/* * Abstract layer for MIDI v1.0 stream * Copyright (c) by Jaroslav Kysela <perex@suse.cz> * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <sound/driver.h> #include <sound/core.h> #include <linux/major.h> #include <linux/init.h> #include <linux/smp_lock.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/time.h> #include <linux/wait.h> #include <linux/mutex.h> #include <linux/moduleparam.h> #include <linux/delay.h> #include <linux/wait.h> #include <sound/rawmidi.h> #include <sound/info.h> #include <sound/control.h> #include <sound/minors.h> #include <sound/initval.h> MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>"); MODULE_DESCRIPTION("Midlevel RawMidi code for ALSA."); MODULE_LICENSE("GPL"); #ifdef CONFIG_SND_OSSEMUL static int midi_map[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 0}; static int amidi_map[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1}; module_param_array(midi_map, int, NULL, 0444); MODULE_PARM_DESC(midi_map, "Raw MIDI device number assigned to 1st OSS device."); module_param_array(amidi_map, int, NULL, 0444); MODULE_PARM_DESC(amidi_map, "Raw MIDI device number assigned to 2nd OSS device."); #endif /* CONFIG_SND_OSSEMUL */ static int snd_rawmidi_free(struct snd_rawmidi *rawmidi); static int snd_rawmidi_dev_free(struct snd_device *device); static int snd_rawmidi_dev_register(struct snd_device *device); static int snd_rawmidi_dev_disconnect(struct snd_device *device); static int snd_rawmidi_dev_unregister(struct snd_device *device); static LIST_HEAD(snd_rawmidi_devices); static DEFINE_MUTEX(register_mutex); static struct snd_rawmidi *snd_rawmidi_search(struct snd_card *card, int device) { struct list_head *p; struct snd_rawmidi *rawmidi; list_for_each(p, &snd_rawmidi_devices) { rawmidi = list_entry(p, struct snd_rawmidi, list); if (rawmidi->card == card && rawmidi->device == device) return rawmidi; } return NULL; } static inline unsigned short snd_rawmidi_file_flags(struct file *file) { switch (file->f_mode & (FMODE_READ | FMODE_WRITE)) { case FMODE_WRITE: return SNDRV_RAWMIDI_LFLG_OUTPUT; case FMODE_READ: return SNDRV_RAWMIDI_LFLG_INPUT; default: return SNDRV_RAWMIDI_LFLG_OPEN; } } static inline int snd_rawmidi_ready(struct snd_rawmidi_substream *substream) { struct snd_rawmidi_runtime *runtime = substream->runtime; return runtime->avail >= runtime->avail_min; } static inline int snd_rawmidi_ready_append(struct snd_rawmidi_substream *substream, size_t count) { struct snd_rawmidi_runtime *runtime = substream->runtime; return runtime->avail >= runtime->avail_min && (!substream->append || runtime->avail >= count); } static void snd_rawmidi_input_event_tasklet(unsigned long data) { struct snd_rawmidi_substream *substream = (struct snd_rawmidi_substream *)data; substream->runtime->event(substream); } static void snd_rawmidi_output_trigger_tasklet(unsigned long data) { struct snd_rawmidi_substream *substream = (struct snd_rawmidi_substream *)data; substream->ops->trigger(substream, 1); } static int snd_rawmidi_runtime_create(struct snd_rawmidi_substream *substream) { struct snd_rawmidi_runtime *runtime; if ((runtime = kzalloc(sizeof(*runtime), GFP_KERNEL)) == NULL) return -ENOMEM; spin_lock_init(&runtime->lock); init_waitqueue_head(&runtime->sleep); if (substream->stream == SNDRV_RAWMIDI_STREAM_INPUT) tasklet_init(&runtime->tasklet, snd_rawmidi_input_event_tasklet, (unsigned long)substream); else tasklet_init(&runtime->tasklet, snd_rawmidi_output_trigger_tasklet, (unsigned long)substream); runtime->event = NULL; runtime->buffer_size = PAGE_SIZE; runtime->avail_min = 1; if (substream->stream == SNDRV_RAWMIDI_STREAM_INPUT) runtime->avail = 0; else runtime->avail = runtime->buffer_size; if ((runtime->buffer = kmalloc(runtime->buffer_size, GFP_KERNEL)) == NULL) { kfree(runtime); return -ENOMEM; } runtime->appl_ptr = runtime->hw_ptr = 0; substream->runtime = runtime; return 0; } static int snd_rawmidi_runtime_free(struct snd_rawmidi_substream *substream) { struct snd_rawmidi_runtime *runtime = substream->runtime; kfree(runtime->buffer); kfree(runtime); substream->runtime = NULL; return 0; } static inline void snd_rawmidi_output_trigger(struct snd_rawmidi_substream *substream,int up) { if (up) { tasklet_hi_schedule(&substream->runtime->tasklet); } else { tasklet_kill(&substream->runtime->tasklet); substream->ops->trigger(substream, 0); } } static void snd_rawmidi_input_trigger(struct snd_rawmidi_substream *substream, int up) { substream->ops->trigger(substream, up); if (!up && substream->runtime->event) tasklet_kill(&substream->runtime->tasklet); } int snd_rawmidi_drop_output(struct snd_rawmidi_substream *substream) { unsigned long flags; struct snd_rawmidi_runtime *runtime = substream->runtime; snd_rawmidi_output_trigger(substream, 0); runtime->drain = 0; spin_lock_irqsave(&runtime->lock, flags); runtime->appl_ptr = runtime->hw_ptr = 0; runtime->avail = runtime->buffer_size; spin_unlock_irqrestore(&runtime->lock, flags); return 0; } int snd_rawmidi_drain_output(struct snd_rawmidi_substream *substream) { int err; long timeout; struct snd_rawmidi_runtime *runtime = substream->runtime; err = 0; runtime->drain = 1; timeout = wait_event_interruptible_timeout(runtime->sleep, (runtime->avail >= runtime->buffer_size), 10*HZ); if (signal_pending(current)) err = -ERESTARTSYS; if (runtime->avail < runtime->buffer_size && !timeout) { snd_printk(KERN_WARNING "rawmidi drain error (avail = %li, buffer_size = %li)\n", (long)runtime->avail, (long)runtime->buffer_size); err = -EIO; } runtime->drain = 0; if (err != -ERESTARTSYS) { /* we need wait a while to make sure that Tx FIFOs are empty */ if (substream->ops->drain) substream->ops->drain(substream); else msleep(50); snd_rawmidi_drop_output(substream); } return err; } int