sizeof(u32); val = sctp_sk(sk)->pd_point; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return -ENOTSUPP; } /* * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST) * (chapter and verse is quoted at sctp_setsockopt_maxburst()) */ static int sctp_getsockopt_maxburst(struct sock *sk, int len, char __user *optval, int __user *optlen) { int val; if (len < sizeof(int)) return -EINVAL; len = sizeof(int); val = sctp_sk(sk)->max_burst; if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return -ENOTSUPP; } SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, int __user *optlen) { int retval = 0; int len; SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", sk, optname); /* I can hardly begin to describe how wrong this is. This is * so broken as to be worse than useless. The API draft * REALLY is NOT helpful here... I am not convinced that the * semantics of getsockopt() with a level OTHER THAN SOL_SCTP * are at all well-founded. */ if (level != SOL_SCTP) { struct sctp_af *af = sctp_sk(sk)->pf->af; retval = af->getsockopt(sk, level, optname, optval, optlen); return retval; } if (get_user(len, optlen)) return -EFAULT; sctp_lock_sock(sk); switch (optname) { case SCTP_STATUS: retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); break; case SCTP_DISABLE_FRAGMENTS: retval = sctp_getsockopt_disable_fragments(sk, len, optval, optlen); break; case SCTP_EVENTS: retval = sctp_getsockopt_events(sk, len, optval, optlen); break; case SCTP_AUTOCLOSE: retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); break; case SCTP_SOCKOPT_PEELOFF: retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); break; case SCTP_PEER_ADDR_PARAMS: retval = sctp_getsockopt_peer_addr_params(sk, len, optval, optlen); break; case SCTP_DELAYED_ACK_TIME: retval = sctp_getsockopt_delayed_ack_time(sk, len, optval, optlen); break; case SCTP_INITMSG: retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); break; case SCTP_GET_PEER_ADDRS_NUM_OLD: retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, optlen); break; case SCTP_GET_LOCAL_ADDRS_NUM_OLD: retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, optlen); break; case SCTP_GET_PEER_ADDRS_OLD: retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, optlen); break; case SCTP_GET_LOCAL_ADDRS_OLD: retval = sctp_getsockopt_local_addrs_old(sk, len, optval, optlen); break; case SCTP_GET_PEER_ADDRS: retval = sctp_getsockopt_peer_addrs(sk, len, optval, optlen); break; case SCTP_GET_LOCAL_ADDRS: retval = sctp_getsockopt_local_addrs(sk, len, optval, optlen); break; case SCTP_DEFAULT_SEND_PARAM: retval = sctp_getsockopt_default_send_param(sk, len, optval, optlen); break; case SCTP_PRIMARY_ADDR: retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); break; case SCTP_NODELAY: retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); break; case SCTP_RTOINFO: retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); break; case SCTP_ASSOCINFO: retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); break; case SCTP_I_WANT_MAPPED_V4_ADDR: retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); break; case SCTP_MAXSEG: retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); break; case SCTP_GET_PEER_ADDR_INFO: retval = sctp_getsockopt_peer_addr_info(sk, len, optval, optlen); break; case SCTP_ADAPTATION_LAYER: retval = sctp_getsockopt_adaptation_layer(sk, len, optval, optlen); break; case SCTP_CONTEXT: retval = sctp_getsockopt_context(sk, len, optval, optlen); break; case SCTP_FRAGMENT_INTERLEAVE: retval = sctp_getsockopt_fragment_interleave(sk, len, optval, optlen); break; case SCTP_PARTIAL_DELIVERY_POINT: retval = sctp_getsockopt_partial_delivery_point(sk, len, optval, optlen); break; case SCTP_MAX_BURST: retval = sctp_getsockopt_maxburst(sk, len, optval, optlen); break; default: retval = -ENOPROTOOPT; break; } sctp_release_sock(sk); return retval; } static void sctp_hash(struct sock *sk) { /* STUB */ } static void sctp_unhash(struct sock *sk) { /* STUB */ } /* Check if port is acceptable. Possibly find first available port. * * The port hash table (contained in the 'global' SCTP protocol storage * returned by struct sctp_protocol *sctp_get_protocol()). The hash * table is an array of 4096 lists (sctp_bind_hashbucket). Each * list (the list number is the port number hashed out, so as you * would expect from a hash function, all the ports in a given list have * such a number that hashes out to the same list number; you were * expecting that, right?); so each list has a set of ports, with a * link to the socket (struct sock) that uses it, the port number and * a fastreuse flag (FIXME: NPI ipg). */ static struct sctp_bind_bucket *sctp_bucket_create( struct sctp_bind_hashbucket *head, unsigned short snum); static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) { struct sctp_bind_hashbucket *head; /* hash list */ struct sctp_bind_bucket *pp; /* hash list port iterator */ unsigned short snum; int ret; snum = ntohs(addr->v4.sin_port); SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); sctp_local_bh_disable(); if (snum == 0) { /* Search for an available port. * * 'sctp_port_rover' was the last port assigned, so * we start to search from 'sctp_port_rover + * 1'. What we do is first check if port 'rover' is * already in the hash table; if not, we use that; if * it is, we try next. */ int low = sysctl_local_port_range[0]; int high = sysctl_local_port_range[1]; int remaining = (high - low) + 1; int rover; int index; sctp_spin_lock(&sctp_port_alloc_lock); rover = sctp_port_rover; do { rover++; if ((rover < low) || (rover > high)) rover = low; index = sctp_phashfn(rover); head = &sctp_port_hashtable[index]; sctp_spin_lock(&head->lock); for (pp = head->chain; pp; pp = pp->next) if (pp->port == rover) goto next; break; next: sctp_spin_unlock(&head->lock); } while (--remaining > 0); sctp_port_rover = rover; sctp_spin_unlock(&sctp_port_alloc_lock); /* Exhausted local port range during search? */ ret = 1; if (remaining <= 0) goto fail; /* OK, here is the one we will use. HEAD (the port * hash table list entry) is non-NULL and we hold it's * mutex. */ snum = rover; } else { /* We are given an specific port number; we verify * that it is not being used. If it is used, we will * exahust the search in the hash list corresponding * to the port number (snum) - we detect that with the * port iterator, pp being NULL. */ head = &sctp_port_hashtable[sctp_phashfn(snum)]; sctp_spin_lock(&head->lock); for (pp = head->chain; pp; pp = pp->next) { if (pp->port == snum) goto pp_found; } } pp = NULL; goto pp_not_found; pp_found: if (!hlist_empty(&pp->owner)) { /* We had a port hash table hit - there is an * available port (pp != NULL) and it is being * used by other socket (pp->owner not empty); that other * socket is going to be sk2. */ int reuse = sk->sk_reuse; struct sock *sk2; struct hlist_node *node; SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); if (pp->fastreuse && sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) goto success; /* Run through the list of sockets bound to the port * (pp->port) [via the pointers bind_next and * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, * we get the endpoint they describe and run through * the endpoint's list of IP (v4 or v6) addresses, * comparing each of the addresses with the address of * the socket sk. If we find a match, then that means * that this port/socket (sk) combination are already * in an endpoint. */ sk_for_each_bound(sk2, node, &pp->owner) { struct sctp_endpoint *ep2; ep2 = sctp_sk(sk2)->ep; if (reuse && sk2->sk_reuse && sk2->sk_state != SCTP_SS_LISTENING) continue; if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, sctp_sk(sk))) { ret = (long)sk2; goto fail_unlock; } } SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); } pp_not_found: /* If there was a hash table miss, create a new port. */ ret = 1; if (!pp && !