/* * ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381 * AD and DA converters * * Copyright (c) 2000-2004 Jaroslav Kysela , * Takashi Iwai * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include MODULE_AUTHOR("Jaroslav Kysela , Takashi Iwai "); MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters"); MODULE_LICENSE("GPL"); void snd_akm4xxx_write(struct snd_akm4xxx *ak, int chip, unsigned char reg, unsigned char val) { ak->ops.lock(ak, chip); ak->ops.write(ak, chip, reg, val); /* save the data */ if (ak->type == SND_AK4524 || ak->type == SND_AK4528) { if ((reg != 0x04 && reg != 0x05) || (val & 0x80) == 0) snd_akm4xxx_set(ak, chip, reg, val); else snd_akm4xxx_set_ipga(ak, chip, reg, val); } else { /* AK4529, or else */ snd_akm4xxx_set(ak, chip, reg, val); } ak->ops.unlock(ak, chip); } EXPORT_SYMBOL(snd_akm4xxx_write); /* reset procedure for AK4524 and AK4528 */ static void ak4524_reset(struct snd_akm4xxx *ak, int state) { unsigned int chip; unsigned char reg, maxreg; if (ak->type == SND_AK4528) maxreg = 0x06; else maxreg = 0x08; for (chip = 0; chip < ak->num_dacs/2; chip++) { snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03); if (state) continue; /* DAC volumes */ for (reg = 0x04; reg < maxreg; reg++) snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg)); if (ak->type == SND_AK4528) continue; /* IPGA */ for (reg = 0x04; reg < 0x06; reg++) snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get_ipga(ak, chip, reg)); } } /* reset procedure for AK4355 and AK4358 */ static void ak4355_reset(struct snd_akm4xxx *ak, int state) { unsigned char reg; if (state) { snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */ return; } for (reg = 0x00; reg < 0x0b; reg++) if (reg != 0x01) snd_akm4xxx_write(ak, 0, reg, snd_akm4xxx_get(ak, 0, reg)); snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */ } /* reset procedure for AK4381 */ static void ak4381_reset(struct snd_akm4xxx *ak, int state) { unsigned int chip; unsigned char reg; for (chip = 0; chip < ak->num_dacs/2; chip++) { snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f); if (state) continue; for (reg = 0x01; reg < 0x05; reg++) snd_akm4xxx_write(ak, chip, reg, snd_akm4xxx_get(ak, chip, reg)); } } /* * reset the AKM codecs * @state: 1 = reset codec, 0 = restore the registers * * assert the reset operation and restores the register values to the chips. */ void snd_akm4xxx_reset(struct snd_akm4xxx *ak, int state) { switch (ak->type) { case SND_AK4524: case SND_AK4528: ak4524_reset(ak, state); break; case SND_AK4529: /* FIXME: needed for ak4529? */ break; case SND_AK4355: case SND_AK4358: ak4355_reset(ak, state); break; case SND_AK4381: ak4381_reset(ak, state); break; } } EXPORT_SYMBOL(snd_akm4xxx_reset); /* * initialize all the ak4xxx chips */ void snd_akm4xxx_init(struct snd_akm4xxx *ak) { static unsigned char inits_ak4524[] = { 0x00, 0x07, /* 0: all power up */ 0x01, 0x00, /* 1: ADC/DAC reset */ 0x02, 0x60, /* 2: 24bit I2S */ 0x03, 0x19, /* 3: deemphasis off */ 0x01, 0x03, /* 1: ADC/DAC enable */ 0x04, 0x00, /* 4: ADC left muted */ 0x05, 0x00, /* 5: ADC right muted */ 0x04, 0x80, /* 4: ADC IPGA gain 0dB */ 0x05, 0x80, /* 5: ADC IPGA gain 0dB */ 0x06, 0x00, /* 6: DAC left muted */ 0x07, 0x00, /* 7: DAC right muted */ 0xff, 0xff }; static unsigned char inits_ak4528[] = { 0x00, 