snd_rawmidi_drain_input(struct snd_rawmidi_substream *substream) { unsigned long flags; struct snd_rawmidi_runtime *runtime = substream->runtime; snd_rawmidi_input_trigger(substream, 0); runtime->drain = 0; spin_lock_irqsave(&runtime->lock, flags); runtime->appl_ptr = runtime->hw_ptr = 0; runtime->avail = 0; spin_unlock_irqrestore(&runtime->lock, flags); return 0; } int snd_rawmidi_kernel_open(struct snd_card *card, int device, int subdevice, int mode, struct snd_rawmidi_file * rfile) { struct snd_rawmidi *rmidi; struct list_head *list1, *list2; struct snd_rawmidi_substream *sinput = NULL, *soutput = NULL; struct snd_rawmidi_runtime *input = NULL, *output = NULL; int err; if (rfile) rfile->input = rfile->output = NULL; mutex_lock(®ister_mutex); rmidi = snd_rawmidi_search(card, device); mutex_unlock(®ister_mutex); if (rmidi == NULL) { err = -ENODEV; goto __error1; } if (!try_module_get(rmidi->card->module)) { err = -EFAULT; goto __error1; } if (!(mode & SNDRV_RAWMIDI_LFLG_NOOPENLOCK)) mutex_lock(&rmidi->open_mutex); if (mode & SNDRV_RAWMIDI_LFLG_INPUT) { if (!(rmidi->info_flags & SNDRV_RAWMIDI_INFO_INPUT)) { err = -ENXIO; goto __error; } if (subdevice >= 0 && (unsigned int)subdevice >= rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substream_count) { err = -ENODEV; goto __error; } if (rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substream_opened >= rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substream_count) { err = -EAGAIN; goto __error; } } if (mode & SNDRV_RAWMIDI_LFLG_OUTPUT) { if (!(rmidi->info_flags & SNDRV_RAWMIDI_INFO_OUTPUT)) { err = -ENXIO; goto __error; } if (subdevice >= 0 && (unsigned int)subdevice >= rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substream_count) { err = -ENODEV; goto __error; } if (rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substream_opened >= rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substream_count) { err = -EAGAIN; goto __error; } } list1 = rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substreams.next; while (1) { if (list1 == &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substreams) { sinput = NULL; if (mode & SNDRV_RAWMIDI_LFLG_INPUT) { err = -EAGAIN; goto __error; } break; } sinput = list_entry(list1, struct snd_rawmidi_substream, list); if ((mode & SNDRV_RAWMIDI_LFLG_INPUT) && sinput->opened) goto __nexti; if (subdevice < 0 || (subdevice >= 0 && subdevice == sinput->number)) break; __nexti: list1 = list1->next; } list2 = rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams.next; while (1) { if (list2 == &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) { soutput = NULL; if (mode & SNDRV_RAWMIDI_LFLG_OUTPUT) { err = -EAGAIN; goto __error; } break; } soutput = list_entry(list2, struct snd_rawmidi_substream, list); if (mode & SNDRV_RAWMIDI_LFLG_OUTPUT) { if (mode & SNDRV_RAWMIDI_LFLG_APPEND) { if (soutput->opened && !soutput->append) goto __nexto; } else { if (soutput->opened) goto __nexto; } } if (subdevice < 0 || (subdevice >= 0 && subdevice == soutput->number)) break; __nexto: list2 = list2->next; } if (mode & SNDRV_RAWMIDI_LFLG_INPUT) { if ((err = snd_rawmidi_runtime_create(sinput)) < 0) goto __error; input = sinput->runtime; if ((err = sinput->ops->open(sinput)) < 0) goto __error; sinput->opened = 1; rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substream_opened++; } else { sinput = NULL; } if (mode & SNDRV_RAWMIDI_LFLG_OUTPUT) { if (soutput->opened) goto __skip_output; if ((err = snd_rawmidi_runtime_create(soutput)) < 0) { if (mode & SNDRV_RAWMIDI_LFLG_INPUT) sinput->ops->close(sinput); goto __error; } output = soutput->runtime; if ((err = soutput->ops->open(soutput)) < 0) { if (mode & SNDRV_RAWMIDI_LFLG_INPUT) sinput->ops->close(sinput); goto __error; } __skip_output: soutput->opened = 1; if (mode & SNDRV_RAWMIDI_LFLG_APPEND) soutput->append = 1; if (soutput->use_count++ == 0) soutput->active_sensing = 1; rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substream_opened++; } else { soutput = NULL; } if (!(mode & SNDRV_RAWMIDI_LFLG_NOOPENLOCK)) mutex_unlock(&rmidi->open_mutex); if (rfile) { rfile->rmidi = rmidi; rfile->input = sinput; rfile->output = soutput; } return 0; __error: if (input != NULL) snd_rawmidi_runtime_free(sinput); if (output != NULL) snd_rawmidi_runtime_free(soutput); module_put(rmidi->card->module); if (!(mode & SNDRV_RAWMIDI_LFLG_NOOPENLOCK)) mutex_unlock(&rmidi->open_mutex); __error1: return err; } static int snd_rawmidi_open(struct inode *inode, struct file *file) { int maj = imajor(inode); struct snd_card *card; int subdevice; unsigned short fflags; int err; struct snd_rawmidi *rmidi; struct snd_rawmidi_file *rawmidi_file; wait_queue_t wait; struct list_head *list; struct snd_ctl_file *kctl; if (maj == snd_major) { rmidi = snd_lookup_minor_data(iminor(inode), SNDRV_DEVICE_TYPE_RAWMIDI); #ifdef CONFIG_SND_OSSEMUL } else if (maj == SOUND_MAJOR) { rmidi = snd_lookup_oss_minor_data(iminor(inode), SNDRV_OSS_DEVICE_TYPE_MIDI); #endif } else return -ENXIO; if (rmidi == NULL) return -ENODEV; if ((file->f_flags & O_APPEND) && !