(pp = sctp_bucket_create(head, snum))) goto fail_unlock; /* In either case (hit or miss), make sure fastreuse is 1 only * if sk->sk_reuse is too (that is, if the caller requested * SO_REUSEADDR on this socket -sk-). */ if (hlist_empty(&pp->owner)) { if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING) pp->fastreuse = 1; else pp->fastreuse = 0; } else if (pp->fastreuse && (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING)) pp->fastreuse = 0; /* We are set, so fill up all the data in the hash table * entry, tie the socket list information with the rest of the * sockets FIXME: Blurry, NPI (ipg). */ success: if (!sctp_sk(sk)->bind_hash) { inet_sk(sk)->num = snum; sk_add_bind_node(sk, &pp->owner); sctp_sk(sk)->bind_hash = pp; } ret = 0; fail_unlock: sctp_spin_unlock(&head->lock); fail: sctp_local_bh_enable(); return ret; } /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral * port is requested. */ static int sctp_get_port(struct sock *sk, unsigned short snum) { long ret; union sctp_addr addr; struct sctp_af *af = sctp_sk(sk)->pf->af; /* Set up a dummy address struct from the sk. */ af->from_sk(&addr, sk); addr.v4.sin_port = htons(snum); /* Note: sk->sk_num gets filled in if ephemeral port request. */ ret = sctp_get_port_local(sk, &addr); return (ret ? 1 : 0); } /* * 3.1.3 listen() - UDP Style Syntax * * By default, new associations are not accepted for UDP style sockets. * An application uses listen() to mark a socket as being able to * accept new associations. */ SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; /* Only UDP style sockets that are not peeled off are allowed to * listen(). */ if (!sctp_style(sk, UDP)) return -EINVAL; /* If backlog is zero, disable listening. */ if (!backlog) { if (sctp_sstate(sk, CLOSED)) return 0; sctp_unhash_endpoint(ep); sk->sk_state = SCTP_SS_CLOSED; } /* Return if we are already listening. */ if (sctp_sstate(sk, LISTENING)) return 0; /* * If a bind() or sctp_bindx() is not called prior to a listen() * call that allows new associations to be accepted, the system * picks an ephemeral port and will choose an address set equivalent * to binding with a wildcard address. * * This is not currently spelled out in the SCTP sockets * extensions draft, but follows the practice as seen in TCP * sockets. * * Additionally, turn off fastreuse flag since we are not listening */ sk->sk_state = SCTP_SS_LISTENING; if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) return -EAGAIN; } else sctp_sk(sk)->bind_hash->fastreuse = 0; sctp_hash_endpoint(ep); return 0; } /* * 4.1.3 listen() - TCP Style Syntax * * Applications uses listen() to ready the SCTP endpoint for accepting * inbound associations. */ SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) { struct sctp_sock *sp = sctp_sk(sk); struct sctp_endpoint *ep = sp->ep; /* If backlog is zero, disable listening. */ if (!backlog) { if (sctp_sstate(sk, CLOSED)) return 0; sctp_unhash_endpoint(ep); sk->sk_state = SCTP_SS_CLOSED; } if (sctp_sstate(sk, LISTENING)) return 0; /* * If a bind() or sctp_bindx() is not called prior to a listen() * call that allows new associations to be accepted, the system * picks an ephemeral port and will choose an address set equivalent * to binding with a wildcard address. * * This is not currently spelled out in the SCTP sockets * extensions draft, but follows the practice as seen in TCP * sockets. */ sk->sk_state = SCTP_SS_LISTENING; if (!ep->base.bind_addr.port) { if (sctp_autobind(sk)) return -EAGAIN; } else sctp_sk(sk)->bind_hash->fastreuse = 0; sk->sk_max_ack_backlog = backlog; sctp_hash_endpoint(ep); return 0; } /* * Move a socket to LISTENING state. */ int sctp_inet_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; struct crypto_hash *tfm = NULL; int err = -EINVAL; if (unlikely(backlog < 0)) goto out; sctp_lock_sock(sk); if (sock->state != SS_UNCONNECTED) goto out; /* Allocate HMAC for generating cookie. */ if (sctp_hmac_alg) { tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { if (net_ratelimit()) { printk(KERN_INFO "SCTP: failed to load transform for %s: %ld\n", sctp_hmac_alg, PTR_ERR(tfm)); } err = -ENOSYS; goto out; } } switch (sock->type) { case SOCK_SEQPACKET: err = sctp_seqpacket_listen(sk, backlog); break; case SOCK_STREAM: err = sctp_stream_listen(sk, backlog); break; default: break; } if (err) goto cleanup; /* Store away the transform reference. */ sctp_sk(sk)->hmac = tfm; out: sctp_release_sock(sk); return err; cleanup: crypto_free_hash(tfm); goto out; } /* * This function is done by modeling the current datagram_poll() and the * tcp_poll(). Note that, based on these implementations, we don't * lock the socket in this function, even though it seems that, * ideally, locking or some other mechanisms can be used to ensure * the integrity of the