/* * (Tentative) USB Audio Driver for ALSA * * Main and PCM part * * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de> * * Many codes borrowed from audio.c by * Alan Cox (alan@lxorguk.ukuu.org.uk) * Thomas Sailer (sailer@ife.ee.ethz.ch) * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * * NOTES: * * - async unlink should be used for avoiding the sleep inside lock. * 2.4.22 usb-uhci seems buggy for async unlinking and results in * oops. in such a cse, pass async_unlink=0 option. * - the linked URBs would be preferred but not used so far because of * the instability of unlinking. * - type II is not supported properly. there is no device which supports * this type *correctly*. SB extigy looks as if it supports, but it's * indeed an AC3 stream packed in SPDIF frames (i.e. no real AC3 stream). */ #include <linux/bitops.h> #include <linux/init.h> #include <linux/list.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/usb.h> #include <linux/vmalloc.h> #include <linux/moduleparam.h> #include <linux/mutex.h> #include <sound/core.h> #include <sound/info.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/initval.h> #include "usbaudio.h" MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); MODULE_DESCRIPTION("USB Audio"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("{{Generic,USB Audio}}"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */ /* Vendor/product IDs for this card */ static int vid[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS-1)] = -1 }; static int pid[SNDRV_CARDS] = { [0 ... (SNDRV_CARDS-1)] = -1 }; static int nrpacks = 8; /* max. number of packets per urb */ static int async_unlink = 1; static int device_setup[SNDRV_CARDS]; /* device parameter for this card*/ static int ignore_ctl_error; module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for the USB audio adapter."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for the USB audio adapter."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable USB audio adapter."); module_param_array(vid, int, NULL, 0444); MODULE_PARM_DESC(vid, "Vendor ID for the USB audio device."); module_param_array(pid, int, NULL, 0444); MODULE_PARM_DESC(pid, "Product ID for the USB audio device."); module_param(nrpacks, int, 0644); MODULE_PARM_DESC(nrpacks, "Max. number of packets per URB."); module_param(async_unlink, bool, 0444); MODULE_PARM_DESC(async_unlink, "Use async unlink mode."); module_param_array(device_setup, int, NULL, 0444); MODULE_PARM_DESC(device_setup, "Specific device setup (if needed)."); module_param(ignore_ctl_error, bool, 0444); MODULE_PARM_DESC(ignore_ctl_error, "Ignore errors from USB controller for mixer interfaces."); /* * debug the h/w constraints */ /* #define HW_CONST_DEBUG */ /* * */ #define MAX_PACKS 20 #define MAX_PACKS_HS (MAX_PACKS * 8) /* in high speed mode */ #define MAX_URBS 8 #define SYNC_URBS 4 /* always four urbs for sync */ #define MAX_QUEUE 24 /* try not to exceed this queue length, in ms */ struct audioformat { struct list_head list; snd_pcm_format_t format; /* format type */ unsigned int channels; /* # channels */ unsigned int fmt_type; /* USB audio format type (1-3) */ unsigned int frame_size; /* samples per frame for non-audio */ int iface; /* interface number */ unsigned char altsetting; /* corresponding alternate setting */ unsigned char altset_idx; /* array index of altenate setting */ unsigned char attributes; /* corresponding attributes of cs endpoint */ unsigned char endpoint; /* endpoint */ unsigned char ep_attr; /* endpoint attributes */ unsigned char datainterval; /* log_2 of data packet interval */ unsigned int maxpacksize; /* max. packet size */ unsigned int rates; /* rate bitmasks */ unsigned int rate_min, rate_max; /* min/max rates */ unsigned int nr_rates; /* number of rate table entries */ unsigned int *rate_table; /* rate table */ }; struct snd_usb_substream; struct snd_urb_ctx { struct urb *urb; unsigned int buffer_size; /* size of data buffer, if data URB */ struct snd_usb_substream *subs; int index; /* index for urb array */ int packets; /* number of packets per urb */ }; struct snd_urb_ops { int (*prepare)(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *u); int (*retire)(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *u); int (*prepare_sync)(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *u); int (*retire_sync)(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *u); }; struct snd_usb_substream { struct snd_usb_stream *stream; struct usb_device *dev; struct snd_pcm_substream *pcm_substream; int direction; /* playback or capture */ int interface; /* current interface */ int endpoint; /* assigned endpoint */ struct audioformat *cur_audiofmt; /* current audioformat pointer (for hw_params callback) */ unsigned int cur_rate; /* current rate (for hw_params callback) */ unsigned int period_bytes; /* current period bytes (for hw_params callback) */ unsigned int format; /* USB data format */ unsigned int datapipe; /* the data i/o pipe */ unsigned int syncpipe; /* 1 - async out or adaptive in */ unsigned int datainterval; /* log_2 of data packet interval */ unsigned int syncinterval; /* P for adaptive mode, 0 otherwise */ unsigned int freqn; /* nominal sampling rate in fs/fps in Q16.16 format */ unsigned int freqm; /* momentary sampling rate in fs/fps in Q16.16 format */ unsigned int freqmax; /* maximum sampling rate, used for buffer management */ unsigned int phase; /* phase accumulator */ unsigned int maxpacksize; /* max packet size in bytes */ unsigned int maxframesize; /* max packet size in frames */ unsigned int curpacksize; /* current packet size in bytes (for capture) */ unsigned int curframesize; /* current packet size in frames (for capture) */ unsigned int fill_max: 1; /* fill max packet size always */ unsigned int fmt_type; /* USB audio format type (1-3) */ unsigned int running: 1; /* running status */ unsigned int hwptr_done; /* processed frame position in the buffer */ unsigned int transfer_done; /* processed frames since last period update */ unsigned long active_mask; /* bitmask of active urbs */ unsigned long unlink_mask; /* bitmask of unlinked urbs */ unsigned int nurbs; /* # urbs */ struct snd_urb_ctx dataurb[MAX_URBS]; /* data urb table */ struct snd_urb_ctx syncurb[SYNC_URBS]; /* sync urb table */ char *syncbuf; /* sync buffer for all sync URBs */ dma_addr_t sync_dma; /* DMA address of syncbuf */ u64 formats; /* format bitmasks (all or'ed) */ unsigned int num_formats; /* number of supported audio formats (list) */ struct list_head fmt_list; /* format list */ struct snd_pcm_hw_constraint_list rate_list; /* limited rates */ spinlock_t lock; struct snd_urb_ops ops; /* callbacks (must be filled at init) */ }; struct snd_usb_stream { struct snd_usb_audio *chip; struct snd_pcm *pcm; int pcm_index; unsigned int fmt_type; /* USB audio format type (1-3) */ struct snd_usb_substream substream[2]; struct list_head list; }; /* * we keep the snd_usb_audio_t instances by ourselves for merging * the all interfaces on the same card as one sound device. */ static DEFINE_MUTEX(register_mutex); static struct snd_usb_audio *usb_chip[SNDRV_CARDS]; /* * convert a sampling rate into our full speed format (fs/1000 in Q16.16) * this will overflow at approx 524 kHz */ static inline unsigned get_usb_full_speed_rate(unsigned int rate) { return ((rate << 13) + 62) / 125; } /* * convert a sampling rate into USB high speed format (fs/8000 in Q16.16) * this will overflow at approx 4 MHz */ static inline unsigned get_usb_high_speed_rate(unsigned int rate) { return ((rate << 10) + 62) / 125; } /* convert our full speed USB rate into sampling rate in Hz */ static inline unsigned get_full_speed_hz(unsigned int usb_rate) { return (usb_rate * 125 + (1 << 12)) >> 13; } /* convert our high speed USB rate into sampling rate in Hz */ static inline unsigned get_high_speed_hz(unsigned int usb_rate) { return (usb_rate * 125 + (1 << 9)) >> 10; } /* * prepare urb for full speed capture sync pipe * * fill the length and offset of each urb descriptor. * the fixed 10.14 frequency is passed through the pipe. */ static int prepare_capture_sync_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { unsigned char *cp = urb->transfer_buffer; struct snd_urb_ctx *ctx = urb->context; urb->dev = ctx->subs->dev; /* we need to set this at each time */ urb->iso_frame_desc[0].length = 3; urb->iso_frame_desc[0].offset = 0; cp[0] = subs->freqn >> 2; cp[1] = subs->freqn >> 10; cp[2] = subs->freqn >> 18; return 0; } /* * prepare urb for high speed capture sync pipe * * fill the length and offset of each urb descriptor. * the fixed 12.13 frequency is passed as 16.16 through the pipe. */ static int prepare_capture_sync_urb_hs(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { unsigned char *cp = urb->transfer_buffer; struct snd_urb_ctx *ctx = urb->context; urb->dev = ctx->subs->dev; /* we need to set this at each time */ urb->iso_frame_desc[0].length = 4; urb->iso_frame_desc[0].offset = 0; cp[0] = subs->freqn; cp[1] = subs->freqn >> 8; cp[2] = subs->freqn >> 16; cp[3] = subs->freqn >> 24; return 0; } /* * process after capture sync complete * - nothing to do */ static int retire_capture_sync_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { return 0; } /* * prepare urb for capture data pipe * * fill the offset and length of each descriptor. * * we use a temporary buffer to write the captured data. * since the length of written data is determined by host, we cannot * write onto the pcm buffer directly... the data is thus copied * later at complete callback to the global buffer. */ static int prepare_capture_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { int i, offs; struct snd_urb_ctx *ctx = urb->context; offs = 0; urb->dev = ctx->subs->dev; /* we need to set this at each time */ for (i = 0; i < ctx->packets; i++) { urb->iso_frame_desc[i].offset = offs; urb->iso_frame_desc[i].length = subs->curpacksize; offs += subs->curpacksize; } urb->transfer_buffer_length = offs; urb->number_of_packets = ctx->packets; return 0; } /* * process after capture complete * * copy the data from each desctiptor to the pcm buffer, and * update the current position. */ static int retire_capture_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { unsigned long flags; unsigned char *cp; int i; unsigned int stride, len, oldptr; int period_elapsed = 0; stride = runtime->frame_bits >> 3; for (i = 0; i < urb->number_of_packets; i++) { cp = (unsigned char *)urb->transfer_buffer + urb->iso_frame_desc[i].offset; if (urb->iso_frame_desc[i].status) { snd_printd(KERN_ERR "frame %d active: %d\n", i, urb->iso_frame_desc[i].status); // continue; } len = urb->iso_frame_desc[i].actual_length / stride; if (! len) continue; /* update the current pointer */ spin_lock_irqsave(&subs->lock, flags); oldptr = subs->hwptr_done; subs->hwptr_done += len; if (subs->hwptr_done >= runtime->buffer_size) subs->hwptr_done -= runtime->buffer_size; subs->transfer_done += len; if (subs->transfer_done >= runtime->period_size) { subs->transfer_done -= runtime->period_size; period_elapsed = 1; } spin_unlock_irqrestore(&subs->lock, flags); /* copy a data chunk */ if (oldptr + len > runtime->buffer_size) { unsigned int cnt = runtime->buffer_size - oldptr; unsigned int blen = cnt * stride; memcpy(runtime->dma_area + oldptr * stride, cp, blen); memcpy(runtime->dma_area, cp + blen, len * stride - blen); } else { memcpy(runtime->dma_area + oldptr * stride, cp, len * stride); } } if (period_elapsed) snd_pcm_period_elapsed(subs->pcm_substream); return 0; } /* * Process after capture complete when paused. Nothing to do. */ static int retire_paused_capture_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { return 0; } /* * prepare urb for full speed playback sync pipe * * set up the offset and length to receive the current frequency. */ static int prepare_playback_sync_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { struct snd_urb_ctx *ctx = urb->context; urb->dev = ctx->subs->dev; /* we need to set this at each time */ urb->iso_frame_desc[0].length = 3; urb->iso_frame_desc[0].offset = 0; return 0; } /* * prepare urb for high speed playback sync pipe * * set up the offset and length to receive the current frequency. */ static int prepare_playback_sync_urb_hs(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { struct snd_urb_ctx *ctx = urb->context; urb->dev = ctx->subs->dev; /* we need to set this at each