/* * C-Media CMI8788 driver for Asus Xonar cards * * Copyright (c) Clemens Ladisch <clemens@ladisch.de> * * * This driver is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2. * * This driver is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this driver; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * Xonar D2/D2X * ------------ * * CMI8788: * * SPI 0 -> 1st PCM1796 (front) * SPI 1 -> 2nd PCM1796 (surround) * SPI 2 -> 3rd PCM1796 (center/LFE) * SPI 4 -> 4th PCM1796 (back) * * GPIO 2 -> M0 of CS5381 * GPIO 3 -> M1 of CS5381 * GPIO 5 <- external power present (D2X only) * GPIO 7 -> ALT * GPIO 8 -> enable output to speakers */ /* * Xonar D1/DX * ----------- * * CMI8788: * * I²C <-> CS4398 (front) * <-> CS4362A (surround, center/LFE, back) * * GPI 0 <- external power present (DX only) * * GPIO 0 -> enable output to speakers * GPIO 1 -> enable front panel I/O * GPIO 2 -> M0 of CS5361 * GPIO 3 -> M1 of CS5361 * GPIO 8 -> route input jack to line-in (0) or mic-in (1) * * CS4398: * * AD0 <- 1 * AD1 <- 1 * * CS4362A: * * AD0 <- 0 */ /* * Xonar HDAV1.3 (Deluxe) * ---------------------- * * CMI8788: * * I²C <-> PCM1796 (front) * * GPI 0 <- external power present * * GPIO 0 -> enable output to speakers * GPIO 2 -> M0 of CS5381 * GPIO 3 -> M1 of CS5381 * GPIO 8 -> route input jack to line-in (0) or mic-in (1) * * TXD -> HDMI controller * RXD <- HDMI controller * * PCM1796 front: AD1,0 <- 0,0 * * no daughterboard * ---------------- * * GPIO 4 <- 1 * * H6 daughterboard * ---------------- * * GPIO 4 <- 0 * GPIO 5 <- 0 * * I²C <-> PCM1796 (surround) * <-> PCM1796 (center/LFE) * <-> PCM1796 (back) * * PCM1796 surround: AD1,0 <- 0,1 * PCM1796 center/LFE: AD1,0 <- 1,0 * PCM1796 back: AD1,0 <- 1,1 * * unknown daughterboard * --------------------- * * GPIO 4 <- 0 * GPIO 5 <- 1 * * I²C <-> CS4362A (surround, center/LFE, back) * * CS4362A: AD0 <- 0 */ /* * Xonar Essence ST (Deluxe)/STX * ----------------------------- * * CMI8788: * * I²C <-> PCM1792A * * GPI 0 <- external power present * * GPIO 0 -> enable output to speakers * GPIO 1 -> route HP to front panel (0) or rear jack (1) * GPIO 2 -> M0 of CS5381 * GPIO 3 -> M1 of CS5381 * GPIO 7 -> route output to speaker jacks (0) or HP (1) * GPIO 8 -> route input jack to line-in (0) or mic-in (1) * * PCM1792A: * * AD0 <- 0 * * H6 daughterboard * ---------------- * * GPIO 4 <- 0 * GPIO 5 <- 0 */ #include <linux/pci.h> #include <linux/delay.h> #include <linux/mutex.h> #include <sound/ac97_codec.h> #include <sound/asoundef.h> #include <sound/control.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/tlv.h> #include "oxygen.h" #include "cm9780.h" #include "pcm1796.h" #include "cs4398.h" #include "cs4362a.h" MODULE_AUTHOR("Clemens Ladisch <clemens@ladisch.de>"); MODULE_DESCRIPTION("Asus AVx00 driver"); MODULE_LICENSE("GPL v2"); MODULE_SUPPORTED_DEVICE("{{Asus,AV100},{Asus,AV200}}"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "card index"); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string"); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "enable card"); enum { MODEL_D2, MODEL_D2X, MODEL_D1, MODEL_DX, MODEL_HDAV, /* without daughterboard */ MODEL_HDAV_H6, /* with H6 daughterboard */ MODEL_ST, MODEL_ST_H6, MODEL_STX, }; static struct pci_device_id xonar_ids[] __devinitdata = { { OXYGEN_PCI_SUBID(0x1043, 0x8269), .driver_data = MODEL_D2 }, { OXYGEN_PCI_SUBID(0x1043, 0x8275), .driver_data = MODEL_DX }, { OXYGEN_PCI_SUBID(0x1043, 0x82b7), .driver_data = MODEL_D2X }, { OXYGEN_PCI_SUBID(0x1043, 0x8314), .driver_data = MODEL_HDAV }, { OXYGEN_PCI_SUBID(0x1043, 0x8327), .driver_data = MODEL_DX }, { OXYGEN_PCI_SUBID(0x1043, 0x834f), .driver_data = MODEL_D1 }, { OXYGEN_PCI_SUBID(0x1043, 0x835c), .driver_data = MODEL_STX }, { OXYGEN_PCI_SUBID(0x1043, 0x835d), .driver_data = MODEL_ST }, { OXYGEN_PCI_SUBID_BROKEN_EEPROM }, { } }; MODULE_DEVICE_TABLE(pci, xonar_ids); #define GPIO_CS53x1_M_MASK 0x000c #define GPIO_CS53x1_M_SINGLE 0x0000 #define GPIO_CS53x1_M_DOUBLE 0x0004 #define GPIO_CS53x1_M_QUAD 0x0008 #define GPIO_D2X_EXT_POWER 0x0020 #define GPIO_D2_ALT 0x0080 #define GPIO_D2_OUTPUT_ENABLE 0x0100 #define GPI_DX_EXT_POWER 0x01 #define GPIO_DX_OUTPUT_ENABLE 0x0001 #define GPIO_DX_FRONT_PANEL 0x0002 #define GPIO_DX_INPUT_ROUTE 0x0100 #define GPIO_DB_MASK 0x0030 #define GPIO_DB_H6 0x0000 #define GPIO_DB_XX 0x0020 #define GPIO_ST_HP_REAR 0x0002 #define GPIO_ST_HP 0x0080 #define I2C_DEVICE_PCM1796(i) (0x98 + ((i) << 1)) /* 10011, ADx=i, /W=0 */ #define I2C_DEVICE_CS4398 0x9e /* 10011, AD1=1, AD0=1, /W=0 */ #define I2C_DEVICE_CS4362A 0x30 /* 001100, AD0=0, /W=0 */ struct xonar_data { unsigned int anti_pop_delay; unsigned int dacs; u16 output_enable_bit; u8 ext_power_reg; u8 ext_power_int_reg; u8 ext_power_bit; u8 has_power; u8 pcm1796_oversampling; u8 cs4398_fm; u8 cs4362a_fm; u8 hdmi_params[5]; }; static void xonar_gpio_changed(struct oxygen *chip); static inline void pcm1796_write_spi(struct oxygen *chip, unsigned int codec, u8 reg, u8 value) { /* maps ALSA channel pair number to SPI output */ static const u8 codec_map[4] = { 0, 1, 2, 4 }; oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER | OXYGEN_SPI_DATA_LENGTH_2 | OXYGEN_SPI_CLOCK_160 | (codec_map[codec] << OXYGEN_SPI_CODEC_SHIFT) | OXYGEN_SPI_CEN_LATCH_CLOCK_HI, (reg << 8) | value); } static inline void pcm1796_write_i2c(struct oxygen *chip, unsigned int codec, u8 reg, u8 value) { oxygen_write_i2c(chip, I2C_DEVICE_PCM1796(codec), reg, value); } static void pcm1796_write(struct oxygen *chip, unsigned int codec, u8 reg, u8 value) { if ((chip->model.function_flags & OXYGEN_FUNCTION_2WIRE_SPI_MASK) == OXYGEN_FUNCTION_SPI) pcm1796_write_spi(chip, codec, reg, value); else pcm1796_write_i2c(chip, codec, reg, value); } static void cs4398_write(struct oxygen *chip, u8 reg, u8 value) { oxygen_write_i2c(chip, I2C_DEVICE_CS4398, reg, value); } static void cs4362a_write(struct oxygen *chip, u8 reg, u8 value) { oxygen_write_i2c(chip, I2C_DEVICE_CS4362A, reg, value); } static void hdmi_write_command(struct oxygen *chip, u8 command, unsigned int count, const u8 *params) { unsigned int i; u8 checksum; oxygen_write_uart(chip, 0xfb); oxygen_write_uart(chip, 0xef); oxygen_write_uart(chip, command); oxygen_write_uart(chip, count); for (i = 0; i < count; ++i) oxygen_write_uart(chip, params[i]); checksum = 0xfb + 0xef + command + count; for (i = 0; i < count; ++i) checksum += params[i]; oxygen_write_uart(chip, checksum); } static void xonar_enable_output(struct oxygen *chip) { struct xonar_data *data = chip->model_data; msleep(data->anti_pop_delay); oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, data->output_enable_bit); } static void xonar_common_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; if (data->ext_power_reg) { oxygen_set_bits8(chip, data->ext_power_int_reg, data->ext_power_bit); chip->interrupt_mask |= OXYGEN_INT_GPIO; chip->model.gpio_changed = xonar_gpio_changed; data->has_power = !!