counters (sndbuf and wmem_alloc) used * in this place. We assume that we don't need locks either until proven * otherwise. * * Another thing to note is that we include the Async I/O support * here, again, by modeling the current TCP/UDP code. We don't have * a good way to test with it yet. */ unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct sctp_sock *sp = sctp_sk(sk); unsigned int mask; poll_wait(file, sk->sk_sleep, wait); /* A TCP-style listening socket becomes readable when the accept queue * is not empty. */ if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) return (!list_empty(&sp->ep->asocs)) ? (POLLIN | POLLRDNORM) : 0; mask = 0; /* Is there any exceptional events? */ if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) mask |= POLLERR; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= POLLRDHUP; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= POLLHUP; /* Is it readable? Reconsider this code with TCP-style support. */ if (!skb_queue_empty(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= POLLIN | POLLRDNORM; /* The association is either gone or not ready. */ if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) return mask; /* Is it writable? */ if (sctp_writeable(sk)) { mask |= POLLOUT | POLLWRNORM; } else { set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); /* * Since the socket is not locked, the buffer * might be made available after the writeable check and * before the bit is set. This could cause a lost I/O * signal. tcp_poll() has a race breaker for this race * condition. Based on their implementation, we put * in the following code to cover it as well. */ if (sctp_writeable(sk)) mask |= POLLOUT | POLLWRNORM; } return mask; } /******************************************************************** * 2nd Level Abstractions ********************************************************************/ static struct sctp_bind_bucket *sctp_bucket_create( struct sctp_bind_hashbucket *head, unsigned short snum) { struct sctp_bind_bucket *pp; pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC); SCTP_DBG_OBJCNT_INC(bind_bucket); if (pp) { pp->port = snum; pp->fastreuse = 0; INIT_HLIST_HEAD(&pp->owner); if ((pp->next = head->chain) != NULL) pp->next->pprev = &pp->next; head->chain = pp; pp->pprev = &head->chain; } return pp; } /* Caller must hold hashbucket lock for this tb with local BH disabled */ static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) { if (pp && hlist_empty(&pp->owner)) { if (pp->next) pp->next->pprev = pp->pprev; *(pp->pprev) = pp->next; kmem_cache_free(sctp_bucket_cachep, pp); SCTP_DBG_OBJCNT_DEC(bind_bucket); } } /* Release this socket's reference to a local port. */ static inline void __sctp_put_port(struct sock *sk) { struct sctp_bind_hashbucket *head = &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; struct sctp_bind_bucket *pp; sctp_spin_lock(&head->lock); pp = sctp_sk(sk)->bind_hash; __sk_del_bind_node(sk); sctp_sk(sk)->bind_hash = NULL; inet_sk(sk)->num = 0; sctp_bucket_destroy(pp); sctp_spin_unlock(&head->lock); } void sctp_put_port(struct sock *sk) { sctp_local_bh_disable(); __sctp_put_port(sk); sctp_local_bh_enable(); } /* * The system picks an ephemeral port and choose an address set equivalent * to binding with a wildcard address. * One of those addresses will be the primary address for the association. * This automatically enables the multihoming capability of SCTP. */ static int sctp_autobind(struct sock *sk) { union sctp_addr autoaddr; struct sctp_af *af; __be16 port; /* Initialize a local sockaddr structure to INADDR_ANY. */ af = sctp_sk(sk)->pf->af; port = htons(inet_sk(sk)->num); af->inaddr_any(&autoaddr, port); return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); } /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. * * From RFC 2292 * 4.2 The cmsghdr Structure * * * When ancillary data is sent or received, any number of ancillary data * objects can be specified by the msg_control and msg_controllen members of * the msghdr structure, because each object is preceded by * a cmsghdr structure defining the object's length (the cmsg_len member). * Historically Berkeley-derived implementations have passed only one object * at a time, but