time */ urb->iso_frame_desc[0].length = 4; urb->iso_frame_desc[0].offset = 0; return 0; } /* * process after full speed playback sync complete * * retrieve the current 10.14 frequency from pipe, and set it. * the value is referred in prepare_playback_urb(). */ static int retire_playback_sync_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { unsigned int f; unsigned long flags; if (urb->iso_frame_desc[0].status == 0 && urb->iso_frame_desc[0].actual_length == 3) { f = combine_triple((u8*)urb->transfer_buffer) << 2; if (f >= subs->freqn - subs->freqn / 8 && f <= subs->freqmax) { spin_lock_irqsave(&subs->lock, flags); subs->freqm = f; spin_unlock_irqrestore(&subs->lock, flags); } } return 0; } /* * process after high speed playback sync complete * * retrieve the current 12.13 frequency from pipe, and set it. * the value is referred in prepare_playback_urb(). */ static int retire_playback_sync_urb_hs(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { unsigned int f; unsigned long flags; if (urb->iso_frame_desc[0].status == 0 && urb->iso_frame_desc[0].actual_length == 4) { f = combine_quad((u8*)urb->transfer_buffer) & 0x0fffffff; if (f >= subs->freqn - subs->freqn / 8 && f <= subs->freqmax) { spin_lock_irqsave(&subs->lock, flags); subs->freqm = f; spin_unlock_irqrestore(&subs->lock, flags); } } return 0; } /* * process after E-Mu 0202/0404/Tracker Pre high speed playback sync complete * * These devices return the number of samples per packet instead of the number * of samples per microframe. */ static int retire_playback_sync_urb_hs_emu(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { unsigned int f; unsigned long flags; if (urb->iso_frame_desc[0].status == 0 && urb->iso_frame_desc[0].actual_length == 4) { f = combine_quad((u8*)urb->transfer_buffer) & 0x0fffffff; f >>= subs->datainterval; if (f >= subs->freqn - subs->freqn / 8 && f <= subs->freqmax) { spin_lock_irqsave(&subs->lock, flags); subs->freqm = f; spin_unlock_irqrestore(&subs->lock, flags); } } return 0; } /* determine the number of frames in the next packet */ static int snd_usb_audio_next_packet_size(struct snd_usb_substream *subs) { if (subs->fill_max) return subs->maxframesize; else { subs->phase = (subs->phase & 0xffff) + (subs->freqm << subs->datainterval); return min(subs->phase >> 16, subs->maxframesize); } } /* * Prepare urb for streaming before playback starts or when paused. * * We don't have any data, so we send silence. */ static int prepare_nodata_playback_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { unsigned int i, offs, counts; struct snd_urb_ctx *ctx = urb->context; int stride = runtime->frame_bits >> 3; offs = 0; urb->dev = ctx->subs->dev; for (i = 0; i < ctx->packets; ++i) { counts = snd_usb_audio_next_packet_size(subs); urb->iso_frame_desc[i].offset = offs * stride; urb->iso_frame_desc[i].length = counts * stride; offs += counts; } urb->number_of_packets = ctx->packets; urb->transfer_buffer_length = offs * stride; memset(urb->transfer_buffer, subs->cur_audiofmt->format == SNDRV_PCM_FORMAT_U8 ? 0x80 : 0, offs * stride); return 0; } /* * prepare urb for playback data pipe * * Since a URB can handle only a single linear buffer, we must use double * buffering when the data to be transferred overflows the buffer boundary. * To avoid inconsistencies when updating hwptr_done, we use double buffering * for all URBs. */ static int prepare_playback_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { int i, stride, offs; unsigned int counts; unsigned long flags; int period_elapsed = 0; struct snd_urb_ctx *ctx = urb->context; stride = runtime->frame_bits >> 3; offs = 0; urb->dev = ctx->subs->dev; /* we need to set this at each time */ urb->number_of_packets = 0; spin_lock_irqsave(&subs->lock, flags); for (i = 0; i < ctx->packets; i++) { counts = snd_usb_audio_next_packet_size(subs); /* set up descriptor */ urb->iso_frame_desc[i].offset = offs * stride; urb->iso_frame_desc[i].length = counts * stride; offs += counts; urb->number_of_packets++; subs->transfer_done += counts; if (subs->transfer_done >= runtime->period_size) { subs->transfer_done -= runtime->period_size; period_elapsed = 1; if (subs->fmt_type == USB_FORMAT_TYPE_II) { if (subs->transfer_done > 0) { /* FIXME: fill-max mode is not * supported yet */ offs -= subs->transfer_done; counts -= subs->transfer_done; urb->iso_frame_desc[i].length = counts * stride; subs->transfer_done = 0; } i++; if (i < ctx->packets) { /* add a transfer delimiter */ urb->iso_frame_desc[i].offset = offs * stride; urb->iso_frame_desc[i].length = 0; urb->number_of_packets++; } break; } } if (period_elapsed) /* finish at the period boundary */ break; } if (subs->hwptr_done + offs > runtime->buffer_size) { /* err, the transferred area goes over buffer boundary. */ unsigned int len = runtime->buffer_size - subs->hwptr_done; memcpy(urb->transfer_buffer, runtime->dma_area + subs->hwptr_done * stride, len * stride); memcpy(urb->transfer_buffer + len * stride, runtime->dma_area, (offs - len) * stride); } else { memcpy(urb->transfer_buffer, runtime->dma_area + subs->hwptr_done * stride, offs * stride); } subs->hwptr_done += offs; if (subs->hwptr_done >= runtime->buffer_size) subs->hwptr_done -= runtime->buffer_size; spin_unlock_irqrestore(&subs->lock, flags); urb->transfer_buffer_length = offs * stride; if (period_elapsed) snd_pcm_period_elapsed(subs->pcm_substream); return 0; } /* * process after playback data complete * - nothing to do */ static int retire_playback_urb(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime, struct urb *urb) { return 0; } /* */ static struct snd_urb_ops audio_urb_ops[2] = { { .prepare = prepare_nodata_playback_urb, .retire = retire_playback_urb, .prepare_sync = prepare_playback_sync_urb, .retire_sync = retire_playback_sync_urb, }, { .prepare = prepare_capture_urb, .retire = retire_capture_urb, .prepare_sync = prepare_capture_sync_urb, .retire_sync = retire_capture_sync_urb, }, }; static struct snd_urb_ops audio_urb_ops_high_speed[2] = { { .prepare = prepare_nodata_playback_urb, .retire = retire_playback_urb, .prepare_sync = prepare_playback_sync_urb_hs, .retire_sync = retire_playback_sync_urb_hs, }, { .prepare = prepare_capture_urb, .retire = retire_capture_urb, .prepare_sync = prepare_capture_sync_urb_hs, .retire_sync = retire_capture_sync_urb, }, }; /* * complete callback from data urb */ static void snd_complete_urb(struct urb *urb) { struct snd_urb_ctx *ctx = urb->context; struct snd_usb_substream *subs = ctx->subs; struct snd_pcm_substream *substream = ctx->subs->pcm_substream; int err = 0; if ((subs->running && subs->ops.retire(subs, substream->runtime, urb)) || !subs->running || /* can be stopped during retire callback */ (err = subs->ops.prepare(subs, substream->runtime, urb)) < 0 || (err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { clear_bit(ctx->index, &subs->active_mask); if (err < 0) { snd_printd(KERN_ERR "cannot submit urb (err = %d)\n", err); snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); } } } /* * complete callback from sync urb */ static void snd_complete_sync_urb(struct urb *urb) { struct snd_urb_ctx *ctx = urb->context; struct snd_usb_substream *subs = ctx->subs; struct snd_pcm_substream *substream = ctx->subs->pcm_substream; int err = 0; if ((subs->running && subs->ops.retire_sync(subs, substream->runtime, urb)) || !subs->running || /* can be stopped during retire callback */ (err = subs->ops.prepare_sync(subs, substream->runtime, urb)) < 0 || (err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { clear_bit(ctx->index + 16, &subs->active_mask); if (err < 0) { snd_printd(KERN_ERR "cannot submit sync urb (err = %d)\n", err); snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); } } } /* get the physical page pointer at the given offset */ static struct page *snd_pcm_get_vmalloc_page(struct snd_pcm_substream *subs, unsigned long offset) { void *pageptr = subs->runtime->dma_area + offset; return vmalloc_to_page(pageptr); } /* allocate virtual buffer; may be called more than once */ static int snd_pcm_alloc_vmalloc_buffer(struct snd_pcm_substream *subs, size_t size) { struct snd_pcm_runtime *runtime = subs->runtime; if (runtime->dma_area) { if (runtime->dma_bytes >= size) return 0; /* already large enough */ vfree(runtime->dma_area); } runtime->dma_area = vmalloc(size); if (!runtime->dma_area) return -ENOMEM; runtime->dma_bytes = size; return 0; } /* free virtual buffer; may be called more than once */ static int snd_pcm_free_vmalloc_buffer(struct snd_pcm_substream *subs) { struct snd_pcm_runtime *runtime = subs->runtime; vfree(runtime->dma_area); runtime->dma_area = NULL; return 0; } /* * unlink active urbs. */ static int deactivate_urbs(struct snd_usb_substream *subs, int force, int can_sleep) { unsigned int i; int async; subs->running = 0; if (!force && subs->stream->chip->shutdown) /* to be sure... */ return -EBADFD; async = !can_sleep && async_unlink; if (!async && in_interrupt()) return 0; for (i = 0; i < subs->nurbs; i++) { if (test_bit(i, &subs->active_mask)) { if (!test_and_set_bit(i, &subs->unlink_mask)) { struct urb *u = subs->dataurb[i].urb; if (async) usb_unlink_urb(u); else usb_kill_urb(u); } } } if (subs->syncpipe) { for (i = 0; i < SYNC_URBS; i++) { if (test_bit(i+16, &subs->active_mask)) { if (!test_and_set_bit(i+16, &subs->unlink_mask)) { struct urb *u = subs->syncurb[i].urb; if (async) usb_unlink_urb(u); else usb_kill_urb(u); } } } } return 0; } static const char *usb_error_string(int err) { switch (err) { case -ENODEV: return "no device"; case -ENOENT: return "endpoint not enabled"; case -EPIPE: return "endpoint stalled"; case -ENOSPC: return "not enough bandwidth"; case -ESHUTDOWN: return "device disabled"; case -EHOSTUNREACH: return "device suspended"; case -EINVAL: case -EAGAIN: case -EFBIG: case -EMSGSIZE: return "internal error"; default: return "unknown error"; } } /* * set up and start data/sync urbs */ static int start_urbs(struct snd_usb_substream *subs, struct snd_pcm_runtime *runtime) { unsigned int i; int err; if (subs->stream->chip->shutdown) return -EBADFD; for (i = 0; i < subs->nurbs; i++) { if (snd_BUG_ON(!subs->dataurb[i].urb)) return -EINVAL; if (subs->ops.prepare(subs, runtime, subs->dataurb[i].urb) < 0) { snd_printk(KERN_ERR "cannot prepare datapipe for urb %d\n", i); goto __error; } } if (subs->syncpipe) { for (i = 0; i < SYNC_URBS; i++) { if (snd_BUG_ON(!subs->syncurb[i].urb)) return -EINVAL; if (subs->ops.prepare_sync(subs, runtime, subs->syncurb[i].urb) < 0) { snd_printk(KERN_ERR "cannot prepare syncpipe for urb %d\n", i); goto __error; } } } subs->active_mask = 0; subs->unlink_mask = 0; subs->running = 1; for (i = 0; i < subs->nurbs; i++) { err = usb_submit_urb(subs->dataurb[i].urb, GFP_ATOMIC); if (err < 0) { snd_printk(KERN_ERR "cannot submit datapipe " "for urb %d, error %d: %s\n", i, err, usb_error_string(err)); goto __error; } set_bit(i, &subs->active_mask); } if (subs->syncpipe) { for (i = 0; i < SYNC_URBS; i++) { err = usb_submit_urb(subs->syncurb[i].urb, GFP_ATOMIC); if (err < 0) { snd_printk(KERN_ERR "cannot submit syncpipe " "for urb %d, error %d: %s\n", i, err, usb_error_string(err)); goto __error; } set_bit(i + 16, &subs->active_mask); } } return 0; __error: // snd_pcm_stop(subs->pcm_substream, SNDRV_PCM_STATE_XRUN); deactivate_urbs(subs, 0, 0); return -EPIPE; } /* * wait until all urbs are processed. */ static int wait_clear_urbs(struct snd_usb_substream *subs) { unsigned long end_time = jiffies + msecs_to_jiffies(1000); unsigned int i; int alive; do { alive = 0; for (i = 0; i < subs->nurbs; i++) { if (test_bit(i, &subs->active_mask)) alive++; } if (subs->syncpipe) { for (i = 0; i < SYNC_URBS; i++) { if (test_bit(i + 16, &subs->active_mask)) alive++; } } if (! alive) break; schedule_timeout_uninterruptible(1); } while (time_before(jiffies, end_time)); if (alive) snd_printk(KERN_ERR "timeout: still %d active urbs..