0x07, /* 0: all power up */ 0x01, 0x00, /* 1: ADC/DAC reset */ 0x02, 0x60, /* 2: 24bit I2S */ 0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */ 0x01, 0x03, /* 1: ADC/DAC enable */ 0x04, 0x00, /* 4: ADC left muted */ 0x05, 0x00, /* 5: ADC right muted */ 0xff, 0xff }; static unsigned char inits_ak4529[] = { 0x09, 0x01, /* 9: ATS=0, RSTN=1 */ 0x0a, 0x3f, /* A: all power up, no zero/overflow detection */ 0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */ 0x01, 0x00, /* 1: ACKS=0, ADC, loop off */ 0x02, 0xff, /* 2: LOUT1 muted */ 0x03, 0xff, /* 3: ROUT1 muted */ 0x04, 0xff, /* 4: LOUT2 muted */ 0x05, 0xff, /* 5: ROUT2 muted */ 0x06, 0xff, /* 6: LOUT3 muted */ 0x07, 0xff, /* 7: ROUT3 muted */ 0x0b, 0xff, /* B: LOUT4 muted */ 0x0c, 0xff, /* C: ROUT4 muted */ 0x08, 0x55, /* 8: deemphasis all off */ 0xff, 0xff }; static unsigned char inits_ak4355[] = { 0x01, 0x02, /* 1: reset and soft-mute */ 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, * disable DZF, sharp roll-off, RSTN#=0 */ 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */ // 0x02, 0x2e, /* quad speed */ 0x03, 0x01, /* 3: de-emphasis off */ 0x04, 0x00, /* 4: LOUT1 volume muted */ 0x05, 0x00, /* 5: ROUT1 volume muted */ 0x06, 0x00, /* 6: LOUT2 volume muted */ 0x07, 0x00, /* 7: ROUT2 volume muted */ 0x08, 0x00, /* 8: LOUT3 volume muted */ 0x09, 0x00, /* 9: ROUT3 volume muted */ 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */ 0x01, 0x01, /* 1: un-reset, unmute */ 0xff, 0xff }; static unsigned char inits_ak4358[] = { 0x01, 0x02, /* 1: reset and soft-mute */ 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect, * disable DZF, sharp roll-off, RSTN#=0 */ 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */ // 0x02, 0x2e, /* quad speed */ 0x03, 0x01, /* 3: de-emphasis off */ 0x04, 0x00, /* 4: LOUT1 volume muted */ 0x05, 0x00, /* 5: ROUT1 volume muted */ 0x06, 0x00, /* 6: LOUT2 volume muted */ 0x07, 0x00, /* 7: ROUT2 volume muted */ 0x08, 0x00, /* 8: LOUT3 volume muted */ 0x09, 0x00, /* 9: ROUT3 volume muted */ 0x0b, 0x00, /* b: LOUT4 volume muted */ 0x0c, 0x00, /* c: ROUT4 volume muted */ 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */ 0x01, 0x01, /* 1: un-reset, unmute */ 0xff, 0xff }; static unsigned char inits_ak4381[] = { 0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */ 0x01, 0x02, /* 1: de-emphasis off, normal speed, * sharp roll-off, DZF off */ // 0x01, 0x12, /* quad speed */ 0x02, 0x00, /* 2: DZF disabled */ 0x03, 0x00, /* 3: LATT 0 */ 0x04, 0x00, /* 4: RATT 0 */ 0x00, 0x0f, /* 0: power-up, un-reset */ 0xff, 0xff }; int chip, num_chips; unsigned char *ptr, reg, data, *inits; switch (ak->type) { case SND_AK4524: inits = inits_ak4524; num_chips = ak->num_dacs / 2; break; case SND_AK4528: inits = inits_ak4528; num_chips = ak->num_dacs / 2; break; case SND_AK4529: inits = inits_ak4529; num_chips = 1; break; case SND_AK4355: inits = inits_ak4355; num_chips = 1; break; case SND_AK4358: inits = inits_ak4358; num_chips = 1; break; case SND_AK4381: inits = inits_ak4381; num_chips = ak->num_dacs / 2; break; default: snd_BUG(); return; } for (chip = 0; chip < num_chips; chip++) { ptr = inits; while (*ptr != 0xff) { reg = *ptr++; data = *ptr++; snd_akm4xxx_write(ak, chip, reg, data); } } } EXPORT_SYMBOL(snd_akm4xxx_init); #define AK_GET_CHIP(val) (((val) >> 8) & 