(oxygen_read8(chip, data->ext_power_reg) & data->ext_power_bit); } oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_CS53x1_M_MASK | data->output_enable_bit); oxygen_write16_masked(chip, OXYGEN_GPIO_DATA, GPIO_CS53x1_M_SINGLE, GPIO_CS53x1_M_MASK); oxygen_ac97_set_bits(chip, 0, CM9780_JACK, CM9780_FMIC2MIC); xonar_enable_output(chip); } static void update_pcm1796_volume(struct oxygen *chip) { struct xonar_data *data = chip->model_data; unsigned int i; for (i = 0; i < data->dacs; ++i) { pcm1796_write(chip, i, 16, chip->dac_volume[i * 2]); pcm1796_write(chip, i, 17, chip->dac_volume[i * 2 + 1]); } } static void update_pcm1796_mute(struct oxygen *chip) { struct xonar_data *data = chip->model_data; unsigned int i; u8 value; value = PCM1796_DMF_DISABLED | PCM1796_FMT_24_LJUST | PCM1796_ATLD; if (chip->dac_mute) value |= PCM1796_MUTE; for (i = 0; i < data->dacs; ++i) pcm1796_write(chip, i, 18, value); } static void pcm1796_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; unsigned int i; for (i = 0; i < data->dacs; ++i) { pcm1796_write(chip, i, 19, PCM1796_FLT_SHARP | PCM1796_ATS_1); pcm1796_write(chip, i, 20, data->pcm1796_oversampling); pcm1796_write(chip, i, 21, 0); } update_pcm1796_mute(chip); /* set ATLD before ATL/ATR */ update_pcm1796_volume(chip); } static void xonar_d2_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; data->anti_pop_delay = 300; data->dacs = 4; data->output_enable_bit = GPIO_D2_OUTPUT_ENABLE; data->pcm1796_oversampling = PCM1796_OS_64; pcm1796_init(chip); oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_D2_ALT); oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_D2_ALT); xonar_common_init(chip); snd_component_add(chip->card, "PCM1796"); snd_component_add(chip->card, "CS5381"); } static void xonar_d2x_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; data->ext_power_reg = OXYGEN_GPIO_DATA; data->ext_power_int_reg = OXYGEN_GPIO_INTERRUPT_MASK; data->ext_power_bit = GPIO_D2X_EXT_POWER; oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_D2X_EXT_POWER); xonar_d2_init(chip); } static void update_cs4362a_volumes(struct oxygen *chip) { u8 mute; mute = chip->dac_mute ? CS4362A_MUTE : 0; cs4362a_write(chip, 7, (127 - chip->dac_volume[2]) | mute); cs4362a_write(chip, 8, (127 - chip->dac_volume[3]) | mute); cs4362a_write(chip, 10, (127 - chip->dac_volume[4]) | mute); cs4362a_write(chip, 11, (127 - chip->dac_volume[5]) | mute); cs4362a_write(chip, 13, (127 - chip->dac_volume[6]) | mute); cs4362a_write(chip, 14, (127 - chip->dac_volume[7]) | mute); } static void update_cs43xx_volume(struct oxygen *chip) { cs4398_write(chip, 5, (127 - chip->dac_volume[0]) * 2); cs4398_write(chip, 6, (127 - chip->dac_volume[1]) * 2); update_cs4362a_volumes(chip); } static void update_cs43xx_mute(struct oxygen *chip) { u8 reg; reg = CS4398_MUTEP_LOW | CS4398_PAMUTE; if (chip->dac_mute) reg |= CS4398_MUTE_B | CS4398_MUTE_A; cs4398_write(chip, 4, reg); update_cs4362a_volumes(chip); } static void cs43xx_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; /* set CPEN (control port mode) and power down */ cs4398_write(chip, 8, CS4398_CPEN | CS4398_PDN); cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN); /* configure */ cs4398_write(chip, 2, data->cs4398_fm); cs4398_write(chip, 3, CS4398_ATAPI_B_R | CS4398_ATAPI_A_L); cs4398_write(chip, 7, CS4398_RMP_DN | CS4398_RMP_UP | CS4398_ZERO_CROSS | CS4398_SOFT_RAMP); cs4362a_write(chip, 0x02, CS4362A_DIF_LJUST); cs4362a_write(chip, 0x03, CS4362A_MUTEC_6 | CS4362A_AMUTE | CS4362A_RMP_UP | CS4362A_ZERO_CROSS | CS4362A_SOFT_RAMP); cs4362a_write(chip, 0x04, CS4362A_RMP_DN | CS4362A_DEM_NONE); cs4362a_write(chip, 0x05, 0); cs4362a_write(chip, 0x06, data->cs4362a_fm); cs4362a_write(chip, 0x09, data->cs4362a_fm); cs4362a_write(chip, 0x0c, data->cs4362a_fm); update_cs43xx_volume(chip); update_cs43xx_mute(chip); /* clear power down */ cs4398_write(chip, 8, CS4398_CPEN); cs4362a_write(chip, 0x01, CS4362A_CPEN); } static void xonar_d1_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; data->anti_pop_delay = 