/* * Copyright (c) by Jaroslav Kysela <perex@suse.cz> * Takashi Iwai <tiwai@suse.de> * * Generic memory allocators * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/mm.h> #include <asm/uaccess.h> #include <linux/dma-mapping.h> #include <linux/moduleparam.h> #include <linux/mutex.h> #include <sound/memalloc.h> #ifdef CONFIG_SBUS #include <asm/sbus.h> #endif MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>"); MODULE_DESCRIPTION("Memory allocator for ALSA system."); MODULE_LICENSE("GPL"); /* */ void *snd_malloc_sgbuf_pages(struct device *device, size_t size, struct snd_dma_buffer *dmab, size_t *res_size); int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab); /* */ static DEFINE_MUTEX(list_mutex); static LIST_HEAD(mem_list_head); /* buffer preservation list */ struct snd_mem_list { struct snd_dma_buffer buffer; unsigned int id; struct list_head list; }; /* id for pre-allocated buffers */ #define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1 #ifdef CONFIG_SND_DEBUG #define __ASTRING__(x) #x #define snd_assert(expr, args...) do {\ if (!(expr)) {\ printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\ args;\ }\ } while (0) #else #define snd_assert(expr, args...) /**/ #endif /* * Hacks */ #if defined(__i386__) /* * A hack to allocate large buffers via dma_alloc_coherent() * * since dma_alloc_coherent always tries GFP_DMA when the requested * pci memory region is below 32bit, it happens quite often that even * 2 order of pages cannot be allocated. * * so in the following, we allocate at first without dma_mask, so that * allocation will be done without GFP_DMA. if the area doesn't match * with the requested region, then realloate with the original dma_mask * again. * * Really, we want to move this type of thing into dma_alloc_coherent() * so dma_mask doesn't have to be messed with. */ static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flags) { void *ret; u64 dma_mask, coherent_dma_mask; if (dev == NULL || !dev->dma_mask) return dma_alloc_coherent(dev, size, dma_handle, flags); dma_mask = *dev->dma_mask; coherent_dma_mask = dev->coherent_dma_mask; *dev->dma_mask = 0xffffffff; /* do without masking */ dev->coherent_dma_mask = 0xffffffff; /* do without masking */ ret = dma_alloc_coherent(dev, size, dma_handle, flags); *dev->dma_mask = dma_mask; /* restore */ dev->coherent_dma_mask = coherent_dma_mask; /* restore */ if (ret) { /* obtained address is out of range? */ if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) { /* reallocate with the proper mask */ dma_free_coherent(dev, size, ret, *dma_handle); ret = dma_alloc_coherent(dev, size, dma_handle, flags); } } else { /* wish to success now with the proper mask... */ if (dma_mask != 0xffffffffUL) { /* allocation with GFP_ATOMIC to avoid the long stall */ flags &= ~GFP_KERNEL; flags |= GFP_ATOMIC; ret = dma_alloc_coherent(dev, size, dma_handle, flags); } } return ret; } /* redefine dma_alloc_coherent for some architectures */ #undef dma_alloc_coherent #define dma_alloc_coherent snd_dma_hack_alloc_coherent #endif /* arch */ /* * * Generic memory allocators * */ static long snd_allocated_pages; /* holding the number of allocated pages */ static inline void inc_snd_pages(int order) { snd_allocated_pages += 1 << order; } static inline void dec_snd_pages(int order) { snd_allocated_pages -= 1 << order; } /** * snd_malloc_pages - allocate pages with the given size * @size: the size to allocate in bytes * @gfp_flags: the allocation conditions, GFP_XXX * * Allocates the physically contiguous pages with the given size. * * Returns the pointer of the buffer, or NULL if no enoguh memory. */ void *snd_malloc_pages(size_t size, gfp_t gfp_flags) { int pg; void *res; snd_assert(size > 0, return NULL); snd_assert(gfp_flags != 0, return NULL); gfp_flags |= __GFP_COMP; /* compound page lets parts be mapped */ pg = get_order(size); if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL) inc_snd_pages(pg); return res; } /** * snd_free_pages - release the pages * @ptr: the buffer pointer to release * @size: the allocated buffer size * * Releases the buffer allocated via snd_malloc_pages(). */ void snd_free_pages(void *ptr, size_t size) { int pg; if (ptr == NULL) return; pg = get_order(size); dec_snd_pages(pg); free_pages((unsigned long) ptr, pg); } /* * * Bus-specific memory allocators * */ /* allocate the coherent DMA pages */ static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma) { int pg; void *res; gfp_t gfp_flags; snd_assert(size > 0, return NULL); snd_assert(dma != NULL, return NULL); pg = get_order(size); gfp_flags = GFP_KERNEL | __GFP_COMP /* compound page lets parts be mapped */ | __GFP_NORETRY /* don't trigger OOM-killer */ | __GFP_NOWARN; /* no stack trace print - this call is non-critical */ res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags); if (res != NULL) inc_snd_pages(pg); return res; } /* free the coherent DMA pages */ static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr, dma_addr_t dma) { int pg; if (ptr == NULL) return; pg = get_order(size); dec_snd_pages(pg); dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma); } #ifdef CONFIG_SBUS static void *snd_malloc_sbus_pages(struct device *dev, size_t size, dma_addr_t *dma_addr) { struct sbus_dev *sdev = (struct sbus_dev *)dev; int pg; void *res; snd_assert(size > 0, return NULL); snd_assert(dma_addr != NULL, return NULL); pg = get_order(size); res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr); if (res != NULL) inc_snd_pages(pg); return res; } static void snd_free_sbus_pages(struct device *dev, size_t size, void *ptr, dma_addr_t dma_addr) { struct sbus_dev *sdev = (struct sbus_dev *)dev; int pg; if (ptr == NULL) return; pg = get_order(size); dec_snd_pages(pg); sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr); } #endif /* CONFIG_SBUS */ /* * * ALSA generic memory management * */ /** * snd_dma_alloc_pages - allocate the buffer area according to the given type * @type: the DMA buffer type * @device: the device pointer * @size: the buffer size to allocate * @dmab: buffer allocation record to store the allocated data * * Calls the memory-allocator function for the corresponding * buffer type. * * Returns zero if the buffer with the given size is allocated successfuly, * other a negative value at error. */ int snd_dma_alloc_pages(int type, struct device *device, size_t size, struct snd_dma_buffer *dmab) { snd_assert(size > 0, return -ENXIO); snd_assert(dmab != NULL, return -ENXIO); dmab->dev.type = type; dmab->dev.dev = device; dmab->bytes = 0; switch (type) { case SNDRV_DMA_TYPE_CONTINUOUS: dmab->area = snd_malloc_pages(size, (unsigned long)device); dmab->addr = 0; break; #ifdef CONFIG_SBUS case SNDRV_DMA_TYPE_SBUS: dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr); break; #endif case SNDRV_DMA_TYPE_DEV: dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr); break; case SNDRV_DMA_TYPE_DEV_SG: snd_malloc_sgbuf_pages(device, size, dmab, NULL); break; default: printk(KERN_ERR "snd-malloc: invalid device type %d\n", type); dmab->area = NULL; dmab->addr = 0; return -ENXIO; } if (! dmab->area) return -ENOMEM; dmab->bytes = size; return 0; } /** * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback * @type: the DMA buffer type * @device: the device pointer * @size: the buffer size to allocate * @dmab: buffer allocation record to store the allocated data * * Calls the memory-allocator function for the corresponding * buffer type. When no space is left, this function reduces the size and * tries to allocate again. The size actually allocated is stored in * res_size argument. * * Returns zero if the buffer with the given size is allocated successfuly, * other a negative value at error. */ int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, struct snd_dma_buffer *dmab) { int err; snd_assert(size > 0, return -ENXIO); snd_assert(dmab != NULL, return -ENXIO); while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { if (err != -ENOMEM) return err; size >>= 1; if (size <= PAGE_SIZE) return -ENOMEM; } if (! dmab->area) return -ENOMEM; return 0; } /** * snd_dma_free_pages - release the allocated buffer * @dmab: the buffer allocation record to release * * Releases the allocated buffer via snd_dma_alloc_pages(). */ void snd_dma_free_pages(struct snd_dma_buffer *dmab) { switch (dmab->dev.type) { case SNDRV_DMA_TYPE_CONTINUOUS: snd_free_pages(dmab->area, dmab->bytes); break; #ifdef CONFIG_SBUS case SNDRV_DMA_TYPE_SBUS: snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); break; #endif case SNDRV_DMA_TYPE_DEV: snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); break; case SNDRV_DMA_TYPE_DEV_SG: snd_free_sgbuf_pages(dmab); break; default: printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type); } } /** * snd_dma_get_reserved - get the reserved buffer for the given device * @dmab: the buffer allocation record to store * @id: the buffer id * * Looks for the reserved-buffer list and re-uses if the same buffer * is found in the list. When the buffer is found, it's removed from the free list. * * Returns the size of buffer if the buffer is found, or zero if not found. */ size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id) { struct list_head *p; struct snd_mem_list *mem; snd_assert(dmab, return 0); mutex_lock(&list_mutex); list_for_each(p, &mem_list_head) { mem = list_entry(p, struct snd_mem_list, list); if (mem->id == id && (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL || ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) { struct device *dev = dmab->dev.dev; list_del(p); *dmab = mem->buffer; if (dmab->dev.dev == NULL) dmab->dev.dev = dev; kfree(mem); mutex_unlock(&list_mutex); return dmab->bytes; } } mutex_unlock(&list_mutex); return 0; } /** * snd_dma_reserve_buf - reserve the buffer * @dmab: the buffer to reserve * @id: the buffer id * * Reserves the given buffer as a reserved buffer. * * Returns zero if successful, or a negative code at error. */ int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id) { struct snd_mem_list *mem; snd_assert(dmab, return -EINVAL); mem = kmalloc(sizeof(*mem), GFP_KERNEL); if (! mem) return -ENOMEM; mutex_lock(&list_mutex); mem->buffer = *dmab; mem->id = id; list_add_tail(&mem->list, &mem_list_head); mutex_unlock(&list_mutex); return 0; } /* * purge all reserved buffers */ static void free_all_reserved_pages(void) { struct list_head *p; struct snd_mem_list *mem; mutex_lock(&list_mutex); while (! list_empty(&mem_list_head)) { p = mem_list_head.next; mem = list_entry(p, struct snd_mem_list, list); list_del(p); snd_dma_free_pages(&mem->buffer); kfree(mem); } mutex_unlock(&list_mutex); } #ifdef CONFIG_PROC_FS /* * proc file interface */ #define SND_MEM_PROC_FILE "driver/snd-page-alloc" static struct proc_dir_entry *snd_mem_proc; static int snd_mem_proc_read(char *page, char **start, off_t off, int count, int *eof, void *data) { int len = 0; long pages = snd_allocated_pages >> (PAGE_SHIFT-12); struct list_head *p; struct snd_mem_list *mem; int devno; static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" }; mutex_lock(&list_mutex); len += snprintf(page + len, count - len, "pages : %li bytes (%li pages per %likB)\n", pages * PAGE_SIZE, pages, PAGE_SIZE / 1024); devno = 