0xff) #define AK_GET_ADDR(val) ((val) & 0xff) #define AK_GET_SHIFT(val) (((val) >> 16) & 0x7f) #define AK_GET_INVERT(val) (((val) >> 23) & 1) #define AK_GET_MASK(val) (((val) >> 24) & 0xff) #define AK_COMPOSE(chip,addr,shift,mask) \ (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24)) #define AK_INVERT (1<<23) static int snd_akm4xxx_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { unsigned int mask = AK_GET_MASK(kcontrol->private_value); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_akm4xxx_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); unsigned int mask = AK_GET_MASK(kcontrol->private_value); unsigned char val = snd_akm4xxx_get(ak, chip, addr); ucontrol->value.integer.value[0] = invert ? mask - val : val; return 0; } static int snd_akm4xxx_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); unsigned int mask = AK_GET_MASK(kcontrol->private_value); unsigned char nval = ucontrol->value.integer.value[0] % (mask+1); int change; if (invert) nval = mask - nval; change = snd_akm4xxx_get(ak, chip, addr) != nval; if (change) snd_akm4xxx_write(ak, chip, addr, nval); return change; } static int snd_akm4xxx_stereo_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { unsigned int mask = AK_GET_MASK(kcontrol->private_value); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_akm4xxx_stereo_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); unsigned int mask = AK_GET_MASK(kcontrol->private_value); unsigned char val = snd_akm4xxx_get(ak, chip, addr); ucontrol->value.integer.value[0] = invert ? mask - val : val; val = snd_akm4xxx_get(ak, chip, addr+1); ucontrol->value.integer.value[1] = invert ? mask - val : val; return 0; } static int snd_akm4xxx_stereo_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); unsigned int mask = AK_GET_MASK(kcontrol->private_value); unsigned char nval = ucontrol->value.integer.value[0] % (mask+1); int change0, change1; if (invert) nval = mask - nval; change0 = snd_akm4xxx_get(ak, chip, addr) != nval; if (change0) snd_akm4xxx_write(ak, chip, addr, nval); nval = ucontrol->value.integer.value[1] % (mask+1); if (invert) nval = mask - nval; change1 = snd_akm4xxx_get(ak, chip, addr+1) != nval; if (change1) snd_akm4xxx_write(ak, chip, addr+1, nval); return change0 || change1; } static int snd_akm4xxx_ipga_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 36; return 0; } static int snd_akm4xxx_ipga_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); ucontrol->value.integer.value[0] = snd_akm4xxx_get_ipga(ak, chip, addr) & 0x7f; return 0; } static int snd_akm4xxx_ipga_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); unsigned char nval = (ucontrol->value.integer.value[0] % 37) | 0x80; int change = snd_akm4xxx_get_ipga(ak, chip, addr) != nval; if (change) snd_akm4xxx_write(ak, chip, addr, nval); return change; } static int snd_akm4xxx_deemphasis_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static char *texts[4] = { "44.1kHz", "Off", "48kHz", "32kHz", }; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = 1; uinfo->value.enumerated.items = 4; if (uinfo->value.enumerated.item >= 4) uinfo->value.enumerated.item = 3; strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); return 0; } static int snd_akm4xxx_deemphasis_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); ucontrol->value.enumerated.item[0] = (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3; return 