800; data->output_enable_bit = GPIO_DX_OUTPUT_ENABLE; data->cs4398_fm = CS4398_FM_SINGLE | CS4398_DEM_NONE | CS4398_DIF_LJUST; data->cs4362a_fm = CS4362A_FM_SINGLE | CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L; oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS, OXYGEN_2WIRE_LENGTH_8 | OXYGEN_2WIRE_INTERRUPT_MASK | OXYGEN_2WIRE_SPEED_FAST); cs43xx_init(chip); oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_DX_FRONT_PANEL | GPIO_DX_INPUT_ROUTE); oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_DX_FRONT_PANEL | GPIO_DX_INPUT_ROUTE); xonar_common_init(chip); snd_component_add(chip->card, "CS4398"); snd_component_add(chip->card, "CS4362A"); snd_component_add(chip->card, "CS5361"); } static void xonar_dx_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; data->ext_power_reg = OXYGEN_GPI_DATA; data->ext_power_int_reg = OXYGEN_GPI_INTERRUPT_MASK; data->ext_power_bit = GPI_DX_EXT_POWER; xonar_d1_init(chip); } static void xonar_hdav_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; u8 param; oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS, OXYGEN_2WIRE_LENGTH_8 | OXYGEN_2WIRE_INTERRUPT_MASK | OXYGEN_2WIRE_SPEED_FAST); data->anti_pop_delay = 100; data->dacs = chip->model.private_data == MODEL_HDAV_H6 ? 4 : 1; data->output_enable_bit = GPIO_DX_OUTPUT_ENABLE; data->ext_power_reg = OXYGEN_GPI_DATA; data->ext_power_int_reg = OXYGEN_GPI_INTERRUPT_MASK; data->ext_power_bit = GPI_DX_EXT_POWER; data->pcm1796_oversampling = PCM1796_OS_64; pcm1796_init(chip); oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_DX_INPUT_ROUTE); oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_DX_INPUT_ROUTE); oxygen_reset_uart(chip); param = 0; hdmi_write_command(chip, 0x61, 1, ¶m); param = 1; hdmi_write_command(chip, 0x74, 1, ¶m); data->hdmi_params[1] = IEC958_AES3_CON_FS_48000; data->hdmi_params[4] = 1; hdmi_write_command(chip, 0x54, 5, data->hdmi_params); xonar_common_init(chip); snd_component_add(chip->card, "PCM1796"); snd_component_add(chip->card, "CS5381"); } static void xonar_st_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS, OXYGEN_2WIRE_LENGTH_8 | OXYGEN_2WIRE_INTERRUPT_MASK | OXYGEN_2WIRE_SPEED_FAST); if (chip->model.private_data == MODEL_ST_H6) chip->model.dac_channels = 8; data->anti_pop_delay = 100; data->dacs = chip->model.private_data == MODEL_ST_H6 ? 4 : 1; data->output_enable_bit = GPIO_DX_OUTPUT_ENABLE; data->pcm1796_oversampling = PCM1796_OS_64; pcm1796_init(chip); oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_DX_INPUT_ROUTE | GPIO_ST_HP_REAR | GPIO_ST_HP); oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_DX_INPUT_ROUTE | GPIO_ST_HP_REAR | GPIO_ST_HP); xonar_common_init(chip); snd_component_add(chip->card, "PCM1792A"); snd_component_add(chip->card, "CS5381"); } static void xonar_stx_init(struct oxygen *chip) { struct xonar_data *data = chip->model_data; data->ext_power_reg = OXYGEN_GPI_DATA; data->ext_power_int_reg = OXYGEN_GPI_INTERRUPT_MASK; data->ext_power_bit = GPI_DX_EXT_POWER; xonar_st_init(chip); } static void xonar_disable_output(struct oxygen *chip) { struct xonar_data *data = chip->model_data; oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, data->output_enable_bit); } static void xonar_d2_cleanup(struct oxygen *chip) { xonar_disable_output(chip); } static void xonar_d1_cleanup(struct oxygen *chip) { xonar_disable_output(chip); cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN); oxygen_clear_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC); } static void xonar_hdav_cleanup(struct oxygen *chip) { u8 param = 0; hdmi_write_command(chip, 0x74, 1, ¶m); xonar_disable_output(chip); } static void xonar_st_cleanup(struct