\n", alive); return 0; } /* * return the current pcm pointer. just return the hwptr_done value. */ static snd_pcm_uframes_t snd_usb_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_usb_substream *subs; snd_pcm_uframes_t hwptr_done; subs = (struct snd_usb_substream *)substream->runtime->private_data; spin_lock(&subs->lock); hwptr_done = subs->hwptr_done; spin_unlock(&subs->lock); return hwptr_done; } /* * start/stop playback substream */ static int snd_usb_pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_usb_substream *subs = substream->runtime->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: subs->ops.prepare = prepare_playback_urb; return 0; case SNDRV_PCM_TRIGGER_STOP: return deactivate_urbs(subs, 0, 0); case SNDRV_PCM_TRIGGER_PAUSE_PUSH: subs->ops.prepare = prepare_nodata_playback_urb; return 0; default: return -EINVAL; } } /* * start/stop capture substream */ static int snd_usb_pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_usb_substream *subs = substream->runtime->private_data; switch (cmd) { case SNDRV_PCM_TRIGGER_START: subs->ops.retire = retire_capture_urb; return start_urbs(subs, substream->runtime); case SNDRV_PCM_TRIGGER_STOP: return deactivate_urbs(subs, 0, 0); case SNDRV_PCM_TRIGGER_PAUSE_PUSH: subs->ops.retire = retire_paused_capture_urb; return 0; case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: subs->ops.retire = retire_capture_urb; return 0; default: return -EINVAL; } } /* * release a urb data */ static void release_urb_ctx(struct snd_urb_ctx *u) { if (u->urb) { if (u->buffer_size) usb_buffer_free(u->subs->dev, u->buffer_size, u->urb->transfer_buffer, u->urb->transfer_dma); usb_free_urb(u->urb); u->urb = NULL; } } /* * release a substream */ static void release_substream_urbs(struct snd_usb_substream *subs, int force) { int i; /* stop urbs (to be sure) */ deactivate_urbs(subs, force, 1); wait_clear_urbs(subs); for (i = 0; i < MAX_URBS; i++) release_urb_ctx(&subs->dataurb[i]); for (i = 0; i < SYNC_URBS; i++) release_urb_ctx(&subs->syncurb[i]); usb_buffer_free(subs->dev, SYNC_URBS * 4, subs->syncbuf, subs->sync_dma); subs->syncbuf = NULL; subs->nurbs = 0; } /* * initialize a substream for plaback/capture */ static int init_substream_urbs(struct snd_usb_substream *subs, unsigned int period_bytes, unsigned int rate, unsigned int frame_bits) { unsigned int maxsize, i; int is_playback = subs->direction == SNDRV_PCM_STREAM_PLAYBACK; unsigned int urb_packs, total_packs, packs_per_ms; /* calculate the frequency in 16.16 format */ if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL) subs->freqn = get_usb_full_speed_rate(rate); else subs->freqn = get_usb_high_speed_rate(rate); subs->freqm = subs->freqn; /* calculate max. frequency */ if (subs->maxpacksize) { /* whatever fits into a max. size packet */ maxsize = subs->maxpacksize; subs->freqmax = (maxsize / (frame_bits >> 3)) << (16 - subs->datainterval); } else { /* no max. packet size: just take 25% higher than nominal */ subs->freqmax = subs->freqn + (subs->freqn >> 2); maxsize = ((subs->freqmax + 0xffff) * (frame_bits >> 3)) >> (16 - subs->datainterval); } subs->phase = 0; if (subs->fill_max) subs->curpacksize = subs->maxpacksize; else subs->curpacksize = maxsize; if (snd_usb_get_speed(subs->dev) == USB_SPEED_HIGH) packs_per_ms = 8 >> subs->datainterval; else packs_per_ms = 1; if (is_playback) { urb_packs = max(nrpacks, 1); urb_packs = min(urb_packs, (unsigned int)MAX_PACKS); } else urb_packs = 1; urb_packs *= packs_per_ms; /* decide how many packets to be used */ if (is_playback) { unsigned int minsize, maxpacks; /* determine how small a packet can be */ minsize = (subs->freqn >> (16 - subs->datainterval)) * (frame_bits >> 3); /* with sync from device, assume it can be 12% lower */ if (subs->syncpipe) minsize -= minsize >> 3; minsize = max(minsize, 1u); total_packs = (period_bytes + minsize - 1) / minsize; /* we need at least two URBs for queueing */ if (total_packs < 2) { total_packs = 2; } else { /* and we don't want too long a queue either */ maxpacks = max(MAX_QUEUE * packs_per_ms, urb_packs * 2); total_packs = min(total_packs, maxpacks); } } else { while (urb_packs > 1 && urb_packs * maxsize >= period_bytes) urb_packs >>= 1; total_packs = MAX_URBS * urb_packs; } subs->nurbs = (total_packs + urb_packs - 1) / urb_packs; if (subs->nurbs > MAX_URBS) { /* too much... */ subs->nurbs = MAX_URBS; total_packs = MAX_URBS * urb_packs; } else if (subs->nurbs < 2) { /* too little - we need at least two packets * to ensure contiguous playback/capture */ subs->nurbs = 2; } /* allocate and initialize data urbs */ for (i = 0; i < subs->nurbs; i++) { struct snd_urb_ctx *u = &subs->dataurb[i]; u->index = i; u->subs = subs; u->packets = (i + 1) * total_packs / subs->nurbs - i * total_packs / subs->nurbs; u->buffer_size = maxsize * u->packets; if (subs->fmt_type == USB_FORMAT_TYPE_II) u->packets++; /* for transfer delimiter */ u->urb = usb_alloc_urb(u->packets, GFP_KERNEL); if (!u->urb) goto out_of_memory; u->urb->transfer_buffer = usb_buffer_alloc(subs->dev, u->buffer_size, GFP_KERNEL, &u->urb->transfer_dma); if (!u->urb->transfer_buffer) goto out_of_memory; u->urb->pipe = subs->datapipe; u->urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; u->urb->interval = 1 << subs->datainterval; u->urb->context = u; u->urb->complete = snd_complete_urb; } if (subs->syncpipe) { /* allocate and initialize sync urbs */ subs->syncbuf = usb_buffer_alloc(subs->dev, SYNC_URBS * 4, GFP_KERNEL, &subs->sync_dma); if (!subs->syncbuf) goto out_of_memory; for (i = 0; i < SYNC_URBS; i++) { struct snd_urb_ctx *u = &subs->syncurb[i]; u->index = i; u->subs = subs; u->packets = 1; u->urb = usb_alloc_urb(1, GFP_KERNEL); if (!u->urb) goto out_of_memory; u->urb->transfer_buffer = subs->syncbuf + i * 4; u->urb->transfer_dma = subs->sync_dma + i * 4; u->urb->transfer_buffer_length = 4; u->urb->pipe = subs->syncpipe; u->urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; u->urb->number_of_packets = 1; u->urb->interval = 1 << subs->syncinterval; u->urb->context = u; u->urb->complete = snd_complete_sync_urb; } } return 0; out_of_memory: release_substream_urbs(subs, 0); return -ENOMEM; } /* * find a matching audio format */ static struct audioformat *find_format(struct snd_usb_substream *subs, unsigned int format, unsigned int rate, unsigned int channels) { struct list_head *p; struct audioformat *found = NULL; int cur_attr = 0, attr; list_for_each(p, &subs->fmt_list) { struct audioformat *fp; fp = list_entry(p, struct audioformat, list); if (fp->format != format || fp->channels != channels) continue; if (rate < fp->rate_min || rate > fp->rate_max) continue; if (! (fp->rates & SNDRV_PCM_RATE_CONTINUOUS)) { unsigned int i; for (i = 0; i < fp->nr_rates; i++) if (fp->rate_table[i] == rate) break; if (i >= fp->nr_rates) continue; } attr = fp->ep_attr & EP_ATTR_MASK; if (! found) { found = fp; cur_attr = attr; continue; } /* avoid async out and adaptive in if the other method * supports the same format. * this is a workaround for the case like * M-audio audiophile USB. */ if (attr != cur_attr) { if ((attr == EP_ATTR_ASYNC && subs->direction == SNDRV_PCM_STREAM_PLAYBACK) || (attr == EP_ATTR_ADAPTIVE && subs->direction == SNDRV_PCM_STREAM_CAPTURE)) continue; if ((cur_attr == EP_ATTR_ASYNC && subs->direction == SNDRV_PCM_STREAM_PLAYBACK) || (cur_attr == EP_ATTR_ADAPTIVE && subs->direction == SNDRV_PCM_STREAM_CAPTURE)) { found = fp; cur_attr = attr; continue; } } /* find the format with the largest max. packet size */ if (fp->maxpacksize > found->maxpacksize) { found = fp; cur_attr = attr; } } return found; } /* * initialize the picth control and sample rate */ static int init_usb_pitch(struct usb_device *dev, int iface, struct usb_host_interface *alts, struct audioformat *fmt) { unsigned int ep; unsigned char data[1]; int err; ep = get_endpoint(alts, 0)->bEndpointAddress; /* if endpoint has pitch control, enable it */ if (fmt->attributes & EP_CS_ATTR_PITCH_CONTROL) { data[0] = 1; if ((err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT, PITCH_CONTROL << 8, ep, data, 1, 1000)) < 0) { snd_printk(KERN_ERR "%d:%d:%d: cannot set enable PITCH\n", dev->devnum, iface, ep); return err; } } return 0; } static int init_usb_sample_rate(struct usb_device *dev, int iface, struct usb_host_interface *alts, struct audioformat *fmt, int rate) { unsigned int ep; unsigned char data[3]; int err; ep = get_endpoint(alts, 0)->bEndpointAddress; /* if endpoint has sampling rate control, set it */ if (fmt->attributes & EP_CS_ATTR_SAMPLE_RATE) { int crate; data[0] = rate; data[1] = rate >> 8; data[2] = rate >> 16; if ((err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), SET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_OUT, SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) { snd_printk(KERN_ERR "%d:%d:%d: cannot set freq %d to ep %#x\n", dev->devnum, iface, fmt->altsetting, rate, ep); return err; } if ((err = snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), GET_CUR, USB_TYPE_CLASS|USB_RECIP_ENDPOINT|USB_DIR_IN, SAMPLING_FREQ_CONTROL << 8, ep, data, 3, 1000)) < 0) { snd_printk(KERN_WARNING "%d:%d:%d: cannot get freq at ep %#x\n", dev->devnum, iface, fmt->altsetting, ep); return 0; /* some devices don't support reading */ } crate = data[0] | (data[1] << 8) | (data[2] << 16); if (crate != rate) { snd_printd(KERN_WARNING "current rate %d is different from the runtime rate %d\n", crate, rate); // runtime->rate = crate; } } return 0; } /* * find a matching format and set up the interface */ static int set_format(struct snd_usb_substream *subs, struct audioformat *fmt) { struct usb_device *dev = subs->dev; struct usb_host_interface *alts; struct usb_interface_descriptor *altsd; struct usb_interface *iface; unsigned int ep, attr; int is_playback = subs->direction == SNDRV_PCM_STREAM_PLAYBACK; int err; iface = usb_ifnum_to_if(dev, fmt->iface); if (WARN_ON(!iface)) return -EINVAL; alts = &iface->altsetting[fmt->altset_idx]; altsd = get_iface_desc(alts); if (WARN_ON(altsd->bAlternateSetting != fmt->altsetting)) return -EINVAL; if (fmt == subs->cur_audiofmt) return 0; /* close the old interface */ if (subs->interface >= 0 && subs->interface != fmt->iface) { if (usb_set_interface(subs->dev, subs->interface, 0) < 0) { snd_printk(KERN_ERR "%d:%d:%d: return to setting 0 failed\n", dev->devnum, fmt->iface, fmt->altsetting); return -EIO; } subs->interface = -1; subs->format = 0; } /* set interface */ if (subs->interface != fmt->iface || subs->format != fmt->altset_idx) { if (usb_set_interface(dev, fmt->iface, fmt->altsetting) < 0) { snd_printk(KERN_ERR "%d:%d:%d: usb_set_interface failed\n", dev->devnum, fmt->iface, fmt->altsetting); return -EIO; } snd_printdd(KERN_INFO "setting usb interface %d:%d\n", fmt->iface, fmt->altsetting); subs->interface = fmt->iface; subs->format = fmt->altset_idx; } /* create a data pipe */ ep = fmt->endpoint & USB_ENDPOINT_NUMBER_MASK; if (is_playback) subs->datapipe = usb_sndisocpipe(dev, ep); else subs->datapipe = usb_rcvisocpipe(dev, ep); subs->datainterval = fmt->datainterval; subs->syncpipe = subs->syncinterval = 0; subs->maxpacksize = fmt->maxpacksize; subs->fill_max = 0; /* we need a sync pipe in async OUT or adaptive IN mode */ /* check the number of EP, since some devices have broken * descriptors which fool us. if it has only one EP, * assume it as adaptive-out or sync-in. */ attr = fmt->ep_attr & EP_ATTR_MASK; if (((is_playback && attr == EP_ATTR_ASYNC) || (! is_playback && attr == EP_ATTR_ADAPTIVE)) && altsd->bNumEndpoints >= 2) { /* check sync-pipe endpoint */ /* ... and check descriptor size before accessing bSynchAddress because there is a version of the SB Audigy 2 NX firmware lacking the audio fields in the endpoint descriptors */ if ((get_endpoint(alts, 1)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != 0x01 || (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && get_endpoint(alts, 1)->bSynchAddress != 0)) { snd_printk(KERN_ERR "%d:%d:%d : invalid synch pipe\n", dev->devnum, fmt->iface, fmt->altsetting); return -EINVAL; } ep = get_endpoint(alts, 1)->bEndpointAddress; if (get_endpoint(alts, 0)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && (( is_playback && ep != (unsigned int)(get_endpoint(alts, 0)->bSynchAddress | USB_DIR_IN)) || (!is_playback && ep != (unsigned int)(get_endpoint(alts, 0)->bSynchAddress & ~USB_DIR_IN)))) { snd_printk(KERN_ERR "%d:%d:%d : invalid synch pipe\n", dev->devnum, fmt->iface, fmt->altsetting); return -EINVAL; } ep &= USB_ENDPOINT_NUMBER_MASK; if (is_playback) subs->syncpipe = usb_rcvisocpipe(dev, ep); else subs->syncpipe = usb_sndisocpipe(dev, ep); if (get_endpoint(alts, 1)->bLength >= USB_DT_ENDPOINT_AUDIO_SIZE && get_endpoint(alts, 1)->bRefresh >= 1 && get_endpoint(alts, 1)->bRefresh <= 9) subs->syncinterval = get_endpoint(alts, 1)->bRefresh; else if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL) subs->syncinterval = 1; else if (get_endpoint(alts, 1)->bInterval >= 1 && get_endpoint(alts, 1)->bInterval <= 16) subs->syncinterval = get_endpoint(alts, 1)->bInterval - 1; else subs->syncinterval = 3; } /* always fill max packet size */ if (fmt->attributes & EP_CS_ATTR_FILL_MAX) subs->fill_max = 1; if ((err = init_usb_pitch(dev, subs->interface, alts, fmt)) < 0) return err; subs->cur_audiofmt = fmt; #if 0 printk(KERN_DEBUG "setting done: format = %d, rate = %d..