0; } static int snd_akm4xxx_deemphasis_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); unsigned char nval = ucontrol->value.enumerated.item[0] & 3; int change; nval = (nval << shift) | (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift)); change = snd_akm4xxx_get(ak, chip, addr) != nval; if (change) snd_akm4xxx_write(ak, chip, addr, nval); return change; } static int ak4xxx_switch_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = 1; return 0; } static int ak4xxx_switch_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol); int chip = AK_GET_CHIP(kcontrol->private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); unsigned char val = snd_akm4xxx_get(ak, chip, addr); if (invert) val = ! val; ucontrol->value.integer.value[0] = (val & (1<private_value); int addr = AK_GET_ADDR(kcontrol->private_value); int shift = AK_GET_SHIFT(kcontrol->private_value); int invert = AK_GET_INVERT(kcontrol->private_value); long flag = ucontrol->value.integer.value[0]; unsigned char val, oval; int change; if (invert) flag = ! flag; oval = snd_akm4xxx_get(ak, chip, addr); if (flag) val = oval | (1<num_dacs; ) { memset(ctl, 0, sizeof(*ctl)); if (ak->channel_names == NULL) { strcpy(ctl->id.name, "DAC Volume"); num_stereo = 1; ctl->id.index = mixer_ch + ak->idx_offset * 2; } else { strcpy(ctl->id.name, ak->channel_names[mixer_ch]); num_stereo = ak->num_stereo[mixer_ch]; ctl->id.index = 0; } ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; ctl->count = 1; if (num_stereo == 2) { ctl->info = snd_akm4xxx_stereo_volume_info; ctl->get = snd_akm4xxx_stereo_volume_get; ctl->put = snd_akm4xxx_stereo_volume_put; } else { ctl->info = snd_akm4xxx_volume_info; ctl->get = snd_akm4xxx_volume_get; ctl->put = snd_akm4xxx_volume_put; } switch (ak->type) { case SND_AK4524: /* register 6 & 7 */ ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127); break; case SND_AK4528: /* register 4 & 5 */ ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127); break; case SND_AK4529: { /* registers 2-7 and b,c */ int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb; ctl->private_value = AK_COMPOSE(0, val, 0, 255) | AK_INVERT; break; } case SND_AK4355: /* register 4-9, chip #0 only */ ctl->private_value = AK_COMPOSE(0, idx + 4, 0, 255); break; case SND_AK4358: if (idx >= 6) /* register 4-9, chip #0 only */ ctl->private_value = AK_COMPOSE(0, idx + 5, 0, 255); else /* register 4-9, chip #0 only */ ctl->private_value = AK_COMPOSE(0, idx + 4, 0, 255); break; case SND_AK4381: /* register 3 & 4 */ ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255); break; default: err = -EINVAL; goto __error; } ctl->private_data = ak; err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ| SNDRV_CTL_ELEM_ACCESS_WRITE)); if (err < 0) goto __error; idx += num_stereo; mixer_ch++; } for (idx = 0; idx < ak->num_adcs && ak->type == SND_AK4524; ++idx) { memset(ctl, 0, sizeof(*ctl)); strcpy(ctl->id.name, "ADC Volume"); ctl->id.index = idx + ak->idx_offset * 2; ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; ctl->count = 1; ctl->info = snd_akm4xxx_volume_info; ctl->get = snd_akm4xxx_volume_get; ctl->put = snd_akm4xxx_volume_put; /* register 4 & 5 */ ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127); ctl->private_data = ak; err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ| SNDRV_CTL_ELEM_ACCESS_WRITE)); if (err < 0) goto __error; memset(ctl, 0, sizeof(*ctl)); strcpy(ctl->id.name, "IPGA Analog Capture Volume"); ctl->id.index = idx + ak->idx_offset * 2; ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; ctl->count = 1; ctl->info = snd_akm4xxx_ipga_gain_info; ctl->get = snd_akm4xxx_ipga_gain_get; ctl->put = snd_akm4xxx_ipga_gain_put; /* register 4 & 5 */ ctl->private_value = AK_COMPOSE(idx/2, (idx%2) + 4, 0, 0); ctl->private_data = ak; err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ| SNDRV_CTL_ELEM_ACCESS_WRITE)); if (err < 0) goto __error; } if (ak->type == SND_AK5365) { memset(ctl, 0, sizeof(*ctl)); if (ak->channel_names == NULL) strcpy(ctl->id.name, "Capture Volume"); else strcpy(ctl->id.name, ak->channel_names[0]); ctl->id.index = ak->idx_offset * 2; ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; ctl->count = 1; ctl->info = snd_akm4xxx_stereo_volume_info; ctl->get = snd_akm4xxx_stereo_volume_get; ctl->put = snd_akm4xxx_stereo_volume_put; /* Registers 4 & 5 (see AK5365 data sheet, pages 34 and 35): * valid values are from 0x00 (mute) to 0x98 (+12dB). */ ctl->private_value = AK_COMPOSE(0, 4, 0, 0x98); ctl->private_data = ak; err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ| SNDRV_CTL_ELEM_ACCESS_WRITE)); if (err < 0) goto __error; memset(ctl, 0, sizeof(*ctl)); if (ak->channel_names == NULL) strcpy(ctl->id.name, "Capture Switch"); else strcpy(ctl->id.name, ak->channel_names[1]); ctl->id.index = ak->idx_offset * 2; ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; ctl->count = 1; ctl->info = ak4xxx_switch_info; ctl->get = ak4xxx_switch_get; ctl->put = ak4xxx_switch_put; /* register 2, bit 0 (SMUTE): 0 = normal operation, 1 = mute */ ctl->private_value = AK_COMPOSE(0, 2, 0, 0) | AK_INVERT; ctl->private_data = ak; err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ| SNDRV_CTL_ELEM_ACCESS_WRITE)); if (err < 0) goto __error; } if (ak->type == SND_AK4355 || ak->type == SND_AK4358) num_emphs = 1; else num_emphs = ak->num_dacs / 2; for (idx = 0; idx < num_emphs; idx++) { memset(ctl, 0, sizeof(*ctl)); strcpy(ctl->id.name, "Deemphasis"); ctl->id.index = idx + ak->idx_offset; ctl->id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; ctl->count = 1; ctl->info = snd_akm4xxx_deemphasis_info; ctl->get = snd_akm4xxx_deemphasis_get; ctl->put = snd_akm4xxx_deemphasis_put; switch (ak->type) { case SND_AK4524: case SND_AK4528: /* register 3 */ ctl->private_value = AK_COMPOSE(idx, 3, 0, 0); break; case SND_AK4529: { int shift = idx == 3 ? 6 : (2 - idx) * 2; /* register 8 with shift */ ctl->private_value = AK_COMPOSE(0, 8, shift, 0); break; } case SND_AK4355: case SND_AK4358: ctl->private_value = AK_COMPOSE(idx, 3, 0, 0); break; case SND_AK4381: ctl->private_value = AK_COMPOSE(idx, 1, 1, 0); break; } ctl->private_data = ak; err = snd_ctl_add(ak->card, snd_ctl_new(ctl, SNDRV_CTL_ELEM_ACCESS_READ| SNDRV_CTL_ELEM_ACCESS_WRITE)); if (err < 0) goto __error; } err = 0; __error: kfree(ctl); return err; } EXPORT_SYMBOL(snd_akm4xxx_build_controls); static int __init alsa_akm4xxx_module_init(void) { return 0; } static void __exit alsa_akm4xxx_module_exit(void) { } module_init(alsa_akm4xxx_module_init) module_exit(alsa_akm4xxx_module_exit)