(file->f_flags & O_NONBLOCK)) return -EINVAL; /* invalid combination */ card = rmidi->card; err = snd_card_file_add(card, file); if (err < 0) return -ENODEV; fflags = snd_rawmidi_file_flags(file); if ((file->f_flags & O_APPEND) || maj == SOUND_MAJOR) /* OSS emul? */ fflags |= SNDRV_RAWMIDI_LFLG_APPEND; fflags |= SNDRV_RAWMIDI_LFLG_NOOPENLOCK; rawmidi_file = kmalloc(sizeof(*rawmidi_file), GFP_KERNEL); if (rawmidi_file == NULL) { snd_card_file_remove(card, file); return -ENOMEM; } init_waitqueue_entry(&wait, current); add_wait_queue(&rmidi->open_wait, &wait); mutex_lock(&rmidi->open_mutex); while (1) { subdevice = -1; down_read(&card->controls_rwsem); list_for_each(list, &card->ctl_files) { kctl = snd_ctl_file(list); if (kctl->pid == current->pid) { subdevice = kctl->prefer_rawmidi_subdevice; break; } } up_read(&card->controls_rwsem); err = snd_rawmidi_kernel_open(rmidi->card, rmidi->device, subdevice, fflags, rawmidi_file); if (err >= 0) break; if (err == -EAGAIN) { if (file->f_flags & O_NONBLOCK) { err = -EBUSY; break; } } else break; set_current_state(TASK_INTERRUPTIBLE); mutex_unlock(&rmidi->open_mutex); schedule(); mutex_lock(&rmidi->open_mutex); if (signal_pending(current)) { err = -ERESTARTSYS; break; } } #ifdef CONFIG_SND_OSSEMUL if (rawmidi_file->input && rawmidi_file->input->runtime) rawmidi_file->input->runtime->oss = (maj == SOUND_MAJOR); if (rawmidi_file->output && rawmidi_file->output->runtime) rawmidi_file->output->runtime->oss = (maj == SOUND_MAJOR); #endif remove_wait_queue(&rmidi->open_wait, &wait); if (err >= 0) { file->private_data = rawmidi_file; } else { snd_card_file_remove(card, file); kfree(rawmidi_file); } mutex_unlock(&rmidi->open_mutex); return err; } int snd_rawmidi_kernel_release(struct snd_rawmidi_file * rfile) { struct snd_rawmidi *rmidi; struct snd_rawmidi_substream *substream; struct snd_rawmidi_runtime *runtime; snd_assert(rfile != NULL, return -ENXIO); snd_assert(rfile->input != NULL || rfile->output != NULL, return -ENXIO); rmidi = rfile->rmidi; mutex_lock(&rmidi->open_mutex); if (rfile->input != NULL) { substream = rfile->input; rfile->input = NULL; runtime = substream->runtime; snd_rawmidi_input_trigger(substream, 0); substream->ops->close(substream); if (runtime->private_free != NULL) runtime->private_free(substream); snd_rawmidi_runtime_free(substream); substream->opened = 0; rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substream_opened--; } if (rfile->output != NULL) { substream = rfile->output; rfile->output = NULL; if (--substream->use_count == 0) { runtime = substream->runtime; if (substream->active_sensing) { unsigned char buf = 0xfe; /* sending single active sensing message to shut the device up */ snd_rawmidi_kernel_write(substream, &buf, 1); } if (snd_rawmidi_drain_output(substream) == -ERESTARTSYS) snd_rawmidi_output_trigger(substream, 0); substream->ops->close(substream); if (runtime->private_free != NULL) runtime->private_free(substream); snd_rawmidi_runtime_free(substream); substream->opened = 0; substream->append = 0; } rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substream_opened--; } mutex_unlock(&rmidi->open_mutex); module_put(rmidi->card->module); return 0; } static int snd_rawmidi_release(struct inode *inode, struct file *file) { struct snd_rawmidi_file *rfile; struct snd_rawmidi *rmidi; int err; rfile = file->private_data; err = snd_rawmidi_kernel_release(rfile); rmidi = rfile->rmidi; wake_up(&rmidi->open_wait); kfree(rfile); snd_card_file_remove(rmidi->card, file); return err; } static int snd_rawmidi_info(struct snd_rawmidi_substream *substream, struct snd_rawmidi_info *info) { struct snd_rawmidi *rmidi; if (substream == NULL) return -ENODEV; rmidi = substream->rmidi; memset(info, 0, sizeof(*info)); info->card = rmidi->card->number; info->device = rmidi->device; info->subdevice = substream->number; info->stream = substream->stream; info->flags = rmidi->info_flags; strcpy(info->id, rmidi->id); strcpy(info->name, rmidi->name); strcpy(info->subname, substream->name); info->subdevices_count = substream->pstr->substream_count; info->subdevices_avail = (substream->pstr->substream_count - substream->pstr->substream_opened); return 0; } static int snd_rawmidi_info_user(struct snd_rawmidi_substream *substream, struct snd_rawmidi_info __user * _info) { struct snd_rawmidi_info info; int err; if ((err = snd_rawmidi_info(substream, &info)) < 0) return err; if (copy_to_user(_info, &info, sizeof(struct snd_rawmidi_info))) return -EFAULT; return 0; } int snd_rawmidi_info_select(struct snd_card *card, struct snd_rawmidi_info *info) { struct snd_rawmidi *rmidi; struct snd_rawmidi_str *pstr; struct snd_rawmidi_substream *substream; struct list_head *list; mutex_lock(®ister_mutex); rmidi = snd_rawmidi_search(card, info->device); mutex_unlock(®ister_mutex); if (!rmidi) return -ENXIO; if (info->stream < 0 || info->stream > 1) return -EINVAL; pstr = &rmidi->streams[info->stream]; if (pstr->substream_count == 0) return -ENOENT; if (info->subdevice >= pstr->substream_count) return -ENXIO; list_for_each(list, &pstr->substreams) { substream = list_entry(list, struct snd_rawmidi_substream, list); if ((unsigned int)substream->number == info->subdevice) return snd_rawmidi_info(substream, info); } return -ENXIO; } static int snd_rawmidi_info_select_user(struct snd_card *card, struct snd_rawmidi_info __user *_info) { int err; struct snd_rawmidi_info info; if (get_user(info.device, &_info->device)) return -EFAULT; if (get_user(info.stream, &_info->stream)) return -EFAULT; if (get_user(info.subdevice, &_info->subdevice)) return -EFAULT; if ((err = snd_rawmidi_info_select(card, &info)) < 0) return err; if (copy_to_user(_info, &info, sizeof(struct snd_rawmidi_info))) return -EFAULT; return 0; } int snd_rawmidi_output_params(struct snd_rawmidi_substream *substream, struct snd_rawmidi_params * params) { char *newbuf; struct snd_rawmidi_runtime *runtime = substream->runtime; if (substream->append && substream->use_count > 1) return -EBUSY; snd_rawmidi_drain_output(substream); if (params->buffer_size < 32 || params->buffer_size > 1024L * 1024L) { return -EINVAL; } if (params->avail_min < 1 || params->avail_min > params->buffer_size) { return -EINVAL; } if (params->buffer_size != runtime->buffer_size) { newbuf = kmalloc(params->buffer_size, GFP_KERNEL); if (!newbuf) return -ENOMEM; kfree(runtime->buffer); runtime->buffer = newbuf; runtime->buffer_size = params->buffer_size; runtime->avail = runtime->buffer_size; } runtime->avail_min = params->avail_min; substream->active_sensing = !params->no_active_sensing; return 0; } int snd_rawmidi_input_params(struct snd_rawmidi_substream *substream, struct snd_rawmidi_params * params) { char *newbuf; struct snd_rawmidi_runtime *runtime = substream->runtime; snd_rawmidi_drain_input(substream); if (params->buffer_size < 32 || params->buffer_size > 1024L * 1024L) { return -EINVAL; } if (params->avail_min < 1 || params->avail_min > params->buffer_size) { return -EINVAL; } if (params->buffer_size != runtime->buffer_size) { newbuf = kmalloc(params->buffer_size, GFP_KERNEL); if (!newbuf) return -ENOMEM; kfree(runtime->buffer); runtime->buffer = newbuf; runtime->buffer_size = params->buffer_size; } runtime->avail_min = params->avail_min; return 0; } static int snd_rawmidi_output_status(struct snd_rawmidi_substream *substream, struct snd_rawmidi_status * status) { struct snd_rawmidi_runtime *runtime = substream->runtime; memset(status, 0, sizeof(*status)); status->stream = SNDRV_RAWMIDI_STREAM_OUTPUT; spin_lock_irq(&runtime->lock); status->avail = runtime->avail; spin_unlock_irq(&runtime->lock); return 0; } static int snd_rawmidi_input_status(struct snd_rawmidi_substream *substream, struct snd_rawmidi_status * status) { struct snd_rawmidi_runtime *runtime = substream->runtime; memset(status, 0, sizeof(*status)); status->stream = SNDRV_RAWMIDI_STREAM_INPUT; spin_lock_irq(&runtime->lock); status->avail = runtime->avail; status->xruns = runtime->xruns; runtime->xruns = 0; spin_unlock_irq(&runtime->lock); return 0; } static long snd_rawmidi_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct snd_rawmidi_file *rfile; void __user *argp = (void __user *)arg; rfile = file->private_data; if (((cmd >> 8) & 0xff) != 'W') return -ENOTTY; switch (cmd) { case SNDRV_RAWMIDI_IOCTL_PVERSION: return put_user(SNDRV_RAWMIDI_VERSION, (int __user *)argp) ? -EFAULT : 0; case SNDRV_RAWMIDI_IOCTL_INFO: { int stream; struct snd_rawmidi_info __user *info = argp; if (get_user(stream, &info->stream)) return -EFAULT; switch (stream) { case SNDRV_RAWMIDI_STREAM_INPUT: return snd_rawmidi_info_user(rfile->input, info); case SNDRV_RAWMIDI_STREAM_OUTPUT: return snd_rawmidi_info_user(rfile->output, info); default: return -EINVAL; } } case SNDRV_RAWMIDI_IOCTL_PARAMS: { struct snd_rawmidi_params params; if (copy_from_user(¶ms, argp, sizeof(struct snd_rawmidi_params))) return -EFAULT; switch (params.stream) { case SNDRV_RAWMIDI_STREAM_OUTPUT: if (rfile->output == NULL) return -EINVAL; return snd_rawmidi_output_params(rfile->output, ¶ms); case SNDRV_RAWMIDI_STREAM_INPUT: if (rfile->input == NULL) return -EINVAL; return snd_rawmidi_input_params(rfile->input, ¶ms); default: return -EINVAL; } } case SNDRV_RAWMIDI_IOCTL_STATUS: { int err = 0; struct snd_rawmidi_status status; if (copy_from_user(&status, argp, sizeof(struct snd_rawmidi_status))) return -EFAULT; switch (status.stream) { case SNDRV_RAWMIDI_STREAM_OUTPUT: if (rfile->output == NULL) return -EINVAL; err = snd_rawmidi_output_status(rfile->output, &status); break; case SNDRV_RAWMIDI_STREAM_INPUT: if (rfile->input == NULL) return -EINVAL; err = snd_rawmidi_input_status(rfile->input, &status); break; default: return -EINVAL; } if (err < 0) return err; if (copy_to_user(argp, &status, sizeof(struct snd_rawmidi_status))) return -EFAULT; return 0; } case SNDRV_RAWMIDI_IOCTL_DROP: { int val; if (get_user(val, (int __user *) argp)) return -EFAULT; switch (val) { case SNDRV_RAWMIDI_STREAM_OUTPUT: if (rfile->output == NULL) return -EINVAL; return snd_rawmidi_drop_output(rfile->output); default: return -EINVAL; } } case SNDRV_RAWMIDI_IOCTL_DRAIN: { int val; if (get_user(val, (int __user *) argp)) return -EFAULT; switch (val) { case SNDRV_RAWMIDI_STREAM_OUTPUT: if (rfile->output == NULL) return -EINVAL; return snd_rawmidi_drain_output(rfile->output); case SNDRV_RAWMIDI_STREAM_INPUT: if (rfile->input == NULL) return -EINVAL; return snd_rawmidi_drain_input(rfile->input); default: return -EINVAL; } } #ifdef CONFIG_SND_DEBUG default: snd_printk(KERN_WARNING "rawmidi: unknown command = 0x%x\n", cmd); #endif } return -ENOTTY; } static int snd_rawmidi_control_ioctl(struct snd_card *card, struct snd_ctl_file *control, unsigned int cmd, unsigned long arg) { void __user *argp = (void __user *)arg; switch (cmd) { case SNDRV_CTL_IOCTL_RAWMIDI_NEXT_DEVICE: { int device; if (get_user(device, (int __user *)argp)) return -EFAULT; mutex_lock(®ister_mutex); device = device < 0 ? 0 : device + 1; while (device < SNDRV_RAWMIDI_DEVICES) { if (snd_rawmidi_search(card, device)) break; device++; } if (device == SNDRV_RAWMIDI_DEVICES) device = -1; mutex_unlock(®ister_mutex); if (put_user(device, (int __user *)argp)) return -EFAULT; return 0; } case SNDRV_CTL_IOCTL_RAWMIDI_PREFER_SUBDEVICE: { int val; if (get_user(val, (int __user *)argp)) return -EFAULT; control->prefer_rawmidi_subdevice = val; return 0; } case SNDRV_CTL_IOCTL_RAWMIDI_INFO: return snd_rawmidi_info_select_user(card, argp); } return -ENOIOCTLCMD; } /** * snd_rawmidi_receive - receive the input data from the device * @substream: the rawmidi substream * @buffer: the buffer pointer * @count: the data size to read * * Reads the data from the internal buffer. * * Returns the size of read data, or a negative error code on failure. */ int snd_rawmidi_receive(struct snd_rawmidi_substream *substream, const unsigned char *buffer, int count) { unsigned long flags; int result = 0, count1; struct snd_rawmidi_runtime *runtime = substream->runtime; if (runtime->buffer == NULL) { snd_printd("snd_rawmidi_receive: input is not active!!!