oxygen *chip) { xonar_disable_output(chip); } static void xonar_d2_suspend(struct oxygen *chip) { xonar_d2_cleanup(chip); } static void xonar_d1_suspend(struct oxygen *chip) { xonar_d1_cleanup(chip); } static void xonar_hdav_suspend(struct oxygen *chip) { xonar_hdav_cleanup(chip); msleep(2); } static void xonar_st_suspend(struct oxygen *chip) { xonar_st_cleanup(chip); } static void xonar_d2_resume(struct oxygen *chip) { pcm1796_init(chip); xonar_enable_output(chip); } static void xonar_d1_resume(struct oxygen *chip) { cs43xx_init(chip); xonar_enable_output(chip); } static void xonar_hdav_resume(struct oxygen *chip) { struct xonar_data *data = chip->model_data; u8 param; oxygen_reset_uart(chip); param = 0; hdmi_write_command(chip, 0x61, 1, ¶m); param = 1; hdmi_write_command(chip, 0x74, 1, ¶m); hdmi_write_command(chip, 0x54, 5, data->hdmi_params); pcm1796_init(chip); xonar_enable_output(chip); } static void xonar_st_resume(struct oxygen *chip) { pcm1796_init(chip); xonar_enable_output(chip); } static void xonar_hdav_pcm_hardware_filter(unsigned int channel, struct snd_pcm_hardware *hardware) { if (channel == PCM_MULTICH) { hardware->rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000; hardware->rate_min = 44100; } } static void set_pcm1796_params(struct oxygen *chip, struct snd_pcm_hw_params *params) { struct xonar_data *data = chip->model_data; unsigned int i; data->pcm1796_oversampling = params_rate(params) >= 96000 ? PCM1796_OS_32 : PCM1796_OS_64; for (i = 0; i < data->dacs; ++i) pcm1796_write(chip, i, 20, data->pcm1796_oversampling); } static void set_cs53x1_params(struct oxygen *chip, struct snd_pcm_hw_params *params) { unsigned int value; if (params_rate(params) <= 54000) value = GPIO_CS53x1_M_SINGLE; else if (params_rate(params) <= 108000) value = GPIO_CS53x1_M_DOUBLE; else value = GPIO_CS53x1_M_QUAD; oxygen_write16_masked(chip, OXYGEN_GPIO_DATA, value, GPIO_CS53x1_M_MASK); } static void set_cs43xx_params(struct oxygen *chip, struct snd_pcm_hw_params *params) { struct xonar_data *data = chip->model_data; data->cs4398_fm = CS4398_DEM_NONE | CS4398_DIF_LJUST; data->cs4362a_fm = CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L; if (params_rate(params) <= 50000) { data->cs4398_fm |= CS4398_FM_SINGLE; data->cs4362a_fm |= CS4362A_FM_SINGLE; } else if (params_rate(params) <= 100000) { data->cs4398_fm |= CS4398_FM_DOUBLE; data->cs4362a_fm |= CS4362A_FM_DOUBLE; } else { data->cs4398_fm |= CS4398_FM_QUAD; data->cs4362a_fm |= CS4362A_FM_QUAD; } cs4398_write(chip, 2, data->cs4398_fm); cs4362a_write(chip, 0x06, data->cs4362a_fm); cs4362a_write(chip, 0x09, data->cs4362a_fm); cs4362a_write(chip, 0x0c, data->cs4362a_fm); } static void set_hdmi_params(struct oxygen *chip, struct snd_pcm_hw_params *params) { struct xonar_data *data = chip->model_data; data->hdmi_params[0] = 0; /* 1 = non-audio */ switch (params_rate(params)) { case 44100: data->hdmi_params[1] = IEC958_AES3_CON_FS_44100; break; case 48000: data->hdmi_params[1] = IEC958_AES3_CON_FS_48000; break; default: /* 96000 */ data->hdmi_params[1] = IEC958_AES3_CON_FS_96000; break; case 192000: data->hdmi_params[1] = IEC958_AES3_CON_FS_192000; break; } data->hdmi_params[2] = params_channels(params) / 2 - 1; if (params_format(params) == SNDRV_PCM_FORMAT_S16_LE) data->hdmi_params[3] = 0; else data->hdmi_params[3] = 0xc0; data->hdmi_params[4] = 1; /* ? */ hdmi_write_command(chip, 0x54, 5, data->hdmi_params); } static void set_hdav_params(struct oxygen *chip, struct snd_pcm_hw_params *params) { set_pcm1796_params(chip, params); set_hdmi_params(chip, params); } static void xonar_gpio_changed(struct oxygen *chip) { struct xonar_data *data = chip->model_data; u8 has_power; has_power = !!