%d, channels = %d\n", fmt->format, fmt->rate_min, fmt->rate_max, fmt->channels); printk(KERN_DEBUG " datapipe = 0x%0x, syncpipe = 0x%0x\n", subs->datapipe, subs->syncpipe); #endif return 0; } /* * hw_params callback * * allocate a buffer and set the given audio format. * * so far we use a physically linear buffer although packetize transfer * doesn't need a continuous area. * if sg buffer is supported on the later version of alsa, we'll follow * that. */ static int snd_usb_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_usb_substream *subs = substream->runtime->private_data; struct audioformat *fmt; unsigned int channels, rate, format; int ret, changed; ret = snd_pcm_alloc_vmalloc_buffer(substream, params_buffer_bytes(hw_params)); if (ret < 0) return ret; format = params_format(hw_params); rate = params_rate(hw_params); channels = params_channels(hw_params); fmt = find_format(subs, format, rate, channels); if (!fmt) { snd_printd(KERN_DEBUG "cannot set format: format = %#x, rate = %d, channels = %d\n", format, rate, channels); return -EINVAL; } changed = subs->cur_audiofmt != fmt || subs->period_bytes != params_period_bytes(hw_params) || subs->cur_rate != rate; if ((ret = set_format(subs, fmt)) < 0) return ret; if (subs->cur_rate != rate) { struct usb_host_interface *alts; struct usb_interface *iface; iface = usb_ifnum_to_if(subs->dev, fmt->iface); alts = &iface->altsetting[fmt->altset_idx]; ret = init_usb_sample_rate(subs->dev, subs->interface, alts, fmt, rate); if (ret < 0) return ret; subs->cur_rate = rate; } if (changed) { /* format changed */ release_substream_urbs(subs, 0); /* influenced: period_bytes, channels, rate, format, */ ret = init_substream_urbs(subs, params_period_bytes(hw_params), params_rate(hw_params), snd_pcm_format_physical_width(params_format(hw_params)) * params_channels(hw_params)); } return ret; } /* * hw_free callback * * reset the audio format and release the buffer */ static int snd_usb_hw_free(struct snd_pcm_substream *substream) { struct snd_usb_substream *subs = substream->runtime->private_data; subs->cur_audiofmt = NULL; subs->cur_rate = 0; subs->period_bytes = 0; if (!subs->stream->chip->shutdown) release_substream_urbs(subs, 0); return snd_pcm_free_vmalloc_buffer(substream); } /* * prepare callback * * only a few subtle things... */ static int snd_usb_pcm_prepare(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_usb_substream *subs = runtime->private_data; if (! subs->cur_audiofmt) { snd_printk(KERN_ERR "usbaudio: no format is specified!\n"); return -ENXIO; } /* some unit conversions in runtime */ subs->maxframesize = bytes_to_frames(runtime, subs->maxpacksize); subs->curframesize = bytes_to_frames(runtime, subs->curpacksize); /* reset the pointer */ subs->hwptr_done = 0; subs->transfer_done = 0; subs->phase = 0; /* clear urbs (to be sure) */ deactivate_urbs(subs, 0, 1); wait_clear_urbs(subs); /* for playback, submit the URBs now; otherwise, the first hwptr_done * updates for all URBs would happen at the same time when starting */ if (subs->direction == SNDRV_PCM_STREAM_PLAYBACK) { subs->ops.prepare = prepare_nodata_playback_urb; return start_urbs(subs, runtime); } else return 0; } static struct snd_pcm_hardware snd_usb_hardware = { .info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_BATCH | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE, .buffer_bytes_max = 1024 * 1024, .period_bytes_min = 64, .period_bytes_max = 512 * 1024, .periods_min = 2, .periods_max = 1024, }; /* * h/w constraints */ #ifdef HW_CONST_DEBUG #define hwc_debug(fmt, args...) printk(KERN_DEBUG fmt, ##args) #else #define hwc_debug(fmt, args...) /**/ #endif static int hw_check_valid_format(struct snd_usb_substream *subs, struct snd_pcm_hw_params *params, struct audioformat *fp) { struct snd_interval *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval *ct = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct snd_mask *fmts = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); struct snd_interval *pt = hw_param_interval(params, SNDRV_PCM_HW_PARAM_PERIOD_TIME); unsigned int ptime; /* check the format */ if (!snd_mask_test(fmts, fp->format)) { hwc_debug(" > check: no supported format %d\n", fp->format); return 0; } /* check the channels */ if (fp->channels < ct->min || fp->channels > ct->max) { hwc_debug(" > check: no valid channels %d (%d/%d)\n", fp->channels, ct->min, ct->max); return 0; } /* check the rate is within the range */ if (fp->rate_min > it->max || (fp->rate_min == it->max && it->openmax)) { hwc_debug(" > check: rate_min %d > max %d\n", fp->rate_min, it->max); return 0; } if (fp->rate_max < it->min || (fp->rate_max == it->min && it->openmin)) { hwc_debug(" > check: rate_max %d < min %d\n", fp->rate_max, it->min); return 0; } /* check whether the period time is >= the data packet interval */ if (snd_usb_get_speed(subs->dev) == USB_SPEED_HIGH) { ptime = 125 * (1 << fp->datainterval); if (ptime > pt->max || (ptime == pt->max && pt->openmax)) { hwc_debug(" > check: ptime %u > max %u\n", ptime, pt->max); return 0; } } return 1; } static int hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_usb_substream *subs = rule->private; struct list_head *p; struct snd_interval *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); unsigned int rmin, rmax; int changed; hwc_debug("hw_rule_rate: (%d,%d)\n", it->min, it->max); changed = 0; rmin = rmax = 0; list_for_each(p, &subs->fmt_list) { struct audioformat *fp; fp = list_entry(p, struct audioformat, list); if (!hw_check_valid_format(subs, params, fp)) continue; if (changed++) { if (rmin > fp->rate_min) rmin = fp->rate_min; if (rmax < fp->rate_max) rmax = fp->rate_max; } else { rmin = fp->rate_min; rmax = fp->rate_max; } } if (!changed) { hwc_debug(" --> get empty\n"); it->empty = 1; return -EINVAL; } changed = 0; if (it->min < rmin) { it->min = rmin; it->openmin = 0; changed = 1; } if (it->max > rmax) { it->max = rmax; it->openmax = 0; changed = 1; } if (snd_interval_checkempty(it)) { it->empty = 1; return -EINVAL; } hwc_debug(" --> (%d, %d) (changed = %d)\n", it->min, it->max, changed); return changed; } static int hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_usb_substream *subs = rule->private; struct list_head *p; struct snd_interval *it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); unsigned int rmin, rmax; int changed; hwc_debug("hw_rule_channels: (%d,%d)\n", it->min, it->max); changed = 0; rmin = rmax = 0; list_for_each(p, &subs->fmt_list) { struct audioformat *fp; fp = list_entry(p, struct audioformat, list); if (!hw_check_valid_format(subs, params, fp)) continue; if (changed++) { if (rmin > fp->channels) rmin = fp->channels; if (rmax < fp->channels) rmax = fp->channels; } else { rmin = fp->channels; rmax = fp->channels; } } if (!changed) { hwc_debug(" --> get empty\n"); it->empty = 1; return -EINVAL; } changed = 0; if (it->min < rmin) { it->min = rmin; it->openmin = 0; changed = 1; } if (it->max > rmax) { it->max = rmax; it->openmax = 0; changed = 1; } if (snd_interval_checkempty(it)) { it->empty = 1; return -EINVAL; } hwc_debug(" --> (%d, %d) (changed = %d)\n", it->min, it->max, changed); return changed; } static int hw_rule_format(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_usb_substream *subs = rule->private; struct list_head *p; struct snd_mask *fmt = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); u64 fbits; u32 oldbits[2]; int changed; hwc_debug("hw_rule_format: %x:%x\n", fmt->bits[0], fmt->bits[1]); fbits = 0; list_for_each(p, &subs->fmt_list) { struct audioformat *fp; fp = list_entry(p, struct audioformat, list); if (!hw_check_valid_format(subs, params, fp)) continue; fbits |= (1ULL << fp->format); } oldbits[0] = fmt->bits[0]; oldbits[1] = fmt->bits[1]; fmt->bits[0] &= (u32)fbits; fmt->bits[1] &= (u32)(fbits >> 32); if (!fmt->bits[0] && !fmt->bits[1]) { hwc_debug(" --> get empty\n"); return -EINVAL; } changed = (oldbits[0] != fmt->bits[0] || oldbits[1] != fmt->bits[1]); hwc_debug(" --> %x:%x (changed = %d)\n", fmt->bits[0], fmt->bits[1], changed); return changed; } static int hw_rule_period_time(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_usb_substream *subs = rule->private; struct audioformat *fp; struct snd_interval *it; unsigned char min_datainterval; unsigned int pmin; int changed; it = hw_param_interval(params, SNDRV_PCM_HW_PARAM_PERIOD_TIME); hwc_debug("hw_rule_period_time: (%u,%u)\n", it->min, it->max); min_datainterval = 0xff; list_for_each_entry(fp, &subs->fmt_list, list) { if (!hw_check_valid_format(subs, params, fp)) continue; min_datainterval = min(min_datainterval, fp->datainterval); } if (min_datainterval == 0xff) { hwc_debug(" --> get emtpy\n"); it->empty = 1; return -EINVAL; } pmin = 125 * (1 << min_datainterval); changed = 0; if (it->min < pmin) { it->min = pmin; it->openmin = 0; changed = 1; } if (snd_interval_checkempty(it)) { it->empty = 1; return -EINVAL; } hwc_debug(" --> (%u,%u) (changed = %d)\n", it->min, it->max, changed); return changed; } /* * If the device supports unusual bit rates, does the request meet these? */ static int snd_usb_pcm_check_knot(struct snd_pcm_runtime *runtime, struct snd_usb_substream *subs) { struct audioformat *fp; int count = 0, needs_knot = 0; int err; list_for_each_entry(fp, &subs->fmt_list, list) { if (fp->rates & SNDRV_PCM_RATE_CONTINUOUS) return 0; count += fp->nr_rates; if (fp->rates & SNDRV_PCM_RATE_KNOT) needs_knot = 1; } if (!needs_knot) return 0; subs->rate_list.count = count; subs->rate_list.list = kmalloc(sizeof(int) * count, GFP_KERNEL); subs->rate_list.mask = 0; count = 0; list_for_each_entry(fp, &subs->fmt_list, list) { int i; for (i = 0; i < fp->nr_rates; i++) subs->rate_list.list[count++] = fp->rate_table[i]; } err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, &subs->rate_list); if (err < 0) return err; return 0; } /* * set up the runtime hardware information. */ static int setup_hw_info(struct snd_pcm_runtime *runtime, struct snd_usb_substream *subs) { struct list_head *p; unsigned int pt, ptmin; int param_period_time_if_needed; int err; runtime->hw.formats = subs->formats; runtime->hw.rate_min = 0x7fffffff; runtime->hw.rate_max = 0; runtime->hw.channels_min = 256; runtime->hw.channels_max = 0; runtime->hw.rates = 0; ptmin = UINT_MAX; /* check min/max rates and channels */ list_for_each(p, &subs->fmt_list) { struct audioformat *fp; fp = list_entry(p, struct audioformat, list); runtime->hw.rates |= fp->rates; if (runtime->hw.rate_min > fp->rate_min) runtime->hw.rate_min = fp->rate_min; if (runtime->hw.rate_max < fp->rate_max) runtime->hw.rate_max = fp->rate_max; if (runtime->hw.channels_min > fp->channels) runtime->hw.channels_min = fp->channels; if (runtime->hw.channels_max < fp->channels) runtime->hw.channels_max = fp->channels; if (fp->fmt_type == USB_FORMAT_TYPE_II && fp->frame_size > 0) { /* FIXME: there might be more than one audio formats... */ runtime->hw.period_bytes_min = runtime->hw.period_bytes_max = fp->frame_size; } pt = 125 * (1 << fp->datainterval); ptmin = min(ptmin, pt); } param_period_time_if_needed = SNDRV_PCM_HW_PARAM_PERIOD_TIME; if (snd_usb_get_speed(subs->dev) != USB_SPEED_HIGH) /* full speed devices have fixed data packet interval */ ptmin = 1000; if (ptmin == 1000) /* if period time doesn't go below 1 ms, no rules needed */ param_period_time_if_needed = -1; snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, ptmin, UINT_MAX); if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, hw_rule_rate, subs, SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_CHANNELS, param_period_time_if_needed, -1)) < 0) return err; if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, hw_rule_channels, subs, SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_RATE, param_period_time_if_needed, -1)) < 0) return err; if ((err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, hw_rule_format, subs, SNDRV_PCM_HW_PARAM_RATE, SNDRV_PCM_HW_PARAM_CHANNELS, param_period_time_if_needed, -1)) < 0) return err; if (param_period_time_if_needed >= 0) { err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_TIME, hw_rule_period_time, subs, SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_CHANNELS, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) return err; } if ((err = snd_usb_pcm_check_knot(runtime, subs)) < 0) return err; return 0; } static int snd_usb_pcm_open(struct snd_pcm_substream *substream, int direction) { struct snd_usb_stream *as = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_usb_substream *subs = &as->substream[direction]; subs->interface = -1; subs->format = 0; runtime->hw = snd_usb_hardware; runtime->private_data = subs; subs->pcm_substream = substream; return setup_hw_info(runtime, subs); } static int snd_usb_pcm_close(struct snd_pcm_substream *substream, int direction) { struct snd_usb_stream *as = snd_pcm_substream_chip(substream); struct snd_usb_substream *subs = &as->substream[direction]; if (subs->interface >= 0) { usb_set_interface(subs->dev, subs->interface, 0); subs->interface = -1; } subs->pcm_substream = NULL; return 0; } static int snd_usb_playback_open(struct snd_pcm_substream *substream) { return snd_usb_pcm_open(substream, SNDRV_PCM_STREAM_PLAYBACK); } static int snd_usb_playback_close(struct snd_pcm_substream *substream) { return snd_usb_pcm_close(substream, SNDRV_PCM_STREAM_PLAYBACK); } static int snd_usb_capture_open(struct snd_pcm_substream *substream) { return snd_usb_pcm_open(substream, SNDRV_PCM_STREAM_CAPTURE); } static int snd_usb_capture_close(struct snd_pcm_substream *substream) { return snd_usb_pcm_close(substream, SNDRV_PCM_STREAM_CAPTURE); } static struct snd_pcm_ops snd_usb_playback_ops = { .open = snd_usb_playback_open, .close = snd_usb_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_usb_hw_params, .hw_free = snd_usb_hw_free, .prepare = snd_usb_pcm_prepare, .trigger = snd_usb_pcm_playback_trigger, .pointer = snd_usb_pcm_pointer, .page = snd_pcm_get_vmalloc_page, }; static struct snd_pcm_ops snd_usb_capture_ops = { .open = snd_usb_capture_open, .close = snd_usb_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_usb_hw_params, .hw_free = snd_usb_hw_free, .prepare = snd_usb_pcm_prepare, .trigger = snd_usb_pcm_capture_trigger, .pointer = snd_usb_pcm_pointer, .page = snd_pcm_get_vmalloc_page, }; /* * helper functions */ /* * combine bytes and get an integer value */ unsigned int snd_usb_combine_bytes(unsigned char *bytes, int size) { switch (size) { case 1: return *bytes; case 2: return combine_word(bytes); case 3: return combine_triple(bytes); case 4: return combine_quad(bytes); default: return 0; } } /* * parse descriptor buffer and return the pointer starting the given * descriptor type. */ void *snd_usb_find_desc(void *descstart, int desclen, void *after, u8 dtype) { u8 *p, *end, *next; p = descstart; end = p + desclen; for (; p < end;) { if (p[0] < 2) return NULL; next = p + p[0]; if (next > end) return NULL; if (p[1] == dtype && (!after || (void *)p > after)) { return p; } p = next; } return NULL; } /* * find a class-specified interface descriptor with the given subtype. */ void *snd_usb_find_csint_desc(void *buffer, int buflen, void *after, u8 dsubtype) { unsigned char *p = after; while ((p = snd_usb_find_desc(buffer, buflen, p, USB_DT_CS_INTERFACE)) != NULL) { if (p[0] >= 3 && p[2] == dsubtype) return p; } return NULL; } /* * Wrapper for usb_control_msg(). * Allocates a temp buffer to prevent dmaing from/to the stack. */ int snd_usb_ctl_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, __u16 value, __u16 index, void *data, __u16 size, int timeout) { int err; void *buf = NULL; if (size > 0) { buf = kmemdup(data, size, GFP_KERNEL); if (!buf) return -ENOMEM; } err = usb_control_msg(dev, pipe, request, requesttype, value, index, buf, size, timeout); if (size > 0) { memcpy(data, buf, size); kfree(buf); } return err; } /* * entry point for linux usb interface */ static int usb_audio_probe(struct usb_interface *intf, const struct usb_device_id *id); static void usb_audio_disconnect(struct usb_interface *intf); #ifdef CONFIG_PM static int usb_audio_suspend(struct usb_interface *intf, pm_message_t message); static int usb_audio_resume(struct usb_interface *intf); #else #define usb_audio_suspend NULL #define usb_audio_resume NULL #endif static struct usb_device_id usb_audio_ids [] = { #include "usbquirks.h" { .match_flags = (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS), .bInterfaceClass = USB_CLASS_AUDIO, .bInterfaceSubClass = USB_SUBCLASS_AUDIO_CONTROL }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE (usb, usb_audio_ids); static struct usb_driver usb_audio_driver = { .name = "snd-usb-audio", .probe = usb_audio_probe, .disconnect = usb_audio_disconnect, .suspend = usb_audio_suspend, .resume = usb_audio_resume, .id_table = usb_audio_ids, }; #if defined(CONFIG_PROC_FS) && defined(CONFIG_SND_VERBOSE_PROCFS) /* * proc interface for list the supported pcm formats */ static void proc_dump_substream_formats(struct snd_usb_substream *subs, struct snd_info_buffer *buffer) { struct list_head *p; static char *sync_types[4] = { "NONE", "ASYNC", "ADAPTIVE", "SYNC" }; list_for_each(p, &subs->fmt_list) { struct audioformat *fp; fp = list_entry(p, struct audioformat, list); snd_iprintf(buffer, " Interface %d\n", fp->iface); snd_iprintf(buffer, " Altset %d\n", fp->altsetting); snd_iprintf(buffer, " Format: %#x (%d bits)\n", fp->format, snd_pcm_format_width(fp->format)); snd_iprintf(buffer, " Channels: %d\n", fp->channels); snd_iprintf(buffer, " Endpoint: %d %s (%s)\n", fp->endpoint & USB_ENDPOINT_NUMBER_MASK, fp->endpoint & USB_DIR_IN ? "IN" : "OUT", sync_types[(fp->ep_attr & EP_ATTR_MASK) >> 2]); if (fp->rates & SNDRV_PCM_RATE_CONTINUOUS) { snd_iprintf(buffer, " Rates: %d - %d (continuous)\n", fp->rate_min, fp->rate_max); } else { unsigned int i; snd_iprintf(buffer, " Rates: "); for (i = 0; i < fp->nr_rates; i++) { if (i > 0) snd_iprintf(buffer, ", "); snd_iprintf(buffer, "%d", fp->rate_table[i]); } snd_iprintf(buffer, "\n"); } if (snd_usb_get_speed(subs->dev) == USB_SPEED_HIGH) snd_iprintf(buffer, " Data packet interval: %d us\n", 125 * (1 << fp->datainterval)); // snd_iprintf(buffer, " Max Packet Size = %d\n", fp->maxpacksize); // snd_iprintf(buffer, " EP Attribute = %#x\n", fp->attributes); } } static void proc_dump_substream_status(struct snd_usb_substream *subs, struct snd_info_buffer *buffer) { if (subs->running) { unsigned int i; snd_iprintf(buffer, " Status: Running\n"); snd_iprintf(buffer, " Interface = %d\n", subs->interface); snd_iprintf(buffer, " Altset = %d\n", subs->format); snd_iprintf(buffer, " URBs = %d [ ", subs->nurbs); for (i = 0; i < subs->nurbs; i++) snd_iprintf(buffer, "%d ", subs->dataurb[i].packets); snd_iprintf(buffer, "]\n"); snd_iprintf(buffer, " Packet Size = %d\n", subs->curpacksize); snd_iprintf(buffer, " Momentary freq = %u Hz (%#x.%04x)\n", snd_usb_get_speed(subs->dev) == USB_SPEED_FULL ? get_full_speed_hz(subs->freqm) : get_high_speed_hz(subs->freqm), subs->freqm >> 16, subs->freqm & 0xffff); } else { snd_iprintf(buffer, " Status: Stop\n"); } } static void proc_pcm_format_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_usb_stream *stream = entry->private_data; snd_iprintf(buffer, "%s : %s\n", stream->chip->card->longname, stream->pcm->name); if (stream->substream[SNDRV_PCM_STREAM_PLAYBACK].num_formats) { snd_iprintf(buffer, "\nPlayback:\n"); proc_dump_substream_status(&stream->substream[SNDRV_PCM_STREAM_PLAYBACK], buffer); proc_dump_substream_formats(&stream->substream[SNDRV_PCM_STREAM_PLAYBACK], buffer); } if (stream->substream[SNDRV_PCM_STREAM_CAPTURE].num_formats) { snd_iprintf(buffer, "\nCapture:\n"); proc_dump_substream_status(&stream->substream[SNDRV_PCM_STREAM_CAPTURE], buffer); proc_dump_substream_formats(&stream->substream[SNDRV_PCM_STREAM_CAPTURE], buffer); } } static void proc_pcm_format_add(struct snd_usb_stream *stream) { struct snd_info_entry *entry; char name[32]; struct snd_card *card = stream->chip->card; sprintf(name, "stream%d", stream->pcm_index); if (!snd_card_proc_new(card, name, &entry)) snd_info_set_text_ops(entry, stream, proc_pcm_format_read); } #else static inline void proc_pcm_format_add(struct snd_usb_stream *stream) { } #endif /* * initialize the substream instance. */ static void init_substream(struct snd_usb_stream *as, int stream, struct audioformat *fp) { struct snd_usb_substream *subs = &as->substream[stream]; INIT_LIST_HEAD(&subs->fmt_list); spin_lock_init(&subs->lock); subs->stream = as; subs->direction = stream; subs->dev = as->chip->dev; if (snd_usb_get_speed(subs->dev) == USB_SPEED_FULL) { subs->ops = audio_urb_ops[stream]; } else { subs->ops = audio_urb_ops_high_speed[stream]; switch (as->chip->usb_id) { case USB_ID(0x041e, 0x3f02): /* E-Mu 0202 USB */ case USB_ID(0x041e, 0x3f04): /* E-Mu 0404 USB */ case USB_ID(0x041e, 0x3f0a): /* E-Mu Tracker Pre */ subs->ops.retire_sync = retire_playback_sync_urb_hs_emu; break; } } snd_pcm_set_ops(as->pcm, stream, stream == SNDRV_PCM_STREAM_PLAYBACK ? &snd_usb_playback_ops : &snd_usb_capture_ops); list_add_tail(&fp->list, &subs->fmt_list); subs->formats |= 1ULL << fp->format; subs->endpoint = fp->endpoint; subs->num_formats++; subs->fmt_type = fp->fmt_type; } /* * free a substream */ static void free_substream(struct snd_usb_substream *subs) { struct list_head *p, *n; if (!subs->num_formats) return; /* not initialized */ list_for_each_safe(p, n, &subs->fmt_list) { struct audioformat *fp = list_entry(p, struct audioformat, list); kfree(fp->rate_table); kfree(fp); } kfree(subs->rate_list.list); } /* * free a usb stream instance */ static void snd_usb_audio_stream_free(struct snd_usb_stream *stream) { free_substream(&stream->substream[0]); free_substream(&stream->substream[1]); list_del(&stream->list); kfree(stream); } static void snd_usb_audio_pcm_free(struct snd_pcm *pcm) { struct snd_usb_stream *stream = pcm->private_data; if (stream) { stream->pcm = NULL; snd_usb_audio_stream_free(stream); } } /* * add this endpoint to the chip instance. * if a stream with the same endpoint already exists, append to it. * if not, create a new pcm stream. */ static int add_audio_endpoint(struct snd_usb_audio *chip, int stream, struct audioformat *fp) { struct list_head *p; struct snd_usb_stream *as; struct snd_usb_substream *subs; struct snd_pcm *pcm; int err; list_for_each(p, &chip->pcm_list) { as = list_entry(p, struct snd_usb_stream, list); if (as->fmt_type != fp->fmt_type) continue; subs = &as->substream[stream]; if (!subs->endpoint) continue; if (subs->endpoint == fp->endpoint) { list_add_tail(&fp->list, &subs->fmt_list); subs->num_formats++; subs->formats |= 1ULL << fp->format; return 0; } } /* look for an empty stream */ list_for_each(p, &chip->pcm_list) { as = list_entry(p, struct snd_usb_stream, list); if (as->fmt_type != fp->fmt_type) continue; subs = &as->substream[stream]; if (subs->endpoint) continue; err = snd_pcm_new_stream(as->pcm, stream, 1); if (err < 0) return err; init_substream(as, stream, fp); return 0; } /* create a new pcm */ as = kzalloc(sizeof(*as), GFP_KERNEL); if (!as) return -ENOMEM; as->pcm_index = chip->pcm_devs; as->chip = chip; as->fmt_type = fp->fmt_type; err = snd_pcm_new(chip->card, "USB Audio", chip->pcm_devs, stream == SNDRV_PCM_STREAM_PLAYBACK ? 