0; list_for_each(p, &mem_list_head) { mem = list_entry(p, struct snd_mem_list, list); devno++; len += snprintf(page + len, count - len, "buffer %d : ID %08x : type %s\n", devno, mem->id, types[mem->buffer.dev.type]); len += snprintf(page + len, count - len, " addr = 0x%lx, size = %d bytes\n", (unsigned long)mem->buffer.addr, (int)mem->buffer.bytes); } mutex_unlock(&list_mutex); return len; } /* FIXME: for pci only - other bus? */ #ifdef CONFIG_PCI #define gettoken(bufp) strsep(bufp, " \t\n") static int snd_mem_proc_write(struct file *file, const char __user *buffer, unsigned long count, void *data) { char buf[128]; char *token, *p; if (count > ARRAY_SIZE(buf) - 1) count = ARRAY_SIZE(buf) - 1; if (copy_from_user(buf, buffer, count)) return -EFAULT; buf[ARRAY_SIZE(buf) - 1] = '\0'; p = buf; token = gettoken(&p); if (! token || *token == '#') return (int)count; if (strcmp(token, "add") == 0) { char *endp; int vendor, device, size, buffers; long mask; int i, alloced; struct pci_dev *pci; if ((token = gettoken(&p)) == NULL || (vendor = simple_strtol(token, NULL, 0)) <= 0 || (token = gettoken(&p)) == NULL || (device = simple_strtol(token, NULL, 0)) <= 0 || (token = gettoken(&p)) == NULL || (mask = simple_strtol(token, NULL, 0)) < 0 || (token = gettoken(&p)) == NULL || (size = memparse(token, &endp)) < 64*1024 || size > 16*1024*1024 /* too big */ || (token = gettoken(&p)) == NULL || (buffers = simple_strtol(token, NULL, 0)) <= 0 || buffers > 4) { printk(KERN_ERR "snd-page-alloc: invalid proc write format\n"); return (int)count; } vendor &= 0xffff; device &= 0xffff; alloced = 0; pci = NULL; while ((pci = pci_get_device(vendor, device, pci)) != NULL) { if (mask > 0 && mask < 0xffffffff) { if (pci_set_dma_mask(pci, mask) < 0 || pci_set_consistent_dma_mask(pci, mask) < 0) { printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device); return (int)count; } } for (i = 0; i < buffers; i++) { struct snd_dma_buffer dmab; memset(&dmab, 0, sizeof(dmab)); if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), size, &dmab) < 0) { printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size); pci_dev_put(pci); return (int)count; } snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci)); } alloced++; } if (! alloced) { for (i = 0; i < buffers; i++) { struct snd_dma_buffer dmab; memset(&dmab, 0, sizeof(dmab)); /* FIXME: We can allocate only in ZONE_DMA * without a device pointer! */ if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL, size, &dmab) < 0) { printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size); break; } snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device)); } } } else if (strcmp(token, "erase") == 0) /* FIXME: need for releasing each buffer chunk? */ free_all_reserved_pages(); else printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n"); return (int)count; } #endif /* CONFIG_PCI */ #endif /* CONFIG_PROC_FS */ /* * module entry */ static int __init snd_mem_init(void) { #ifdef CONFIG_PROC_FS snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL); if (snd_mem_proc) { snd_mem_proc->read_proc = snd_mem_proc_read; #ifdef CONFIG_PCI snd_mem_proc->write_proc = snd_mem_proc_write; #endif } #endif return 0; } static void __exit snd_mem_exit(void) { remove_proc_entry(SND_MEM_PROC_FILE, NULL); free_all_reserved_pages(); if (snd_allocated_pages > 0) printk(KERN_ERR "snd-malloc: Memory leak? pages not freed = %li\n", snd_allocated_pages); } module_init(snd_mem_init) module_exit(snd_mem_exit) /* * exports */ EXPORT_SYMBOL(snd_dma_alloc_pages); EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); EXPORT_SYMBOL(snd_dma_free_pages); EXPORT_SYMBOL(snd_dma_get_reserved_buf); EXPORT_SYMBOL(snd_dma_reserve_buf); EXPORT_SYMBOL(snd_malloc_pages); EXPORT_SYMBOL(snd_free_pages);