(oxygen_read8(chip, data->ext_power_reg) & data->ext_power_bit); if (has_power != data->has_power) { data->has_power = has_power; if (has_power) { snd_printk(KERN_NOTICE "power restored\n"); } else { snd_printk(KERN_CRIT "Hey! Don't unplug the power cable!\n"); /* TODO: stop PCMs */ } } } static void xonar_hdav_uart_input(struct oxygen *chip) { if (chip->uart_input_count >= 2 && chip->uart_input[chip->uart_input_count - 2] == 'O' && chip->uart_input[chip->uart_input_count - 1] == 'K') { printk(KERN_DEBUG "message from Xonar HDAV HDMI chip received:\n"); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, chip->uart_input, chip->uart_input_count); chip->uart_input_count = 0; } } static int gpio_bit_switch_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u16 bit = ctl->private_value; value->value.integer.value[0] = !!(oxygen_read16(chip, OXYGEN_GPIO_DATA) & bit); return 0; } static int gpio_bit_switch_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u16 bit = ctl->private_value; u16 old_bits, new_bits; int changed; spin_lock_irq(&chip->reg_lock); old_bits = oxygen_read16(chip, OXYGEN_GPIO_DATA); if (value->value.integer.value[0]) new_bits = old_bits | bit; else new_bits = old_bits & ~bit; changed = new_bits != old_bits; if (changed) oxygen_write16(chip, OXYGEN_GPIO_DATA, new_bits); spin_unlock_irq(&chip->reg_lock); return changed; } static const struct snd_kcontrol_new alt_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog Loopback Switch", .info = snd_ctl_boolean_mono_info, .get = gpio_bit_switch_get, .put = gpio_bit_switch_put, .private_value = GPIO_D2_ALT, }; static const struct snd_kcontrol_new front_panel_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Front Panel Switch", .info = snd_ctl_boolean_mono_info, .get = gpio_bit_switch_get, .put = gpio_bit_switch_put, .private_value = GPIO_DX_FRONT_PANEL, }; static int st_output_switch_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info) { static const char *const names[3] = { "Speakers", "Headphones", "FP Headphones" }; info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; info->count = 1; info->value.enumerated.items = 3; if (info->value.enumerated.item >= 3) info->value.enumerated.item = 2; strcpy(info->value.enumerated.name, names[info->value.enumerated.item]); return 0; } static int st_output_switch_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u16 gpio; gpio = oxygen_read16(chip, OXYGEN_GPIO_DATA); if (!(gpio & GPIO_ST_HP)) value->value.enumerated.item[0] = 0; else if (gpio & GPIO_ST_HP_REAR) value->value.enumerated.item[0] = 1; else value->value.enumerated.item[0] = 2; return 0; } static int st_output_switch_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) { struct oxygen *chip = ctl->private_data; u16 gpio_old, gpio; mutex_lock(&chip->mutex); gpio_old = oxygen_read16(chip, OXYGEN_GPIO_DATA); gpio = gpio_old; switch (value->value.enumerated.item[0]) { case 0: gpio &= ~(GPIO_ST_HP | GPIO_ST_HP_REAR); break; case 1: gpio |= GPIO_ST_HP | GPIO_ST_HP_REAR; break; case 2: gpio = (gpio | GPIO_ST_HP) & ~GPIO_ST_HP_REAR; break; } oxygen_write16(chip, OXYGEN_GPIO_DATA, gpio); mutex_unlock(&chip->mutex); return gpio != gpio_old; } static const struct snd_kcontrol_new st_output_switch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Analog Output", .info = st_output_switch_info, .get = st_output_switch_get, .put = st_output_switch_put, }; static void xonar_line_mic_ac97_switch(struct oxygen *chip, unsigned int reg, unsigned int mute) { if (reg == AC97_LINE) { spin_lock_irq(&chip->reg_lock); oxygen_write16_masked(chip, OXYGEN_GPIO_DATA, mute ? GPIO_DX_INPUT_ROUTE : 0, GPIO_DX_INPUT_ROUTE); spin_unlock_irq(&chip->reg_lock); } } static const DECLARE_TLV_DB_SCALE(pcm1796_db_scale, -6000, 50, 0); static const DECLARE_TLV_DB_SCALE(cs4362a_db_scale, -6000, 100, 0); static int xonar_d2_control_filter(struct snd_kcontrol_new *template) { if (!strncmp(template->name, "CD Capture ", 11)) /* CD in is actually connected to the video in pin */ template->private_value ^= AC97_CD ^ AC97_VIDEO; return 0; } static int xonar_d1_control_filter(struct snd_kcontrol_new *template) { if (!strncmp(template->name, "CD Capture ", 11)) return 1; /* no CD input */ return 0; } static int xonar_st_control_filter(struct snd_kcontrol_new *template) { if (!strncmp(template->name, "CD Capture ", 11)) return 1; /* no CD input */ if (!strcmp(template->name, "Stereo Upmixing")) return 1; /* stereo only - we don't need upmixing */ return 0; } static int xonar_d2_mixer_init(struct oxygen *chip) { return snd_ctl_add(chip->card, snd_ctl_new1(&alt_switch, chip)); } static int xonar_d1_mixer_init(struct oxygen *chip) { return snd_ctl_add(chip->card, snd_ctl_new1(&front_panel_switch, chip)); } static int xonar_st_mixer_init(struct oxygen *chip) { return snd_ctl_add(chip->card, snd_ctl_new1(&st_output_switch, chip)); } static const struct oxygen_model model_xonar_d2 = { .longname = "Asus Virtuoso 200", .chip = "AV200", .init = xonar_d2_init, .control_filter = xonar_d2_control_filter, .mixer_init = xonar_d2_mixer_init, .cleanup = xonar_d2_cleanup, .suspend = xonar_d2_suspend, .resume = xonar_d2_resume, .set_dac_params = set_pcm1796_params, .set_adc_params = set_cs53x1_params, .update_dac_volume = update_pcm1796_volume, .update_dac_mute = update_pcm1796_mute, .dac_tlv = pcm1796_db_scale, .model_data_size = sizeof(struct xonar_data), .device_config = PLAYBACK_0_TO_I2S | PLAYBACK_1_TO_SPDIF | CAPTURE_0_FROM_I2S_2 | CAPTURE_1_FROM_SPDIF | MIDI_OUTPUT | MIDI_INPUT, .dac_channels = 8, .dac_volume_min = 255 - 2*60, .dac_volume_max = 255, .misc_flags = OXYGEN_MISC_MIDI, .function_flags = OXYGEN_FUNCTION_SPI | OXYGEN_FUNCTION_ENABLE_SPI_4_5, .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST, .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST, }; static const struct oxygen_model model_xonar_d1 = { .longname = "Asus Virtuoso 100", .chip = "AV200", .init = xonar_d1_init, .control_filter = xonar_d1_control_filter, .mixer_init = xonar_d1_mixer_init, .cleanup = xonar_d1_cleanup, .suspend = xonar_d1_suspend, .resume = xonar_d1_resume, .set_dac_params = set_cs43xx_params, .set_adc_params = set_cs53x1_params, .update_dac_volume = update_cs43xx_volume, .update_dac_mute = update_cs43xx_mute, .ac97_switch = xonar_line_mic_ac97_switch, .dac_tlv = cs4362a_db_scale, .model_data_size = sizeof(struct xonar_data), .device_config = PLAYBACK_0_TO_I2S | PLAYBACK_1_TO_SPDIF | CAPTURE_0_FROM_I2S_2, .dac_channels = 8, .dac_volume_min = 127 - 60, .dac_volume_max = 127, .function_flags = OXYGEN_FUNCTION_2WIRE, .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST, .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST, }; static const struct oxygen_model model_xonar_hdav = { .longname = "Asus Virtuoso 200", .chip = "AV200", .init = xonar_hdav_init, .cleanup = xonar_hdav_cleanup, .suspend = xonar_hdav_suspend, .resume = xonar_hdav_resume, .pcm_hardware_filter = xonar_hdav_pcm_hardware_filter, .set_dac_params = set_hdav_params, .set_adc_params = set_cs53x1_params, .update_dac_volume = update_pcm1796_volume, .update_dac_mute = update_pcm1796_mute, .uart_input = xonar_hdav_uart_input, .ac97_switch = xonar_line_mic_ac97_switch, .dac_tlv = pcm1796_db_scale, .model_data_size = sizeof(struct xonar_data), .device_config = PLAYBACK_0_TO_I2S | PLAYBACK_1_TO_SPDIF | CAPTURE_0_FROM_I2S_2 | CAPTURE_1_FROM_SPDIF, .dac_channels = 8, .dac_volume_min = 255 - 2*60, .dac_volume_max = 255, .misc_flags = OXYGEN_MISC_MIDI, .function_flags = OXYGEN_FUNCTION_2WIRE, .