this API allows multiple objects to be * passed in a single call to sendmsg() or recvmsg(). The following example * shows two ancillary data objects in a control buffer. * * |<--------------------------- msg_controllen -------------------------->| * | | * * |<----- ancillary data object ----->|<----- ancillary data object ----->| * * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| * | | | * * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | * * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | * | | | | | * * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| * * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| * * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ * ^ * | * * msg_control * points here */ SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs) { struct cmsghdr *cmsg; for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL; cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; /* Should we parse this header or ignore? */ if (cmsg->cmsg_level != IPPROTO_SCTP) continue; /* Strictly check lengths following example in SCM code. */ switch (cmsg->cmsg_type) { case SCTP_INIT: /* SCTP Socket API Extension * 5.2.1 SCTP Initiation Structure (SCTP_INIT) * * This cmsghdr structure provides information for * initializing new SCTP associations with sendmsg(). * The SCTP_INITMSG socket option uses this same data * structure. This structure is not used for * recvmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ ---------------------- * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg))) return -EINVAL; cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); break; case SCTP_SNDRCV: /* SCTP Socket API Extension * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) * * This cmsghdr structure specifies SCTP options for * sendmsg() and describes SCTP header information * about a received message through recvmsg(). * * cmsg_level cmsg_type cmsg_data[] * ------------ ------------ ---------------------- * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo */ if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) return -EINVAL; cmsgs->info = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); /* Minimally, validate the sinfo_flags. */ if (cmsgs->info->sinfo_flags & ~(SCTP_UNORDERED | SCTP_ADDR_OVER | SCTP_ABORT | SCTP_EOF)) return -EINVAL; break; default: return -EINVAL; } } return 0; } /* * Wait for a packet.. * Note: This function is the same function as in core/datagram.c * with a few modifications to make lksctp work. */ static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) { int error; DEFINE_WAIT(wait); prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); /* Socket errors? */ error = sock_error(sk); if (error) goto out; if (!skb_queue_empty(&sk->sk_receive_queue)) goto ready; /* Socket shut down? */ if (sk->sk_shutdown & RCV_SHUTDOWN) goto out; /* Sequenced packets can come disconnected. If so we report the * problem. */ error = -ENOTCONN; /* Is there a good reason to think that we may receive some data? */ if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) goto out; /* Handle signals. */ if (signal_pending(current)) goto interrupted; /* Let another process have a go. Since we are going to sleep * anyway. Note: This may cause odd behaviors if the message * does not fit in the user's buffer, but this seems to be the * only way to honor MSG_DONTWAIT realistically. */ sctp_release_sock(sk); *timeo_p = schedule_timeout(*timeo_p); sctp_lock_sock(sk); ready: finish_wait(sk->sk_sleep, &wait); return 0; interrupted: error = sock_intr_errno(*timeo_p); out: finish_wait(sk->sk_sleep, &wait); *err = error; return error; } /* Receive a datagram. * Note: This is pretty much the same routine as in core/datagram.c * with a few changes to make lksctp work. */ static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, int noblock, int *err) { int error; struct sk_buff *skb; long timeo; timeo = sock_rcvtimeo(sk, noblock); SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", timeo, MAX_SCHEDULE_TIMEOUT); do { /* Again only user level code calls this function, * so nothing interrupt level * will suddenly eat the receive_queue. * * Look at current nfs client by the way... * However, this