1 : 0, stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1, &pcm); if (err < 0) { kfree(as); return err; } as->pcm = pcm; pcm->private_data = as; pcm->private_free = snd_usb_audio_pcm_free; pcm->info_flags = 0; if (chip->pcm_devs > 0) sprintf(pcm->name, "USB Audio #%d", chip->pcm_devs); else strcpy(pcm->name, "USB Audio"); init_substream(as, stream, fp); list_add(&as->list, &chip->pcm_list); chip->pcm_devs++; proc_pcm_format_add(as); return 0; } /* * check if the device uses big-endian samples */ static int is_big_endian_format(struct snd_usb_audio *chip, struct audioformat *fp) { switch (chip->usb_id) { case USB_ID(0x0763, 0x2001): /* M-Audio Quattro: captured data only */ if (fp->endpoint & USB_DIR_IN) return 1; break; case USB_ID(0x0763, 0x2003): /* M-Audio Audiophile USB */ if (device_setup[chip->index] == 0x00 || fp->altsetting==1 || fp->altsetting==2 || fp->altsetting==3) return 1; } return 0; } /* * parse the audio format type I descriptor * and returns the corresponding pcm format * * @dev: usb device * @fp: audioformat record * @format: the format tag (wFormatTag) * @fmt: the format type descriptor */ static int parse_audio_format_i_type(struct snd_usb_audio *chip, struct audioformat *fp, int format, unsigned char *fmt) { int pcm_format; int sample_width, sample_bytes; /* FIXME: correct endianess and sign? */ pcm_format = -1; sample_width = fmt[6]; sample_bytes = fmt[5]; switch (format) { case 0: /* some devices don't define this correctly... */ snd_printdd(KERN_INFO "%d:%u:%d : format type 0 is detected, processed as PCM\n", chip->dev->devnum, fp->iface, fp->altsetting); /* fall-through */ case USB_AUDIO_FORMAT_PCM: if (sample_width > sample_bytes * 8) { snd_printk(KERN_INFO "%d:%u:%d : sample bitwidth %d in over sample bytes %d\n", chip->dev->devnum, fp->iface, fp->altsetting, sample_width, sample_bytes); } /* check the format byte size */ switch (fmt[5]) { case 1: pcm_format = SNDRV_PCM_FORMAT_S8; break; case 2: if (is_big_endian_format(chip, fp)) pcm_format = SNDRV_PCM_FORMAT_S16_BE; /* grrr, big endian!! */ else pcm_format = SNDRV_PCM_FORMAT_S16_LE; break; case 3: if (is_big_endian_format(chip, fp)) pcm_format = SNDRV_PCM_FORMAT_S24_3BE; /* grrr, big endian!! */ else pcm_format = SNDRV_PCM_FORMAT_S24_3LE; break; case 4: pcm_format = SNDRV_PCM_FORMAT_S32_LE; break; default: snd_printk(KERN_INFO "%d:%u:%d : unsupported sample bitwidth %d in %d bytes\n", chip->dev->devnum, fp->iface, fp->altsetting, sample_width, sample_bytes); break; } break; case USB_AUDIO_FORMAT_PCM8: pcm_format = SNDRV_PCM_FORMAT_U8; /* Dallas DS4201 workaround: it advertises U8 format, but really supports S8. */ if (chip->usb_id == USB_ID(0x04fa, 0x4201)) pcm_format = SNDRV_PCM_FORMAT_S8; break; case USB_AUDIO_FORMAT_IEEE_FLOAT: pcm_format = SNDRV_PCM_FORMAT_FLOAT_LE; break; case USB_AUDIO_FORMAT_ALAW: pcm_format = SNDRV_PCM_FORMAT_A_LAW; break; case USB_AUDIO_FORMAT_MU_LAW: pcm_format = SNDRV_PCM_FORMAT_MU_LAW; break; default: snd_printk(KERN_INFO "%d:%u:%d : unsupported format type %d\n", chip->dev->devnum, fp->iface, fp->altsetting, format); break; } return pcm_format; } /* * parse the format descriptor and stores the possible sample rates * on the audioformat table. * * @dev: usb device * @fp: audioformat record * @fmt: the format descriptor * @offset: the start offset of descriptor pointing the rate type * (7 for type I and II, 8 for type II) */ static int parse_audio_format_rates(struct snd_usb_audio *chip, struct audioformat *fp, unsigned char *fmt, int offset) { int nr_rates = fmt[offset]; if (fmt[0] < offset + 1 + 3 * (nr_rates ? nr_rates : 2)) { snd_printk(KERN_ERR "%d:%u:%d : invalid FORMAT_TYPE desc\n", chip->dev->devnum, fp->iface, fp->altsetting); return -1; } if (nr_rates) { /* * build the rate table and bitmap flags */ int r, idx; fp->rate_table = kmalloc(sizeof(int) * nr_rates, GFP_KERNEL); if (fp->rate_table == NULL) { snd_printk(KERN_ERR "cannot malloc\n"); return -1; } fp->nr_rates = 0; fp->rate_min = fp->rate_max = 0; for (r = 0, idx = offset + 1; r < nr_rates; r++, idx += 3) { unsigned int rate = combine_triple(&fmt[idx]); if (!rate) continue; /* C-Media CM6501 mislabels its 96 kHz altsetting */ if (rate == 48000 && nr_rates == 1 && (chip->usb_id == USB_ID(0x0d8c, 0x0201) || chip->usb_id == USB_ID(0x0d8c, 0x0102)) && fp->altsetting == 5 && fp->maxpacksize == 392) rate = 96000; fp->rate_table[fp->nr_rates] = rate; if (!fp->rate_min || rate < fp->rate_min) fp->rate_min = rate; if (!fp->rate_max || rate > fp->rate_max) fp->rate_max = rate; fp->rates |= snd_pcm_rate_to_rate_bit(rate); fp->nr_rates++; } if (!fp->nr_rates) { hwc_debug("All rates were zero. Skipping format!\n"); return -1; } } else { /* continuous rates */ fp->rates = SNDRV_PCM_RATE_CONTINUOUS; fp->rate_min = combine_triple(&fmt[offset + 1]); fp->rate_max = combine_triple(&fmt[offset + 4]); } return 0; } /* * parse the format type I and III descriptors */ static int parse_audio_format_i(struct snd_usb_audio *chip, struct audioformat *fp, int format, unsigned char *fmt) { int pcm_format; if (fmt[3] == USB_FORMAT_TYPE_III) { /* FIXME: the format type is really IECxxx * but we give normal PCM format to get the existing * apps working... */ switch (chip->usb_id) { case USB_ID(0x0763, 0x2003): /* M-Audio Audiophile USB */ if (device_setup[chip->index] == 0x00 && fp->altsetting == 6) pcm_format = SNDRV_PCM_FORMAT_S16_BE; else pcm_format = SNDRV_PCM_FORMAT_S16_LE; break; default: pcm_format = SNDRV_PCM_FORMAT_S16_LE; } } else { pcm_format = parse_audio_format_i_type(chip, fp, format, fmt); if (pcm_format < 0) return -1; } fp->format = pcm_format; fp->channels = fmt[4]; if (fp->channels < 1) { snd_printk(KERN_ERR "%d:%u:%d : invalid channels %d\n", chip->dev->devnum, fp->iface, fp->altsetting, fp->channels); return -1; } return parse_audio_format_rates(chip, fp, fmt, 7); } /* * prase the format type II descriptor */ static int parse_audio_format_ii(struct snd_usb_audio *chip, struct audioformat *fp, int format, unsigned char *fmt) { int brate, framesize; switch (format) { case USB_AUDIO_FORMAT_AC3: /* FIXME: there is no AC3 format defined yet */ // fp->format = SNDRV_PCM_FORMAT_AC3; fp->format = SNDRV_PCM_FORMAT_U8; /* temporarily hack to receive byte streams */ break; case USB_AUDIO_FORMAT_MPEG: fp->format = SNDRV_PCM_FORMAT_MPEG; break; default: snd_printd(KERN_INFO "%d:%u:%d : unknown format tag %#x is detected. processed as MPEG.\n", chip->dev->devnum, fp->iface, fp->altsetting, format); fp->format = SNDRV_PCM_FORMAT_MPEG; break; } fp->channels = 1; brate = combine_word(&fmt[4]); /* fmt[4,5] : wMaxBitRate (in kbps) */ framesize = combine_word(&fmt[6]); /* fmt[6,7]: wSamplesPerFrame */ snd_printd(KERN_INFO "found format II with max.bitrate = %d, frame size=%d\n", brate, framesize); fp->frame_size = framesize; return parse_audio_format_rates(chip, fp, fmt, 8); /* fmt[8..] sample rates */ } static int parse_audio_format(struct snd_usb_audio *chip, struct audioformat *fp, int format, unsigned char *fmt, int stream) { int err; switch (fmt[3]) { case USB_FORMAT_TYPE_I: case USB_FORMAT_TYPE_III: err = parse_audio_format_i(chip, fp, format, fmt); break; case USB_FORMAT_TYPE_II: err = parse_audio_format_ii(chip, fp, format, fmt); break; default: snd_printd(KERN_INFO "%d:%u:%d : format type %d is not supported yet\n", chip->dev->devnum, fp->iface, fp->altsetting, fmt[3]); return -1; } fp->fmt_type = fmt[3]; if (err < 0) return err; #if 1 /* FIXME: temporary hack for extigy/audigy 2 nx/zs */ /* extigy apparently supports sample rates other than 48k * but not in ordinary way. so we enable only 48k atm. */ if (chip->usb_id == USB_ID(0x041e, 0x3000) || chip->usb_id == USB_ID(0x041e, 0x3020) || chip->usb_id == USB_ID(0x041e, 0x3061)) { if (fmt[3] == USB_FORMAT_TYPE_I && fp->rates != SNDRV_PCM_RATE_48000 && fp->rates != SNDRV_PCM_RATE_96000) return -1; } #endif return 0; } static unsigned char parse_datainterval(struct snd_usb_audio *chip, struct usb_host_interface *alts) { if (snd_usb_get_speed(chip->dev) == USB_SPEED_HIGH && get_endpoint(alts, 0)->bInterval >= 1 && get_endpoint(alts, 0)->bInterval <= 4) return get_endpoint(alts, 0)->bInterval - 1; else return 0; } static int audiophile_skip_setting_quirk(struct snd_usb_audio *chip, int iface, int altno); static int parse_audio_endpoints(struct snd_usb_audio *chip, int iface_no) { struct usb_device *dev; struct usb_interface *iface; struct usb_host_interface *alts; struct usb_interface_descriptor *altsd; int i, altno, err, stream; int format; struct audioformat *fp; unsigned char *fmt, *csep; int num; dev = chip->dev; /* parse the interface's altsettings */ iface = usb_ifnum_to_if(dev, iface_no); num = iface->num_altsetting; /* * Dallas DS4201 workaround: It presents 5 altsettings, but the last * one misses syncpipe, and does not produce any sound. */ if (chip->usb_id == USB_ID(0x04fa, 0x4201)) num = 4; for (i = 0; i < num; i++) { alts = &iface->altsetting[i]; altsd = get_iface_desc(alts); /* skip invalid one */ if ((altsd->bInterfaceClass != USB_CLASS_AUDIO && altsd->bInterfaceClass != USB_CLASS_VENDOR_SPEC) || (altsd->bInterfaceSubClass != USB_SUBCLASS_AUDIO_STREAMING && altsd->bInterfaceSubClass != USB_SUBCLASS_VENDOR_SPEC) || altsd->bNumEndpoints < 1 || le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize) == 0) continue; /* must be isochronous */ if ((get_endpoint(alts, 0)->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) != USB_ENDPOINT_XFER_ISOC) continue; /* check direction */ stream = (get_endpoint(alts, 0)->bEndpointAddress & USB_DIR_IN) ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; altno = altsd->bAlternateSetting; /* audiophile usb: skip altsets incompatible with device_setup */ if (chip->usb_id == USB_ID(0x0763, 0x2003) && audiophile_skip_setting_quirk(chip, iface_no, altno)) continue; /* get audio formats */ fmt = snd_usb_find_csint_desc(alts->extra, alts->extralen, NULL, AS_GENERAL); if (!fmt) { snd_printk(KERN_ERR "%d:%u:%d : AS_GENERAL descriptor not found\n", dev->devnum, iface_no, altno); continue; } if (fmt[0] < 7) { snd_printk(KERN_ERR "%d:%u:%d : invalid AS_GENERAL desc\n", dev->devnum, iface_no, altno); continue; } format = (fmt[6] << 8) | fmt[5]; /* remember the format value */ /* get format type */ fmt = snd_usb_find_csint_desc(alts->extra, alts->extralen, NULL, FORMAT_TYPE); if (!fmt) { snd_printk(KERN_ERR "%d:%u:%d : no FORMAT_TYPE desc\n", dev->devnum, iface_no, altno); continue; } if (fmt[0] < 8) { snd_printk(KERN_ERR "%d:%u:%d : invalid FORMAT_TYPE desc\n", dev->devnum, iface_no, altno); continue; } csep = snd_usb_find_desc(alts->endpoint[0].extra, alts->endpoint[0].extralen, NULL, USB_DT_CS_ENDPOINT); /* Creamware Noah has this descriptor after the 2nd endpoint */ if (!csep && altsd->bNumEndpoints >= 2) csep = snd_usb_find_desc(alts->endpoint[1].extra, alts->endpoint[1].extralen, NULL, USB_DT_CS_ENDPOINT); if (!csep || csep[0] < 7 || csep[2] != EP_GENERAL) { snd_printk(KERN_WARNING "%d:%u:%d : no or invalid" " class specific endpoint descriptor\n", dev->devnum, iface_no, altno); csep = NULL; } fp = kzalloc(sizeof(*fp), GFP_KERNEL); if (! fp) { snd_printk(KERN_ERR "cannot malloc\n"); return -ENOMEM; } fp->iface = iface_no; fp->altsetting = altno; fp->altset_idx = i; fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress; fp->ep_attr = get_endpoint(alts, 0)->bmAttributes; fp->datainterval = parse_datainterval(chip, alts); fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize); if (snd_usb_get_speed(dev) == USB_SPEED_HIGH) fp->maxpacksize = (((fp->maxpacksize >> 11) & 3) + 1) * (fp->maxpacksize & 0x7ff); fp->attributes = csep ? csep[3] : 0; /* some quirks for attributes here */ switch (chip->usb_id) { case USB_ID(0x0a92, 0x0053): /* AudioTrak Optoplay */ /* Optoplay sets the sample rate attribute although * it seems not supporting it in fact. */ fp->attributes &= ~EP_CS_ATTR_SAMPLE_RATE; break; case USB_ID(0x041e, 0x3020): /* Creative SB Audigy 2 NX */ case USB_ID(0x0763, 0x2003): /* M-Audio Audiophile USB */ /* doesn't set the sample rate attribute, but supports it */ fp->attributes |= EP_CS_ATTR_SAMPLE_RATE; break; case USB_ID(0x047f, 0x0ca1): /* plantronics headset */ case USB_ID(0x077d, 0x07af): /* Griffin iMic (note that there is an older model 77d:223) */ /* * plantronics headset and Griffin iMic have set adaptive-in * although it's really not... */ fp->ep_attr &= ~EP_ATTR_MASK; if (stream == SNDRV_PCM_STREAM_PLAYBACK) fp->ep_attr |= EP_ATTR_ADAPTIVE; else fp->ep_attr |= EP_ATTR_SYNC; break; } /* ok, let's parse further... */ if (parse_audio_format(chip, fp, format, fmt, stream) < 0) { kfree(fp->rate_table); kfree(fp); continue; } snd_printdd(KERN_INFO "%d:%u:%d: add audio endpoint %#x\n", dev->devnum, iface_no, altno, fp->endpoint); err = add_audio_endpoint(chip, stream, fp); if (err < 0) { kfree(fp->rate_table); kfree(fp); return err; } /* try to set the interface... */ usb_set_interface(chip->dev, iface_no, altno); init_usb_pitch(chip->dev, iface_no, alts, fp); init_usb_sample_rate(chip->dev, iface_no, alts, fp, fp->rate_max); } return 0; } /* * disconnect streams * called from snd_usb_audio_disconnect() */ static void snd_usb_stream_disconnect(struct list_head *head) { int idx; struct snd_usb_stream *as; struct snd_usb_substream *subs; as = list_entry(head, struct snd_usb_stream, list); for (idx = 0; idx < 2; idx++) { subs = &as->substream[idx]; if (!subs->num_formats) return; release_substream_urbs(subs, 1); subs->interface = -1; } } /* * parse audio control descriptor and create pcm/midi streams */ static int snd_usb_create_streams(struct snd_usb_audio *chip, int ctrlif) { struct usb_device *dev = chip->dev; struct usb_host_interface *host_iface; struct usb_interface *iface; unsigned char *p1; int i, j; /* find audiocontrol interface */ host_iface = &usb_ifnum_to_if(dev, ctrlif)->altsetting[0]; if (!