\n"); return -EINVAL; } spin_lock_irqsave(&runtime->lock, flags); if (count == 1) { /* special case, faster code */ substream->bytes++; if (runtime->avail < runtime->buffer_size) { runtime->buffer[runtime->hw_ptr++] = buffer[0]; runtime->hw_ptr %= runtime->buffer_size; runtime->avail++; result++; } else { runtime->xruns++; } } else { substream->bytes += count; count1 = runtime->buffer_size - runtime->hw_ptr; if (count1 > count) count1 = count; if (count1 > (int)(runtime->buffer_size - runtime->avail)) count1 = runtime->buffer_size - runtime->avail; memcpy(runtime->buffer + runtime->hw_ptr, buffer, count1); runtime->hw_ptr += count1; runtime->hw_ptr %= runtime->buffer_size; runtime->avail += count1; count -= count1; result += count1; if (count > 0) { buffer += count1; count1 = count; if (count1 > (int)(runtime->buffer_size - runtime->avail)) { count1 = runtime->buffer_size - runtime->avail; runtime->xruns += count - count1; } if (count1 > 0) { memcpy(runtime->buffer, buffer, count1); runtime->hw_ptr = count1; runtime->avail += count1; result += count1; } } } if (result > 0) { if (runtime->event) tasklet_hi_schedule(&runtime->tasklet); else if (snd_rawmidi_ready(substream)) wake_up(&runtime->sleep); } spin_unlock_irqrestore(&runtime->lock, flags); return result; } static long snd_rawmidi_kernel_read1(struct snd_rawmidi_substream *substream, unsigned char *buf, long count, int kernel) { unsigned long flags; long result = 0, count1; struct snd_rawmidi_runtime *runtime = substream->runtime; while (count > 0 && runtime->avail) { count1 = runtime->buffer_size - runtime->appl_ptr; if (count1 > count) count1 = count; spin_lock_irqsave(&runtime->lock, flags); if (count1 > (int)runtime->avail) count1 = runtime->avail; if (kernel) { memcpy(buf + result, runtime->buffer + runtime->appl_ptr, count1); } else { spin_unlock_irqrestore(&runtime->lock, flags); if (copy_to_user((char __user *)buf + result, runtime->buffer + runtime->appl_ptr, count1)) { return result > 0 ? result : -EFAULT; } spin_lock_irqsave(&runtime->lock, flags); } runtime->appl_ptr += count1; runtime->appl_ptr %= runtime->buffer_size; runtime->avail -= count1; spin_unlock_irqrestore(&runtime->lock, flags); result += count1; count -= count1; } return result; } long snd_rawmidi_kernel_read(struct snd_rawmidi_substream *substream, unsigned char *buf, long count) { snd_rawmidi_input_trigger(substream, 1); return snd_rawmidi_kernel_read1(substream, buf, count, 1); } static ssize_t snd_rawmidi_read(struct file *file, char __user *buf, size_t count, loff_t *offset) { long result; int count1; struct snd_rawmidi_file *rfile; struct snd_rawmidi_substream *substream; struct snd_rawmidi_runtime *runtime; rfile = file->private_data; substream = rfile->input; if (substream == NULL) return -EIO; runtime = substream->runtime; snd_rawmidi_input_trigger(substream, 1); result = 0; while (count > 0) { spin_lock_irq(&runtime->lock); while (!snd_rawmidi_ready(substream)) { wait_queue_t wait; if ((file->f_flags & O_NONBLOCK) != 0 || result > 0) { spin_unlock_irq(&runtime->lock); return result > 0 ? result : -EAGAIN; } init_waitqueue_entry(&wait, current); add_wait_queue(&runtime->sleep, &wait); set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irq(&runtime->lock); schedule(); remove_wait_queue(&runtime->sleep, &wait); if (signal_pending(current)) return result > 0 ? result : -ERESTARTSYS; if (!runtime->avail) return result > 0 ? result : -EIO; spin_lock_irq(&runtime->lock); } spin_unlock_irq(&runtime->lock); count1 = snd_rawmidi_kernel_read1(substream, (unsigned char __force *)buf, count, 0); if (count1 < 0) return result > 0 ? result : count1; result += count1; buf += count1; count -= count1; } return result; } /** * snd_rawmidi_transmit_empty - check whether the output buffer is empty * @substream: the rawmidi substream * * Returns 1 if the internal output buffer is empty, 0 if not. */ int snd_rawmidi_transmit_empty(struct snd_rawmidi_substream *substream) { struct snd_rawmidi_runtime *runtime = substream->runtime; int result; unsigned long flags; if (runtime->buffer == NULL) { snd_printd("snd_rawmidi_transmit_empty: output is not active!!!\n"); return 1; } spin_lock_irqsave(&runtime->lock, flags); result = runtime->avail >= runtime->buffer_size; spin_unlock_irqrestore(&runtime->lock, flags); return result; } /** * snd_rawmidi_transmit_peek - copy data from the internal buffer * @substream: the rawmidi substream * @buffer: the buffer pointer * @count: data size to transfer * * Copies data from the internal output buffer to the given buffer. * * Call this in the interrupt handler when the midi output is ready, * and call snd_rawmidi_transmit_ack() after the transmission is * finished. * * Returns the size of copied data, or a negative error code on failure. */ int snd_rawmidi_transmit_peek(struct snd_rawmidi_substream *substream, unsigned char *buffer, int count) { unsigned long flags; int result, count1; struct snd_rawmidi_runtime *runtime = substream->runtime; if (runtime->buffer == NULL) { snd_printd("snd_rawmidi_transmit_peek: output is not active!!!\n"); return -EINVAL; } result = 0; spin_lock_irqsave(&runtime->lock, flags); if (runtime->avail >= runtime->buffer_size) { /* warning: lowlevel layer MUST trigger down the hardware */ goto __skip; } if (count == 1) { /* special case, faster code */ *buffer = runtime->buffer[runtime->hw_ptr]; result++; } else { count1 = runtime->buffer_size - runtime->hw_ptr; if (count1 > count) count1 = count; if (count1 > (int)(runtime->buffer_size - runtime->avail)) count1 = runtime->buffer_size - runtime->avail; memcpy(buffer, runtime->buffer + runtime->hw_ptr, count1); count -= count1; result += count1; if (count > 0) { if (count > (int)(runtime->buffer_size - runtime->avail - count1)) count = runtime->buffer_size - runtime->avail - count1; memcpy(buffer + count1, runtime->buffer, count); result += count; } } __skip: spin_unlock_irqrestore(&runtime->lock, flags); return result; } /** * snd_rawmidi_transmit_ack - acknowledge the transmission * @substream: the rawmidi substream * @count: the tranferred count * * Advances the hardware pointer for the internal output buffer with * the given size and updates the condition. * Call after the transmission is finished. * * Returns the advanced size if successful, or a negative error code on failure. */ int snd_rawmidi_transmit_ack(struct snd_rawmidi_substream *substream, int count) { unsigned long flags; struct snd_rawmidi_runtime *runtime = substream->runtime; if (runtime->buffer == NULL) { snd_printd("snd_rawmidi_transmit_ack: output is not active!!!