function was corrent in any case. 8) */ if (flags & MSG_PEEK) { spin_lock_bh(&sk->sk_receive_queue.lock); skb = skb_peek(&sk->sk_receive_queue); if (skb) atomic_inc(&skb->users); spin_unlock_bh(&sk->sk_receive_queue.lock); } else { skb = skb_dequeue(&sk->sk_receive_queue); } if (skb) return skb; /* Caller is allowed not to check sk->sk_err before calling. */ error = sock_error(sk); if (error) goto no_packet; if (sk->sk_shutdown & RCV_SHUTDOWN) break; /* User doesn't want to wait. */ error = -EAGAIN; if (!timeo) goto no_packet; } while (sctp_wait_for_packet(sk, err, &timeo) == 0); return NULL; no_packet: *err = error; return NULL; } /* If sndbuf has changed, wake up per association sndbuf waiters. */ static void __sctp_write_space(struct sctp_association *asoc) { struct sock *sk = asoc->base.sk; struct socket *sock = sk->sk_socket; if ((sctp_wspace(asoc) > 0) && sock) { if (waitqueue_active(&asoc->wait)) wake_up_interruptible(&asoc->wait); if (sctp_writeable(sk)) { if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) wake_up_interruptible(sk->sk_sleep); /* Note that we try to include the Async I/O support * here by modeling from the current TCP/UDP code. * We have not tested with it yet. */ if (sock->fasync_list && !(sk->sk_shutdown & SEND_SHUTDOWN)) sock_wake_async(sock, 2, POLL_OUT); } } } /* Do accounting for the sndbuf space. * Decrement the used sndbuf space of the corresponding association by the * data size which was just transmitted(freed). */ static void sctp_wfree(struct sk_buff *skb) { struct sctp_association *asoc; struct sctp_chunk *chunk; struct sock *sk; /* Get the saved chunk pointer. */ chunk = *((struct sctp_chunk **)(skb->cb)); asoc = chunk->asoc; sk = asoc->base.sk; asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + sizeof(struct sk_buff) + sizeof(struct sctp_chunk); atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); sock_wfree(skb); __sctp_write_space(asoc); sctp_association_put(asoc); } /* Do accounting for the receive space on the socket. * Accounting for the association is done in ulpevent.c * We set this as a destructor for the cloned data skbs so that * accounting is done at the correct time. */ void sctp_sock_rfree(struct sk_buff *skb) { struct sock *sk = skb->sk; struct sctp_ulpevent *event = sctp_skb2event(skb); atomic_sub(event->rmem_len, &sk->sk_rmem_alloc); } /* Helper function to wait for space in the sndbuf. */ static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, size_t msg_len) { struct sock *sk = asoc->base.sk; int err = 0; long current_timeo = *timeo_p; DEFINE_WAIT(wait); SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", asoc, (long)(*timeo_p), msg_len); /* Increment the association's refcnt. */ sctp_association_hold(asoc); /* Wait on the association specific sndbuf space. */ for (;;) { prepare_to_wait_exclusive(&asoc->wait, &wait, TASK_INTERRUPTIBLE); if (!*timeo_p) goto do_nonblock; if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || asoc->base.dead) goto do_error; if (signal_pending(current)) goto do_interrupted; if (msg_len <= sctp_wspace(asoc)) break; /* Let another process have a go. Since we are going * to sleep anyway. */ sctp_release_sock(sk); current_timeo = schedule_timeout(current_timeo); BUG_ON(sk != asoc->base.sk); sctp_lock_sock(sk); *timeo_p = current_timeo; } out: finish_wait(&asoc->wait, &wait); /* Release the association's refcnt. */ sctp_association_put(asoc); return err; do_error: err = -EPIPE; goto out; do_interrupted: err = sock_intr_errno(*timeo_p); goto out; do_nonblock: err = -EAGAIN; goto out; } /* If socket sndbuf has changed, wake up all per association waiters. */ void sctp_write_space(struct sock *sk) { struct sctp_association *asoc; struct list_head *pos; /* Wake up the tasks in each wait queue. */ list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { asoc = list_entry(pos, struct sctp_association, asocs); __sctp_write_space(asoc); } } /* Is there any sndbuf space available on the socket? * * Note that sk_wmem_alloc is the sum of the send buffers on all of the * associations on the same socket. For a UDP-style socket with * multiple associations, it is possible for it to be "unwriteable" * prematurely. I assume that this is acceptable