(p1 = snd_usb_find_csint_desc(host_iface->extra, host_iface->extralen, NULL, HEADER))) { snd_printk(KERN_ERR "cannot find HEADER\n"); return -EINVAL; } if (! p1[7] || p1[0] < 8 + p1[7]) { snd_printk(KERN_ERR "invalid HEADER\n"); return -EINVAL; } /* * parse all USB audio streaming interfaces */ for (i = 0; i < p1[7]; i++) { struct usb_host_interface *alts; struct usb_interface_descriptor *altsd; j = p1[8 + i]; iface = usb_ifnum_to_if(dev, j); if (!iface) { snd_printk(KERN_ERR "%d:%u:%d : does not exist\n", dev->devnum, ctrlif, j); continue; } if (usb_interface_claimed(iface)) { snd_printdd(KERN_INFO "%d:%d:%d: skipping, already claimed\n", dev->devnum, ctrlif, j); continue; } alts = &iface->altsetting[0]; altsd = get_iface_desc(alts); if ((altsd->bInterfaceClass == USB_CLASS_AUDIO || altsd->bInterfaceClass == USB_CLASS_VENDOR_SPEC) && altsd->bInterfaceSubClass == USB_SUBCLASS_MIDI_STREAMING) { if (snd_usb_create_midi_interface(chip, iface, NULL) < 0) { snd_printk(KERN_ERR "%d:%u:%d: cannot create sequencer device\n", dev->devnum, ctrlif, j); continue; } usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L); continue; } if ((altsd->bInterfaceClass != USB_CLASS_AUDIO && altsd->bInterfaceClass != USB_CLASS_VENDOR_SPEC) || altsd->bInterfaceSubClass != USB_SUBCLASS_AUDIO_STREAMING) { snd_printdd(KERN_ERR "%d:%u:%d: skipping non-supported interface %d\n", dev->devnum, ctrlif, j, altsd->bInterfaceClass); /* skip non-supported classes */ continue; } if (snd_usb_get_speed(dev) == USB_SPEED_LOW) { snd_printk(KERN_ERR "low speed audio streaming not supported\n"); continue; } if (! parse_audio_endpoints(chip, j)) { usb_set_interface(dev, j, 0); /* reset the current interface */ usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L); } } return 0; } /* * create a stream for an endpoint/altsetting without proper descriptors */ static int create_fixed_stream_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk) { struct audioformat *fp; struct usb_host_interface *alts; int stream, err; unsigned *rate_table = NULL; fp = kmemdup(quirk->data, sizeof(*fp), GFP_KERNEL); if (! fp) { snd_printk(KERN_ERR "cannot memdup\n"); return -ENOMEM; } if (fp->nr_rates > 0) { rate_table = kmalloc(sizeof(int) * fp->nr_rates, GFP_KERNEL); if (!rate_table) { kfree(fp); return -ENOMEM; } memcpy(rate_table, fp->rate_table, sizeof(int) * fp->nr_rates); fp->rate_table = rate_table; } stream = (fp->endpoint & USB_DIR_IN) ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; err = add_audio_endpoint(chip, stream, fp); if (err < 0) { kfree(fp); kfree(rate_table); return err; } if (fp->iface != get_iface_desc(&iface->altsetting[0])->bInterfaceNumber || fp->altset_idx >= iface->num_altsetting) { kfree(fp); kfree(rate_table); return -EINVAL; } alts = &iface->altsetting[fp->altset_idx]; fp->datainterval = parse_datainterval(chip, alts); fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize); usb_set_interface(chip->dev, fp->iface, 0); init_usb_pitch(chip->dev, fp->iface, alts, fp); init_usb_sample_rate(chip->dev, fp->iface, alts, fp, fp->rate_max); return 0; } /* * create a stream for an interface with proper descriptors */ static int create_standard_audio_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk) { struct usb_host_interface *alts; struct usb_interface_descriptor *altsd; int err; alts = &iface->altsetting[0]; altsd = get_iface_desc(alts); err = parse_audio_endpoints(chip, altsd->bInterfaceNumber); if (err < 0) { snd_printk(KERN_ERR "cannot setup if %d: error %d\n", altsd->bInterfaceNumber, err); return err; } /* reset the current interface */ usb_set_interface(chip->dev, altsd->bInterfaceNumber, 0); return 0; } /* * Create a stream for an Edirol UA-700/UA-25/UA-4FX interface. * The only way to detect the sample rate is by looking at wMaxPacketSize. */ static int create_uaxx_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk) { static const struct audioformat ua_format = { .format = SNDRV_PCM_FORMAT_S24_3LE, .channels = 2, .fmt_type = USB_FORMAT_TYPE_I, .altsetting = 1, .altset_idx = 1, .rates = SNDRV_PCM_RATE_CONTINUOUS, }; struct usb_host_interface *alts; struct usb_interface_descriptor *altsd; struct audioformat *fp; int stream, err; /* both PCM and MIDI interfaces have 2 or more altsettings */ if (iface->num_altsetting < 2) return -ENXIO; alts = &iface->altsetting[1]; altsd = get_iface_desc(alts); if (altsd->bNumEndpoints == 2) { static const struct snd_usb_midi_endpoint_info ua700_ep = { .out_cables = 0x0003, .in_cables = 0x0003 }; static const struct snd_usb_audio_quirk ua700_quirk = { .type = QUIRK_MIDI_FIXED_ENDPOINT, .data = &ua700_ep }; static const struct snd_usb_midi_endpoint_info uaxx_ep = { .out_cables = 0x0001, .in_cables = 0x0001 }; static const struct snd_usb_audio_quirk uaxx_quirk = { .type = QUIRK_MIDI_FIXED_ENDPOINT, .data = &uaxx_ep }; if (chip->usb_id == USB_ID(0x0582, 0x002b)) return snd_usb_create_midi_interface(chip, iface, &ua700_quirk); else return snd_usb_create_midi_interface(chip, iface, &uaxx_quirk); } if (altsd->bNumEndpoints != 1) return -ENXIO; fp = kmalloc(sizeof(*fp), GFP_KERNEL); if (!fp) return -ENOMEM; memcpy(fp, &ua_format, sizeof(*fp)); fp->iface = altsd->bInterfaceNumber; fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress; fp->ep_attr = get_endpoint(alts, 0)->bmAttributes; fp->datainterval = 0; fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize); switch (fp->maxpacksize) { case 0x120: fp->rate_max = fp->rate_min = 44100; break; case 0x138: case 0x140: fp->rate_max = fp->rate_min = 48000; break; case 0x258: case 0x260: fp->rate_max = fp->rate_min = 96000; break; default: snd_printk(KERN_ERR "unknown sample rate\n"); kfree(fp); return -ENXIO; } stream = (fp->endpoint & USB_DIR_IN) ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; err = add_audio_endpoint(chip, stream, fp); if (err < 0) { kfree(fp); return err; } usb_set_interface(chip->dev, fp->iface, 0); return 0; } /* * Create a stream for an Edirol UA-1000 interface. */ static int create_ua1000_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk) { static const struct audioformat ua1000_format = { .format = SNDRV_PCM_FORMAT_S32_LE, .fmt_type = USB_FORMAT_TYPE_I, .altsetting = 1, .altset_idx = 1, .attributes = 0, .rates = SNDRV_PCM_RATE_CONTINUOUS, }; struct usb_host_interface *alts; struct usb_interface_descriptor *altsd; struct audioformat *fp; int stream, err; if (iface->num_altsetting != 2) return -ENXIO; alts = &iface->altsetting[1]; altsd = get_iface_desc(alts); if (alts->extralen != 11 || alts->extra[1] != USB_DT_CS_INTERFACE || altsd->bNumEndpoints != 1) return -ENXIO; fp = kmemdup(&ua1000_format, sizeof(*fp), GFP_KERNEL); if (!fp) return -ENOMEM; fp->channels = alts->extra[4]; fp->iface = altsd->bInterfaceNumber; fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress; fp->ep_attr = get_endpoint(alts, 0)->bmAttributes; fp->datainterval = parse_datainterval(chip, alts); fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize); fp->rate_max = fp->rate_min = combine_triple(&alts->extra[8]); stream = (fp->endpoint & USB_DIR_IN) ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; err = add_audio_endpoint(chip, stream, fp); if (err < 0) { kfree(fp); return err; } /* FIXME: playback must be synchronized to capture */ usb_set_interface(chip->dev, fp->iface, 0); return 0; } /* * Create a stream for an Edirol UA-101 interface. * Copy, paste and modify from Edirol UA-1000 */ static int create_ua101_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk) { static const struct audioformat ua101_format = { .format = SNDRV_PCM_FORMAT_S32_LE, .fmt_type = USB_FORMAT_TYPE_I, .altsetting = 1, .altset_idx = 1, .attributes = 0, .rates = SNDRV_PCM_RATE_CONTINUOUS, }; struct usb_host_interface *alts; struct usb_interface_descriptor *altsd; struct audioformat *fp; int stream, err; if (iface->num_altsetting != 2) return -ENXIO; alts = &iface->altsetting[1]; altsd = get_iface_desc(alts); if (alts->extralen != 18 || alts->extra[1] != USB_DT_CS_INTERFACE || altsd->bNumEndpoints != 1) return -ENXIO; fp = kmemdup(&ua101_format, sizeof(*fp), GFP_KERNEL); if (!fp) return -ENOMEM; fp->channels = alts->extra[11]; fp->iface = altsd->bInterfaceNumber; fp->endpoint = get_endpoint(alts, 0)->bEndpointAddress; fp->ep_attr = get_endpoint(alts, 0)->bmAttributes; fp->datainterval = parse_datainterval(chip, alts); fp->maxpacksize = le16_to_cpu(get_endpoint(alts, 0)->wMaxPacketSize); fp->rate_max = fp->rate_min = combine_triple(&alts->extra[15]); stream = (fp->endpoint & USB_DIR_IN) ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; err = add_audio_endpoint(chip, stream, fp); if (err < 0) { kfree(fp); return err; } /* FIXME: playback must be synchronized to capture */ usb_set_interface(chip->dev, fp->iface, 0); return 0; } static int snd_usb_create_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk); /* * handle the quirks for the contained interfaces */ static int create_composite_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk) { int probed_ifnum = get_iface_desc(iface->altsetting)->bInterfaceNumber; int err; for (quirk = quirk->data; quirk->ifnum >= 0; ++quirk) { iface = usb_ifnum_to_if(chip->dev, quirk->ifnum); if (!iface) continue; if (quirk->ifnum != probed_ifnum && usb_interface_claimed(iface)) continue; err = snd_usb_create_quirk(chip, iface, quirk); if (err < 0) return err; if (quirk->ifnum != probed_ifnum) usb_driver_claim_interface(&usb_audio_driver, iface, (void *)-1L); } return 0; } static int ignore_interface_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk) { return 0; } /* * boot quirks */ #define EXTIGY_FIRMWARE_SIZE_OLD 794 #define EXTIGY_FIRMWARE_SIZE_NEW 483 static int snd_usb_extigy_boot_quirk(struct usb_device *dev, struct usb_interface *intf) { struct usb_host_config *config = dev->actconfig; int err; if (le16_to_cpu(get_cfg_desc(config)->wTotalLength) == EXTIGY_FIRMWARE_SIZE_OLD || le16_to_cpu(get_cfg_desc(config)->wTotalLength) == EXTIGY_FIRMWARE_SIZE_NEW) { snd_printdd("sending Extigy boot sequence...\n"); /* Send message to force it to reconnect with full interface. */ err = snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev,0), 0x10, 0x43, 0x0001, 0x000a, NULL, 0, 1000); if (err < 0) snd_printdd("error sending boot message: %d\n", err); err = usb_get_descriptor(dev, USB_DT_DEVICE, 0, &dev->descriptor, sizeof(dev->descriptor)); config = dev->actconfig; if (err < 0) snd_printdd("error usb_get_descriptor: %d\n", err); err = usb_reset_configuration(dev); if (err < 0) snd_printdd("error usb_reset_configuration: %d\n", err); snd_printdd("extigy_boot: new boot length = %d\n", le16_to_cpu(get_cfg_desc(config)->wTotalLength)); return -ENODEV; /* quit this anyway */ } return 0; } static int snd_usb_audigy2nx_boot_quirk(struct usb_device *dev) { u8 buf = 1; snd_usb_ctl_msg(dev, usb_rcvctrlpipe(dev, 0), 0x2a, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_OTHER, 0, 0, &buf, 1, 1000); if (buf == 0) { snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), 0x29, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_OTHER, 1, 2000, NULL, 0, 1000); return -ENODEV; } return 0; } /* * C-Media CM106/CM106+ have four 16-bit internal registers that are nicely * documented in the device's data sheet. */ static int snd_usb_cm106_write_int_reg(struct usb_device *dev, int reg, u16 value) { u8 buf[4]; buf[0] = 0x20; buf[1] = value & 0xff; buf[2] = (value >> 8) & 0xff; buf[3] = reg; return snd_usb_ctl_msg(dev, usb_sndctrlpipe(dev, 0), USB_REQ_SET_CONFIGURATION, USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_ENDPOINT, 0, 0, &buf, 4, 1000); } static int snd_usb_cm106_boot_quirk(struct usb_device *dev) { /* * Enable line-out driver mode, set headphone source to front * channels, enable stereo mic. */ return snd_usb_cm106_write_int_reg(dev, 2, 0x8004); } /* * Setup quirks */ #define AUDIOPHILE_SET 0x01 /* if set, parse device_setup */ #define AUDIOPHILE_SET_DTS 0x02 /* if set, enable DTS Digital Output */ #define AUDIOPHILE_SET_96K 0x04 /* 48-96KHz rate if set, 8-48KHz otherwise */ #define AUDIOPHILE_SET_24B 0x08 /* 24bits sample if set, 16bits otherwise */ #define AUDIOPHILE_SET_DI 