\n"); return -EINVAL; } spin_lock_irqsave(&runtime->lock, flags); snd_assert(runtime->avail + count <= runtime->buffer_size, ); runtime->hw_ptr += count; runtime->hw_ptr %= runtime->buffer_size; runtime->avail += count; substream->bytes += count; if (count > 0) { if (runtime->drain || snd_rawmidi_ready(substream)) wake_up(&runtime->sleep); } spin_unlock_irqrestore(&runtime->lock, flags); return count; } /** * snd_rawmidi_transmit - copy from the buffer to the device * @substream: the rawmidi substream * @buffer: the buffer pointer * @count: the data size to transfer * * Copies data from the buffer to the device and advances the pointer. * * Returns the copied size if successful, or a negative error code on failure. */ int snd_rawmidi_transmit(struct snd_rawmidi_substream *substream, unsigned char *buffer, int count) { count = snd_rawmidi_transmit_peek(substream, buffer, count); if (count < 0) return count; return snd_rawmidi_transmit_ack(substream, count); } static long snd_rawmidi_kernel_write1(struct snd_rawmidi_substream *substream, const unsigned char *buf, long count, int kernel) { unsigned long flags; long count1, result; struct snd_rawmidi_runtime *runtime = substream->runtime; snd_assert(buf != NULL, return -EINVAL); snd_assert(runtime->buffer != NULL, return -EINVAL); result = 0; spin_lock_irqsave(&runtime->lock, flags); if (substream->append) { if ((long)runtime->avail < count) { spin_unlock_irqrestore(&runtime->lock, flags); return -EAGAIN; } } while (count > 0 && runtime->avail > 0) { count1 = runtime->buffer_size - runtime->appl_ptr; if (count1 > count) count1 = count; if (count1 > (long)runtime->avail) count1 = runtime->avail; if (kernel) { memcpy(runtime->buffer + runtime->appl_ptr, buf, count1); } else { spin_unlock_irqrestore(&runtime->lock, flags); if (copy_from_user(runtime->buffer + runtime->appl_ptr, (char __user *)buf, count1)) { spin_lock_irqsave(&runtime->lock, flags); result = result > 0 ? result : -EFAULT; goto __end; } spin_lock_irqsave(&runtime->lock, flags); } runtime->appl_ptr += count1; runtime->appl_ptr %= runtime->buffer_size; runtime->avail -= count1; result += count1; buf += count1; count -= count1; } __end: count1 = runtime->avail < runtime->buffer_size; spin_unlock_irqrestore(&runtime->lock, flags); if (count1) snd_rawmidi_output_trigger(substream, 1); return result; } long snd_rawmidi_kernel_write(struct snd_rawmidi_substream *substream, const unsigned char *buf, long count) { return snd_rawmidi_kernel_write1(substream, buf, count, 1); } static ssize_t snd_rawmidi_write(struct file *file, const char __user *buf, size_t count, loff_t *offset) { long result, timeout; int count1; struct snd_rawmidi_file *rfile; struct snd_rawmidi_runtime *runtime; struct snd_rawmidi_substream *substream; rfile = file->private_data; substream = rfile->output; runtime = substream->runtime; /* we cannot put an atomic message to our buffer */ if (substream->append && count > runtime->buffer_size) return -EIO; result = 0; while (count > 0) { spin_lock_irq(&runtime->lock); while (!snd_rawmidi_ready_append(substream, count)) { wait_queue_t wait; if (file->f_flags & O_NONBLOCK) { spin_unlock_irq(&runtime->lock); return result > 0 ? result : -EAGAIN; } init_waitqueue_entry(&wait, current); add_wait_queue(&runtime->sleep, &wait); set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irq(&runtime->lock); timeout = schedule_timeout(30 * HZ); remove_wait_queue(&runtime->sleep, &wait); if (signal_pending(current)) return result > 0 ? result : -ERESTARTSYS; if (!runtime->avail && !timeout) return result > 0 ? result : -EIO; spin_lock_irq(&runtime->lock); } spin_unlock_irq(&runtime->lock); count1 = snd_rawmidi_kernel_write1(substream, (unsigned char __force *)buf, count, 0); if (count1 < 0) return result > 0 ? result : count1; result += count1; buf += count1; if ((size_t)count1 < count && (file->f_flags & O_NONBLOCK)) break; count -= count1; } if (file->f_flags & O_SYNC) { spin_lock_irq(&runtime->lock); while (runtime->avail != runtime->buffer_size) { wait_queue_t wait; unsigned int last_avail = runtime->avail; init_waitqueue_entry(&wait, current); add_wait_queue(&runtime->sleep, &wait); set_current_state(TASK_INTERRUPTIBLE); spin_unlock_irq(&runtime->lock); timeout = schedule_timeout(30 * HZ); remove_wait_queue(&runtime->sleep, &wait); if (signal_pending(current)) return result > 0 ? result : -ERESTARTSYS; if (runtime->avail == last_avail && !timeout) return result > 0 ? result : -EIO; spin_lock_irq(&runtime->lock); } spin_unlock_irq(&runtime->lock); } return result; } static unsigned int snd_rawmidi_poll(struct file *file, poll_table * wait) { struct snd_rawmidi_file *rfile; struct snd_rawmidi_runtime *runtime; unsigned int mask; rfile = file->private_data; if (rfile->input != NULL) { runtime = rfile->input->runtime; snd_rawmidi_input_trigger(rfile->input, 1); poll_wait(file, &runtime->sleep, wait); } if (rfile->output != NULL) { runtime = rfile->output->runtime; poll_wait(file, &runtime->sleep, wait); } mask = 0; if (rfile->input != NULL) { if (snd_rawmidi_ready(rfile->input)) mask |= POLLIN | POLLRDNORM; } if (rfile->output != NULL) { if (snd_rawmidi_ready(rfile->output)) mask |= POLLOUT | POLLWRNORM; } return mask; } /* */ #ifdef CONFIG_COMPAT #include "rawmidi_compat.c" #else #define snd_rawmidi_ioctl_compat NULL #endif /* */ static void snd_rawmidi_proc_info_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_rawmidi *rmidi; struct snd_rawmidi_substream *substream; struct snd_rawmidi_runtime *runtime; struct list_head *list; rmidi = entry->private_data; snd_iprintf(buffer, "%s\n\n", rmidi->name); mutex_lock(&rmidi->open_mutex); if (rmidi->info_flags & SNDRV_RAWMIDI_INFO_OUTPUT) { list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) { substream = list_entry(list, struct snd_rawmidi_substream, list); snd_iprintf(buffer, "Output %d\n" " Tx bytes : %lu\n", substream->number, (unsigned long) substream->bytes); if (substream->opened) { runtime = substream->runtime; snd_iprintf(buffer, " Mode : %s\n" " Buffer size : %lu\n" " Avail : %lu\n", runtime->oss ? "OSS compatible" : "native", (unsigned long) runtime->buffer_size, (unsigned long) runtime->avail); } } } if (rmidi->info_flags & SNDRV_RAWMIDI_INFO_INPUT) { list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT].substreams) { substream = list_entry(list, struct snd_rawmidi_substream, list); snd_iprintf(buffer, "Input %d\n" " Rx bytes : %lu\n", substream->number, (unsigned long) substream->bytes); if (substream->opened) { runtime = substream->runtime; snd_iprintf(buffer, " Buffer size : %lu\n" " Avail : %lu\n" " Overruns : %lu\n", (unsigned long) runtime->buffer_size, (unsigned long) runtime->avail, (unsigned long) runtime->xruns); } } } mutex_unlock(&rmidi->open_mutex); } /* * Register functions */ static struct file_operations snd_rawmidi_f_ops = { .owner = THIS_MODULE, .read = snd_rawmidi_read, .write = snd_rawmidi_write, .open = snd_rawmidi_open, .release = snd_rawmidi_release, .poll = snd_rawmidi_poll, .unlocked_ioctl = snd_rawmidi_ioctl, .compat_ioctl = snd_rawmidi_ioctl_compat, }; static int snd_rawmidi_alloc_substreams(struct snd_rawmidi *rmidi, struct snd_rawmidi_str *stream, int direction, int count) { struct snd_rawmidi_substream *substream; int idx; INIT_LIST_HEAD(&stream->substreams); for (idx = 0; idx < count; idx++) { substream = kzalloc(sizeof(*substream), GFP_KERNEL); if (substream == NULL) { snd_printk(KERN_ERR "rawmidi: cannot allocate substream\n"); return -ENOMEM; } substream->stream = direction; substream->number = idx; substream->rmidi = rmidi; substream->pstr = stream; list_add_tail(&substream->list, &stream->substreams); stream->substream_count++; } return 0; } /** * snd_rawmidi_new - create a rawmidi instance * @card: the card instance * @id: the id string * @device: the device index * @output_count: the number of output streams * @input_count: the number of input streams * @rrawmidi: the pointer to store the new rawmidi instance * * Creates a new rawmidi instance. * Use snd_rawmidi_set_ops() to set the operators to the new instance. * * Returns zero if successful, or a negative error code on failure. */ int snd_rawmidi_new(struct snd_card *card, char *id, int device, int output_count, int input_count, struct snd_rawmidi ** rrawmidi) { struct snd_rawmidi *rmidi; int err; static struct snd_device_ops ops = { .dev_free = snd_rawmidi_dev_free, .dev_register = snd_rawmidi_dev_register, .dev_disconnect = snd_rawmidi_dev_disconnect, .dev_unregister = snd_rawmidi_dev_unregister }; snd_assert(rrawmidi != NULL, return -EINVAL); *rrawmidi = NULL; snd_assert(card != NULL, return -ENXIO); rmidi = kzalloc(sizeof(*rmidi), GFP_KERNEL); if (rmidi == NULL) { snd_printk(KERN_ERR "rawmidi: cannot allocate\n"); return -ENOMEM; } rmidi->card = card; rmidi->device = device; mutex_init(&rmidi->open_mutex); init_waitqueue_head(&rmidi->open_wait); if (id != NULL) strlcpy(rmidi->id, id, sizeof(rmidi->id)); if ((err = snd_rawmidi_alloc_substreams(rmidi, &rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT], SNDRV_RAWMIDI_STREAM_INPUT, input_count)) < 0) { snd_rawmidi_free(rmidi); return err; } if ((err = snd_rawmidi_alloc_substreams(rmidi, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT], SNDRV_RAWMIDI_STREAM_OUTPUT, output_count)) < 0) { snd_rawmidi_free(rmidi); return err; } if ((err = snd_device_new(card, SNDRV_DEV_RAWMIDI, rmidi, &ops)) < 0) { snd_rawmidi_free(rmidi); return err; } *rrawmidi = rmidi; return 0; } static void snd_rawmidi_free_substreams(struct snd_rawmidi_str *stream) { struct snd_rawmidi_substream *substream; while (!list_empty(&stream->substreams)) { substream = list_entry(stream->substreams.next, struct snd_rawmidi_substream, list); list_del(&substream->list); kfree(substream); } } static int snd_rawmidi_free(struct snd_rawmidi *rmidi) { snd_assert(rmidi != NULL, return -ENXIO); snd_rawmidi_free_substreams(&rmidi->streams[SNDRV_RAWMIDI_STREAM_INPUT]); snd_rawmidi_free_substreams(&rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT]); if (rmidi->private_free) rmidi->private_free(rmidi); kfree(rmidi); return 0; } static int snd_rawmidi_dev_free(struct snd_device *device) { struct snd_rawmidi *rmidi = device->device_data; return snd_rawmidi_free(rmidi); } #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE)) static void snd_rawmidi_dev_seq_free(struct snd_seq_device *device) { struct snd_rawmidi *rmidi = device->private_data; rmidi->seq_dev = NULL; } #endif static int snd_rawmidi_dev_register(struct snd_device *device) { int err; struct snd_info_entry *entry; char name[16]; struct snd_rawmidi *rmidi = device->device_data; if (rmidi->device >= SNDRV_RAWMIDI_DEVICES) return -ENOMEM; mutex_lock(®ister_mutex); if (snd_rawmidi_search(rmidi->card, rmidi->device)) { mutex_unlock(®ister_mutex); return -EBUSY; } list_add_tail(&rmidi->list, &snd_rawmidi_devices); sprintf(name, "midiC%iD%i", rmidi->card->number, rmidi->device); if ((err = snd_register_device(SNDRV_DEVICE_TYPE_RAWMIDI, rmidi->card, rmidi->device, &snd_rawmidi_f_ops, rmidi, name)) < 0) { snd_printk(KERN_ERR "unable to register rawmidi device %i:%i\n", rmidi->card->number, rmidi->device); list_del(&rmidi->list); mutex_unlock(®ister_mutex); return err; } if (rmidi->ops && rmidi->ops->dev_register && (err = rmidi->ops->dev_register(rmidi)) < 0) { snd_unregister_device(SNDRV_DEVICE_TYPE_RAWMIDI, rmidi->card, rmidi->device); list_del(&rmidi->list); mutex_unlock(®ister_mutex); return err; } #ifdef CONFIG_SND_OSSEMUL rmidi->ossreg = 0; if ((int)rmidi->device == midi_map[rmidi->card->number]) { if (snd_register_oss_device(SNDRV_OSS_DEVICE_TYPE_MIDI, rmidi->card, 0, &snd_rawmidi_f_ops, rmidi, name) < 0) { snd_printk(KERN_ERR "unable to register OSS rawmidi device %i:%i\n", rmidi->card->number, 0); } else { rmidi->ossreg++; #ifdef SNDRV_OSS_INFO_DEV_MIDI snd_oss_info_register(SNDRV_OSS_INFO_DEV_MIDI, rmidi->card->number, rmidi->name); #endif } } if ((int)rmidi->device == amidi_map[rmidi->card->number]) { if (snd_register_oss_device(SNDRV_OSS_DEVICE_TYPE_MIDI, rmidi->card, 1, &snd_rawmidi_f_ops, rmidi, name) < 0) { snd_printk(KERN_ERR "unable to register OSS rawmidi device %i:%i\n", rmidi->card->number, 1); } else { rmidi->ossreg++; } } #endif /* CONFIG_SND_OSSEMUL */ mutex_unlock(®ister_mutex); sprintf(name, "midi%d", rmidi->device); entry = snd_info_create_card_entry(rmidi->card, name, rmidi->card->proc_root); if (entry) { entry->private_data = rmidi; entry->c.text.read_size = 1024; entry->c.text.read = snd_rawmidi_proc_info_read; if (snd_info_register(entry) < 0) { snd_info_free_entry(entry); entry = NULL; } } rmidi->proc_entry = entry; #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE)) if (!rmidi->ops || !rmidi->ops->dev_register) { /* own registration mechanism */ if (snd_seq_device_new(rmidi->card, rmidi->device, SNDRV_SEQ_DEV_ID_MIDISYNTH, 0, &rmidi->seq_dev) >= 0) { rmidi->seq_dev->private_data = rmidi; rmidi->seq_dev->private_free = snd_rawmidi_dev_seq_free; sprintf(rmidi->seq_dev->name, "MIDI %d-%d", rmidi->card->number, rmidi->device); snd_device_register(rmidi->card, rmidi->seq_dev); } } #endif return 0; } static int snd_rawmidi_dev_disconnect(struct snd_device *device) { struct snd_rawmidi *rmidi = device->device_data; mutex_lock(®ister_mutex); list_del_init(&rmidi->list); mutex_unlock(®ister_mutex); return 0; } static int snd_rawmidi_dev_unregister(struct snd_device *device) { struct snd_rawmidi *rmidi = device->device_data; snd_assert(rmidi != NULL, return -ENXIO); mutex_lock(®ister_mutex); list_del(&rmidi->list); if (rmidi->proc_entry) { snd_info_unregister(rmidi->proc_entry); rmidi->proc_entry = NULL; } #ifdef CONFIG_SND_OSSEMUL if (rmidi->ossreg) { if ((int)rmidi->device == midi_map[rmidi->card->number]) { snd_unregister_oss_device(SNDRV_OSS_DEVICE_TYPE_MIDI, rmidi->card, 0); #ifdef SNDRV_OSS_INFO_DEV_MIDI snd_oss_info_unregister(SNDRV_OSS_INFO_DEV_MIDI, rmidi->card->number); #endif } if ((int)rmidi->device == amidi_map[rmidi->card->number]) snd_unregister_oss_device(SNDRV_OSS_DEVICE_TYPE_MIDI, rmidi->card, 1); rmidi->ossreg = 0; } #endif /* CONFIG_SND_OSSEMUL */ if (rmidi->ops && rmidi->ops->dev_unregister) rmidi->ops->dev_unregister(rmidi); snd_unregister_device(SNDRV_DEVICE_TYPE_RAWMIDI, rmidi->card, rmidi->device); mutex_unlock(®ister_mutex); #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE)) if (rmidi->seq_dev) { snd_device_free(rmidi->card, rmidi->seq_dev); rmidi->seq_dev = NULL; } #endif return snd_rawmidi_free(rmidi); } /** * snd_rawmidi_set_ops - set the rawmidi operators * @rmidi: the rawmidi instance * @stream: the stream direction, SNDRV_RAWMIDI_STREAM_XXX * @ops: the operator table * * Sets the rawmidi operators for the given stream direction. */ void snd_rawmidi_set_ops(struct snd_rawmidi *rmidi, int stream, struct snd_rawmidi_ops *ops) { struct list_head *list; struct snd_rawmidi_substream *substream; list_for_each(list, &rmidi->streams[stream].substreams) { substream = list_entry(list, struct snd_rawmidi_substream, list); substream->ops = ops; } } /* * ENTRY functions */ static int __init alsa_rawmidi_init(void) { snd_ctl_register_ioctl(snd_rawmidi_control_ioctl); snd_ctl_register_ioctl_compat(snd_rawmidi_control_ioctl); #ifdef CONFIG_SND_OSSEMUL { int i; /* check device map table */ for (i = 0; i < SNDRV_CARDS; i++) { if (midi_map[i] < 0 || midi_map[i] >= SNDRV_RAWMIDI_DEVICES) { snd_printk(KERN_ERR "invalid midi_map[%d] = %d\n", i, midi_map[i]); midi_map[i] = 0; } if (amidi_map[i] < 0 || amidi_map[i] >= SNDRV_RAWMIDI_DEVICES) { snd_printk(KERN_ERR "invalid amidi_map[%d] = %d\n", i, amidi_map[i]); amidi_map[i] = 1; } } } #endif /* CONFIG_SND_OSSEMUL */ return 0; } static void __exit alsa_rawmidi_exit(void) { snd_ctl_unregister_ioctl(snd_rawmidi_control_ioctl); snd_ctl_unregister_ioctl_compat(snd_rawmidi_control_ioctl); } module_init(alsa_rawmidi_init) module_exit(alsa_rawmidi_exit) EXPORT_SYMBOL(snd_rawmidi_output_params); EXPORT_SYMBOL(snd_rawmidi_input_params); EXPORT_SYMBOL(snd_rawmidi_drop_output); EXPORT_SYMBOL(snd_rawmidi_drain_output); EXPORT_SYMBOL(snd_rawmidi_drain_input); EXPORT_SYMBOL(snd_rawmidi_receive); EXPORT_SYMBOL(snd_rawmidi_transmit_empty); EXPORT_SYMBOL(snd_rawmidi_transmit_peek); EXPORT_SYMBOL(snd_rawmidi_transmit_ack); EXPORT_SYMBOL(snd_rawmidi_transmit); EXPORT_SYMBOL(snd_rawmidi_new); EXPORT_SYMBOL(snd_rawmidi_set_ops); EXPORT_SYMBOL(snd_rawmidi_info_select); EXPORT_SYMBOL(snd_rawmidi_kernel_open); EXPORT_SYMBOL(snd_rawmidi_kernel_release); EXPORT_SYMBOL(snd_rawmidi_kernel_read); EXPORT_SYMBOL(snd_rawmidi_kernel_write);