because * a premature "unwriteable" is better than an accidental "writeable" which * would cause an unwanted block under certain circumstances. For the 1-1 * UDP-style sockets or TCP-style sockets, this code should work. * - Daisy */ static int sctp_writeable(struct sock *sk) { int amt = 0; amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); if (amt < 0) amt = 0; return amt; } /* Wait for an association to go into ESTABLISHED state. If timeout is 0, * returns immediately with EINPROGRESS. */ static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) { struct sock *sk = asoc->base.sk; int err = 0; long current_timeo = *timeo_p; DEFINE_WAIT(wait); SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, (long)(*timeo_p)); /* Increment the association's refcnt. */ sctp_association_hold(asoc); for (;;) { prepare_to_wait_exclusive(&asoc->wait, &wait, TASK_INTERRUPTIBLE); if (!*timeo_p) goto do_nonblock; if (sk->sk_shutdown & RCV_SHUTDOWN) break; if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || asoc->base.dead) goto do_error; if (signal_pending(current)) goto do_interrupted; if (sctp_state(asoc, ESTABLISHED)) break; /* Let another process have a go. Since we are going * to sleep anyway. */ sctp_release_sock(sk); current_timeo = schedule_timeout(current_timeo); sctp_lock_sock(sk); *timeo_p = current_timeo; } out: finish_wait(&asoc->wait, &wait); /* Release the association's refcnt. */ sctp_association_put(asoc); return err; do_error: if (asoc->init_err_counter + 1 > asoc->max_init_attempts) err = -ETIMEDOUT; else err = -ECONNREFUSED; goto out; do_interrupted: err = sock_intr_errno(*timeo_p); goto out; do_nonblock: err = -EINPROGRESS; goto out; } static int sctp_wait_for_accept(struct sock *sk, long timeo) { struct sctp_endpoint *ep; int err = 0; DEFINE_WAIT(wait); ep = sctp_sk(sk)->ep; for (;;) { prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); if (list_empty(&ep->asocs)) { sctp_release_sock(sk); timeo = schedule_timeout(timeo); sctp_lock_sock(sk); } err = -EINVAL; if (!sctp_sstate(sk, LISTENING)) break; err = 0; if (!list_empty(&ep->asocs)) break; err = sock_intr_errno(timeo); if (signal_pending(current)) break; err = -EAGAIN; if (!timeo) break; } finish_wait(sk->sk_sleep, &wait); return err; } void sctp_wait_for_close(struct sock *sk, long timeout) { DEFINE_WAIT(wait); do { prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); if (list_empty(&sctp_sk(sk)->ep->asocs)) break; sctp_release_sock(sk); timeout = schedule_timeout(timeout); sctp_lock_sock(sk); } while (!signal_pending(current) && timeout); finish_wait(sk->sk_sleep, &wait); } static void sctp_sock_rfree_frag(struct sk_buff *skb) { struct sk_buff *frag; if (!skb->data_len) goto done; /* Don't forget the fragments. */ for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) sctp_sock_rfree_frag(frag); done: sctp_sock_rfree(skb); } static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk) { struct sk_buff *frag; if (!skb->data_len) goto done; /* Don't forget the fragments. */ for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) sctp_skb_set_owner_r_frag(frag, sk); done: sctp_skb_set_owner_r(skb, sk); } /* Populate the fields of the newsk from the oldsk and migrate the assoc * and its messages to the newsk. */ static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, struct sctp_association *assoc, sctp_socket_type_t type) { struct sctp_sock *oldsp = sctp_sk(oldsk); struct sctp_sock *newsp = sctp_sk(newsk); struct sctp_bind_bucket *pp; /* hash list port iterator */ struct sctp_endpoint *newep = newsp->ep; struct sk_buff *skb, *tmp; struct sctp_ulpevent *event; int flags = 0; /* Migrate socket buffer sizes and all the socket level options to the * new socket. */ newsk->sk_sndbuf = oldsk->sk_sndbuf; newsk->sk_rcvbuf = oldsk->sk_rcvbuf; /* Brute force copy old sctp opt. */ inet_sk_copy_descendant(newsk, oldsk); /* Restore the ep value that was overwritten with the above structure * copy. */ newsp->ep = newep; newsp->hmac = NULL; /* Hook this new socket in to the bind_hash list. */ pp = sctp_sk(oldsk)->bind_hash; sk_add_bind_node(newsk, &pp->owner); sctp_sk(newsk)->bind_hash = pp; inet_sk(newsk)->num = inet_sk(oldsk)->num; /* Copy the bind_addr list from