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST, .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST, }; static const struct oxygen_model model_xonar_st = { .longname = "Asus Virtuoso 100", .chip = "AV200", .init = xonar_st_init, .control_filter = xonar_st_control_filter, .mixer_init = xonar_st_mixer_init, .cleanup = xonar_st_cleanup, .suspend = xonar_st_suspend, .resume = xonar_st_resume, .set_dac_params = set_pcm1796_params, .set_adc_params = set_cs53x1_params, .update_dac_volume = update_pcm1796_volume, .update_dac_mute = update_pcm1796_mute, .ac97_switch = xonar_line_mic_ac97_switch, .dac_tlv = pcm1796_db_scale, .model_data_size = sizeof(struct xonar_data), .device_config = PLAYBACK_0_TO_I2S | PLAYBACK_1_TO_SPDIF | CAPTURE_0_FROM_I2S_2, .dac_channels = 2, .dac_volume_min = 255 - 2*60, .dac_volume_max = 255, .function_flags = OXYGEN_FUNCTION_2WIRE, .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST, .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST, }; static int __devinit get_xonar_model(struct oxygen *chip, const struct pci_device_id *id) { static const struct oxygen_model *const models[] = { [MODEL_D1] = &model_xonar_d1, [MODEL_DX] = &model_xonar_d1, [MODEL_D2] = &model_xonar_d2, [MODEL_D2X] = &model_xonar_d2, [MODEL_HDAV] = &model_xonar_hdav, [MODEL_ST] = &model_xonar_st, [MODEL_STX] = &model_xonar_st, }; static const char *const names[] = { [MODEL_D1] = "Xonar D1", [MODEL_DX] = "Xonar DX", [MODEL_D2] = "Xonar D2", [MODEL_D2X] = "Xonar D2X", [MODEL_HDAV] = "Xonar HDAV1.3", [MODEL_HDAV_H6] = "Xonar HDAV1.3+H6", [MODEL_ST] = "Xonar Essence ST", [MODEL_ST_H6] = "Xonar Essence ST+H6", [MODEL_STX] = "Xonar Essence STX", }; unsigned int model = id->driver_data; if (model >= ARRAY_SIZE(models) || !models[model]) return -EINVAL; chip->model = *models[model]; switch (model) { case MODEL_D2X: chip->model.init = xonar_d2x_init; break; case MODEL_DX: chip->model.init = xonar_dx_init; break; case MODEL_HDAV: oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_DB_MASK); switch (oxygen_read16(chip, OXYGEN_GPIO_DATA) & GPIO_DB_MASK) { case GPIO_DB_H6: model = MODEL_HDAV_H6; break; case GPIO_DB_XX: snd_printk(KERN_ERR "unknown daughterboard\n"); return -ENODEV; } break; case MODEL_ST: oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_DB_MASK); switch (oxygen_read16(chip, OXYGEN_GPIO_DATA) & GPIO_DB_MASK) { case GPIO_DB_H6: model = MODEL_ST_H6; break; } break; case MODEL_STX: chip->model.init = xonar_stx_init; oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_DB_MASK); break; } chip->model.shortname = names[model]; chip->model.private_data = model; return 0; } static int __devinit xonar_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; int err; if (dev >= SNDRV_CARDS) return -ENODEV; if (!enable[dev]) { ++dev; return -ENOENT; } err = oxygen_pci_probe(pci, index[dev], id[dev], THIS_MODULE, xonar_ids, get_xonar_model); if (err >= 0) ++dev; return err; } static struct pci_driver xonar_driver = { .name = "AV200", .id_table = xonar_ids, .probe = xonar_probe, .remove = __devexit_p(oxygen_pci_remove), #ifdef CONFIG_PM .suspend = oxygen_pci_suspend, .resume = oxygen_pci_resume, #endif }; static int __init alsa_card_xonar_init(void) { return pci_register_driver(&xonar_driver); } static void __exit alsa_card_xonar_exit(void) { pci_unregister_driver(&xonar_driver); } module_init(alsa_card_xonar_init) module_exit(alsa_card_xonar_exit)