0x10 /* if set, enable Digital Input */ #define AUDIOPHILE_SET_MASK 0x1F /* bit mask for setup value */ #define AUDIOPHILE_SET_24B_48K_DI 0x19 /* value for 24bits+48KHz+Digital Input */ #define AUDIOPHILE_SET_24B_48K_NOTDI 0x09 /* value for 24bits+48KHz+No Digital Input */ #define AUDIOPHILE_SET_16B_48K_DI 0x11 /* value for 16bits+48KHz+Digital Input */ #define AUDIOPHILE_SET_16B_48K_NOTDI 0x01 /* value for 16bits+48KHz+No Digital Input */ static int audiophile_skip_setting_quirk(struct snd_usb_audio *chip, int iface, int altno) { /* Reset ALL ifaces to 0 altsetting. * Call it for every possible altsetting of every interface. */ usb_set_interface(chip->dev, iface, 0); if (device_setup[chip->index] & AUDIOPHILE_SET) { if ((device_setup[chip->index] & AUDIOPHILE_SET_DTS) && altno != 6) return 1; /* skip this altsetting */ if ((device_setup[chip->index] & AUDIOPHILE_SET_96K) && altno != 1) return 1; /* skip this altsetting */ if ((device_setup[chip->index] & AUDIOPHILE_SET_MASK) == AUDIOPHILE_SET_24B_48K_DI && altno != 2) return 1; /* skip this altsetting */ if ((device_setup[chip->index] & AUDIOPHILE_SET_MASK) == AUDIOPHILE_SET_24B_48K_NOTDI && altno != 3) return 1; /* skip this altsetting */ if ((device_setup[chip->index] & AUDIOPHILE_SET_MASK) == AUDIOPHILE_SET_16B_48K_DI && altno != 4) return 1; /* skip this altsetting */ if ((device_setup[chip->index] & AUDIOPHILE_SET_MASK) == AUDIOPHILE_SET_16B_48K_NOTDI && altno != 5) return 1; /* skip this altsetting */ } return 0; /* keep this altsetting */ } /* * audio-interface quirks * * returns zero if no standard audio/MIDI parsing is needed. * returns a postive value if standard audio/midi interfaces are parsed * after this. * returns a negative value at error. */ static int snd_usb_create_quirk(struct snd_usb_audio *chip, struct usb_interface *iface, const struct snd_usb_audio_quirk *quirk) { typedef int (*quirk_func_t)(struct snd_usb_audio *, struct usb_interface *, const struct snd_usb_audio_quirk *); static const quirk_func_t quirk_funcs[] = { [QUIRK_IGNORE_INTERFACE] = ignore_interface_quirk, [QUIRK_COMPOSITE] = create_composite_quirk, [QUIRK_MIDI_STANDARD_INTERFACE] = snd_usb_create_midi_interface, [QUIRK_MIDI_FIXED_ENDPOINT] = snd_usb_create_midi_interface, [QUIRK_MIDI_YAMAHA] = snd_usb_create_midi_interface, [QUIRK_MIDI_MIDIMAN] = snd_usb_create_midi_interface, [QUIRK_MIDI_NOVATION] = snd_usb_create_midi_interface, [QUIRK_MIDI_FASTLANE] = snd_usb_create_midi_interface, [QUIRK_MIDI_EMAGIC] = snd_usb_create_midi_interface, [QUIRK_MIDI_CME] = snd_usb_create_midi_interface, [QUIRK_AUDIO_STANDARD_INTERFACE] = create_standard_audio_quirk, [QUIRK_AUDIO_FIXED_ENDPOINT] = create_fixed_stream_quirk, [QUIRK_AUDIO_EDIROL_UA1000] = create_ua1000_quirk, [QUIRK_AUDIO_EDIROL_UA101] = create_ua101_quirk, [QUIRK_AUDIO_EDIROL_UAXX] = create_uaxx_quirk }; if (quirk->type < QUIRK_TYPE_COUNT) { return quirk_funcs[quirk->type](chip, iface, quirk); } else { snd_printd(KERN_ERR "invalid quirk type %d\n", quirk->type); return -ENXIO; } } /* * common proc files to show the usb device info */ static void proc_audio_usbbus_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_usb_audio *chip = entry->private_data; if (!chip->shutdown) snd_iprintf(buffer, "%03d/%03d\n", chip->dev->bus->busnum, chip->dev->devnum); } static void proc_audio_usbid_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_usb_audio *chip = entry->private_data; if (!chip->shutdown) snd_iprintf(buffer, "%04x:%04x\n", USB_ID_VENDOR(chip->usb_id), USB_ID_PRODUCT(chip->usb_id)); } static void snd_usb_audio_create_proc(struct snd_usb_audio *chip) { struct snd_info_entry *entry; if (!snd_card_proc_new(chip->card, "usbbus", &entry)) snd_info_set_text_ops(entry, chip, proc_audio_usbbus_read); if (!snd_card_proc_new(chip->card, "usbid", &entry)) snd_info_set_text_ops(entry, chip, proc_audio_usbid_read); } /* * free the chip instance * * here we have to do not much, since pcm and controls are already freed * */ static int snd_usb_audio_free(struct snd_usb_audio *chip) { kfree(chip); return 0; } static int snd_usb_audio_dev_free(struct snd_device *device) { struct snd_usb_audio *chip = device->device_data; return snd_usb_audio_free(chip); } /* * create a chip instance and set its names. */ static int snd_usb_audio_create(struct usb_device *dev, int idx, const struct snd_usb_audio_quirk *quirk, struct snd_usb_audio **rchip) { struct snd_card *card; struct snd_usb_audio *chip; int err, len; char component[14]; static struct snd_device_ops ops = { .dev_free = snd_usb_audio_dev_free, }; *rchip = NULL; if (snd_usb_get_speed(dev) != USB_SPEED_LOW && snd_usb_get_speed(dev) != USB_SPEED_FULL && snd_usb_get_speed(dev) != USB_SPEED_HIGH) { snd_printk(KERN_ERR "unknown device speed %d\n", snd_usb_get_speed(dev)); return -ENXIO; } err = snd_card_create(index[idx], id[idx], THIS_MODULE, 0, &card); if (err < 0) { snd_printk(KERN_ERR "cannot create card instance %d\n", idx); return err; } chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (! chip) { snd_card_free(card); return -ENOMEM; } chip->index = idx; chip->dev = dev; chip->card = card; chip->usb_id = USB_ID(le16_to_cpu(dev->descriptor.idVendor), le16_to_cpu(dev->descriptor.idProduct)); INIT_LIST_HEAD(&chip->pcm_list); INIT_LIST_HEAD(&chip->midi_list); INIT_LIST_HEAD(&chip->mixer_list); if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { snd_usb_audio_free(chip); snd_card_free(card); return err; } strcpy(card->driver, "USB-Audio"); sprintf(component, "USB%04x:%04x", USB_ID_VENDOR(chip->usb_id), USB_ID_PRODUCT(chip->usb_id)); snd_component_add(card, component); /* retrieve the device string as shortname */ if (quirk && quirk->product_name) { strlcpy(card->shortname, quirk->product_name, sizeof(card->shortname)); } else { if (!dev->descriptor.iProduct || usb_string(dev, dev->descriptor.iProduct, card->shortname, sizeof(card->shortname)) <= 0) { /* no name available from anywhere, so use ID */ sprintf(card->shortname, "USB Device %#04x:%#04x", USB_ID_VENDOR(chip->usb_id), USB_ID_PRODUCT(chip->usb_id)); } } /* retrieve the vendor and device strings as longname */ if (quirk && quirk->vendor_name) { len = strlcpy(card->longname, quirk->vendor_name, sizeof(card->longname)); } else { if (dev->descriptor.iManufacturer) len = usb_string(dev, dev->descriptor.iManufacturer, card->longname, sizeof(card->longname)); else len = 0; /* we don't really care if there isn't any vendor string */ } if (len > 0) strlcat(card->longname, " ", sizeof(card->longname)); strlcat(card->longname, card->shortname, sizeof(card->longname)); len = strlcat(card->longname, " at ", sizeof(card->longname)); if (len < sizeof(card->longname)) usb_make_path(dev, card->longname + len, sizeof(card->longname) - len); strlcat(card->longname, snd_usb_get_speed(dev) == USB_SPEED_LOW ? ", low speed" : snd_usb_get_speed(dev) == USB_SPEED_FULL ? ", full speed" : ", high speed", sizeof(card->longname)); snd_usb_audio_create_proc(chip); *rchip = chip; return 0; } /* * probe the active usb device * * note that this can be called multiple times per a device, when it * includes multiple audio control interfaces. * * thus we check the usb device pointer and creates the card instance * only at the first time. the successive calls of this function will * append the pcm interface to the corresponding card. */ static void *snd_usb_audio_probe(struct usb_device *dev, struct usb_interface *intf, const struct usb_device_id *usb_id) { const struct snd_usb_audio_quirk *quirk = (const struct snd_usb_audio_quirk *)usb_id->driver_info; int i, err; struct snd_usb_audio *chip; struct usb_host_interface *alts; int ifnum; u32 id; alts = &intf->altsetting[0]; ifnum = get_iface_desc(alts)->bInterfaceNumber; id = USB_ID(le16_to_cpu(dev->descriptor.idVendor), le16_to_cpu(dev->descriptor.idProduct)); if (quirk && quirk->ifnum >= 0 && ifnum != quirk->ifnum) goto __err_val; /* SB Extigy needs special boot-up sequence */ /* if more models come, this will go to the quirk list. */ if (id == USB_ID(0x041e, 0x3000)) { if (snd_usb_extigy_boot_quirk(dev, intf) < 0) goto __err_val; } /* SB Audigy 2 NX needs its own boot-up magic, too */ if (id == USB_ID(0x041e, 0x3020)) { if (snd_usb_audigy2nx_boot_quirk(dev) < 0) goto __err_val; } /* C-Media CM106 / Turtle Beach Audio Advantage Roadie */ if (id == USB_ID(0x10f5, 0x0200)) { if (snd_usb_cm106_boot_quirk(dev) < 0) goto __err_val; } /* * found a config. now register to ALSA */ /* check whether it's already registered */ chip = NULL; mutex_lock(®ister_mutex); for (i = 0; i < SNDRV_CARDS; i++) { if (usb_chip[i] && usb_chip[i]->dev == dev) { if (usb_chip[i]->shutdown) { snd_printk(KERN_ERR "USB device is in the shutdown state, cannot create a card instance\n"); goto __error; } chip = usb_chip[i]; break; } } if (! chip) { /* it's a fresh one. * now look for an empty slot and create a new card instance */ for (i = 0; i < SNDRV_CARDS; i++) if (enable[i] && ! usb_chip[i] && (vid[i] == -1 || vid[i] == USB_ID_VENDOR(id)) && (pid[i] == -1 || pid[i] == USB_ID_PRODUCT(id))) { if (snd_usb_audio_create(dev, i, quirk, &chip) < 0) { goto __error; } snd_card_set_dev(chip->card, &intf->dev); break; } if (!chip) { printk(KERN_ERR "no available usb audio device\n"); goto __error; } } err = 1; /* continue */ if (quirk && quirk->ifnum != QUIRK_NO_INTERFACE) { /* need some special handlings */ if ((err = snd_usb_create_quirk(chip, intf, quirk)) < 0) goto __error; } if (err > 0) { /* create normal USB audio interfaces */ if (snd_usb_create_streams(chip, ifnum) < 0 || snd_usb_create_mixer(chip, ifnum, ignore_ctl_error) < 0) { goto __error; } } /* we are allowed to call snd_card_register() many times */ if (snd_card_register(chip->card) < 0) { goto __error; } usb_chip[chip->index] = chip; chip->num_interfaces++; mutex_unlock(®ister_mutex); return chip; __error: if (chip && !chip->num_interfaces) snd_card_free(chip->card); mutex_unlock(®ister_mutex); __err_val: return NULL; } /* * we need to take care of counter, since disconnection can be called also * many times as well as usb_audio_probe(). */ static void snd_usb_audio_disconnect(struct usb_device *dev, void *ptr) { struct snd_usb_audio *chip; struct snd_card *card; struct list_head *p; if (ptr == (void *)-1L) return; chip = ptr; card = chip->card; mutex_lock(®ister_mutex); chip->shutdown = 1; chip->num_interfaces--; if (chip->num_interfaces <= 0) { snd_card_disconnect(card); /* release the pcm resources */ list_for_each(p, &chip->pcm_list) { snd_usb_stream_disconnect(p); } /* release the midi resources */ list_for_each(p, &chip->midi_list) { snd_usbmidi_disconnect(p); } /* release mixer resources */ list_for_each(p, &chip->mixer_list) { snd_usb_mixer_disconnect(p); } usb_chip[chip->index] = NULL; mutex_unlock(®ister_mutex); snd_card_free_when_closed(card); } else { mutex_unlock(®ister_mutex); } } /* * new 2.5 USB kernel API */ static int usb_audio_probe(struct usb_interface *intf, const struct usb_device_id *id) { void *chip; chip = snd_usb_audio_probe(interface_to_usbdev(intf), intf, id); if (chip) { usb_set_intfdata(intf, chip); return 0; } else return -EIO; } static void usb_audio_disconnect(struct usb_interface *intf) { snd_usb_audio_disconnect(interface_to_usbdev(intf), usb_get_intfdata(intf)); } #ifdef CONFIG_PM static int usb_audio_suspend(struct usb_interface *intf, pm_message_t message) { struct snd_usb_audio *chip = usb_get_intfdata(intf); struct list_head *p; struct snd_usb_stream *as; if (chip == (void *)-1L) return 0; snd_power_change_state(chip->card, SNDRV_CTL_POWER_D3hot); if (!chip->num_suspended_intf++) { list_for_each(p, &chip->pcm_list) { as = list_entry(p, struct snd_usb_stream, list); snd_pcm_suspend_all(as->pcm); } } return 0; } static int usb_audio_resume(struct usb_interface *intf) { struct snd_usb_audio *chip = usb_get_intfdata(intf); if (chip == (void *)-1L) return 0; if (--chip->num_suspended_intf) return 0; /* * ALSA leaves material resumption to user space * we just notify */ snd_power_change_state(chip->card, SNDRV_CTL_POWER_D0); return 0; } #endif /* CONFIG_PM */ static int __init snd_usb_audio_init(void) { if (nrpacks < 1 || nrpacks > MAX_PACKS) { printk(KERN_WARNING "invalid nrpacks value.\n"); return -EINVAL; } return usb_register(&usb_audio_driver); } static void __exit snd_usb_audio_cleanup(void) { usb_deregister(&usb_audio_driver); } module_init(snd_usb_audio_init); module_exit(snd_usb_audio_cleanup);