the original endpoint to the new * endpoint so that we can handle restarts properly */ if (PF_INET6 == assoc->base.sk->sk_family) flags = SCTP_ADDR6_ALLOWED; if (assoc->peer.ipv4_address) flags |= SCTP_ADDR4_PEERSUPP; if (assoc->peer.ipv6_address) flags |= SCTP_ADDR6_PEERSUPP; sctp_bind_addr_copy(&newsp->ep->base.bind_addr, &oldsp->ep->base.bind_addr, SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); /* Move any messages in the old socket's receive queue that are for the * peeled off association to the new socket's receive queue. */ sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { event = sctp_skb2event(skb); if (event->asoc == assoc) { sctp_sock_rfree_frag(skb); __skb_unlink(skb, &oldsk->sk_receive_queue); __skb_queue_tail(&newsk->sk_receive_queue, skb); sctp_skb_set_owner_r_frag(skb, newsk); } } /* Clean up any messages pending delivery due to partial * delivery. Three cases: * 1) No partial deliver; no work. * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. */ skb_queue_head_init(&newsp->pd_lobby); atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode); if (atomic_read(&sctp_sk(oldsk)->pd_mode)) { struct sk_buff_head *queue; /* Decide which queue to move pd_lobby skbs to. */ if (assoc->ulpq.pd_mode) { queue = &newsp->pd_lobby; } else queue = &newsk->sk_receive_queue; /* Walk through the pd_lobby, looking for skbs that * need moved to the new socket. */ sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { event = sctp_skb2event(skb); if (event->asoc == assoc) { sctp_sock_rfree_frag(skb); __skb_unlink(skb, &oldsp->pd_lobby); __skb_queue_tail(queue, skb); sctp_skb_set_owner_r_frag(skb, newsk); } } /* Clear up any skbs waiting for the partial * delivery to finish. */ if (assoc->ulpq.pd_mode) sctp_clear_pd(oldsk, NULL); } sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp) { sctp_sock_rfree_frag(skb); sctp_skb_set_owner_r_frag(skb, newsk); } sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp) { sctp_sock_rfree_frag(skb); sctp_skb_set_owner_r_frag(skb, newsk); } /* Set the type of socket to indicate that it is peeled off from the * original UDP-style socket or created with the accept() call on a * TCP-style socket.. */ newsp->type = type; /* Mark the new socket "in-use" by the user so that any packets * that may arrive on the association after we've moved it are * queued to the backlog. This prevents a potential race between * backlog processing on the old socket and new-packet processing * on the new socket. * * The caller has just allocated newsk so we can guarantee that other * paths won't try to lock it and then oldsk. */ lock_sock_nested(newsk, SINGLE_DEPTH_NESTING); sctp_assoc_migrate(assoc, newsk); /* If the association on the newsk is already closed before accept() * is called, set RCV_SHUTDOWN flag. */ if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) newsk->sk_shutdown |= RCV_SHUTDOWN; newsk->sk_state = SCTP_SS_ESTABLISHED; sctp_release_sock(newsk); } /* This proto struct describes the ULP interface for SCTP. */ struct proto sctp_prot = { .name = "SCTP", .owner = THIS_MODULE, .close = sctp_close, .connect = sctp_connect, .disconnect = sctp_disconnect, .accept = sctp_accept, .ioctl = sctp_ioctl, .init = sctp_init_sock, .destroy = sctp_destroy_sock, .shutdown = sctp_shutdown, .setsockopt = sctp_setsockopt, .getsockopt = sctp_getsockopt, .sendmsg = sctp_sendmsg, .recvmsg = sctp_recvmsg, .bind = sctp_bind, .backlog_rcv = sctp_backlog_rcv, .hash = sctp_hash, .unhash = sctp_unhash, .get_port = sctp_get_port, .obj_size = sizeof(struct sctp_sock), }; #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) struct proto sctpv6_prot = { .name = "SCTPv6", .owner = THIS_MODULE, .close = sctp_close, .connect = sctp_connect, .disconnect = sctp_disconnect, .accept = sctp_accept, .ioctl = sctp_ioctl, .init = sctp_init_sock, .destroy = sctp_destroy_sock, .shutdown = sctp_shutdown, .setsockopt = sctp_setsockopt, .getsockopt = sctp_getsockopt, .sendmsg = sctp_sendmsg, .recvmsg = sctp_recvmsg, .bind = sctp_bind, .backlog_rcv = sctp_backlog_rcv, .hash = sctp_hash, .unhash = sctp_unhash, .get_port = sctp_get_port, .obj_size = sizeof(struct sctp6_sock), }; #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */